JP6295952B2 - SOLAR CELL DEVICE, ITS MANUFACTURING METHOD, AND SOLAR CELL MODULE - Google Patents

SOLAR CELL DEVICE, ITS MANUFACTURING METHOD, AND SOLAR CELL MODULE Download PDF

Info

Publication number
JP6295952B2
JP6295952B2 JP2014525896A JP2014525896A JP6295952B2 JP 6295952 B2 JP6295952 B2 JP 6295952B2 JP 2014525896 A JP2014525896 A JP 2014525896A JP 2014525896 A JP2014525896 A JP 2014525896A JP 6295952 B2 JP6295952 B2 JP 6295952B2
Authority
JP
Japan
Prior art keywords
passivation
oxide
solar cell
passivation layer
diffusion region
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2014525896A
Other languages
Japanese (ja)
Other versions
JPWO2014014112A1 (en
Inventor
明博 織田
明博 織田
吉田 誠人
誠人 吉田
野尻 剛
剛 野尻
倉田 靖
靖 倉田
田中 徹
徹 田中
修一郎 足立
修一郎 足立
剛 早坂
剛 早坂
服部 孝司
孝司 服部
三江子 松村
三江子 松村
敬司 渡邉
敬司 渡邉
真年 森下
真年 森下
浩孝 濱村
浩孝 濱村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Showa Denko Materials Co Ltd
Original Assignee
Hitachi Chemical Co Ltd
Showa Denko Materials Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Chemical Co Ltd, Showa Denko Materials Co Ltd filed Critical Hitachi Chemical Co Ltd
Publication of JPWO2014014112A1 publication Critical patent/JPWO2014014112A1/en
Application granted granted Critical
Publication of JP6295952B2 publication Critical patent/JP6295952B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/02Details
    • H01L31/0224Electrodes
    • H01L31/022408Electrodes for devices characterised by at least one potential jump barrier or surface barrier
    • H01L31/022425Electrodes for devices characterised by at least one potential jump barrier or surface barrier for solar cells
    • H01L31/022441Electrode arrangements specially adapted for back-contact solar cells
    • H01L31/02245Electrode arrangements specially adapted for back-contact solar cells for metallisation wrap-through [MWT] type solar cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/02Details
    • H01L31/0216Coatings
    • H01L31/02161Coatings for devices characterised by at least one potential jump barrier or surface barrier
    • H01L31/02167Coatings for devices characterised by at least one potential jump barrier or surface barrier for solar cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/02Details
    • H01L31/0224Electrodes
    • H01L31/022408Electrodes for devices characterised by at least one potential jump barrier or surface barrier
    • H01L31/022425Electrodes for devices characterised by at least one potential jump barrier or surface barrier for solar cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/06Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by at least one potential-jump barrier or surface barrier
    • H01L31/068Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by at least one potential-jump barrier or surface barrier the potential barriers being only of the PN homojunction type, e.g. bulk silicon PN homojunction solar cells or thin film polycrystalline silicon PN homojunction solar cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/06Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by at least one potential-jump barrier or surface barrier
    • H01L31/068Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by at least one potential-jump barrier or surface barrier the potential barriers being only of the PN homojunction type, e.g. bulk silicon PN homojunction solar cells or thin film polycrystalline silicon PN homojunction solar cells
    • H01L31/0682Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by at least one potential-jump barrier or surface barrier the potential barriers being only of the PN homojunction type, e.g. bulk silicon PN homojunction solar cells or thin film polycrystalline silicon PN homojunction solar cells back-junction, i.e. rearside emitter, solar cells, e.g. interdigitated base-emitter regions back-junction cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/18Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof
    • H01L31/1804Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof comprising only elements of Group IV of the Periodic System
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/547Monocrystalline silicon PV cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Description

本発明は、太陽電池素子及びその製造方法、並びに太陽電池モジュールに関する。   The present invention relates to a solar cell element, a manufacturing method thereof, and a solar cell module.

従来のシリコン太陽電池素子の製造工程について説明する。
まず、光閉じ込め効果を促して高効率化を図るよう、受光面側にテクスチャー構造を形成したp型シリコン基板を準備し、続いてオキシ塩化リン(POCl)、窒素及び酸素の混合ガス雰囲気において800℃〜900℃で数十分の処理を行って一様にn型拡散層を形成する。この従来の方法では、混合ガスを用いてリンの拡散を行うため、受光面である表面のみならず、側面及び裏面にもn型拡散層が形成される。そのため、側面に形成されたn型拡散層を除去するためのサイドエッチングを行う。また、裏面に形成されたn型拡散層はp型拡散層へ変換する必要がある。このため、裏面の全体にアルミニウム粉末、ガラスフリット、分散媒及び有機バインダ等を含むアルミニウムペーストを付与し、これを熱処理(焼成)してアルミニウム電極を形成することで、n型拡散層をp型拡散層にし、更にオーミックコンタクトを得ている。
The manufacturing process of the conventional silicon solar cell element is demonstrated.
First, a p-type silicon substrate having a texture structure formed on the light-receiving surface side is prepared so as to promote the light confinement effect and increase the efficiency, and then in a mixed gas atmosphere of phosphorus oxychloride (POCl 3 ), nitrogen and oxygen An n-type diffusion layer is uniformly formed by performing several tens of minutes at 800 ° C. to 900 ° C. In this conventional method, since phosphorus is diffused using a mixed gas, n-type diffusion layers are formed not only on the front surface, which is the light receiving surface, but also on the side surface and the back surface. Therefore, side etching is performed to remove the n-type diffusion layer formed on the side surface. Further, the n-type diffusion layer formed on the back surface needs to be converted into a p + -type diffusion layer. Therefore, aluminum powder on the entire back surface, glass frit, an aluminum paste applied containing a dispersion medium and organic binder and the like, by forming an aluminum electrode which heat treatment (firing) to the n-type diffusion layer p + In addition, an ohmic contact is obtained in the mold diffusion layer.

しかしながら、アルミニウムペーストから形成されるアルミニウム電極は導電率が低い。そのためシート抵抗を下げるために、通常裏面全面に形成したアルミニウム電極は熱処理後において10μm〜20μmほどの厚さを有していなければならない。さらに、シリコンとアルミニウムでは熱膨張率が大きく異なることから、熱処理及び冷却の過程で、シリコン基板中に大きな内部応力を発生させ、結晶粒界のダメージ、結晶の欠陥の増長及び反りの原因となる。   However, the electrical conductivity of the aluminum electrode formed from the aluminum paste is low. Therefore, in order to reduce the sheet resistance, the aluminum electrode formed on the entire back surface usually has a thickness of about 10 μm to 20 μm after the heat treatment. Furthermore, since the thermal expansion coefficients of silicon and aluminum differ greatly, a large internal stress is generated in the silicon substrate during the heat treatment and cooling, which causes damage to crystal boundaries, increase of crystal defects, and warpage. .

この問題を解決するために、アルミニウムペーストの付与量を減らし、裏面電極層の厚さを薄くする方法がある。しかしながら、アルミニウムペーストの付与量を減らすと、p型シリコン半導体基板の表面から内部に拡散するアルミニウムの量が不充分となる。その結果、所望のBSF(Back Surface Field)効果(p型拡散層の存在により生成キャリアの収集効率が向上する効果)を達成することができないため、太陽電池の特性が低下するという問題が生じる。In order to solve this problem, there is a method of reducing the applied amount of the aluminum paste and reducing the thickness of the back electrode layer. However, if the applied amount of the aluminum paste is reduced, the amount of aluminum diffusing from the surface of the p-type silicon semiconductor substrate becomes insufficient. As a result, the desired BSF (Back Surface Field) effect (the effect of improving the collection efficiency of the generated carriers due to the presence of the p + -type diffusion layer) cannot be achieved, resulting in a problem that the characteristics of the solar cell deteriorate. .

上記に関連して、アルミニウムペーストをシリコン基板表面の一部に付与して部分的にp型拡散層とアルミニウム電極とを形成するポイントコンタクトの手法が提案されている(例えば、特許第3107287号公報参照)。
このような受光面とは反対側(以下、裏面ともいう)にポイントコンタクト構造を有する太陽電池の場合、アルミニウム電極以外の部分の表面において、少数キャリアの再結合速度を抑制する必要がある。そのための裏面用の半導体基板パッシベーション層(以下、単に「パッシベーション層」ともいう)として、SiO層等が提案されている(例えば、特開2004−6565号公報参照)。SiO層を形成することによるパッシベーション効果としては、シリコン基板の裏面の表層部におけるケイ素原子の未結合手を終端させ、再結合の原因となる表面準位密度を低減させる効果がある。
In relation to the above, a point contact method has been proposed in which an aluminum paste is applied to a part of the surface of a silicon substrate to partially form a p + -type diffusion layer and an aluminum electrode (for example, Japanese Patent No. 3107287). See the official gazette).
In the case of a solar cell having a point contact structure on the side opposite to the light receiving surface (hereinafter also referred to as the back surface), it is necessary to suppress the recombination rate of minority carriers on the surface of the portion other than the aluminum electrode. For this purpose, a SiO 2 layer or the like has been proposed as a backside semiconductor substrate passivation layer (hereinafter also simply referred to as “passivation layer”) (see, for example, Japanese Patent Application Laid-Open No. 2004-6565). As a passivation effect by forming the SiO 2 layer, there is an effect of terminating the dangling bonds of silicon atoms in the surface layer portion on the back surface of the silicon substrate, and reducing the surface state density that causes recombination.

また、少数キャリアの再結合を抑制する別の方法として、パッシベーション層内の固定電荷が発生する電界によって少数キャリア密度を低減する方法がある。このようなパッシベーション効果は一般に電界効果と呼ばれ、負の固定電荷を有する材料として酸化アルミニウム(Al)等が提案されている(例えば、特許第4767110号公報参照)。As another method of suppressing recombination of minority carriers, there is a method of reducing the minority carrier density by an electric field that generates fixed charges in the passivation layer. Such a passivation effect is generally called a field effect, and aluminum oxide (Al 2 O 3 ) or the like has been proposed as a material having a negative fixed charge (see, for example, Japanese Patent No. 4767110).

このようなパッシベーション層は、一般的にはALD(Atomic Layer Deposition)法、CVD(Chemical Vapor Deposition)法等の方法で形成される(例えば、Journal of Applied Physics,104(2008),113703−1〜113703−7参照)。また、半導体基板上に酸化アルミニウム層を形成する簡便な手法として、ゾルゲル法による手法が提案されている(例えば、Thin Solid Films,517(2009),6327〜6330、Chinese Physics Letters,26(2009),088102−1〜088102−4参照)。   Such a passivation layer is generally formed by a method such as an ALD (Atomic Layer Deposition) method or a CVD (Chemical Vapor Deposition) method (for example, Journal of Applied Physics, 104 (2008), 113703-1). 113703-7). As a simple method for forming an aluminum oxide layer on a semiconductor substrate, a sol-gel method has been proposed (for example, Thin Solid Films, 517 (2009), 6327-6330, Chinese Physics Letters, 26 (2009)). , 088102-1 to 088102-4).

Journal of Applied Physics,104(2008),113703−1〜113703−7に記載の手法は、蒸着等の複雑な製造工程を含むため、生産性を向上させることが困難な場合がある。またThin Solid Films,517(2009),6327〜6330Chinese Physics Letters,26(2009),088102−1〜088102−4に記載の手法に用いるパッシベーション層形成用組成物は、経時的にゲル化等の不具合が発生してしまい保存安定性が充分とは言い難い。更に、アルミニウム以外の金属元素を含む酸化物を用いて優れたパッシベーション効果を有するパッシベーション層を形成することについての検討は、これまで充分になされていない。   Since the technique described in Journal of Applied Physics, 104 (2008), 113703-1 to 113703-7 includes a complicated manufacturing process such as vapor deposition, it may be difficult to improve productivity. In addition, the composition for forming a passivation layer used in the method described in Thin Solid Films, 517 (2009), 6327-6330 Chinese Physics Letters, 26 (2009), 088102-1 to 088102-4 has problems such as gelation over time. It is difficult to say that the storage stability is sufficient. Further, there has not been sufficiently studied to form a passivation layer having an excellent passivation effect using an oxide containing a metal element other than aluminum.

本発明は、以上の従来の問題点に鑑みなされたものであり、優れた変換効率を有し、経時的な太陽電池特性の低下が抑制される太陽電池素子及びその簡便な製造方法、並びに優れた変換効率を有し、経時的な太陽電池特性の低下が抑制される太陽電池モジュールを提供することを課題とする。   The present invention has been made in view of the above-described conventional problems, has a high conversion efficiency, a solar cell element in which deterioration of solar cell characteristics over time is suppressed, a simple manufacturing method thereof, and an excellent It is an object of the present invention to provide a solar cell module having high conversion efficiency and capable of suppressing deterioration of solar cell characteristics over time.

前記課題を解決するための具体的手段は以下の通りである。
<1>受光面及び前記受光面とは反対側の裏面を有し、前記裏面にp型不純物を含有するp型拡散領域及びn型不純物を含有するn型拡散領域を有する半導体基板と、
前記半導体基板の裏面の一部又は全部の領域に設けられ、Nb、Ta、V、Y及びHfOからなる群より選択される1種以上を含有するパッシベーション層と、
前記p型拡散領域の少なくとも一部に設けられる第一の金属電極と、
前記n型拡散領域の少なくとも一部に設けられる第二の金属電極と、を含む太陽電池素子。
Specific means for solving the above problems are as follows.
<1> a semiconductor substrate having a light-receiving surface and a back surface opposite to the light-receiving surface, and having a p-type diffusion region containing a p-type impurity and an n-type diffusion region containing an n-type impurity on the back surface;
Provided in part or all of the back surface of the semiconductor substrate, containing one or more selected from the group consisting of Nb 2 O 5 , Ta 2 O 5 , V 2 O 5 , Y 2 O 3 and HfO 2 A passivation layer to
A first metal electrode provided in at least a part of the p-type diffusion region;
And a second metal electrode provided in at least a part of the n-type diffusion region.

<2>前記p型拡散領域と前記n型拡散領域とは離間して配置されており、それぞれ短辺及び長辺を有する複数の矩形部分を有しており、
前記p型拡散領域が有する複数の矩形部分は、前記複数の矩形部分の長辺の方向が前記n型拡散領域が有する複数の矩形部分の長辺の方向に沿うように配置されており、
前記p型拡散領域が有する複数の矩形部分と前記n型拡散領域が有する複数の矩形部分とは交互に配置されている、<1>に記載の太陽電池素子。
<2> The p-type diffusion region and the n-type diffusion region are spaced apart from each other, and each has a plurality of rectangular portions having short sides and long sides,
The plurality of rectangular portions of the p-type diffusion region are arranged such that the long sides of the plurality of rectangular portions are along the long sides of the plurality of rectangular portions of the n-type diffusion region,
The solar cell element according to <1> , wherein the plurality of rectangular portions included in the p-type diffusion region and the plurality of rectangular portions included in the n-type diffusion region are alternately arranged.

<3>前記太陽電池素子はバックコンタクト構造を有する、<1>又は<2>に記載の太陽電池素子。 <3> The solar cell element according to <1> or <2>, wherein the solar cell element has a back contact structure.

<4>前記パッシベーション層が更にAlを含有する、<1>〜<3>のいずれか一項に記載の太陽電池素子。<4> The solar cell element according to any one of <1> to <3>, wherein the passivation layer further contains Al 2 O 3 .

<5>前記パッシベーション層はパッシベーション層形成用組成物の熱処理物である、<1>〜<4>のいずれか一項に記載の太陽電池素子。 <5> The solar cell element according to any one of <1> to <4>, wherein the passivation layer is a heat-treated product of the composition for forming a passivation layer.

<6>前記パッシベーション層形成用組成物が、Nb、Ta、V、Y、HfO及び下記一般式(I)で表される化合物からなる群より選択される1種以上を含む、<5>に記載の太陽電池素子。
M(OR)m (I)
[式中、MはNb、Ta、V、Y及びHfからなる群より選択される少なくとも1種の金属元素を含む。Rはそれぞれ独立して炭素数1〜8のアルキル基又は炭素数6〜14のアリール基を表す。mは1〜5の整数を表す。]
<6> The composition for forming a passivation layer is composed of Nb 2 O 5 , Ta 2 O 5 , V 2 O 5 , Y 2 O 3 , HfO 2 and a compound represented by the following general formula (I). The solar cell element according to <5>, including one or more selected.
M (OR 1 ) m (I)
[Wherein M includes at least one metal element selected from the group consisting of Nb, Ta, V, Y and Hf. R 1 each independently represents an alkyl group having 1 to 8 carbon atoms or an aryl group having 6 to 14 carbon atoms. m represents an integer of 1 to 5. ]

<7>前記パッシベーション層形成用組成物が、更にAl及び下記一般式(II)で表される化合物からなる群より選択される1種以上のアルミニウム化合物を含む、<6>に記載の太陽電池素子。 <7> the passivation layer forming composition further comprises Al 2 O 3 and one or more aluminum compounds selected from the group consisting of compounds represented by the following formula (II), according to <6> Solar cell element.

式中、Rはそれぞれ独立して炭素数1〜8のアルキル基を表す。nは0〜3の整数を表す。X及びXはそれぞれ独立して酸素原子又はメチレン基を表す。R、R及びRはそれぞれ独立して水素原子又は炭素数1〜8のアルキル基を表す。Wherein, R 2 each independently represent an alkyl group having 1 to 8 carbon atoms. n represents an integer of 0 to 3. X 2 and X 3 each independently represent an oxygen atom or a methylene group. R 3 , R 4 and R 5 each independently represent a hydrogen atom or an alkyl group having 1 to 8 carbon atoms.

<8>前記一般式(II)において、Rがそれぞれ独立して炭素数1〜4のアルキル基である、<7>に記載の太陽電池素子。<8> The solar cell element according to <7>, wherein in the general formula (II), each R 2 is independently an alkyl group having 1 to 4 carbon atoms.

<9>前記一般式(II)において、nが1〜3の整数であり、Rがそれぞれ独立して水素原子又は炭素数4又は5のアルキル基である、<7>又は<8>に記載の太陽電池素子。<9> In the general formula (II), <7> or <8>, wherein n is an integer of 1 to 3, and R 5 is independently a hydrogen atom or an alkyl group having 4 or 5 carbon atoms. The solar cell element described.

<10>前記パッシベーション層形成用組成物が、Al及び前記アルミニウム化合物からなる群より選択される1種以上のアルミニウム化合物を含み、前記パッシベーション層形成用組成物中の前記アルミニウム化合物の含有率が0.1質量%〜80質量%である、<7>〜<9>のいずれか一項に記載の太陽電池素子。<10> The composition for forming a passivation layer includes at least one aluminum compound selected from the group consisting of Al 2 O 3 and the aluminum compound, and the inclusion of the aluminum compound in the composition for forming a passivation layer Solar cell element as described in any one of <7>-<9> whose rate is 0.1 mass%-80 mass%.

<11>前記パッシベーション層形成用組成物が、Nb及び前記一般式(I)においてMがNbである化合物からなる群より選択される1種以上のニオブ化合物を含み、前記パッシベーション層形成用組成物中の前記ニオブ化合物の総含有率がNb換算で0.1質量%〜99.9質量%である、<6>〜<9>のいずれか一項に記載の太陽電池素子。<11> The passivation layer forming composition includes Nb 2 O 5 and one or more niobium compounds selected from the group consisting of compounds in which M is Nb in the general formula (I), and the passivation layer is formed. The solar cell according to any one of <6> to <9>, wherein the total content of the niobium compound in the composition for use is 0.1% by mass to 99.9% by mass in terms of Nb 2 O 5. element.

<12>前記パッシベーション層形成用組成物が液状媒体を含む、<5>〜<11>のいずれか一項に記載の太陽電池素子。 <12> The solar cell element according to any one of <5> to <11>, wherein the composition for forming a passivation layer includes a liquid medium.

<13>前記液状媒体が疎水性有機溶媒、非プロトン性有機溶剤、テルペン溶剤、エステル溶剤、エーテル溶剤及びアルコール溶剤からなる群より選ばれる少なくとも一種を含む、<12>に記載の太陽電池素子。 <13> The solar cell element according to <12>, wherein the liquid medium includes at least one selected from the group consisting of a hydrophobic organic solvent, an aprotic organic solvent, a terpene solvent, an ester solvent, an ether solvent, and an alcohol solvent.

<14>前記パッシベーション層の密度が1.0g/cm〜10.0g/cmである、<1>〜<13>のいずれか1項に記載の太陽電池素子。<14> The density of the passivation layer is 1.0g / cm 3 ~10.0g / cm 3 , <1> ~ solar cell device according to any one of <13>.

<15>前記パッシベーション層の平均厚さが5nm〜50μmである、<1>〜<14>のいずれか1項に記載の太陽電池素子。 <15> The solar cell element according to any one of <1> to <14>, wherein an average thickness of the passivation layer is 5 nm to 50 μm.

<16>受光面及び前記受光面とは反対側の裏面を有し、前記裏面にp型拡散領域及びn型拡散領域を有する半導体基板の前記p型拡散領域の少なくとも一部に第一の金属電極を、前記n型拡散領域の少なくとも一部に第二の金属電極をそれぞれ形成する工程と、
前記半導体基板の裏面の一部又は全部の領域に、Nb、Ta、V、Y、HfO及び下記一般式(I)で表される化合物からなる群より選択される1種以上を含むパッシベーション層形成用組成物を付与して組成物層を形成する工程と、
前記組成物層を熱処理してNb、Ta、V、Y、HfOからなる群より選択される1種以上を含有するパッシベーション層を形成する工程と、を有する、<1>〜<15>のいずれか1項に記載の太陽電池素子の製造方法。
M(OR)m (I)
<16> A first metal in at least a part of the p-type diffusion region of the semiconductor substrate having a light-receiving surface and a back surface opposite to the light-receiving surface, and having a p-type diffusion region and an n-type diffusion region on the back surface. Forming a second metal electrode on at least a part of the n-type diffusion region; and
A part or all of the back surface of the semiconductor substrate is made of Nb 2 O 5 , Ta 2 O 5 , V 2 O 5 , Y 2 O 3 , HfO 2 and a compound represented by the following general formula (I). Providing a composition for forming a passivation layer containing at least one selected from the group to form a composition layer;
Heat-treating the composition layer to form a passivation layer containing at least one selected from the group consisting of Nb 2 O 5 , Ta 2 O 5 , V 2 O 5 , Y 2 O 3 , and HfO 2 ; The manufacturing method of the solar cell element of any one of <1>-<15> which has these.
M (OR 1 ) m (I)

式中、MはNb、Ta、V、Y及びHfからなる群より選択される少なくとも1種の金属元素を含む。Rはそれぞれ独立して炭素数1〜8のアルキル基又は炭素数6〜14のアリール基を表す。mは1〜5の整数を表す。In the formula, M includes at least one metal element selected from the group consisting of Nb, Ta, V, Y, and Hf. R 1 each independently represents an alkyl group having 1 to 8 carbon atoms or an aryl group having 6 to 14 carbon atoms. m represents an integer of 1 to 5.

<17>前記パッシベーション層形成用組成物が、更にAl及び下記一般式(II)で表される化合物からなる群より選択される1種以上を含む、<16>に記載の太陽電池素子の製造方法。<17> The solar cell according to <16>, wherein the composition for forming a passivation layer further includes at least one selected from the group consisting of compounds represented by Al 2 O 3 and the following general formula (II). Device manufacturing method.

式中、Rはそれぞれ独立して炭素数1〜8のアルキル基を表す。nは0〜3の整数を表す。X及びXはそれぞれ独立して酸素原子又はメチレン基を表す。R、R及びRはそれぞれ独立して水素原子又は炭素数1〜8のアルキル基を表す。Wherein, R 2 each independently represent an alkyl group having 1 to 8 carbon atoms. n represents an integer of 0 to 3. X 2 and X 3 each independently represent an oxygen atom or a methylene group. R 3 , R 4 and R 5 each independently represent a hydrogen atom or an alkyl group having 1 to 8 carbon atoms.

<18>前記熱処理の温度が400℃以上である、<16>又は<17>に記載の太陽電池素子の製造方法。 <18> The method for producing a solar cell element according to <16> or <17>, wherein the temperature of the heat treatment is 400 ° C. or higher.

<19>前記組成物層を形成する工程は、スクリーン印刷法又はインクジェット法で前記パッシベーション層形成用組成物を付与することを含む、<16>〜<18>のいずれか一項に記載の太陽電池素子の製造方法。 <19> The process according to any one of <16> to <18>, wherein the step of forming the composition layer includes applying the composition for forming a passivation layer by a screen printing method or an inkjet method. A battery element manufacturing method.

<20><1>〜<15>のいずれか一項に記載の太陽電池素子と、前記太陽電池素子の電極上に配置された配線材料と、を有する太陽電池モジュール。 <20> A solar cell module comprising the solar cell element according to any one of <1> to <15> and a wiring material disposed on an electrode of the solar cell element.

本発明によれば、優れた変換効率を有し、経時的な太陽電池特性の低下が抑制される太陽電池素子及びその簡便な製造方法、並びに優れた変換効率を有し、経時的な太陽電池特性の低下が抑制される太陽電池モジュールを提供することができる。   ADVANTAGE OF THE INVENTION According to this invention, it has the outstanding conversion efficiency, the solar cell element by which the fall of the solar cell characteristic with time is suppressed, its simple manufacturing method, and the solar cell which has the outstanding conversion efficiency, and with time It is possible to provide a solar cell module in which deterioration of characteristics is suppressed.

本実施形態にかかるバックコンタクト構造を有する太陽電池素子の裏面電極構造の一例を模式的に示す平面図である。It is a top view which shows typically an example of the back surface electrode structure of the solar cell element which has the back contact structure concerning this embodiment. 本実施形態にかかるバックコンタクト構造を有する太陽電池素子の製造方法の一例を模式的に示す断面図である。It is sectional drawing which shows typically an example of the manufacturing method of the solar cell element which has the back contact structure concerning this embodiment. 本実施形態にかかるバックコンタクト構造を有する太陽電池素子の別の一例を模式的に示す断面図である。It is sectional drawing which shows typically another example of the solar cell element which has the back contact structure concerning this embodiment. 本実施形態にかかるビアホール型バックコンタクト構造を有する太陽電池素子の一例を模式的に示す断面図である。It is sectional drawing which shows typically an example of the solar cell element which has the via-hole type back contact structure concerning this embodiment. 本実施形態にかかるビアホール型バックコンタクト構造を有する太陽電池素子の裏面電極構造の一例を模式的に示す平面図である。It is a top view which shows typically an example of the back surface electrode structure of the solar cell element which has the via-hole type back contact structure concerning this embodiment. 両面電極型の太陽電池素子の構造を示した断面図である。It is sectional drawing which showed the structure of the double-sided electrode type solar cell element. 参考実施形態にかかる太陽電池素子の第1構成例を示す断面図である。It is sectional drawing which shows the 1st structural example of the solar cell element concerning reference embodiment. 参考実施形態にかかる太陽電池素子の第2構成例を示す断面図である。It is sectional drawing which shows the 2nd structural example of the solar cell element concerning reference embodiment. 参考実施形態にかかる太陽電池素子の第3構成例を示す断面図である。It is sectional drawing which shows the 3rd structural example of the solar cell element concerning reference embodiment. 参考実施形態にかかる太陽電池素子の第4構成例を示す断面図である。It is sectional drawing which shows the 4th structural example of the solar cell element concerning reference embodiment. 参考実施形態にかかる太陽電池素子の別の構成例を示す断面図である。It is sectional drawing which shows another structural example of the solar cell element concerning reference embodiment.

本明細書において「工程」との語は、独立した工程だけではなく、他の工程と明確に区別できない場合であってもその工程の所期の目的が達成されれば、本用語に含まれる。また「〜」を用いて示された数値範囲は、「〜」の前後に記載される数値をそれぞれ最小値及び最大値として含む範囲を示す。さらに組成物中の各成分の含有量は、組成物中に各成分に該当する物質が複数存在する場合、特に断らない限り、組成物中に存在する当該複数の物質の合計量を意味する。また、本明細書において「層」との語は、平面図として観察したときに、全面に形成されている形状の構成に加え、一部に形成されている形状の構成も包含される。   In this specification, the term “process” is not limited to an independent process, and is included in the term if the intended purpose of the process is achieved even when it cannot be clearly distinguished from other processes. . Moreover, the numerical range shown using "to" shows the range which includes the numerical value described before and behind "to" as a minimum value and a maximum value, respectively. Further, the content of each component in the composition means the total amount of the plurality of substances present in the composition unless there is a specific notice when there are a plurality of substances corresponding to each component in the composition. In addition, in the present specification, the term “layer” includes a configuration of a shape formed in part in addition to a configuration of a shape formed on the entire surface when observed as a plan view.

<太陽電池素子>
本発明の太陽電池素子は、受光面及び前記受光面とは反対側の裏面を有し、前記裏面にp型拡散領域及びn型拡散領域を有する半導体基板と、前記半導体基板の裏面の一部又は全部の領域に設けられ、Nb、Ta、V、Y及びHfOからなる群より選択される1種以上(以下、「特定金属酸化物」ともいい、それぞれの金属酸化物に含まれる金属元素を「特定金属元素」ともいう)を含有するパッシベーション層と、前記p型拡散領域の少なくとも一部に設けられる第一の金属電極と、前記n型拡散領域の少なくとも一部に設けられる第二の金属電極と、を含む。
<Solar cell element>
The solar cell element of the present invention has a light receiving surface and a back surface opposite to the light receiving surface, a semiconductor substrate having a p-type diffusion region and an n-type diffusion region on the back surface, and a part of the back surface of the semiconductor substrate. Or one or more selected from the group consisting of Nb 2 O 5 , Ta 2 O 5 , V 2 O 5 , Y 2 O 3 and HfO 2 (hereinafter referred to as “specific metal oxide”). A passivation layer containing a metal element included in each metal oxide), a first metal electrode provided in at least a part of the p-type diffusion region, and the n-type And a second metal electrode provided on at least a part of the diffusion region.

半導体基板の裏面に電極及び特定金属酸化物を含有するパッシベーション層を有する太陽電池素子は、変換効率に優れ且つ経時的な太陽電池特性の低下が抑制される。これは例えば、パッシベーション層が特定金属酸化物を含有することで、優れたパッシベーション効果が発現し、半導体基板内のキャリアの寿命が長くなるため、高効率化が可能となるためと考えられる。また、特定金属酸化物を含有することでパッシベーション層のパッシベーション効果が維持され、経時的な太陽電池特性(例えば、変換効率)の低下を抑制することができるためと考えられる。ここで経時的な太陽電池特性の低下は、恒温恒湿槽中で所定の時間、放置した後の太陽電池特性で評価することができる。   A solar cell element having a passivation layer containing an electrode and a specific metal oxide on the back surface of a semiconductor substrate is excellent in conversion efficiency and suppresses deterioration of solar cell characteristics over time. This is considered to be because, for example, since the passivation layer contains a specific metal oxide, an excellent passivation effect is exhibited and the lifetime of carriers in the semiconductor substrate is extended, so that high efficiency can be achieved. Moreover, it is thought that the passivation effect of the passivation layer is maintained by containing the specific metal oxide, and the deterioration of the solar cell characteristics (for example, conversion efficiency) over time can be suppressed. Here, the deterioration of the solar cell characteristics over time can be evaluated by the solar cell characteristics after being left for a predetermined time in a constant temperature and humidity chamber.

半導体基板の裏面に電極及び特定金属酸化物を含有するパッシベーション層を有する太陽電池素子が変換効率に優れ且つ経時的な太陽電池特性の低下が抑制される理由については、以下のように考えることができる。すなわち、特定金属酸化物は固定電荷を有する化合物である。半導体基板表面に固定電荷を有する化合物が存在することにより、バンドベンディングが生じてキャリアの再結合が抑制されると考えることができる。また、固定電荷が小さいまたは固定電荷を有さない化合物であっても、半導体基板表面の欠陥を修復する機能を持つなどのパッシベーション効果を示していればよい。   The reason why a solar cell element having a passivation layer containing an electrode and a specific metal oxide on the back surface of a semiconductor substrate is excellent in conversion efficiency and suppresses deterioration of solar cell characteristics over time can be considered as follows. it can. That is, the specific metal oxide is a compound having a fixed charge. It can be considered that the presence of a compound having a fixed charge on the surface of the semiconductor substrate causes band bending and suppresses carrier recombination. Further, even if the compound has a small fixed charge or does not have a fixed charge, it may have a passivation effect such as having a function of repairing defects on the surface of the semiconductor substrate.

半導体基板表面に存在する化合物の固定電荷は、CV法(Capacitance Voltage Measurement)で評価することが可能である。後述するパッシベーション層形成用組成物を熱処理して形成されたパッシベーション層の表面準位密度をCV法で評価すると、ALD法又はCVD法で形成されたパッシベーション層の場合と比べ、大きな値となる場合がある。しかし本発明の太陽電池素子が有するパッシベーション層は、電界効果が大きく少数キャリアの濃度が低下して表面ライフタイムτが大きくなる。そのため、表面準位密度は相対的に問題にはならない。The fixed charge of the compound existing on the surface of the semiconductor substrate can be evaluated by a CV method (Capacitance Voltage Measurement). When the surface state density of a passivation layer formed by heat-treating a composition for forming a passivation layer, which will be described later, is evaluated by a CV method, the value is larger than that of a passivation layer formed by an ALD method or a CVD method. There is. However, the passivation layer included in the solar cell element of the present invention has a large electric field effect, and the concentration of minority carriers is reduced, and the surface lifetime τ s is increased. Therefore, the surface state density is not a relative problem.

本明細書において、半導体基板のパッシベーション効果は、パッシベーション層が形成された半導体基板内の少数キャリアの実効ライフタイムを、日本セミラボ株式会社、WT−2000PVN等の装置を用いて、反射マイクロ波導電減衰法によって測定することで評価することができる。   In this specification, the passivation effect of a semiconductor substrate refers to an effective lifetime of minority carriers in a semiconductor substrate on which a passivation layer is formed, by reflection microwave conduction attenuation using a device such as Nippon Semi-Lab Co., Ltd. or WT-2000PVN. It can be evaluated by measuring by the method.

ここで、実効ライフタイムτは、半導体基板内部のバルクライフタイムτと、半導体基板表面の表面ライフタイムτとによって下記式(A)のように表される。半導体基板表面の表面準位密度が小さい場合にはτが長くなる結果、実効ライフタイムτが長くなる。また、半導体基板内部のダングリングボンド等の欠陥が少なくなっても、バルクライフタイムτが長くなって実効ライフタイムτが長くなる。すなわち、実効ライフタイムτの測定によってパッシベーション層と半導体基板との間の界面特性、ダングリングボンド等の半導体基板の内部特性を評価することができる。
1/τ=1/τ+1/τ (A)
尚、実効ライフタイムが長いほど少数キャリアの再結合速度が遅いことを示す。また実効ライフタイムが長い半導体基板を用いて太陽電池素子を構成することで、変換効率が向上する。
Here, the effective lifetime τ is expressed by the following equation (A) by the bulk lifetime τ b inside the semiconductor substrate and the surface lifetime τ s of the semiconductor substrate surface. When the surface state density on the surface of the semiconductor substrate is small, τ s becomes long, resulting in a long effective lifetime τ. Further, even if defects such as dangling bonds in the semiconductor substrate are reduced, the bulk lifetime τ b is increased and the effective lifetime τ is increased. That is, by measuring the effective lifetime τ, the interface characteristics between the passivation layer and the semiconductor substrate and the internal characteristics of the semiconductor substrate such as dangling bonds can be evaluated.
1 / τ = 1 / τ b + 1 / τ s (A)
Note that the longer the effective lifetime, the slower the recombination rate of minority carriers. Moreover, conversion efficiency improves by comprising a solar cell element using the semiconductor substrate with a long effective lifetime.

太陽電池素子は、受光面及び前記受光面とは反対側の裏面を有し、前記裏面にp型拡散領域及びn型拡散領域を有する半導体基板を含む。前記半導体基板としては、シリコン、ゲルマニウム等にp型不純物又はn型不純物をドープ(拡散)したものが挙げられる。前記半導体基板は、p型半導体基板であっても、n型半導体基板であってもよい。   The solar cell element includes a semiconductor substrate having a light receiving surface and a back surface opposite to the light receiving surface, and having a p-type diffusion region and an n-type diffusion region on the back surface. Examples of the semiconductor substrate include those obtained by doping (diffusing) p-type impurities or n-type impurities into silicon, germanium, or the like. The semiconductor substrate may be a p-type semiconductor substrate or an n-type semiconductor substrate.

半導体基板の厚みは特に制限されず、目的に応じて適宜選択することができる。例えば50μm〜1000μmとすることができ、75μm〜750μmであることが好ましい。半導体基板の形状及び大きさは特に制限されず、例えば、一辺が125mm〜156mmの正方形とすることができる。   The thickness in particular of a semiconductor substrate is not restrict | limited, According to the objective, it can select suitably. For example, it can be set to 50 μm to 1000 μm, and preferably 75 μm to 750 μm. The shape and size of the semiconductor substrate are not particularly limited, and can be, for example, a square having a side of 125 mm to 156 mm.

半導体基板は裏面にp型拡散領域とn型拡散領域とを有する。p型拡散領域及びn型拡散領域の形状及び大きさは特に制限されず、目的等に応じて適宜選択することができる。p型拡散領域とn型拡散領域とは、離間して配置されていることが好ましい。   The semiconductor substrate has a p-type diffusion region and an n-type diffusion region on the back surface. The shape and size of the p-type diffusion region and the n-type diffusion region are not particularly limited and can be appropriately selected according to the purpose. The p-type diffusion region and the n-type diffusion region are preferably arranged apart from each other.

p型拡散領域及びn型拡散領域の数及び形状は、本発明の効果が達成される数及び形状であれば特に制限されない。例えば、p型拡散領域とn型拡散領域とがそれぞれ長辺及び短辺を有する複数の矩形部分を有していることが好ましい。なお、前記矩形部分の短辺及び長辺はそれぞれ全体が直線であっても、直線ではない部分が含まれていてもよい。   The number and shape of the p-type diffusion region and the n-type diffusion region are not particularly limited as long as the effect and the shape of the present invention are achieved. For example, the p-type diffusion region and the n-type diffusion region preferably have a plurality of rectangular portions each having a long side and a short side. Note that the short side and the long side of the rectangular portion may each be a straight line or may include a non-straight part.

p型拡散領域とn型拡散領域とがそれぞれ長辺及び短辺を有する複数の矩形部分を有している場合、p型拡散領域の矩形部分及びn型拡散領域の矩形部分の配置は特に制限されず、目的等に応じて適宜選択することができる。例えば、前記p型拡散領域が有する複数の矩形部分は、前記複数の矩形部分の長辺の方向が前記n型拡散領域が有する複数の矩形部分の長辺の方向に沿うように配置されていることが好ましく、複数のp型拡散領域の矩形部分と複数のn型拡散領域の矩形部分とが交互に配置されていることがより好ましい。   When the p-type diffusion region and the n-type diffusion region have a plurality of rectangular portions each having a long side and a short side, the arrangement of the rectangular portion of the p-type diffusion region and the rectangular portion of the n-type diffusion region is particularly limited. However, it can be appropriately selected depending on the purpose. For example, the plurality of rectangular portions included in the p-type diffusion region are arranged such that the long sides of the plurality of rectangular portions are aligned with the long sides of the plurality of rectangular portions included in the n-type diffusion region. It is preferable that the rectangular portions of the plurality of p-type diffusion regions and the rectangular portions of the plurality of n-type diffusion regions are arranged alternately.

p型拡散領域とn型拡散領域とがそれぞれ長辺及び短辺を有する複数の矩形部分を有している場合、p型拡散領域の複数の矩形部分が連結していてもよい。例えば、p型拡散領域の複数の矩形部分の長辺方向の一端が接するように配置された矩形状のp型拡散領域によって連結していてもよい。同様に、n型拡散領域の複数の矩形部分が連結していてもよい。例えば、n型拡散領域の複数の矩形部分の長辺方向の一端が接するように配置された矩形状のn型拡散領域によって連結していてもよい。   When the p-type diffusion region and the n-type diffusion region have a plurality of rectangular portions each having a long side and a short side, the plurality of rectangular portions of the p-type diffusion region may be connected. For example, you may connect with the rectangular p-type diffusion area | region arrange | positioned so that the end of the long side direction of the several rectangular part of a p-type diffusion area | region may contact | connect. Similarly, a plurality of rectangular portions of the n-type diffusion region may be connected. For example, you may connect with the rectangular n-type diffusion area | region arrange | positioned so that the end of the long side direction of the several rectangular part of an n-type diffusion area | region may contact | connect.

図1は半導体基板の裏面に設けられたp型拡散領域及びn型拡散領域の形状及び配置の一例を模式的に示す平面図である。
図1に示すように、p型拡散領域14はn型拡散領域12と離間して配置されている。p型拡散領域14は、短辺14aと長辺14bとを有する複数の矩形部分を有しており、複数の矩形部分はそれぞれの長辺14bの方向の一端に配置された矩形状のp型拡散領域14cで連結されている。
n型拡散領域12も短辺12aと長辺12bとを有する複数の矩形部分を有しており、複数の矩形部分はそれぞれの長辺12bの方向の一端に配置された矩形状のn型拡散領域12cで連結されている。
図1では、p型拡散領域14の複数の矩形部分を連結している矩形部分14cは、n型拡散領域12の複数の矩形部分を連結している矩形部分12cとは長辺方向にみて逆側に配置されている。これにより、p型拡散領域14の複数の矩形部分及びn型拡散領域12の複数の矩形部分をそれぞれ連結しつつ、p型拡散領域14の複数の矩形部分とn型拡散領域12の複数の矩形部分とを交互に配置することができる。このような裏面電極構造は「交差指型」とも称されている。また、図1に示す構造を有する太陽電池素子としては、バックコンタクト型の太陽電池素子が挙げられる。
FIG. 1 is a plan view schematically showing an example of the shape and arrangement of a p-type diffusion region and an n-type diffusion region provided on the back surface of a semiconductor substrate.
As shown in FIG. 1, the p-type diffusion region 14 is spaced apart from the n-type diffusion region 12. The p-type diffusion region 14 has a plurality of rectangular portions having short sides 14a and long sides 14b, and the plurality of rectangular portions are rectangular p-types arranged at one end in the direction of each long side 14b. The diffusion regions 14c are connected.
The n-type diffusion region 12 also has a plurality of rectangular portions having a short side 12a and a long side 12b, and the plurality of rectangular portions are rectangular n-type diffusions arranged at one end in the direction of each long side 12b. They are connected in the region 12c.
In FIG. 1, the rectangular portion 14 c connecting the plurality of rectangular portions of the p-type diffusion region 14 is opposite to the rectangular portion 12 c connecting the plurality of rectangular portions of the n-type diffusion region 12 when viewed in the long side direction. Arranged on the side. Accordingly, the plurality of rectangular portions of the p-type diffusion region 14 and the plurality of rectangular portions of the n-type diffusion region 12 are connected to each other while the plurality of rectangular portions of the p-type diffusion region 14 and the plurality of rectangular portions of the n-type diffusion region 12 are connected to each other. The parts can be arranged alternately. Such a back electrode structure is also referred to as “intersecting finger type”. Moreover, a back contact type solar cell element is mentioned as a solar cell element which has a structure shown in FIG.

裏面にp型拡散領域及びn型拡散領域を有する半導体基板がp型半導体基板である場合、変換効率とキャリアの長寿命化の観点から、p型拡散領域に含有されるp型不純物の濃度はp型半導体基板にもともと含有されるp型不純物の濃度よりも高いことが好ましい。例えば、p型拡散領域に含有されるp型不純物の濃度が1018atoms/cm以上であり、p型半導体基板にもともと含有されるp型不純物の濃度が10atoms/cm以上1017atoms/cm以下であることが好ましく、p型拡散領域に含有されるp型不純物の濃度が1019atoms/cm以上1022atoms/cm以下であり、p型半導体基板にもともと含有されるp型不純物の濃度が1010atoms/cm以上1016atoms/cm以下であることがより好ましい。When the semiconductor substrate having the p-type diffusion region and the n-type diffusion region on the back surface is a p-type semiconductor substrate, the concentration of the p-type impurity contained in the p-type diffusion region is as follows from the viewpoint of conversion efficiency and lifetime extension of carriers. The concentration is preferably higher than the concentration of the p-type impurity originally contained in the p-type semiconductor substrate. For example, the concentration of the p-type impurity contained in the p-type diffusion region is 10 18 atoms / cm 3 or more, and the concentration of the p-type impurity contained originally in the p-type semiconductor substrate is 10 5 atoms / cm 3 or more and 10 17. preferably atoms / cm 3 or less, the concentration of the p-type impurity contained in the p-type diffusion region is at 10 19 atoms / cm 3 or more 10 22 atoms / cm 3, originally contained in the p-type semiconductor substrate More preferably, the concentration of the p-type impurity is 10 10 atoms / cm 3 or more and 10 16 atoms / cm 3 or less.

裏面にp型拡散領域及びn型拡散領域を有する半導体基板がn型半導体基板である場合、変換効率とキャリアの長寿命化の観点から、n型拡散領域に含有されるn型不純物の濃度はn型半導体基板にもともと含有されるn型不純物の濃度よりも高いことが好ましい。例えば、n型拡散領域に含有されるn型不純物の濃度が1018atoms/cm以上であり、n型半導体基板にもともと含有されるn型不純物の濃度が10atoms/cm以上1017atoms/cm以下であることが好ましく、n型拡散領域に含有されるn型不純物の濃度が1019atoms/cm以上1022atoms/cm以下であり、n型半導体基板にもともと含有されるn型不純物の濃度が1010atoms/cm以上1016atoms/cm以下であることがより好ましい。When the semiconductor substrate having the p-type diffusion region and the n-type diffusion region on the back surface is an n-type semiconductor substrate, the concentration of the n-type impurity contained in the n-type diffusion region is from the viewpoint of conversion efficiency and long life of carriers. The concentration is preferably higher than the concentration of the n-type impurity originally contained in the n-type semiconductor substrate. For example, the concentration of the n-type impurity contained in the n-type diffusion region is 10 18 atoms / cm 3 or more, and the concentration of the n-type impurity originally contained in the n-type semiconductor substrate is 10 5 atoms / cm 3 or more and 10 17. preferably atoms / cm 3 or less, the concentration of the n-type impurity contained in the n-type diffusion region is at 10 19 atoms / cm 3 or more 10 22 atoms / cm 3, originally contained in the n-type semiconductor substrate More preferably, the concentration of the n-type impurity is 10 10 atoms / cm 3 or more and 10 16 atoms / cm 3 or less.

半導体基板の裏面のp型拡散領域の少なくとも一部には第一の金属電極が設けられ、n型拡散領域の少なくとも一部には第二の金属電極が設けられる。第一の金属電極及び第二の金属電極の材質は特に制限されず、銀、銅、アルミニウム等が挙げられる。第一の金属電極及び第二の金属電極の厚さは特に制限されず、導電性及び均質性の観点からは0.1μm〜50μmであることが好ましい。   A first metal electrode is provided on at least a part of the p-type diffusion region on the back surface of the semiconductor substrate, and a second metal electrode is provided on at least a part of the n-type diffusion region. The material of the first metal electrode and the second metal electrode is not particularly limited, and examples thereof include silver, copper, and aluminum. The thicknesses of the first metal electrode and the second metal electrode are not particularly limited, and are preferably 0.1 μm to 50 μm from the viewpoint of conductivity and homogeneity.

第一の金属電極の形状及び大きさは特に制限されない。例えば、第一の金属電極が形成される領域の大きさは、p型拡散領域の全面積中に50%以上であることが好ましく、80%以上であることがより好ましい。
第二の金属電極の形状及び大きさは特に制限されない。例えば、第二の金属電極が形成される領域の大きさは、n型拡散領域の全面積中に50%以上であることが好ましく、80%以上であることがより好ましい。
The shape and size of the first metal electrode are not particularly limited. For example, the size of the region where the first metal electrode is formed is preferably 50% or more and more preferably 80% or more in the entire area of the p-type diffusion region.
The shape and size of the second metal electrode are not particularly limited. For example, the size of the region where the second metal electrode is formed is preferably 50% or more, and more preferably 80% or more in the entire area of the n-type diffusion region.

第一の金属電極は、電極を形成し、かつ半導体基板中にアルミニウム原子を拡散させてp型拡散層を形成できる観点から、アルミニウムを含むことが好ましく、その厚さは0.1μm〜50μmであることが好ましい。
第一の金属電極及び第二の金属電極は、通常用いられる方法で製造することができる。例えば、半導体基板の所望の領域に、銀ペースト、アルミニウムペースト、銅ペースト等の電極形成用ペーストを付与し、必要に応じて熱処理することで製造することができる。
The first metal electrode preferably contains aluminum from the viewpoint of forming an electrode and forming a p + -type diffusion layer by diffusing aluminum atoms in the semiconductor substrate, and the thickness thereof is 0.1 μm to 50 μm. It is preferable that
The first metal electrode and the second metal electrode can be produced by a commonly used method. For example, it can be manufactured by applying an electrode forming paste such as a silver paste, an aluminum paste, or a copper paste to a desired region of a semiconductor substrate and performing a heat treatment as necessary.

太陽電池素子は、更に必要に応じて半導体基板の受光面上で電流を集める電極を有していてもよい。受光面上で電流を集める電極の材質、形状及び厚さは特に制限されず、銀電極、銅電極、アルミニウム電極等が挙げられ、厚さは0.1μm〜50μmであることが好ましい。受光面上に設けられる電極は、半導体基板を貫通するスルーホール電極を介して裏面の第一の金属電極又は第二の金属電極と接続されていてもよい。受光面上に設けられる電極は、通常用いられる方法で製造することができる。例えば、半導体基板の所望の領域に、銀ペースト、アルミニウムペースト、銅ペースト等の電極形成用ペーストを付与し、必要に応じて熱処理することで製造することができる。   The solar cell element may further include an electrode that collects current on the light receiving surface of the semiconductor substrate as necessary. The material, shape, and thickness of the electrode that collects current on the light receiving surface are not particularly limited, and examples thereof include a silver electrode, a copper electrode, and an aluminum electrode, and the thickness is preferably 0.1 μm to 50 μm. The electrode provided on the light receiving surface may be connected to the first metal electrode or the second metal electrode on the back surface through a through-hole electrode penetrating the semiconductor substrate. The electrode provided on the light receiving surface can be produced by a commonly used method. For example, it can be manufactured by applying an electrode forming paste such as a silver paste, an aluminum paste, or a copper paste to a desired region of a semiconductor substrate and performing a heat treatment as necessary.

本発明の太陽電池素子は、半導体基板の裏面の一部又は全部の領域に、特定金属酸化物を含有するパッシベーション層を有する。
パッシベーション層が半導体基板の裏面の一部の領域に設けられる場合、パッシベーション層は、半導体基板の裏面の領域面積の50%以上に設けられることが好ましく、80%以上に設けられることがより好ましい。
また例えばパッシベーション層は、半導体基板の裏面に加えて、半導体基板の側面の一部又は全部に設けられていてもよく、受光面の一部又は全部に設けられていてもよい。
The solar cell element of this invention has the passivation layer containing a specific metal oxide in the one part or all area | region of the back surface of a semiconductor substrate.
When the passivation layer is provided in a partial region on the back surface of the semiconductor substrate, the passivation layer is preferably provided in 50% or more of the region area on the back surface of the semiconductor substrate, and more preferably in 80% or more.
Further, for example, the passivation layer may be provided on part or all of the side surface of the semiconductor substrate in addition to the back surface of the semiconductor substrate, or may be provided on part or all of the light receiving surface.

半導体基板の裏面において、パッシベーション層が形成される領域の面方向における形状及び大きさは特に制限されず、目的等に応じて適宜選択することができる。パッシベーション層が半導体基板の裏面の一部に形成される場合、例えば、第一の金属電極及び第二の金属電極が形成される領域以外の領域の一部又は全部に少なくともパッシベーション層が形成されていることが好ましく、第一の金属電極及び第二の金属電極が形成される領域以外の全領域に少なくともパッシベーション層が形成されていることがより好ましい。   The shape and size in the surface direction of the region where the passivation layer is formed on the back surface of the semiconductor substrate are not particularly limited and can be appropriately selected according to the purpose and the like. When the passivation layer is formed on a part of the back surface of the semiconductor substrate, for example, at least the passivation layer is formed in a part or all of the region other than the region where the first metal electrode and the second metal electrode are formed. It is preferable that at least a passivation layer is formed in all regions other than the region where the first metal electrode and the second metal electrode are formed.

パッシベーション効果をより充分に得る観点からは、電極とパッシベーション層との間に電極又はパッシベーション層のいずれも存在していない領域が存在しないことが更に好ましい。この場合、電極とパッシベーション膜とが重なり合う領域が存在してもよい。   From the viewpoint of obtaining a sufficient passivation effect, it is more preferable that there is no region where neither the electrode nor the passivation layer exists between the electrode and the passivation layer. In this case, there may be a region where the electrode and the passivation film overlap.

パッシベーション層中に含有される特定金属酸化物の含有率は、充分なパッシベーション効果を得る観点から、0.1質量%〜100質量%であることが好ましく、1質量%〜100質量%であることがより好ましく、10質量%〜100質量%であることが更に好ましい。
パッシベーション層中に含有される特定金属酸化物の含有率は、以下のようにして測定できる。すなわち、原子吸光分析法、誘導結合プラズマ発光分光分析法、熱重量分析法、X線光電分光法等を用いて、熱重量分析法から無機物の割合を算出する。次いで原子吸光分析法、誘導結合プラズマ発光分光分析法等で無機物中の特定金属元素を含む化合物の割合を算出し、更にX線光電分光法、X線吸収分光法等で特定金属元素を含む化合物中の特定金属酸化物の割合を算出することで、特定金属酸化物の含有率を得ることができる。
From the viewpoint of obtaining a sufficient passivation effect, the content of the specific metal oxide contained in the passivation layer is preferably 0.1% by mass to 100% by mass, and 1% by mass to 100% by mass. Is more preferable, and it is still more preferable that it is 10 mass%-100 mass%.
The content rate of the specific metal oxide contained in the passivation layer can be measured as follows. That is, the proportion of inorganic substances is calculated from thermogravimetric analysis using atomic absorption spectrometry, inductively coupled plasma emission spectroscopy, thermogravimetric analysis, X-ray photoelectric spectroscopy, or the like. Next, the proportion of the compound containing the specific metal element in the inorganic substance is calculated by atomic absorption spectrometry, inductively coupled plasma emission spectrometry, etc., and further the compound containing the specific metal element by X-ray photoelectric spectroscopy, X-ray absorption spectroscopy, etc. By calculating the ratio of the specific metal oxide, the content of the specific metal oxide can be obtained.

パッシベーション層は、特定金属酸化物以外の金属酸化物を更に含んでいてもよい。そのような金属酸化物としては、特定金属酸化物と同様に固定電荷を有する化合物が好ましく、酸化アルミニウム、酸化ケイ素、酸化チタン、酸化ガリウム、酸化ジルコニウム、酸化ホウ素、酸化インジウム、酸化リン、酸化亜鉛、酸化ランタン、酸化プラセオジム、酸化ネオジム、酸化プロメチウム、酸化サマリウム、酸化ユウロピウム、酸化ガドリニウム、酸化テルビウム、酸化ジスプロシウム、酸化ホルミウム、酸化エルビウム、酸化ツリウム、酸化イッテルビウム、酸化ルテチウム等を挙げることができる。パッシベーション層が含む特定金属酸化物以外の金属酸化物としては、高いパッシベーション効果及び安定したパッシベーション効果を得る観点からは酸化アルミニウム、酸化ケイ素、酸化チタン、酸化ジルコニウム及び酸化ネオジムが好ましく、酸化アルミニウムがより好ましい。 The passivation layer may further contain a metal oxide other than the specific metal oxide. As such a metal oxide, a compound having a fixed charge like the specific metal oxide is preferable. Aluminum oxide, silicon oxide, titanium oxide, gallium oxide, zirconium oxide, boron oxide, indium oxide, phosphorus oxide, zinc oxide Lanthanum oxide, praseodymium oxide, neodymium oxide, promethium oxide, samarium oxide, europium oxide, gadolinium oxide, terbium oxide, dysprosium oxide, holmium oxide, erbium oxide, thulium oxide, ytterbium oxide, lutetium oxide, and the like. The metal oxides other than the particular metal oxide passivation layer comprises aluminum oxide from the viewpoint of obtaining a high passivation effect and stable passivation effect, silicon oxide, titanium oxide, zirconium oxide and neodymium oxide, more aluminum oxide preferable.

パッシベーション層が特定金属酸化物以外の金属酸化物を含む場合、その含有率はパッシベーション層の99.9質量%以下であることが好ましく、80質量%以下であることがより好ましい。パッシベーション層中に含有される特定金属酸化物以外の金属酸化物の含有率は、上述の特定金属酸化物の含有率の測定と同様にして測定することができる。   In the case where the passivation layer contains a metal oxide other than the specific metal oxide, the content is preferably 99.9% by mass or less, more preferably 80% by mass or less of the passivation layer. The content rate of metal oxides other than the specific metal oxide contained in the passivation layer can be measured in the same manner as the measurement of the content rate of the specific metal oxide described above.

<パッシベーション層形成用組成物>
本発明の太陽電池素子のパッシベーション層は、パッシベーション層形成用組成物の熱処理物であることが好ましい。前記パッシベーション層形成用組成物は、熱処理することにより特定金属酸化物を含むパッシベーション層を形成できるものであれば特に制限されず、特定金属酸化物そのものを含んでいても、特定金属元素を含む金属アルコキシド等の特定金属酸化物の前駆体を含んでいてもよい。以下、特定金属酸化物及びその前駆体を特定金属化合物ともいう。
<Composition for forming a passivation layer>
It is preferable that the passivation layer of the solar cell element of the present invention is a heat-treated product of the composition for forming a passivation layer. The composition for forming a passivation layer is not particularly limited as long as it can form a passivation layer containing a specific metal oxide by heat treatment. Even if it contains the specific metal oxide itself, the metal containing the specific metal element A precursor of a specific metal oxide such as alkoxide may be included. Hereinafter, the specific metal oxide and its precursor are also referred to as a specific metal compound.

特定金属化合物は、特定金属酸化物そのもの及び下記一般式(I)で表される化合物(以下、式(I)化合物ともいう)からなる群より選択される少なくとも1種であることが好ましい。   The specific metal compound is preferably at least one selected from the group consisting of the specific metal oxide itself and a compound represented by the following general formula (I) (hereinafter also referred to as a compound of formula (I)).

M(OR)m (I)M (OR 1 ) m (I)

式中、MはNb、Ta、V、Y及びHfからなる群より選択される少なくとも1種の金属元素を含む。Rはそれぞれ独立して炭素数1〜8のアルキル基又は炭素数6〜14のアリール基を表す。mは1〜5の整数を表す。In the formula, M includes at least one metal element selected from the group consisting of Nb, Ta, V, Y, and Hf. R 1 each independently represents an alkyl group having 1 to 8 carbon atoms or an aryl group having 6 to 14 carbon atoms. m represents an integer of 1 to 5.

一般式(I)において、MはNb、Ta、V、Y及びHfからなる群より選択される少なくとも1種の金属元素を含む。パッシベーション効果、パッシベーション層形成用組成物の保存安定性、及びパッシベーション層形成用組成物を調製する際の作業性の観点から、MはNb、Ta又はYであることが好ましい。   In the general formula (I), M contains at least one metal element selected from the group consisting of Nb, Ta, V, Y and Hf. From the viewpoint of the passivation effect, the storage stability of the composition for forming a passivation layer, and the workability when preparing the composition for forming a passivation layer, M is preferably Nb, Ta or Y.

一般式(I)において、Rはそれぞれ独立に炭素数1〜8のアルキル基又は炭素数6〜14のアリール基を表し、炭素数1〜4のアルキル基又は炭素数6〜9のアリール基であることが好ましい。Rで表されるアルキル基は直鎖状であっても分岐鎖状であってもよい。Rで表されるアルキル基として具体的には、メチル基、エチル基、プロピル基、イソプロピル基、ブチル基、イソブチル基、2−ブチル基、t−ブチル基、ペンチル基、ヘキシル基、ヘプチル基、オクチル基、2−エチルヘキシル基、3−エチルヘキシル基、フェニル基等を挙げることができる。Rで表されるアリール基として具体的には、フェニル基を挙げることができる。Rで表されるアルキル基及びアリール基は、置換基を有していてもよく、アルキル基の置換基としては、ハロゲン原子、アミノ基、ヒドロキシル基、カルボキシル基、スルホン基、ニトロ基等が挙げられる。アリール基の置換基としては、ハロゲン原子、メチル基、エチル基、イソプロピル基、アミノ基、ヒドロキシル基、カルボキシル基、スルホン基、ニトロ基等が挙げられる。
中でもRは、保存安定性とパッシベーション効果の観点から、炭素数1〜8の無置換のアルキル基であることが好ましく、炭素数1〜4の無置換のアルキル基であることがより好ましい。
In general formula (I), each R 1 independently represents an alkyl group having 1 to 8 carbon atoms or an aryl group having 6 to 14 carbon atoms, and an alkyl group having 1 to 4 carbon atoms or an aryl group having 6 to 9 carbon atoms. It is preferable that The alkyl group represented by R 1 may be linear or branched. Specific examples of the alkyl group represented by R 1 include methyl, ethyl, propyl, isopropyl, butyl, isobutyl, 2-butyl, t-butyl, pentyl, hexyl, and heptyl groups. Octyl group, 2-ethylhexyl group, 3-ethylhexyl group, phenyl group and the like. Specific examples of the aryl group represented by R 1 include a phenyl group. The alkyl group and aryl group represented by R 1 may have a substituent, and examples of the substituent of the alkyl group include a halogen atom, an amino group, a hydroxyl group, a carboxyl group, a sulfone group, and a nitro group. Can be mentioned. Examples of the substituent for the aryl group include a halogen atom, a methyl group, an ethyl group, an isopropyl group, an amino group, a hydroxyl group, a carboxyl group, a sulfone group, and a nitro group.
Among these, R 1 is preferably an unsubstituted alkyl group having 1 to 8 carbon atoms, and more preferably an unsubstituted alkyl group having 1 to 4 carbon atoms, from the viewpoint of storage stability and a passivation effect.

一般式(I)において、mは1〜5の整数を表す。MがNbである場合にはmが5であることが好ましく、MがTaである場合にはmが5であることが好ましく、MがVOである場合にはmが3であることが好ましく、MがYである場合にはmが3であることが好ましく、MがHfである場合にはmが4であることが好ましい。   In general formula (I), m represents an integer of 1 to 5. M is preferably 5 when M is Nb, m is preferably 5 when M is Ta, and m is preferably 3 when M is VO. M is preferably 3 when M is Y, and m is preferably 4 when M is Hf.

一般式(I)で表される化合物は、パッシベーション効果の観点から、MがNb、Ta又はYであることが好ましく、保存安定性とパッシベーション効果の観点から、Rが炭素数1〜4の無置換のアルキル基であることがより好ましく、保存安定性の観点から、mが1〜5の整数であることが好ましい。また、パッシベーション層の固定電荷密度を負にする観点からは、Mは、Nb、Ta、V及びHfからなる群より選択される少なくとも1種の金属元素を含むことが好ましく、Nb、Ta、VO及びHfからなる群より選択される少なくとも1種であることがより好ましい。In the compound represented by the general formula (I), M is preferably Nb, Ta or Y from the viewpoint of the passivation effect, and R 1 has 1 to 4 carbon atoms from the viewpoint of storage stability and the passivation effect. It is more preferably an unsubstituted alkyl group, and m is preferably an integer of 1 to 5 from the viewpoint of storage stability. From the viewpoint of making the fixed charge density of the passivation layer negative, M preferably contains at least one metal element selected from the group consisting of Nb, Ta, V, and Hf, and Nb, Ta, VO And at least one selected from the group consisting of Hf.

式(I)化合物は、固体であっても液体であってもよい。パッシベーション層形成用組成物の保存安定性、及び後述する一般式(II)で表わされる有機アルミニウム化合物を併用する場合はそれとの混合性の観点から、式(I)化合物は、液体であることが好ましい。   The compound of formula (I) may be solid or liquid. From the viewpoint of the storage stability of the composition for forming a passivation layer and the compatibility with the organoaluminum compound represented by the general formula (II) described later, the compound of the formula (I) may be a liquid. preferable.

式(I)化合物としては、ニオブメトキシド、ニオブエトキシド、ニオブイソプロポキシド、ニオブn−プロポキシド、ニオブn−ブトキシド、ニオブt−ブトキシド、ニオブイソブトキシド、タンタルメトキシド、タンタルエトキシド、タンタルイソプロポキシド、タンタルn−プロポキシド、タンタルn−ブトキシド、タンタルt−ブトキシド、タンタルイソブトキシド、イットリウムメトキシド、イットリウムエトキシド、イットリウムイソプロポキシド、イットリウムn−プロポキシド、イットリウムn−ブトキシド、イットリウムt−ブトキシド、イットリウムイソブトキシド、バナジウムメトキシドオキシド、バナジウムエトキシドオキシド、バナジウムイソプロポキシドオキシド、バナジウムn−プロポキシドオキシド、バナジウムn−ブトキシドオキシド、バナジウムt−ブトキシドオキシド、バナジウムイソブトキシドオキシド、ハフニウムメトキシド、ハフニウムエトキシド、ハフニウムイソプロポキシド、ハフニウムn−プロポキシド、ハフニウムn−ブトキシド、ハフニウムt−ブトキシド、ハフニウムイソブトキシド等を挙げることができ、中でもニオブエトキシド、ニオブn−プロポキシド、ニオブn−ブトキシド、タンタルエトキシド、タンタルn−プロポキシド、タンタルn−ブトキシド、イットリウムイソプロポキシド及びイットリウムn−ブトキシドが好ましい。負の固定電荷密度を得る観点からは、ニオブエトキシド、ニオブn−プロポキシド、ニオブn−ブトキシド、タンタルエトキシド、タンタルn−プロポキシド、タンタルn−ブトキシド、バナジウムエトキシドオキシド、バナジウムn−プロポキシドオキシド、バナジウムn−ブトキシドオキシド、ハフニウムエトキシド、ハフニウムn−プロポキシド及びハフニウムn−ブトキシドが好ましい。   Compounds of formula (I) include niobium methoxide, niobium ethoxide, niobium isopropoxide, niobium n-propoxide, niobium n-butoxide, niobium t-butoxide, niobium isobutoxide, tantalum methoxide, tantalum ethoxide, tantalum Isopropoxide, tantalum n-propoxide, tantalum n-butoxide, tantalum t-butoxide, tantalum isobutoxide, yttrium methoxide, yttrium ethoxide, yttrium isopropoxide, yttrium n-propoxide, yttrium n-butoxide, yttrium t -Butoxide, yttrium isobutoxide, vanadium methoxide oxide, vanadium ethoxide oxide, vanadium isopropoxide oxide, vanadium n-propoxide oxide, vana Um n-butoxide oxide, vanadium t-butoxide oxide, vanadium isobutoxide oxide, hafnium methoxide, hafnium ethoxide, hafnium isopropoxide, hafnium n-propoxide, hafnium n-butoxide, hafnium t-butoxide, hafnium isobutoxide, etc. Among them, niobium ethoxide, niobium n-propoxide, niobium n-butoxide, tantalum ethoxide, tantalum n-propoxide, tantalum n-butoxide, yttrium isopropoxide and yttrium n-butoxide are preferable. From the viewpoint of obtaining a negative fixed charge density, niobium ethoxide, niobium n-propoxide, niobium n-butoxide, tantalum ethoxide, tantalum n-propoxide, tantalum n-butoxide, vanadium ethoxide oxide, vanadium n-propoxy Preference is given to oxides, vanadium n-butoxide oxide, hafnium ethoxide, hafnium n-propoxide and hafnium n-butoxide.

式(I)化合物は、調製したものを用いても、市販品を用いてもよい。市販品としては、株式会社高純度化学研究所のペンタメトキシニオブ、ペンタエトキシニオブ、ペンタ−i−プロポキシニオブ、ペンタ−n−プロポキシニオブ、ペンタ−i−ブトキシニオブ、ペンタ−n−ブトキシニオブ、ペンタ−2−ブトキシニオブ、ペンタメトキシタンタル、ペンタエトキシタンタル、ペンタ−i−プロポキシタンタル、ペンタ−n−プロポキシタンタル、ペンタ−i−ブトキシタンタル、ペンタ−n−ブトキシタンタル、ペンタ−2−ブトキシタンタル、ペンタ−t−ブトキシタンタル、バナジウム(V)トリメトキシドオキシド、バナジウム(V)トリエトキシオキシド、バナジウム(V)トリ−i−プロポキシドオキシド、バナジウム(V)トリ−n−プロポキシドオキシド、バナジウム(V)トリ−i−ブトキシドオキシド、バナジウム(V)トリ−n−ブトキシドオキシド、バナジウム(V)トリ−2−ブトキシドオキシド、バナジウム(V)トリ−t−ブトキシドオキシド、トリ−i−プロポキシイットリウム、トリ−n−ブトキシイットリウム、テトラメトキシハフニウム、テトラエトキシハフニウム、テトラ−i−プロポキシハフニウム、テトラ−t−ブトキシハフニウム;北興化学工業株式会社のペンタエトキシニオブ、ペンタエトキシタンタル、ペンタブトキシタンタル、イットリウム−n−ブトキシド、ハフニウム−t−ブトキシド;日亜化学工業株式会社のバナジウムオキシトリエトキシド、バナジウムオキシトリノルマルプロポキシド、バナジウムオキシトリノルマルブトキシド、バナジウムオキシトリイソブトキシド、バナジウムオキシトリセカンダリーブトキシド等を挙げることができる。   As the compound of formula (I), a prepared product or a commercially available product may be used. Commercially available products include, for example, pentamethoxyniobium, pentaethoxyniobium, penta-i-propoxyniobium, penta-n-propoxyniobium, penta-i-butoxyniobium, penta-n-butoxyniobium, penta 2-butoxy niobium, pentamethoxy tantalum, pentaethoxy tantalum, penta-i-propoxy tantalum, penta-n-propoxy tantalum, penta-i-butoxy tantalum, penta-n-butoxy tantalum, penta-2-butoxy tantalum, penta T-butoxy tantalum, vanadium (V) trimethoxide oxide, vanadium (V) triethoxy oxide, vanadium (V) tri-i-propoxide oxide, vanadium (V) tri-n-propoxide oxide, vanadium (V ) Tri-i-but Sid oxide, vanadium (V) tri-n-butoxide oxide, vanadium (V) tri-2-butoxide oxide, vanadium (V) tri-t-butoxide oxide, tri-i-propoxy yttrium, tri-n-butoxy yttrium, tetra Methoxyhafnium, tetraethoxyhafnium, tetra-i-propoxyhafnium, tetra-t-butoxyhafnium; pentaethoxyniobium, pentaethoxytantalum, pentabutoxytantalum, yttrium-n-butoxide, hafnium-t-butoxide from Hokuko Chemical Co., Ltd. ; Vanadium oxytriethoxide, vanadium oxytri-normal propoxide, vanadium oxytri-normal butoxide, vanadium oxytriisobutoxide, vanadium from Nichia Corporation It can be given beam oxy tri secondary butoxide and the like.

式(I)化合物を調製する場合、その調製方法としては、式(I)化合物に含まれる金属元素(M)のハロゲン化物とアルコールとを不活性有機溶媒の存在下で反応させ、さらにハロゲンを引き抜くためにアンモニア又はアミン化合物を添加する方法(例えば、特開昭63−227593号公報、特開平3−291247号公報等を参照)など、既知の製法を用いることができる。   When preparing the compound of formula (I), the preparation method includes reacting a halide of the metal element (M) contained in the compound of formula (I) with an alcohol in the presence of an inert organic solvent, and further adding halogen. Known methods such as a method of adding ammonia or an amine compound for extraction (see, for example, JP-A Nos. 63-227593 and 3-291247) can be used.

前記パッシベーション層形成用組成物に含まれる式(I)化合物の含有率は、必要に応じて適宜選択することができる。式(I)化合物の含有率は、保存安定性とパッシベーション効果の観点から、パッシベーション層形成用組成物中に0.1質量%〜80質量%とすることができ、0.5質量%〜70質量%であることが好ましく、1質量%〜60質量%であることがより好ましく、1質量%〜50質量%であることが更に好ましい。   The content rate of the compound of Formula (I) contained in the said composition for formation of a passivation layer can be suitably selected as needed. The content of the compound of formula (I) can be 0.1% by mass to 80% by mass in the composition for forming a passivation layer from the viewpoint of storage stability and a passivation effect, and 0.5% by mass to 70% by mass. The mass is preferably 1% by mass, more preferably 1% by mass to 60% by mass, and still more preferably 1% by mass to 50% by mass.

前記パッシベーション層形成用組成物が式(I)化合物を含む場合、キレート試薬(キレート化剤)を添加してもよい。キレート試薬としては、EDTA(エチレンジアミン四酢酸)、ビピリジン、ヘム、ナフチリジン、ベンズイミダゾリルメチルアミン、シュウ酸、マロン酸、コハク酸、グルタル酸、アジピン酸、酒石酸、マレイン酸、フタル酸などのジカルボン酸化合物、β−ジケトン化合物、β−ケトエステル化合物、及びマロン酸ジエステル化合物を例示することができる。化学的安定性の観点からは、β−ジケトン化合物及びβ−ケトエステル化合物が好ましい。   When the composition for forming a passivation layer contains the compound of formula (I), a chelating reagent (chelating agent) may be added. As a chelating reagent, dicarboxylic acid compounds such as EDTA (ethylenediaminetetraacetic acid), bipyridine, heme, naphthyridine, benzimidazolylmethylamine, oxalic acid, malonic acid, succinic acid, glutaric acid, adipic acid, tartaric acid, maleic acid, phthalic acid, etc. , Β-diketone compounds, β-ketoester compounds, and malonic acid diester compounds. From the viewpoint of chemical stability, β-diketone compounds and β-ketoester compounds are preferred.

β−ジケトン化合物として具体的には、アセチルアセトン、3−メチル−2,4−ペンタンジオン、2,3−ペンタンジオン、3−エチル−2,4−ペンタンジオン、3−ブチル−2,4−ペンタンジオン、2,2,6,6−テトラメチル−3,5−ヘプタンジオン、2,6−ジメチル−3,5−ヘプタンジオン、6−メチル−2,4−ヘプタンジオン等を挙げることができる。   Specific examples of the β-diketone compound include acetylacetone, 3-methyl-2,4-pentanedione, 2,3-pentanedione, 3-ethyl-2,4-pentanedione, and 3-butyl-2,4-pentane. Examples include dione, 2,2,6,6-tetramethyl-3,5-heptanedione, 2,6-dimethyl-3,5-heptanedione, 6-methyl-2,4-heptanedione, and the like.

β−ケトエステル化合物として具体的には、アセト酢酸メチル、アセト酢酸エチル、アセト酢酸プロピル、アセト酢酸イソブチル、アセト酢酸ブチル、アセト酢酸t−ブチル、アセト酢酸ペンチル、アセト酢酸イソペンチル、アセト酢酸ヘキシル、アセト酢酸n−オクチル、アセト酢酸ヘプチル、アセト酢酸3−ペンチル、2−アセチルヘプタン酸エチル、2−ブチルアセト酢酸エチル、4,4−ジメチル−3−オキソ吉草酸エチル、4−メチル−3−オキソ吉草酸エチル、2−エチルアセト酢酸エチル、ヘキシルアセト酢酸エチル、4−メチル−3−オキソ吉草酸メチル、アセト酢酸イソプロピル、3−オキソヘキサン酸エチル、3−オキソ吉草酸エチル、3−オキソ吉草酸メチル、3−オキソヘキサン酸メチル、2−メチルアセト酢酸エチル、3−オキソヘプタン酸エチル、3−オキソヘプタン酸メチル、4,4−ジメチル−3−オキソ吉草酸メチル等を挙げることができる。   Specific examples of β-ketoester compounds include methyl acetoacetate, ethyl acetoacetate, propyl acetoacetate, isobutyl acetoacetate, butyl acetoacetate, t-butyl acetoacetate, pentyl acetoacetate, isopentyl acetoacetate, hexyl acetoacetate, acetoacetic acid n-octyl, heptyl acetoacetate, 3-pentyl acetoacetate, ethyl 2-acetylheptanoate, ethyl 2-butylacetoacetate, ethyl 4,4-dimethyl-3-oxovalerate, ethyl 4-methyl-3-oxovalerate , Ethyl 2-ethylacetoacetate, ethyl hexylacetoacetate, methyl 4-methyl-3-oxovalerate, isopropyl acetoacetate, ethyl 3-oxohexanoate, ethyl 3-oxovalerate, methyl 3-oxovalerate, 3- Methyl oxohexanoate, 2-methylacetoacetate Le, ethyl 3-oxo heptanoic acid, 3-oxo heptanoic acid methyl, can be mentioned 4,4-dimethyl-3-oxo-valerate, such as methyl.

マロン酸ジエステル化合物として具体的には、マロン酸ジメチル、マロン酸ジエチル、マロン酸ジプロピル、マロン酸ジイソプロピル、マロン酸ジブチル、マロン酸ジ−t−ブチル、マロン酸ジヘキシル、マロン酸t−ブチルエチル、メチルマロン酸ジエチル、エチルマロン酸ジエチル、イソプロピルマロン酸ジエチル、ブチルマロン酸ジエチル、2−ブチルマロン酸ジエチル、イソブチルマロン酸ジエチル、1−メチルブチルマロン酸ジエチル等を挙げることができる。   Specific examples of the malonic acid diester compound include dimethyl malonate, diethyl malonate, dipropyl malonate, diisopropyl malonate, dibutyl malonate, di-t-butyl malonate, dihexyl malonate, t-butylethyl malonate, and methylmalon. Examples include diethyl acid, diethyl ethylmalonate, diethyl isopropylmalonate, diethyl butylmalonate, diethyl 2-butylmalonate, diethyl isobutylmalonate, diethyl 1-methylbutylmalonate, and the like.

式(I)化合物がキレート構造を有する場合、そのキレート構造の存在は、通常用いられる分析方法で確認することができる。例えば、赤外分光スペクトル、核磁気共鳴スペクトル、融点等を用いて確認することができる。   When the compound of formula (I) has a chelate structure, the presence of the chelate structure can be confirmed by a commonly used analytical method. For example, it can be confirmed using an infrared spectrum, a nuclear magnetic resonance spectrum, a melting point, or the like.

式(I)化合物は、加水分解及び脱水縮重合させた状態で使用してもよい。加水分解及び脱水縮重合させるには、水及び触媒が存在する状態で反応を進行させることができ、加水分解及び脱水縮重合させた後は、水及び触媒を留去してもよい。触媒としては、塩酸、硝酸、硫酸、ホウ酸、リン酸、フッ化水素酸等の無機酸;及び蟻酸、酢酸、プロピオン酸、酪酸、オレイン酸、リノール酸、サリチル酸、安息香酸、フタル酸、蓚酸、乳酸、コハク酸等の有機酸を例示することができる。また、触媒として、アンモニア、アミン等の塩基を加えてもよい。   The compound of formula (I) may be used in a state of hydrolysis and dehydration condensation polymerization. For hydrolysis and dehydration condensation polymerization, the reaction can proceed in the presence of water and a catalyst. After hydrolysis and dehydration condensation polymerization, water and catalyst may be distilled off. Catalysts include inorganic acids such as hydrochloric acid, nitric acid, sulfuric acid, boric acid, phosphoric acid, hydrofluoric acid; and formic acid, acetic acid, propionic acid, butyric acid, oleic acid, linoleic acid, salicylic acid, benzoic acid, phthalic acid, oxalic acid And organic acids such as lactic acid and succinic acid. Moreover, you may add bases, such as ammonia and an amine, as a catalyst.

前記パッシベーション層形成用組成物は、式(I)化合物以外の特定金属酸化物の前駆体を含んでいてもよい。特定金属酸化物の前駆体は、熱処理により特定金属酸化物になるものであれば特に制限されない。具体的には、ニオブ酸、塩化ニオブ、一酸化ニオブ、炭化ニオブ、水酸化ニオブ、タンタル酸、塩化タンタル、五臭化タンタル、オキシ塩化バナジウム、三酸化二バナジウム、オキソビス(2,4−ペンタンジオナト)バナジウム、塩化イットリウム、硝酸イットリウム、シュウ酸イットリウム、ステアリン酸イットリウム、炭酸イットリウム、ナフテン酸イットリウム、プロピオン酸イットリウム、硝酸イットリウム、オクチル酸イットリウム、塩化ハフニウム、テトラキス(2,4−ペンタンジオナト)ハフニウム等を例示することができる。   The composition for forming a passivation layer may contain a precursor of a specific metal oxide other than the compound of formula (I). The precursor of a specific metal oxide will not be restrict | limited especially if it becomes a specific metal oxide by heat processing. Specifically, niobic acid, niobium chloride, niobium monoxide, niobium carbide, niobium hydroxide, tantalum acid, tantalum chloride, tantalum pentabromide, vanadium oxychloride, vanadium trioxide, oxobis (2,4-pentanedio Nato) vanadium, yttrium chloride, yttrium nitrate, yttrium oxalate, yttrium stearate, yttrium carbonate, yttrium naphthenate, yttrium propionate, yttrium nitrate, yttrium octylate, hafnium chloride, tetrakis (2,4-pentandionato) hafnium Etc. can be illustrated.

前記パッシベーション層形成用組成物は、特定金属化合物以外の金属酸化物又はその前駆体を更に含んでいてもよい。そのような金属酸化物又はその前駆体としては、酸化アルミニウム、酸化ケイ素、酸化チタン、酸化ガリウム、酸化ジルコニウム、酸化ホウ素、酸化インジウム、酸化リン、酸化亜鉛、酸化ランタン、酸化プラセオジム、酸化ネオジム、酸化プロメチウム、酸化サマリウム、酸化ユウロピウム、酸化ガドリニウム、酸化テルビウム、酸化ジスプロシウム、酸化ホルミウム、酸化エルビウム、酸化ツリウム、酸化イッテルビウム、酸化ルテチウム、及びこれらの前駆体を挙げることができる。パッシベーション効果の安定性の観点からは、酸化アルミニウム、酸化ケイ素、酸化チタン、酸化ジルコニウム、酸化ネオジム又はこれらの前駆体が好ましく、パッシベーション効果の高さの観点からは酸化アルミニウム又はその前駆体がより好ましい。   The composition for forming a passivation layer may further contain a metal oxide other than the specific metal compound or a precursor thereof. Examples of such metal oxides or precursors thereof include aluminum oxide, silicon oxide, titanium oxide, gallium oxide, zirconium oxide, boron oxide, indium oxide, phosphorus oxide, zinc oxide, lanthanum oxide, praseodymium oxide, neodymium oxide, and oxidation. Mention may be made of promethium, samarium oxide, europium oxide, gadolinium oxide, terbium oxide, dysprosium oxide, holmium oxide, erbium oxide, thulium oxide, ytterbium oxide, lutetium oxide, and precursors thereof. From the viewpoint of the stability of the passivation effect, aluminum oxide, silicon oxide, titanium oxide, zirconium oxide, neodymium oxide or a precursor thereof is preferable, and from the viewpoint of a high passivation effect, aluminum oxide or a precursor thereof is more preferable. .

前記パッシベーション層形成用組成物は、特定金属化合物以外に、更に酸化アルミニウム及びその前駆体からなる群より選択される1種以上を含むことが好ましい。酸化アルミニウムの前駆体としては、下記一般式(II)で表される化合物(以下、有機アルミニウム化合物ともいう)が好ましい。   It is preferable that the said composition for passivation layer formation contains 1 or more types selected from the group which consists of aluminum oxide and its precursor further in addition to a specific metal compound. As a precursor of aluminum oxide, a compound represented by the following general formula (II) (hereinafter also referred to as an organoaluminum compound) is preferable.

前記有機アルミニウム化合物は、アルミニウムアルコキシド、アルミニウムキレート等と呼ばれる化合物である。Nippon Seramikkusu Kyokai Gakujtsu Ronbunshi、97(1989)369−399にも記載されているように、前記有機アルミニウム化合物は熱処理により酸化アルミニウム(Al)となる。 The organoaluminum compound is a compound called aluminum alkoxide, aluminum chelate or the like. As described in Nippon Seramikkusu Kyokai Gakuju u tsunbunshi, 97 (1989) 369-399, the organoaluminum compound becomes aluminum oxide (Al 2 O 3 ) by heat treatment.


一般式(II)中、Rはそれぞれ独立して炭素数1〜8のアルキル基を表す。nは0〜3の整数を表す。X及びXはそれぞれ独立して酸素原子又はメチレン基を表す。R、R及びRはそれぞれ独立して水素原子又は炭素数1〜8のアルキル基を表す。In the general formula (II), R 2 each independently represent an alkyl group having 1 to 8 carbon atoms. n represents an integer of 0 to 3. X 2 and X 3 each independently represent an oxygen atom or a methylene group. R 3 , R 4 and R 5 each independently represent a hydrogen atom or an alkyl group having 1 to 8 carbon atoms.

一般式(II)において、Rはそれぞれ独立して炭素数1〜8のアルキル基を表し、炭素数1〜4のアルキル基であることが好ましい。Rで表されるアルキル基は直鎖状であっても分岐鎖状であってもよい。Rで表されるアルキル基として具体的には、メチル基、エチル基、プロピル基、イソプロピル基、ブチル基、イソブチル基、2−ブチル基、t−ブチル基、ヘキシル基、オクチル基、エチルヘキシル基等を挙げることができる。中でもRで表されるアルキル基は、保存安定性とパッシベーション効果の観点から、炭素数1〜8の無置換のアルキル基であることが好ましく、炭素数1〜4の無置換のアルキル基であることがより好ましい。In general formula (II), R 2 each independently represents an alkyl group having 1 to 8 carbon atoms is preferably an alkyl group having 1 to 4 carbon atoms. The alkyl group represented by R 2 may be linear or branched. Specific examples of the alkyl group represented by R 2 include methyl group, ethyl group, propyl group, isopropyl group, butyl group, isobutyl group, 2-butyl group, t-butyl group, hexyl group, octyl group, and ethylhexyl group. Etc. Among them, the alkyl group represented by R 2 is preferably an unsubstituted alkyl group having 1 to 8 carbon atoms from the viewpoint of storage stability and a passivation effect, and is an unsubstituted alkyl group having 1 to 4 carbon atoms. More preferably.

一般式(II)において、nは0〜3の整数を表わす。nは保存安定性の観点から、1〜3の整数であることが好ましく、1又は3であることがより好ましい。X及びXはそれぞれ独立して酸素原子又はメチレン基を表す。保存安定性の観点から、X及びXの少なくとも一方は酸素原子であることが好ましい。In general formula (II), n represents an integer of 0 to 3. From the viewpoint of storage stability, n is preferably an integer of 1 to 3, and more preferably 1 or 3. X 2 and X 3 each independently represent an oxygen atom or a methylene group. From the viewpoint of storage stability, at least one of X 2 and X 3 is preferably an oxygen atom.

一般式(II)において、R、R及びRはそれぞれ独立して水素原子又は炭素数1〜8のアルキル基を表す。R、R及びRで表されるアルキル基は直鎖状であっても分岐鎖状であってもよい。R、R及びRで表されるアルキル基は、置換基を有していても、無置換であってもよく、無置換であることが好ましい。R、R及びRで表されるアルキル基はそれぞれ独立に炭素数1〜8のアルキル基であり、炭素数1〜4のアルキル基であることが好ましい。R、R及びRで表されるアルキル基として具体的には、メチル基、エチル基、プロピル基、イソプロピル基、ブチル基、イソブチル基、2−ブチル基、t−ブチル基、ヘキシル基、オクチル基、2−エチルヘキシル基等を挙げることができる。中でも保存安定性とパッシベーション効果の観点から、一般式(II)におけるR及びRはそれぞれ独立して、水素原子又は炭素数1〜8の無置換のアルキル基であることが好ましく、水素原子又は炭素数1〜4の無置換のアルキル基であることがより好ましい。
また一般式(II)におけるRは、保存安定性とパッシベーション効果の観点から、水素原子又は炭素数1〜8の無置換のアルキル基であることが好ましく、水素原子又は炭素数1〜4の無置換のアルキル基であることがより好ましい。
In general formula (II), R < 3 >, R < 4 > and R < 5 > represent a hydrogen atom or a C1-C8 alkyl group each independently. The alkyl group represented by R 3 , R 4 and R 5 may be linear or branched. The alkyl group represented by R 3 , R 4 and R 5 may have a substituent or may be unsubstituted, and is preferably unsubstituted. The alkyl groups represented by R 3 , R 4 and R 5 are each independently an alkyl group having 1 to 8 carbon atoms, and preferably an alkyl group having 1 to 4 carbon atoms. Specific examples of the alkyl group represented by R 3 , R 4 and R 5 include a methyl group, an ethyl group, a propyl group, an isopropyl group, a butyl group, an isobutyl group, a 2-butyl group, a t-butyl group, and a hexyl group. Octyl group, 2-ethylhexyl group and the like. Among these, from the viewpoint of storage stability and a passivation effect, R 3 and R 4 in the general formula (II) are preferably each independently a hydrogen atom or an unsubstituted alkyl group having 1 to 8 carbon atoms. Or it is more preferable that it is a C1-C4 unsubstituted alkyl group.
R 5 in the general formula (II) is preferably a hydrogen atom or an unsubstituted alkyl group having 1 to 8 carbon atoms from the viewpoint of storage stability and a passivation effect, and is a hydrogen atom or 1 to 4 carbon atoms. It is more preferably an unsubstituted alkyl group.

一般式(II)で表される有機アルミニウム化合物は、保存安定性の観点から、nが1〜3の整数であり、Rがそれぞれ独立して水素原子又は炭素数1〜4のアルキル基である化合物であることが好ましい。In the organoaluminum compound represented by the general formula (II), n is an integer of 1 to 3 from the viewpoint of storage stability, and R 5 is independently a hydrogen atom or an alkyl group having 1 to 4 carbon atoms. A certain compound is preferable.

一般式(II)で表される有機アルミニウム化合物は、保存安定性とパッシベーション効果の観点から、nが0であり、Rがそれぞれ独立して炭素数1〜4のアルキル基である化合物、並びにnが1〜3であり、Rがそれぞれ独立して炭素数1〜4のアルキル基であり、X及びXの少なくとも一方が酸素原子であり、R及びRがそれぞれ独立して水素原子又は炭素数1〜4のアルキル基であり、Rが水素原子又は炭素数1〜4のアルキル基である化合物からなる群より選ばれる少なくとも1種であることが好ましい。The organoaluminum compound represented by the general formula (II) is a compound in which n is 0 and R 2 is each independently an alkyl group having 1 to 4 carbon atoms from the viewpoint of storage stability and a passivation effect, n is 1 to 3, R 2 is each independently an alkyl group having 1 to 4 carbon atoms, at least one of X 2 and X 3 is an oxygen atom, and R 3 and R 4 are each independently It is preferably a hydrogen atom or an alkyl group having 1 to 4 carbon atoms, and R 5 is at least one selected from the group consisting of a hydrogen atom or an alkyl group having 1 to 4 carbon atoms.

更に、一般式(II)で表される有機アルミニウム化合物は、nが0であり、Rがそれぞれ独立して炭素数1〜4の無置換のアルキル基である化合物、並びにnが1〜3であり、Rがそれぞれ独立して炭素数1〜4の無置換のアルキル基であり、X及びXの少なくとも一方が酸素原子であり、前記酸素原子に結合するR又はRが炭素数1〜4のアルキル基であり、X又はXがメチレン基の場合、前記メチレン基に結合するR又はRが水素原子であり、Rが水素原子である化合物からなる群より選ばれる少なくとも1種であることがより好ましい。Furthermore, in the organoaluminum compound represented by the general formula (II), n is 0, R 2 is each independently an unsubstituted alkyl group having 1 to 4 carbon atoms, and n is 1 to 3 R 2 is each independently an unsubstituted alkyl group having 1 to 4 carbon atoms, at least one of X 2 and X 3 is an oxygen atom, and R 3 or R 4 bonded to the oxygen atom is A group consisting of a compound having an alkyl group having 1 to 4 carbon atoms and when X 2 or X 3 is a methylene group, R 3 or R 4 bonded to the methylene group is a hydrogen atom, and R 5 is a hydrogen atom; More preferably, it is at least one selected from more.

一般式(II)で表され、nが0の有機アルミニウム化合物であるアルミニウムトリアルコキシドとして具体的には、トリメトキシアルミニウム、トリエトキシアルミニウム、トリイソプロポキシアルミニウム、トリ2−ブトキシアルミニウム、モノ2−ブトキシ−ジイソプロポキシアルミニウム、トリt−ブトキシアルミニウム、トリn−ブトキシアルミニウム等を挙げることができる。   Specific examples of the aluminum trialkoxide, which is an organoaluminum compound represented by the general formula (II) and n is 0, include trimethoxyaluminum, triethoxyaluminum, triisopropoxyaluminum, tri-2-butoxyaluminum, mono-2-butoxy. -Diisopropoxyaluminum, tri-t-butoxyaluminum, tri-n-butoxyaluminum, etc. can be mentioned.

一般式(II)で表され、nが1〜3である有機アルミニウム化合物として具体的には、アルミニウムエチルアセトアセテートジイソプロピレート、トリス(エチルアセトアセタト)アルミニウム等を挙げることができる。   Specific examples of the organoaluminum compound represented by the general formula (II) where n is 1 to 3 include aluminum ethyl acetoacetate diisopropylate and tris (ethyl acetoacetate) aluminum.

一般式(II)で表され、nが1〜3である有機アルミニウム化合物は、調製したものを用いても、市販品を用いてもよい。市販品としては例えば、川研ファインケミカル株式会社の商品名、ALCH、ALCH−50F、ALCH−75、ALCH−TR、ALCH−TR−20等を挙げることができる。   As the organoaluminum compound represented by the general formula (II) and n of 1 to 3, a prepared product or a commercially available product may be used. Examples of commercially available products include Kawaken Fine Chemical Co., Ltd. trade names, ALCH, ALCH-50F, ALCH-75, ALCH-TR, ALCH-TR-20, and the like.

前記有機アルミニウム化合物は、nが1〜3である、すなわちアルミニウムアルコキシド構造に加えてアルミニウムキレート構造を有していることが好ましい。nが0である、すなわちアルミニウムアルコキシド構造の状態でパッシベーション層形成用組成物中に存在する場合には、キレート試薬(キレート化剤)をパッシベーション層形成用組成物に添加することが好ましい。キレート試薬の例としては、上述のキレート試薬の例が挙げられる。   The organoaluminum compound preferably has n of 1 to 3, that is, an aluminum chelate structure in addition to the aluminum alkoxide structure. When n is 0, that is, when it exists in the composition for forming a passivation layer in the state of an aluminum alkoxide structure, it is preferable to add a chelating reagent (chelating agent) to the composition for forming a passivation layer. Examples of chelating reagents include those described above.

前記有機アルミニウム化合物がキレート構造を有する場合、そのキレート構造の存在は、通常用いられる分析方法で確認することができる。例えば、赤外分光スペクトル、核磁気共鳴スペクトル、融点等を用いて確認することができる。   When the organoaluminum compound has a chelate structure, the presence of the chelate structure can be confirmed by a commonly used analysis method. For example, it can be confirmed using an infrared spectrum, a nuclear magnetic resonance spectrum, a melting point, or the like.

アルミニウムアルコキシドとキレート試薬とを併用する、又はキレート化した有機アルミニウム化合物を用いることで、有機アルミニウム化合物の熱的及び化学的安定性が向上し、熱処理した際の酸化アルミニウムへの転移が抑制されると考えられる。結果として、熱力学的に安定な結晶状態の酸化アルミニウムへの転移が抑制され、アモルファス状態の酸化アルミニウムが形成され易くなると考えられる。   By using an aluminum alkoxide and a chelating reagent in combination or using a chelated organoaluminum compound, the thermal and chemical stability of the organoaluminum compound is improved, and the transition to aluminum oxide during heat treatment is suppressed. it is conceivable that. As a result, it is considered that the transition to thermodynamically stable crystalline aluminum oxide is suppressed, and amorphous aluminum oxide is easily formed.

なお、形成されたパッシベーション層中の金属酸化物の状態はX線回折スペクトル(XRD、X−ray diffraction)を測定することにより確認できる。例えば、XRDが特定の反射パターンを示さないことでアモルファス構造であることが確認できる。パッシベーション層形成用組成物が有機アルミニウム化合物を含む場合、これを熱処理して得られるパッシベーション層中の酸化アルミニウムはアモルファス構造であることが好ましい。酸化アルミニウムがアモルファス状態であると、アルミニウム欠損又は酸素欠損が生じやすく、パッシベーション層中に固定電荷が発生しやすく、大きなパッシベーション効果が得られやすい。   In addition, the state of the metal oxide in the formed passivation layer can be confirmed by measuring an X-ray diffraction spectrum (XRD, X-ray diffraction). For example, it can be confirmed that the XRD has an amorphous structure by not showing a specific reflection pattern. When the composition for forming a passivation layer contains an organoaluminum compound, it is preferable that the aluminum oxide in the passivation layer obtained by heat-treating it has an amorphous structure. When the aluminum oxide is in an amorphous state, aluminum deficiency or oxygen deficiency is likely to occur, fixed charges are likely to be generated in the passivation layer, and a large passivation effect is likely to be obtained.

一般式(II)で表され、nが1〜3である有機アルミニウム化合物は、前記アルミニウムトリアルコキシドと、キレート試薬とを混合することで調製することができる。キレート試薬としては、2つのカルボニル基を有する特定構造の化合物を挙げることができる。具体的には、前記アルミニウムトリアルコキシドと、2つのカルボニル基を有する特定構造の化合物とを混合すると、アルミニウムトリアルコキシドのアルコキシド基の少なくとも一部が特定構造の化合物と置換して、アルミニウムキレート構造を形成する。このとき必要に応じて、溶媒が存在してもよく、また加熱処理や触媒の添加を行ってもよい。アルミニウムアルコキシド構造の少なくとも一部がアルミニウムキレート構造に置換されることで、有機アルミニウム化合物の加水分解や重合反応に対する安定性が向上し、これを含むパッシベーション層形成用組成物の保存安定性がより向上する。   The organoaluminum compound represented by the general formula (II) and n is 1 to 3 can be prepared by mixing the aluminum trialkoxide and a chelating reagent. Examples of the chelating reagent include compounds having a specific structure having two carbonyl groups. Specifically, when the aluminum trialkoxide is mixed with a compound having a specific structure having two carbonyl groups, at least a part of the alkoxide group of the aluminum trialkoxide is substituted with a compound having a specific structure, thereby forming an aluminum chelate structure. Form. At this time, if necessary, a solvent may be present, or heat treatment or addition of a catalyst may be performed. By replacing at least a part of the aluminum alkoxide structure with an aluminum chelate structure, the stability of the organoaluminum compound to hydrolysis and polymerization reaction is improved, and the storage stability of the composition for forming a passivation layer containing this is further improved. To do.

前記2つのカルボニル基を有する特定構造の化合物としては、反応性と保存安定性の観点から、β−ジケトン化合物、β−ケトエステル化合物及びマロン酸ジエステルからなる群より選ばれる少なくとも1種であることが好ましい。β−ジケトン化合物、β−ケトエステル化合物及びマロン酸ジエステルの具体例としては、キレート試薬として上述した化合物を挙げることができる。   The compound having a specific structure having two carbonyl groups may be at least one selected from the group consisting of a β-diketone compound, a β-ketoester compound, and a malonic acid diester from the viewpoint of reactivity and storage stability. preferable. Specific examples of the β-diketone compound, β-ketoester compound and malonic acid diester include the compounds described above as chelating reagents.

前記有機アルミニウム化合物がアルミニウムキレート構造を有する場合、アルミニウムキレート構造の数は1〜3であれば特に制限されない。中でも、保存安定性の観点から、1又は3であることが好ましく、溶解度の観点から、1であることがより好ましい。アルミニウムキレート構造の数は、例えば前記アルミニウムトリアルコキシドと、アルミニウムとキレートを形成し得る化合物とを混合する比率を適宜調整することで制御することができる。また市販のアルミニウムキレート化合物から所望の構造を有する化合物を適宜選択してもよい。   When the organoaluminum compound has an aluminum chelate structure, the number of aluminum chelate structures is not particularly limited as long as it is 1 to 3. Among these, 1 or 3 is preferable from the viewpoint of storage stability, and 1 is more preferable from the viewpoint of solubility. The number of aluminum chelate structures can be controlled, for example, by appropriately adjusting the ratio of mixing the aluminum trialkoxide and a compound capable of forming a chelate with aluminum. Moreover, you may select suitably the compound which has a desired structure from a commercially available aluminum chelate compound.

一般式(II)で表される有機アルミニウム化合物のうち、パッシベーション効果及び必要に応じて添加される溶剤との相溶性の観点から、具体的にはアルミニウムエチルアセトアセテートジイソプロピレート及びトリイソプロポキシアルミニウムからなる群より選ばれる少なくとも1種を用いることが好ましく、アルミニウムエチルアセトアセテートジイソプロピレートを用いることがより好ましい。   Of the organoaluminum compounds represented by the general formula (II), from the viewpoint of the passivation effect and the compatibility with the solvent added as necessary, specifically, aluminum ethylacetoacetate diisopropylate and triisopropoxyaluminum It is preferable to use at least one selected from the group consisting of, and more preferable to use aluminum ethyl acetoacetate diisopropylate.

有機アルミニウム化合物は、液状であっても固体であってもよく、特に制限はない。パッシベーション効果と保存安定性の観点から、常温(10℃〜40℃程度)での安定性や、溶解性又は分散性が良好な有機アルミニウム化合物を用いることで、形成されるパッシベーション層の均一性がより向上し、所望のパッシベーション効果を安定的に得ることができる。   The organoaluminum compound may be liquid or solid and is not particularly limited. From the viewpoint of the passivation effect and storage stability, the uniformity of the passivation layer formed can be achieved by using an organoaluminum compound that is stable at room temperature (about 10 ° C. to 40 ° C.) and has good solubility or dispersibility. It can improve further and can acquire the desired passivation effect stably.

前記パッシベーション層形成用組成物が、Al及び前記有機アルミニウム化合物からなる群より選択される1種以上のアルミニウム化合物を含む場合、前記パッシベーション層形成用組成物中の前記アルミニウム化合物の総含有率は0.1質量%〜80質量%であることが好ましく、10〜70質量%であることが更に好ましい。パッシベーション効果の高さの観点からは、特定金属化合物及び前記アルミニウム化合物の総量中の前記アルミニウム化合物の合計の比率が0.1質量%以上99.9質量%以下であることが好ましく、0.5質量%以上99質量%以下であることがより好ましく、1質量%以上95質量%以下であることが更に好ましい。When the composition for forming a passivation layer contains one or more aluminum compounds selected from the group consisting of Al 2 O 3 and the organoaluminum compound, the total content of the aluminum compounds in the composition for forming a passivation layer The rate is preferably 0.1% by mass to 80% by mass, and more preferably 10% by mass to 70% by mass. From the viewpoint of a high passivation effect, the total ratio of the aluminum compound in the total amount of the specific metal compound and the aluminum compound is preferably 0.1% by mass or more and 99.9% by mass or less, The content is more preferably no less than 99% by mass and no greater than 99% by mass, and still more preferably no less than 1% by mass and no greater than 95% by mass.

前記パッシベーション層形成用組成物が前記アルミニウム化合物を含む場合、パッシベーション層形成用組成物を熱処理して得られるパッシベーション層中の特定金属酸化物の組成としては、Nb−Al、Al−Ta、Al−Y、Al−V、Al−HfO等の二元系複合酸化物;Nb−Al−Ta、Al−Y−Ta、Nb−Al−V、Al−HfO−Ta等の三元系複合酸化物などが挙げられる。When the composition for forming a passivation layer contains the aluminum compound, the composition of the specific metal oxide in the passivation layer obtained by heat-treating the composition for forming a passivation layer includes Nb 2 O 5 —Al 2 O 3 , Binary complex oxides such as Al 2 O 3 —Ta 2 O 5 , Al 2 O 3 —Y 2 O 3 , Al 2 O 3 —V 2 O 5 , Al 2 O 3 —HfO 2 ; Nb 2 O 5 -Al 2 O 3 -Ta 2 O 5 , Al 2 O 3 -Y 2 O 3 -Ta 2 O 5, Nb 2 O 5 -Al 2 O 3 -V 2 O 5, Al 2 O 3 -HfO 2 -Ta Examples thereof include ternary complex oxides such as 2 O 5 .

パッシベーション効果の高さ及びパッシベーション効果の経時安定性の観点からは、前記パッシベーション層形成用組成物は、Nb及び前記一般式(I)においてMがNbである化合物からなる群より選択される少なくとも1種のニオブ化合物を含むことが好ましい。また、パッシベーション層形成用組成物中の前記ニオブ化合物の総含有率が、Nb換算で0.1質量%〜99.9質量%であることが好ましく、1質量%〜99質量%であることがより好ましく、5質量%〜90質量%であることが更に好ましい。Nb及び前記一般式(I)においてMがNbである化合物からなる群より選択される少なくとも1種のニオブ化合物を含むパッシベーション層形成用組成物を熱処理して得られるパッシベーション層中の特定金属酸化物の組成としては、例えば、Nb−Al、Nb−Ta、Nb−Y、Nb−V、Nb−HfO等の二元系複合酸化物;Nb−Al−Ta、Nb−Y−Ta、Nb−Al−V、Nb−HfO−Ta等の三元系複合酸化物などが挙げられる。From the viewpoint of the high passivation effect and the temporal stability of the passivation effect, the composition for forming a passivation layer is selected from the group consisting of Nb 2 O 5 and a compound in which M is Nb in the general formula (I). It is preferable to contain at least one niobium compound. The total content of the niobium compound of the passivation layer forming composition is preferably a 0.1 wt% to 99.9 wt% calculated as Nb 2 O 5, with 1 wt% to 99 wt% More preferably, it is more preferably 5% by mass to 90% by mass. Identification in a passivation layer obtained by heat-treating a composition for forming a passivation layer containing Nb 2 O 5 and at least one niobium compound selected from the group consisting of compounds in which M is Nb in the general formula (I) Examples of the composition of the metal oxide include Nb 2 O 5 —Al 2 O 3 , Nb 2 O 5 —Ta 2 O 5 , Nb 2 O 5 —Y 2 O 3 , Nb 2 O 5 —V 2 O 5 , Binary complex oxides such as Nb 2 O 5 —HfO 2 ; Nb 2 O 5 —Al 2 O 3 —Ta 2 O 5 , Nb 2 O 5 —Y 2 O 3 —Ta 2 O 5 , Nb 2 O 5 such as -Al 2 O 3 -V 2 O 5 , Nb 2 O 5 -HfO 2 -Ta 2 O ternary composite oxide such as 5 can be mentioned.

特定金属化合物を含むパッシベーション層形成用組成物を半導体基板に付与して所望の形状の組成物層を形成し、前記組成物層を熱処理することで、優れたパッシベーション効果を有するパッシベーション層を所望の形状に形成することができる。   A composition for forming a passivation layer containing a specific metal compound is applied to a semiconductor substrate to form a composition layer having a desired shape, and the composition layer is heat-treated to obtain a desired passivation layer having an excellent passivation effect. It can be formed into a shape.

前記パッシベーション層形成用組成物を熱処理することにより優れたパッシベーション効果を有するパッシベーション層を形成できる理由について、発明者らは以下のように考えている。特定金属化合物を含有するパッシベーション層形成用組成物を熱処理することにより、金属原子や酸素原子の欠陥等が生じて半導体基板との界面付近に大きな固定電荷が発生すると考えられる。この大きな固定電荷が半導体基板の界面近辺で電界を発生することで少数キャリアの濃度を低下させることができ、結果的に界面でのキャリア再結合速度が抑制されるため、優れたパッシベーション効果を有するパッシベーション層を形成することができると考えられる。更に、前記パッシベーション層形成用組成物はゲル化等の不具合の発生が抑制されて経時的な保存安定性に優れると考えられる。   The inventors consider the reason why a passivation layer having an excellent passivation effect can be formed by heat-treating the composition for forming a passivation layer as follows. It is considered that when the composition for forming a passivation layer containing a specific metal compound is heat-treated, defects such as metal atoms and oxygen atoms are generated and a large fixed charge is generated in the vicinity of the interface with the semiconductor substrate. This large fixed charge generates an electric field in the vicinity of the interface of the semiconductor substrate, so that the concentration of minority carriers can be reduced. As a result, the carrier recombination rate at the interface is suppressed, so that it has an excellent passivation effect. It is believed that a passivation layer can be formed. Furthermore, it is thought that the composition for forming a passivation layer is excellent in storage stability over time because the occurrence of problems such as gelation is suppressed.

(液状媒体)
前記パッシベーション層形成用組成物は液状媒体を含むことが好ましい。パッシベーション層形成用組成物が液状媒体を含有することで、粘度の調整がより容易になり、付与性がより向上するとともにより均一なパッシベーション層を形成することができる。前記液状媒体は、特定金属化合物を溶解又は分散可能であれば特に制限されず、必要に応じて適宜選択することができる。
(Liquid medium)
The composition for forming a passivation layer preferably contains a liquid medium. When the composition for forming a passivation layer contains a liquid medium, the viscosity can be adjusted more easily, the applicability can be further improved, and a more uniform passivation layer can be formed. The liquid medium is not particularly limited as long as it can dissolve or disperse the specific metal compound, and can be appropriately selected as necessary.

液状媒体として具体的には、アセトン、メチルエチルケトン、メチル−n−プロピルケトン、メチルイソプロピルケトン、メチル−n−ブチルケトン、メチルイソブチルケトン、メチル−n−ペンチルケトン、メチル−n−ヘキシルケトン、ジエチルケトン、ジプロピルケトン、ジイソブチルケトン、トリメチルノナノン、シクロヘキサノン、シクロペンタノン、メチルシクロヘキサノン、2,4−ペンタンジオン、アセトニルアセトン等のケトン溶剤;ジエチルエーテル、メチルエチルエーテル、メチル−n−プロピルエーテル、ジイソプロピルエーテル、テトラヒドロフラン、メチルテトラヒドロフラン、ジオキサン、ジメチルジオキサン、エチレングリコールジメチルエーテル、エチレングリコールジエチルエーテル、エチレングリコールジ−n−プロピルエーテル、エチレングリコールジブチルエーテル、ジエチレングリコールジメチルエーテル、ジエチレングリコールジエチルエーテル、ジエチレングリコールメチルエチルエーテル、ジエチレングリコールメチル−n−プロピルエーテル、ジエチレングリコールメチル−n−ブチルエーテル、ジエチレングリコールジ−n−プロピルエーテル、ジエチレングリコールジ−n−ブチルエーテル、ジエチレングリコールメチル−n−ヘキシルエーテル、トリエチレングリコールジメチルエーテル、トリエチレングリコールジエチルエーテル、トリエチレングリコールメチルエチルエーテル、トリエチレングリコールメチル−n−ブチルエーテル、トリエチレングリコールジ−n−ブチルエーテル、トリエチレングリコールメチル−n−ヘキシルエーテル、テトラエチレングリコールジメチルエーテル、テトラエチレングリコールジエチルエーテル、テトラエチレングリコールメチルエチルエーテル、テトラエチレングリコールメチル−n−ブチルエーテル、テトラエチレングリコールジ−n−ブチルエーテル、テトラエチレングリコールメチル−n−ヘキシルエーテル、テトラエチレングリコールジ−n−ブチルエーテル、プロピレングリコールジメチルエーテル、プロピレングリコールジエチルエーテル、プロピレングリコールジ−n−プロピルエーテル、プロピレングリコールジブチルエーテル、ジプロピレングリコールジメチルエーテル、ジプロピレングリコールジエチルエーテル、ジプロピレングリコールメチルエチルエーテル、ジプロピレングリコールメチル−n−ブチルエーテル、ジプロピレングリコールジ−n−プロピルエーテル、ジプロピレングリコールジ−n−ブチルエーテル、ジプロピレングリコールメチル−n−ヘキシルエーテル、トリプロピレングリコールジメチルエーテル、トリプロピレングリコールジエチルエーテル、トリプロピレングリコールメチルエチルエーテル、トリプロピレングリコールメチル−n−ブチルエーテル、トリプロピレングリコールジ−n−ブチルエーテル、トリプロピレングリコールメチル−n−ヘキシルエーテル、テトラプロピレングリコールジメチルエーテル、テトラプロピレングリコールジエチルエーテル、テトラプロピレングリコールメチルエチルエーテル、テトラプロピレングリコールメチル−n−ブチルエーテル、テトラプロピレングリコールジ−n−ブチルエーテル、テトラプロピレングリコールメチル−n−ヘキシルエーテル等のエーテル溶剤;酢酸メチル、酢酸エチル、酢酸n−プロピル、酢酸イソプロピル、酢酸n−ブチル、酢酸イソブチル、酢酸2−ブチル、酢酸n−ペンチル、酢酸2−ペンチル、酢酸3−メトキシブチル、酢酸メチルペンチル、酢酸2−エチルブチル、酢酸2−エチルヘキシル、酢酸2−(2−ブトキシエトキシ)エチル、酢酸ベンジル、酢酸シクロヘキシル、酢酸メチルシクロヘキシル、酢酸ノニル、アセト酢酸メチル、アセト酢酸エチル、酢酸ジエチレングリコールメチルエーテル、酢酸ジエチレングリコールモノエチルエーテル、酢酸ジプロピレングリコールメチルエーテル、酢酸ジプロピレングリコールエチルエーテル、ジ酢酸グリコール、酢酸メトキシトリエチレングリコール、酢酸イソアミル、プロピオン酸エチル、プロピオン酸n−ブチル、プロピオン酸イソアミル、シュウ酸ジエチル、シュウ酸ジ−n−ブチル、乳酸メチル、乳酸エチル、乳酸n−ブチル、乳酸n−アミル、エチレングリコールメチルエーテルプロピオネート、エチレングリコールエチルエーテルプロピオネート、エチレングリコールメチルエーテルアセテート、エチレングリコールエチルエーテルアセテート、プロピレングリコールメチルエーテルアセテート、プロピレングリコールエチルエーテルアセテート、プロピレングリコールプロピルエーテルアセテート、γ−ブチロラクトン、γ−バレロラクトン等のエステル溶剤;アセトニトリル、N−メチルピロリジノン、N−エチルピロリジノン、N−プロピルピロリジノン、N−ブチルピロリジノン、N−ヘキシルピロリジノン、N−シクロヘキシルピロリジノン、N,N−ジメチルホルムアミド、N,N−ジメチルアセトアミド、ジメチルスルホキシド等の非プロトン性極性溶剤;塩化メチレン、クロロホルム、ジクロロエタン、ベンゼン、トルエン、キシレン、ヘキサン、オクタン、エチルベンゼン、2−エチルヘキサン酸、メチルイソブチルケトン、メチルエチルケトン等の疎水性有機溶剤;メタノール、エタノール、n−プロパノール、2−プロパノール、n−ブタノール、イソブタノール、2−ブタノール、t−ブタノール、n−ペンタノール、イソペンタノール、2−メチルブタノール、2−ペンタノール、t−ペンタノール、3−メトキシブタノール、n−ヘキサノール、2−メチルペンタノール、2−ヘキサノール、2−エチルブタノール、2−ヘプタノール、n−オクタノール、2−エチルヘキサノール、2−オクタノール、n−ノニルアルコール、n−デカノール、2−ウンデシルアルコール、トリメチルノニルアルコール、2−テトラデシルアルコール、2−ヘプタデシルアルコール、シクロヘキサノール、メチルシクロヘキサノール、イソボルニルシクロヘキサノール、ベンジルアルコール、エチレングリコール、1,2−プロピレングリコール、1,3−ブチレングリコール、ジエチレングリコール、ジプロピレングリコール、トリエチレングリコール、トリプロピレングリコール等のアルコール溶剤;エチレングリコールモノメチルエーテル、エチレングリコールモノエチルエーテル、エチレングリコールモノフェニルエーテル、ジエチレングリコールモノメチルエーテル、ジエチレングリコールモノエチルエーテル、ジエチレングリコールモノ−n−ブチルエーテル、ジエチレングリコールモノ−n−ヘキシルエーテル、エトキシトリグリコール、テトラエチレングリコールモノ−n−ブチルエーテル、プロピレングリコールモノメチルエーテル、ジプロピレングリコールモノメチルエーテル、ジプロピレングリコールモノエチルエーテル、トリプロピレングリコールモノメチルエーテル等のグリコールモノエーテル溶剤;テルピネン、テルピネオール、ミルセン、アロオシメン、リモネン、ジペンテン、ピネン、カルボン、オシメン、フェランドレン等のテルペン溶剤;水などが挙げられる。これらの液状媒体は1種類を単独で又は2種類以上を組み合わせて使用できる。 Specific examples of the liquid medium include acetone, methyl ethyl ketone, methyl n-propyl ketone, methyl isopropyl ketone, methyl n-butyl ketone, methyl isobutyl ketone, methyl n-pentyl ketone, methyl n-hexyl ketone, diethyl ketone, Ketone solvents such as dipropyl ketone, diisobutyl ketone, trimethylnonanone, cyclohexanone, cyclopentanone, methylcyclohexanone, 2,4-pentanedione, acetonylacetone; diethyl ether, methyl ethyl ether, methyl-n-propyl ether, diisopropyl Ether, tetrahydrofuran, methyltetrahydrofuran, dioxane, dimethyldioxane, ethylene glycol dimethyl ether, ethylene glycol diethyl ether, ethylene glycol Rudi-n-propyl ether, ethylene glycol dibutyl ether, diethylene glycol dimethyl ether, diethylene glycol diethyl ether, diethylene glycol methyl ethyl ether, diethylene glycol methyl n-propyl ether, diethylene glycol methyl n-butyl ether, diethylene glycol di-n-propyl ether, diethylene glycol di- n-butyl ether, diethylene glycol methyl-n-hexyl ether, triethylene glycol dimethyl ether, triethylene glycol diethyl ether, triethylene glycol methyl ethyl ether, triethylene glycol methyl-n-butyl ether, triethylene glycol di-n-butyl ether, triethylene Glycolme Ru-n-hexyl ether, tetraethylene glycol dimethyl ether, tetraethylene glycol diethyl ether, tetraethylene glycol methyl ethyl ether, tetraethylene glycol methyl n-butyl ether, tetraethylene glycol di-n-butyl ether, tetraethylene glycol methyl n- Hexyl ether, tetraethylene glycol di-n-butyl ether, propylene glycol dimethyl ether, propylene glycol diethyl ether, propylene glycol di-n-propyl ether, propylene glycol dibutyl ether, dipropylene glycol dimethyl ether, dipropylene glycol diethyl ether, dipropylene glycol methyl Ethyl ether, dipropylene glycol Cyl-n-butyl ether, dipropylene glycol di-n-propyl ether, dipropylene glycol di-n-butyl ether, dipropylene glycol methyl-n-hexyl ether, tripropylene glycol dimethyl ether, tripropylene glycol diethyl ether, tripropylene glycol methyl Ethyl ether, tripropylene glycol methyl-n-butyl ether, tripropylene glycol di-n-butyl ether, tripropylene glycol methyl-n-hexyl ether, tetrapropylene glycol dimethyl ether, tetrapropylene glycol diethyl ether, tetrapropylene glycol methyl ethyl ether, tetra Propylene glycol methyl-n-butyl ether, tetrapropylene glycol Ruji -n- butyl ether, ethers such as tetrapropylene glycol methyl -n- hexyl ether solvents; methyl acetate, ethyl acetate, n- propyl, isopropyl acetate, n- butyl acetate, isobutyl acetate 2-butyl acetate n- Pentyl, 2-pentyl acetate, 3-methoxybutyl acetate, methyl pentyl acetate, 2-ethylbutyl acetate, 2-ethylhexyl acetate, 2- (2-butoxyethoxy) ethyl acetate, benzyl acetate, cyclohexyl acetate, methylcyclohexyl acetate, nonyl acetate , Methyl acetoacetate, ethyl acetoacetate, diethylene glycol methyl ether acetate, diethylene glycol monoethyl ether acetate, dipropylene glycol methyl ether acetate, dipropylene glycol ethyl ether acetate, glycoacetate , Methoxytriethylene glycol acetate, isoamyl acetate, ethyl propionate, n-butyl propionate, isoamyl propionate, diethyl oxalate, di-n-butyl oxalate, methyl lactate, ethyl lactate, n-butyl lactate, n-lactate Amyl, ethylene glycol methyl ether propionate, ethylene glycol ethyl ether propionate, ethylene glycol methyl ether acetate, ethylene glycol ethyl ether acetate, propylene glycol methyl ether acetate, propylene glycol ethyl ether acetate, propylene glycol propyl ether acetate, γ- Ester solvents such as butyrolactone and γ-valerolactone; acetonitrile, N-methylpyrrolidinone, N-ethylpyrrolidinone, N Aprotic polar solvents such as propylpyrrolidinone, N-butylpyrrolidinone, N-hexylpyrrolidinone, N-cyclohexylpyrrolidinone, N, N-dimethylformamide, N, N-dimethylacetamide, dimethylsulfoxide; methylene chloride, chloroform, dichloroethane, benzene , Toluene, xylene, hexane, octane, ethylbenzene, 2-ethylhexanoic acid, methyl isobutyl ketone, methyl ethyl ketone, and other hydrophobic organic solvents; methanol, ethanol, n-propanol, 2-propanol, n-butanol, isobutanol, 2- Butanol, t-butanol, n-pentanol, isopentanol, 2-methylbutanol, 2-pentanol, t-pentanol, 3-methoxybutanol, n-hexanol, 2 -Methylpentanol, 2-hexanol, 2-ethylbutanol, 2-heptanol, n-octanol, 2-ethylhexanol, 2-octanol, n-nonyl alcohol, n-decanol, 2-undecyl alcohol, trimethylnonyl alcohol, 2-tetradecyl alcohol, 2-heptadecyl alcohol, cyclohexanol, methylcyclohexanol, isobornylcyclohexanol, benzyl alcohol, ethylene glycol, 1,2-propylene glycol, 1,3-butylene glycol, diethylene glycol, dipropylene glycol , Alcohol solvents such as triethylene glycol and tripropylene glycol; ethylene glycol monomethyl ether, ethylene glycol monoethyl ether, ethylene glycol Monophenyl ether, diethylene glycol monomethyl ether, diethylene glycol monoethyl ether, diethylene glycol mono-n-butyl ether, diethylene glycol mono-n-hexyl ether, ethoxytriglycol, tetraethylene glycol mono-n-butyl ether, propylene glycol monomethyl ether, dipropylene glycol Glycol monoether solvents such as monomethyl ether, dipropylene glycol monoethyl ether, and tripropylene glycol monomethyl ether; terpene solvents such as terpinene, terpineol, myrcene, alloocimene, limonene, dipentene, pinene, carvone, osymene, and ferrandrene; Can be mentioned. These liquid media can be used alone or in combination of two or more.

前記液状媒体は、半導体基板への付与性及びパターン形成性(パッシベーション層形成用組成物の付与時及び乾燥時のパターンの肥大化抑制)の観点から、テルペン溶剤、エステル溶剤及びアルコール溶剤からなる群より選ばれる少なくとも1種を含むことが好ましく、テルペン溶剤の少なくとも1種を含むことがより好ましい。   The liquid medium is a group consisting of a terpene solvent, an ester solvent, and an alcohol solvent from the viewpoint of impartability to a semiconductor substrate and pattern formability (inhibition of pattern enlargement during application of a passivation layer forming composition and drying). It is preferable to include at least one selected from the above, and it is more preferable to include at least one terpene solvent.

パッシベーション層形成用組成物が液状媒体を含む場合、その含有率は、付与性、パターン形成性、保存安定性を考慮して決定される。例えば液状媒体の含有率は、組成物の付与性とパターン形成性の観点から、パッシベーション層形成組成物の総質量中に5質量%〜98質量%であることが好ましく、10質量%〜95質量%であることがより好ましい。   When the composition for forming a passivation layer contains a liquid medium, the content is determined in consideration of the imparting property, pattern forming property, and storage stability. For example, the content of the liquid medium is preferably 5% by mass to 98% by mass in the total mass of the passivation layer forming composition from the viewpoint of the impartability of the composition and the pattern forming property, and 10% by mass to 95% by mass. % Is more preferable.

(樹脂)
パッシベーション層形成用組成物は、樹脂の少なくとも1種を更に含むことが好ましい。樹脂を含むことで、前記パッシベーション層形成組成物が半導体基板上に付与されて形成される組成物層の形状安定性がより向上し、パッシベーション層を前記組成物層が形成された領域に、所望の形状で選択的に形成することがより容易になる。
(resin)
It is preferable that the composition for forming a passivation layer further contains at least one resin. By including the resin, the shape stability of the composition layer formed by applying the passivation layer-forming composition on the semiconductor substrate is further improved, and the passivation layer is desired in the region where the composition layer is formed. It becomes easier to selectively form with this shape.

樹脂の種類は特に制限されず、パッシベーション層形成用組成物を半導体基板上に付与する際に、良好なパターン形成ができる範囲に粘度調整が可能な樹脂であることが好ましい。樹脂として具体的には、ポリビニルアルコール、ポリアクリルアミド、ポリビニルアミド、ポリビニルピロリドン、ポリエチレンオキサイド、ポリスルホン、ポリアクリルアミドアルキルスルホン、セルロース、カルボキシメチルセルロース、ヒドロキシエチルセルロース、エチルセルロース等のセルロースエーテルなどのセルロース誘導体、ゼラチン及びゼラチン誘導体、澱粉及び澱粉誘導体、アルギン酸ナトリウム及びアルギン酸ナトリウム誘導体、キサンタン及びキサンタン誘導体、グアーガム及びグアーガム誘導体、スクレログルカン及びスクレログルカン誘導体、トラガカント及びトラガカント誘導体、デキストリン及びデキストリン誘導体、(メタ)アクリル酸樹脂、(メタ)アクリル酸エステル樹脂(例えば、アルキル(メタ)アクリレート樹脂、ジメチルアミノエチル(メタ)アクリレート樹脂等)、ブタジエン樹脂、スチレン樹脂、シロキサン樹脂、これらの共重合体などを挙げることができる。これらの樹脂は1種類を単独で又は2種類以上を組み合わせて使用できる。   The type of the resin is not particularly limited, and is preferably a resin whose viscosity can be adjusted within a range where a good pattern can be formed when the composition for forming a passivation layer is applied onto a semiconductor substrate. Specific examples of the resin include cellulose derivatives such as polyvinyl alcohol, polyacrylamide, polyvinylamide, polyvinylpyrrolidone, polyethylene oxide, polysulfone, polyacrylamide alkylsulfone, cellulose ether such as cellulose, carboxymethylcellulose, hydroxyethylcellulose, ethylcellulose, gelatin, and gelatin. Derivatives, starch and starch derivatives, sodium alginate and sodium alginate derivatives, xanthan and xanthan derivatives, guar gum and guar gum derivatives, scleroglucan and scleroglucan derivatives, tragacanth and tragacanth derivatives, dextrin and dextrin derivatives, (meth) acrylic acid resins, (Meth) acrylic ester resins (eg, alkyl (meta Acrylate resins, dimethylaminoethyl (meth) acrylate resin, etc.), butadiene resins, styrenic resins, siloxane resins, and the like of these copolymers. These resins can be used alone or in combination of two or more.

これらの樹脂の中でも、保存安定性とパターン形成性の観点から、酸性及び塩基性の官能基を有さない中性樹脂を用いることが好ましく、含有量が少量の場合においても容易に粘度及びチキソ性を調節できる観点から、セルロース誘導体を用いることがより好ましい。
樹脂の分子量は特に制限されず、パッシベーション層形成用組成物としての所望の粘度を鑑みて適宜調整することが好ましい。前記樹脂の重量平均分子量は、保存安定性とパターン形成性の観点から、1,000〜10,000,000であることが好ましく、3,000〜5,000,000であることがより好ましい。なお、樹脂の重量平均分子量はGPC(ゲルパーミエーションクロマトグラフィー)を用いて測定される分子量分布から標準ポリスチレンの検量線を使用して換算して求められる。検量線は、標準ポリスチレンの5サンプルセット(PStQuick MP−H、PStQuick B[東ソー(株)製、商品名])を用いて3次式で近似する。GPCの測定条件を以下に示す。
Among these resins, from the viewpoint of storage stability and pattern formation, it is preferable to use a neutral resin having no acidic or basic functional group, and the viscosity and thixotrope can be easily used even when the content is small. From the viewpoint of adjusting the properties, it is more preferable to use a cellulose derivative.
The molecular weight of the resin is not particularly limited, and is preferably adjusted appropriately in view of the desired viscosity as the composition for forming a passivation layer. The weight average molecular weight of the resin is preferably 1,000 to 10,000,000, more preferably 3,000 to 5,000,000, from the viewpoints of storage stability and pattern formation. In addition, the weight average molecular weight of resin is calculated | required by converting using the analytical curve of a standard polystyrene from molecular weight distribution measured using GPC (gel permeation chromatography). The calibration curve is approximated by a cubic equation using 5 standard polystyrene sample sets (PStQuick MP-H, PStQuick B [trade name, manufactured by Tosoh Corporation)]. The measurement conditions for GPC are shown below.

装置:(ポンプ:L−2130型[株式会社日立ハイテクノロジーズ])
(検出器:L−2490型RI[株式会社日立ハイテクノロジーズ])
(カラムオーブン:L−2350[株式会社日立ハイテクノロジーズ])
カラム:Gelpack GL−R440 + Gelpack GL−R450 + Gelpack GL−R400M(計3本)(日立化成株式会社、商品名)
カラムサイズ:10.7mm(内径)×300mm
溶離液:テトラヒドロフラン
試料濃度:10mg/2mL
注入量:200μL
流量:2.05mL/分
測定温度:25℃
Device: (Pump: L-2130 [Hitachi High-Technologies Corporation])
(Detector: L-2490 RI [Hitachi High-Technologies Corporation])
(Column oven: L-2350 [Hitachi High-Technologies Corporation])
Column: Gelpack GL-R440 + Gelpack GL-R450 + Gelpack GL-R400M (3 in total) (Hitachi Chemical Co., Ltd., trade name)
Column size: 10.7 mm (inner diameter) x 300 mm
Eluent: Tetrahydrofuran Sample concentration: 10 mg / 2 mL
Injection volume: 200 μL
Flow rate: 2.05 mL / min Measurement temperature: 25 ° C

パッシベーション層形成用組成物が樹脂を含有する場合、パッシベーション層形成用組成物中の樹脂の含有率は、必要に応じて適宜選択することができる。例えば、パッシベーション層形成用組成物の総質量中に0.1質量%〜30質量%であることが好ましい。パターン形成をより容易にするようなチキソ性を発現させる観点から、前記含有率は1質量%〜25質量%であることがより好ましく、1.5質量%〜20質量%であることが更に好ましく、1.5質量%〜10質量%であることが更により好ましい。   When the composition for forming a passivation layer contains a resin, the content of the resin in the composition for forming a passivation layer can be appropriately selected as necessary. For example, the content is preferably 0.1% by mass to 30% by mass in the total mass of the composition for forming a passivation layer. From the viewpoint of expressing thixotropy that facilitates pattern formation, the content is more preferably 1% by mass to 25% by mass, and further preferably 1.5% by mass to 20% by mass. It is still more preferable that it is 1.5 mass%-10 mass%.

パッシベーション層形成用組成物が樹脂を含有する場合、前記パッシベーション層形成用組成物における前記有機アルミニウム化合物と前記樹脂の含有比率は、必要に応じて適宜選択することができる。中でも、パターン形成性と保存安定性の観点から、特定金属化合物並びに必要に応じて含まれる酸化アルミニウム及びその前駆体からなる群より選択される1種以上の総量を1とした場合の樹脂の比率は、0.001〜1000であることが好ましく、0.01〜100であることがより好ましく、0.1〜1であることが更に好ましい。   When the composition for forming a passivation layer contains a resin, the content ratio of the organoaluminum compound and the resin in the composition for forming a passivation layer can be appropriately selected as necessary. Above all, from the viewpoint of pattern formability and storage stability, the ratio of the resin when the total amount of one or more selected from the group consisting of the specific metal compound and the aluminum oxide and precursor thereof contained as necessary is 1. Is preferably 0.001 to 1000, more preferably 0.01 to 100, and still more preferably 0.1 to 1.

前記パッシベーション層形成用組成物は、酸性化合物又は塩基性化合物を含有してもよい。パッシベーション層形成用組成物が酸性化合物又は塩基性化合物を含有する場合、保存安定性の観点から、パッシベーション層形成用組成物中の酸性化合物又は塩基性化合物の含有率は、それぞれ1質量%以下であることが好ましく、0.1質量%以下であることがより好ましい。   The composition for forming a passivation layer may contain an acidic compound or a basic compound. When the composition for forming a passivation layer contains an acidic compound or a basic compound, from the viewpoint of storage stability, the content of the acidic compound or the basic compound in the composition for forming a passivation layer is 1% by mass or less, respectively. It is preferable that the content is 0.1% by mass or less.

酸性化合物としては、ブレンステッド酸及びルイス酸を挙げることができる。具体的には、塩酸、硝酸等の無機酸、酢酸等の有機酸などを挙げることができる。また塩基性化合物としては、ブレンステッド塩基及びルイス塩基を挙げることができる。具体的には、アルカリ金属水酸化物、アルカリ土類金属水酸化物等の無機塩基;トリアルキルアミン、ピリジン等の有機塩基などを挙げることができる。   Examples of acidic compounds include Bronsted acid and Lewis acid. Specific examples include inorganic acids such as hydrochloric acid and nitric acid, and organic acids such as acetic acid. Examples of basic compounds include Bronsted bases and Lewis bases. Specific examples include inorganic bases such as alkali metal hydroxides and alkaline earth metal hydroxides; organic bases such as trialkylamines and pyridines.

前記パッシベーション層形成用組成物は、必要に応じて、その他の成分として、増粘剤、湿潤剤、界面活性剤、無機粉末、ケイ素原子を含む樹脂、チキソ剤等の各種添加剤を含有してもよい。   The composition for forming a passivation layer contains various additives such as a thickener, a wetting agent, a surfactant, an inorganic powder, a resin containing a silicon atom, a thixotropic agent, as other components, as necessary. Also good.

無機粉末としてはシリカ(酸化ケイ素)、クレイ、炭化ケイ素、窒化ケイ素、モンモリロナイト、ベントナイト、カーボンブラック等を例示することができる。これらの中でもシリカを成分として含むフィラーを用いることが好ましい。ここで、クレイとは層状粘土鉱物を示し、具体的にはカオリナイト、イモゴライト、モンモリロナイト、スメクタイト、セリサイト、イライト、タルク、スチーブンサイト、ゼオライト等が挙げられる。パッシベーション層形成用組成物が無機粉末を含有する場合、パッシベーション層形成用組成物の付与性が向上する傾向にある。   Examples of the inorganic powder include silica (silicon oxide), clay, silicon carbide, silicon nitride, montmorillonite, bentonite, and carbon black. Among these, it is preferable to use a filler containing silica as a component. Here, clay refers to a layered clay mineral, and specific examples include kaolinite, imogolite, montmorillonite, smectite, sericite, illite, talc, stevensite, and zeolite. When the composition for forming a passivation layer contains an inorganic powder, the impartability of the composition for forming a passivation layer tends to be improved.

界面活性剤としては、ノニオン系界面活性剤、カチオン系界面活性剤、アニオン系界面活性剤等が挙げられる。中でも、半導体デバイスへの重金属等の不純物の持ち込みが少ないことからノニオン系界面活性剤又はカチオン系界面活性剤が好ましい。ノニオン系界面活性剤としては、シリコン系界面活性剤、フッ素系界面活性剤、炭化水素系界面活性剤等が挙げられる。パッシベーション層形成用組成物が界面活性剤を含有する場合、パッシベーション層形成用組成物から形成される組成物層の厚さ及び組成の均一性が向上する傾向にある。   Examples of the surfactant include a nonionic surfactant, a cationic surfactant, and an anionic surfactant. Among these, nonionic surfactants or cationic surfactants are preferred because impurities such as heavy metals are not brought into the semiconductor device. Examples of nonionic surfactants include silicon surfactants, fluorine surfactants, and hydrocarbon surfactants. When the composition for forming a passivation layer contains a surfactant, the thickness and composition uniformity of the composition layer formed from the composition for forming a passivation layer tend to be improved.

ケイ素原子を含む樹脂としては、両末端リジン変性シリコーン、ポリアミド・シリコーン交互共重合体、側鎖アルキル変性シリコーン、側鎖ポリエーテル変性シリコーン、末端アルキル変性シリコーン、シリコーン変性プルラン、シリコーン変性アクリル樹脂等を例示することができる。パッシベーション層形成用組成物がケイ素を含む樹脂を含有する場合、前記パッシベーション層形成用組成物から形成される組成物層の厚さ及び組成の均一性が向上する傾向にある。   Examples of the resin containing silicon atoms include lysine-modified silicones at both ends, polyamide-silicone alternating copolymers, side-chain alkyl-modified silicones, side-chain polyether-modified silicones, terminal alkyl-modified silicones, silicone-modified pullulans, and silicone-modified acrylic resins. It can be illustrated. When the composition for forming a passivation layer contains a resin containing silicon, the thickness and composition uniformity of the composition layer formed from the composition for forming a passivation layer tend to be improved.

チキソ剤としてはポリエーテル化合物、脂肪酸アミド、ヒュームドシリカ、水素添加ひまし油、尿素ウレタンアミド、ポリビニルピロリドン、オイル系ゲル化剤等を例示することができる。パッシベーション層形成用組成物がチキソ剤を含有する場合、パッシベーション層形成用組成物を付与する際のパターン形成性が改善する傾向にある。ポリエーテル化合物としてはポリエチレングリコール、ポリプロピレングリコール、ポリ(エチレン−プロピレン)グリコール共重合体等を例示することができる。   Examples of thixotropic agents include polyether compounds, fatty acid amides, fumed silica, hydrogenated castor oil, urea urethane amide, polyvinyl pyrrolidone, and oil-based gelling agents. When the composition for forming a passivation layer contains a thixotropic agent, the pattern formability when applying the composition for forming a passivation layer tends to be improved. Examples of the polyether compound include polyethylene glycol, polypropylene glycol, poly (ethylene-propylene) glycol copolymer, and the like.

パッシベーション層形成用組成物の粘度は特に制限されず、半導体基板への付与方法等に応じて適宜選択することができる。例えば、パッシベーション層形成用組成物の粘度は0.01Pa・s〜10000Pa・sとすることができる。中でもパターン形成性の観点から、パッシベーション層形成用組成物の粘度は0.1Pa・s〜1000Pa・sであることが好ましい。なお、前記粘度は回転式せん断粘度計を用いて、25℃、せん断速度1.0s−1で測定された値である。The viscosity of the composition for forming a passivation layer is not particularly limited, and can be appropriately selected depending on a method for applying the composition to a semiconductor substrate. For example, the viscosity of the composition for forming a passivation layer can be 0.01 Pa · s to 10000 Pa · s. Among these, from the viewpoint of pattern formability, the viscosity of the composition for forming a passivation layer is preferably 0.1 Pa · s to 1000 Pa · s. The viscosity is a value measured at 25 ° C. and a shear rate of 1.0 s −1 using a rotary shear viscometer.

パッシベーション層形成用組成物は、チキソ性を有していることが好ましい。特に、パッシベーション層形成用組成物が樹脂を含む場合、パターン形成性の観点から、せん断速度1.0s−1におけるせん断粘度ηをせん断速度10s−1におけるせん断粘度ηで除して算出されるチキソ比(η/η)が1.05〜100であることが好ましく、1.1〜50であることがより好ましい。なお、せん断粘度は、コーンプレート(直径50mm、コーン角1°)を装着した回転式のせん断粘度計を用いて、温度25℃で測定される。It is preferable that the composition for forming a passivation layer has thixotropy. In particular, if the passivation layer forming composition comprising a resin, from the viewpoint of pattern formability is calculated by dividing the shear viscosity eta 1 at a shear rate of 1.0 s -1 at shear viscosity eta 2 at a shear rate of 10s -1 The thixo ratio (η 1 / η 2 ) is preferably 1.05 to 100, more preferably 1.1 to 50. The shear viscosity is measured at a temperature of 25 ° C. using a rotary shear viscometer equipped with a cone plate (diameter 50 mm, cone angle 1 °).

パッシベーション層形成用組成物の製造方法には特に制限はない。例えば、特定金属化合物と、必要に応じて含まれる液状媒体等とを、通常用いられる方法で混合して製造することができる。また樹脂を溶解させた液状媒体と特定金属化合物を混合することで製造してもよい。
更に特定金属化合物は、式(I)化合物と、式(I)化合物に含まれる金属元素とキレートを形成可能な化合物とを混合して調製してもよい。その際、適宜溶媒を用いても、加熱処理を行ってもよい。このようにして調製した特定金属化合物を用いてパッシベーション層形成用組成物を製造してもよい。
なお、前記パッシベーション層形成用組成物中に含まれる成分、及び各成分の含有量は示熱−熱重量同時測定(TG/DTA)等の熱分析、核磁気共鳴(NMR)、赤外分光法(IR)等のスペクトル分析、高速液体クロマトグラフィー(HPLC)、ゲル浸透クロマトグラフィー(GPC)等のクロマトグラフ分析などを用いて確認することができる。
There is no restriction | limiting in particular in the manufacturing method of the composition for formation of a passivation layer. For example, a specific metal compound and a liquid medium or the like contained as necessary can be mixed and produced by a commonly used method. Moreover, you may manufacture by mixing the liquid medium and resin which dissolved resin, and a specific metal compound.
Further, the specific metal compound may be prepared by mixing the compound of formula (I) and a compound capable of forming a chelate with the metal element contained in the compound of formula (I). At that time, a solvent may be appropriately used or heat treatment may be performed. A composition for forming a passivation layer may be produced using the specific metal compound thus prepared.
The components contained in the composition for forming a passivation layer and the content of each component are determined by thermal analysis such as thermo-thermogravimetric simultaneous measurement (TG / DTA), nuclear magnetic resonance (NMR), infrared spectroscopy. It can be confirmed by spectral analysis such as (IR), chromatographic analysis such as high performance liquid chromatography (HPLC), gel permeation chromatography (GPC) and the like.

<太陽電池素子の製造方法>
本発明の太陽電池素子の製造方法は、受光面及び前記受光面とは反対側の裏面を有し、前記裏面にp型拡散領域及びn型拡散領域を有する半導体基板の前記p型拡散領域の少なくとも一部に第一の金属電極を、前記n型拡散領域の少なくとも一部に第二の金属電極をそれぞれ形成する工程と、 前記半導体基板の裏面の一部又は全部の領域に、特定金属酸化物及び一般式(I)で示される化合物からなる群より選択される少なくとも1種を含むパッシベーション層形成用組成物を付与して組成物層を形成する工程と、
前記組成物層を熱処理して特定金属酸化物の少なくとも1種を含有するパッシベーション層を形成する工程と、を有する。本発明の太陽電池素子の製造方法は、必要に応じてその他の工程を更に有していてもよい。
<Method for producing solar cell element>
The method for manufacturing a solar cell element according to the present invention includes a light receiving surface and a back surface opposite to the light receiving surface, the p type diffusion region of the semiconductor substrate having a p type diffusion region and an n type diffusion region on the back surface. Forming a first metal electrode on at least a portion and forming a second metal electrode on at least a portion of the n-type diffusion region, and a specific metal oxide on a portion or all of the back surface of the semiconductor substrate. Forming a composition layer by applying a composition for forming a passivation layer containing at least one selected from the group consisting of a compound and a compound represented by formula (I);
And heat-treating the composition layer to form a passivation layer containing at least one specific metal oxide. The method for manufacturing a solar cell element of the present invention may further include other steps as necessary.

上記方法によれば、優れたパッシベーション効果を有するパッシベーション層を半導体基板上に形成することができる。更に、前記パッシベーション層は蒸着装置等を必要としない簡便で生産性の高い方法により形成することができ、マスク処理等の煩雑な工程を要することなく所望の形状に形成することができる。従って、上記方法によれば、変換効率に優れる太陽電池素子を簡便な方法で製造することができる。   According to the above method, a passivation layer having an excellent passivation effect can be formed on the semiconductor substrate. Furthermore, the passivation layer can be formed by a simple and highly productive method that does not require a vapor deposition apparatus or the like, and can be formed in a desired shape without requiring a complicated process such as mask processing. Therefore, according to the said method, the solar cell element excellent in conversion efficiency can be manufactured by a simple method.

裏面にp型拡散領域及びn型拡散領域を有する半導体基板は、通常用いられる方法で製造することができる。例えば、特許第3522940号公報等に記載の方法に準じて製造することができる。p型拡散領域の少なくとも一部及びn型拡散領域の少なくとも一部にそれぞれ金属電極を形成する方法としては、例えば、半導体基板の裏面の所望の領域に、銀ペースト、アルミニウムペースト等の電極形成用ペーストを付与し、必要に応じて熱処理することで形成することができる。本発明においてp型拡散領域の少なくとも一部及びn型拡散領域の少なくとも一部にそれぞれ金属電極を形成する工程は、パッシベーション層を形成する工程の前に行われてもよく、パッシベーション層を形成する工程の後に行われてもよい。   A semiconductor substrate having a p-type diffusion region and an n-type diffusion region on the back surface can be manufactured by a commonly used method. For example, it can be produced according to the method described in Japanese Patent No. 3522940. As a method of forming a metal electrode in at least a part of the p-type diffusion region and at least a part of the n-type diffusion region, for example, for forming an electrode such as silver paste or aluminum paste in a desired region on the back surface of the semiconductor substrate. It can be formed by applying a paste and heat-treating it as necessary. In the present invention, the step of forming the metal electrode in at least part of the p-type diffusion region and at least part of the n-type diffusion region may be performed before the step of forming the passivation layer, and the passivation layer is formed. It may be performed after the process.

半導体基板の裏面の一部又は全部の領域に特定金属化合物を含有するパッシベーション層形成用組成物を付与して組成物層を形成する方法は特に制限されない。具体的には、浸漬法、スクリーン印刷法等の印刷法、スピンコート法、刷毛塗り、スプレー法、ドクターブレード法、ロールコー法、インクジェット法などを挙げることができる。これらの中でもパターン形成性の観点から、印刷法及びインクジェット法が好ましく、スクリーン印刷法がより好ましい。 The method for forming the composition layer by applying the passivation layer-forming composition containing the specific metal compound to a part or all of the back surface of the semiconductor substrate is not particularly limited. Specifically, a dipping method, a printing method such as screen printing, spin coating, brushing, spraying, doctor blade method, Roruko method, a an inkjet method. Among these, from the viewpoint of pattern formability, a printing method and an inkjet method are preferable, and a screen printing method is more preferable.

パッシベーション層形成用組成物の半導体基板への付与量は、目的に応じて適宜選択することができる。例えば、形成されるパッシベーション層の厚さが、所望の厚さとなるように適宜調整することができる。   The amount of the passivation layer forming composition applied to the semiconductor substrate can be appropriately selected depending on the purpose. For example, the thickness of the passivation layer to be formed can be appropriately adjusted so as to have a desired thickness.

パッシベーション層形成用組成物を半導体基板上に付与して形成された組成物層を熱処理して、前記組成物層に由来する熱処理物層を形成することで、半導体基板上にパッシベーション層を形成することができる。
組成物層の熱処理条件は、パッシベーション層形成用組成物に含まれる特定金属化合物が特定金属酸化物に変換される条件であれば特に制限はない。例えば、組成物層に含まれる一般式(I)で表される化合物をその熱処理物である特定金属酸化物に変換可能であれば特に制限されない。中でも、結晶構造を有しないアモルファス状の特定金属酸化物層を形成可能な条件であることが好ましい。パッシベーション層がアモルファス状の特定金属酸化物から構成されることで、パッシベーション層により効果的に負電荷を持たせることができ、より優れたパッシベーション効果を得ることができる。具体的には、熱処理温度は400℃以上であることが好ましく、400℃〜900℃であることがより好ましく、600℃〜800℃であることが更に好ましい。熱処理時間は熱処理温度等に応じて適宜選択できる。例えば、5秒〜10時間とすることができ、10秒〜5時間であることが好ましい。
The passivation layer is formed on the semiconductor substrate by heat-treating the composition layer formed by applying the passivation layer-forming composition on the semiconductor substrate to form a heat-treated material layer derived from the composition layer. be able to.
The heat treatment conditions for the composition layer are not particularly limited as long as the specific metal compound contained in the composition for forming a passivation layer is converted into the specific metal oxide. For example, there is no particular limitation as long as the compound represented by the general formula (I) contained in the composition layer can be converted into a specific metal oxide that is the heat-treated product. Among these, it is preferable that the conditions are such that an amorphous specific metal oxide layer having no crystal structure can be formed. When the passivation layer is made of an amorphous specific metal oxide, the passivation layer can effectively have a negative charge, and a more excellent passivation effect can be obtained. Specifically, the heat treatment temperature is preferably 400 ° C. or higher, more preferably 400 ° C. to 900 ° C., and still more preferably 600 ° C. to 800 ° C. The heat treatment time can be appropriately selected according to the heat treatment temperature and the like. For example, it can be 5 seconds to 10 hours, and is preferably 10 seconds to 5 hours.

パッシベーション層の密度は1.0g/cm〜10.0g/cmであることが好ましく、2.0g/cm〜8.0g/cmであることがより好ましく、3.0g/cm〜7.0g/cmであることが更に好ましい。パッシベーション層の密度が1.0g/cm〜10.0g/cmであると、充分なパッシベーション効果が得られ、また、その高いパッシベーション効果が経時変化しにくい傾向にある。その理由としては、パッシベーション層の密度が1.0g/cm以上であると外界の水分及び不純物ガスが半導体基板とパッシベーション層との界面に到達しにくいためにパッシベーション効果が持続しやすくなり、10.0g/cm以下であると半導体基板との相互作用が大きくなる傾向にあるためと推測される。パッシベーション層の密度の測定方法としては、パッシベーション層の質量及び体積を測定して算出する方法、X線反射率法により、X線を試料表面にごく浅い角度で入射させ、その入射角対鏡面方向に反射したX線強度プロファイルを測定し、測定で得られたプロファイルをシミュレーション結果と比較し、シミュレーションパラメータを最適化することによって、試料の膜厚及び密度を決定する方法等が挙げられる。Preferably the density of the passivation layer is 1.0g / cm 3 ~10.0g / cm 3 , more preferably from 2.0g / cm 3 ~8.0g / cm 3 , 3.0g / cm 3 More preferably, it is ˜7.0 g / cm 3 . If the density of the passivation layer is 1.0g / cm 3 ~10.0g / cm 3 , sufficient passivation effect can be obtained, its high passivation effect tends to hardly change over time. The reason is that when the density of the passivation layer is 1.0 g / cm 3 or more, the moisture and impurity gas in the outside world do not easily reach the interface between the semiconductor substrate and the passivation layer, and the passivation effect is easily sustained. It is presumed that the interaction with the semiconductor substrate tends to increase when the concentration is 0.0 g / cm 3 or less. As a method for measuring the density of the passivation layer, a method of measuring and calculating the mass and volume of the passivation layer, an X-ray reflectivity method, and making X-rays incident on the sample surface at a very shallow angle, the incident angle versus the mirror surface direction. A method of determining the film thickness and density of the sample by measuring the X-ray intensity profile reflected on the surface, comparing the profile obtained by the measurement with the simulation result, and optimizing the simulation parameters.

パッシベーション層の平均厚さは5nm〜50μmであることが好ましく、20nm〜20μmであることがより好ましく、30nm〜5μmであることが更に好ましい。パッシベーション層の平均厚さが5nm以上であると、充分なパッシベーション効果が得られやすく、50μm以下であると、太陽電池素子を構成する他の部材を考慮した素子構造の設計が可能となる傾向にある。
パッシベーション層の平均厚さは、干渉式膜厚測定計を用いて測定した5点の厚さの算術平均値とする。
The average thickness of the passivation layer is preferably 5 nm to 50 μm, more preferably 20 nm to 20 μm, and still more preferably 30 nm to 5 μm. If the average thickness of the passivation layer is 5 nm or more, a sufficient passivation effect can be easily obtained, and if it is 50 μm or less, the element structure can be designed in consideration of other members constituting the solar cell element. is there.
The average thickness of the passivation layer is an arithmetic average value of five thicknesses measured using an interference film thickness meter.

次に図面を参照しながら本発明の実施形態について説明する。
図2は、本実施形態にかかるパッシベーション層を有する太陽電池素子の製造方法の一例を模式的に示す工程図を断面図として示したものである。但し、この工程図は本発明をなんら制限するものではない。
Next, embodiments of the present invention will be described with reference to the drawings.
FIG. 2 is a sectional view schematically showing an example of a method for manufacturing a solar cell element having a passivation layer according to the present embodiment. However, this process diagram does not limit the present invention.

図2(a)に示すように、n型半導体基板11の受光面側にはn 型拡散層12が形成され、受光面側の最表面に反射防止膜13が形成されている。裏面にはp型拡散領域14であるp型拡散層及びn型拡散領域12であるn型拡散層が形成されている。なお、図2(a)は図1に示す裏面電極構造を有する半導体基板をAA線で切断したときの断面図である。
p型拡散領域14は、例えば、熱拡散処理によりp型拡散層を形成可能なp型拡散層形成用組成物又はアルミニウム電極ペーストを所望の領域に付与した後に熱処理して形成することができる。またn型拡散領域12は、例えば、熱拡散処理によりn型拡散層を形成可能なn型拡散層形成用組成物を所望の領域に付与した後に熱処理して形成することができる。n型拡散層形成用組成物としては、例えば、ドナー元素含有物質とガラス成分とを含む組成物を挙げることができる。反射防止膜13としては、窒化ケイ素膜、酸化チタン膜等が挙げられる。反射防止膜13とp型半導体基板11との間に酸化ケイ素膜等の表面保護膜(図示せず)が更に存在していてもよい。また表面保護膜として前記パッシベーション層を使用してもよい。
As shown in FIG. 2A, an n + -type diffusion layer 12 is formed on the light-receiving surface side of the n-type semiconductor substrate 11, and an antireflection film 13 is formed on the outermost surface on the light-receiving surface side. A p + type diffusion layer which is a p type diffusion region 14 and an n + type diffusion layer which is an n type diffusion region 12 are formed on the back surface. 2A is a cross-sectional view when the semiconductor substrate having the back electrode structure shown in FIG. 1 is cut along line AA.
The p-type diffusion region 14 can be formed, for example, by applying a p-type diffusion layer forming composition or an aluminum electrode paste capable of forming a p + -type diffusion layer by thermal diffusion treatment to a desired region and then performing a heat treatment. . The n-type diffusion region 12 can be formed by, for example, applying a composition for forming an n-type diffusion layer capable of forming an n + -type diffusion layer to a desired region by a thermal diffusion treatment and then performing a heat treatment. As a composition for n type diffused layer formation, the composition containing a donor element containing material and a glass component can be mentioned, for example. Examples of the antireflection film 13 include a silicon nitride film and a titanium oxide film. A surface protective film (not shown) such as a silicon oxide film may further exist between the antireflection film 13 and the p-type semiconductor substrate 11. Moreover, you may use the said passivation layer as a surface protective film.

次いで図2(b)に示すように、裏面のp型拡散領域14及びn型拡散領域12の上にそれぞれ第一の金属電極15及び第二の金属電極17を形成する。これらの金属電極は、銀電極ペースト、アルミニウム電極ペースト、銅電極ペースト等の通常用いられる電極形成用ペーストを付与した後に熱処理して形成することができる。なお、第一の金属電極15とp型拡散領域14とは、アルミニウム電極ペースト等の電極を形成する材料を付与した後に熱処理してそれぞれ形成してもよい。   Next, as shown in FIG. 2B, a first metal electrode 15 and a second metal electrode 17 are formed on the p-type diffusion region 14 and the n-type diffusion region 12 on the back surface, respectively. These metal electrodes can be formed by heat treatment after applying a commonly used electrode forming paste such as a silver electrode paste, an aluminum electrode paste, or a copper electrode paste. The first metal electrode 15 and the p-type diffusion region 14 may be formed by applying a material for forming an electrode such as an aluminum electrode paste, followed by heat treatment.

n型半導体基板11の表面は、パッシベーション層形成用組成物を付与する前に、アルカリ水溶液で洗浄することが好ましい。アルカリ水溶液で洗浄することで、半導体基板表面に存在する有機物、パーティクル等を除去することができ、パッシベーション効果がより向上する傾向にある。アルカリ水溶液による洗浄の方法としては、一般的に知られているRCA洗浄等を例示することができる。例えば、アンモニア水と過酸化水素水の混合溶液に半導体基板を浸し、60℃〜80℃で処理することで、有機物及びパーティクルを除去することができる。処理時間は10秒〜10分間であることが好ましく、30秒〜5分間であることがより好ましい。   The surface of the n-type semiconductor substrate 11 is preferably washed with an alkaline aqueous solution before applying the passivation layer forming composition. By washing with an alkaline aqueous solution, organic substances, particles and the like present on the surface of the semiconductor substrate can be removed, and the passivation effect tends to be further improved. As a method for cleaning with an alkaline aqueous solution, generally known RCA cleaning and the like can be exemplified. For example, the organic substance and particles can be removed by immersing the semiconductor substrate in a mixed solution of ammonia water and hydrogen peroxide water and treating the substrate at 60 ° C. to 80 ° C. The treatment time is preferably 10 seconds to 10 minutes, and more preferably 30 seconds to 5 minutes.

次に図2(c)に示すように、n型半導体基板11の裏面の第一の金属電極15及び第二の金属電極17が形成された領域以外の領域に、パッシベーション層形成用組成物を付与して組成物層を形成する。付与の方法は特に制限されず、公知の方法から選択することができる。具体的には、浸漬法、スクリーン印刷法等の印刷法、スピンコート法、刷毛塗り、スプレー法、ドクターブレード法、ロールコー法、インクジェット法などを挙げることができる。これらの中でもパターン形成性の観点から、印刷法及びインクジェット法が好ましく、スクリーン印刷法がより好ましい。前記パッシベーション層形成用組成物の付与量は、目的に応じて適宜選択することができる。例えば、形成されるパッシベーション層の厚さが、上記の好ましい厚さとなるように適宜調整することができる。 Next, as shown in FIG. 2 (c), the passivation layer forming composition is applied to a region other than the region where the first metal electrode 15 and the second metal electrode 17 are formed on the back surface of the n-type semiconductor substrate 11. To form a composition layer. The imparting method is not particularly limited, and can be selected from known methods. Specifically, a dipping method, a printing method such as screen printing, spin coating, brushing, spraying, doctor blade method, Roruko method, a an inkjet method. Among these, from the viewpoint of pattern formability, a printing method and an inkjet method are preferable, and a screen printing method is more preferable. The application amount of the composition for forming a passivation layer can be appropriately selected according to the purpose. For example, the thickness of the passivation layer to be formed can be appropriately adjusted so as to be the above-described preferable thickness.

パッシベーション層形成用組成物を付与する工程と、熱処理によってパッシベーション層を形成する工程との間に、パッシベーション層形成用組成物からなる組成物層を乾燥処理する工程を更に有していてもよい。組成物層を乾燥処理する工程を有することで、より均一なパッシベーション効果を有するパッシベーション層を形成できる傾向にある。   You may further have the process of drying the composition layer which consists of a composition for passivation layer formation between the process of providing the composition for passivation layer formation, and the process of forming a passivation layer by heat processing. By having a step of drying the composition layer, a passivation layer having a more uniform passivation effect tends to be formed.

組成物層を乾燥処理する工程は、パッシベーション層形成用組成物に含まれることがある液状媒体の少なくとも一部を除去することができれば、特に制限されない。乾燥処理は例えば30℃〜250℃で10秒間〜60分間の熱処理とすることができ、40℃〜220℃で30秒間〜10分間の熱処理であることが好ましい。また乾燥処理は、常圧下で行なっても減圧下で行なってもよい。   The step of drying the composition layer is not particularly limited as long as at least a part of the liquid medium that may be contained in the passivation layer forming composition can be removed. The drying treatment can be, for example, a heat treatment at 30 ° C. to 250 ° C. for 10 seconds to 60 minutes, and is preferably a heat treatment at 40 ° C. to 220 ° C. for 30 seconds to 10 minutes. The drying treatment may be performed under normal pressure or under reduced pressure.

最後に、n型半導体基板11の裏面上に形成された組成物層を熱処理してパッシベーション層16を形成する。組成物層の熱処理条件は、上述したとおりである。以上のようにして、本発明の太陽電池素子を製造することができる。   Finally, the passivation layer 16 is formed by heat-treating the composition layer formed on the back surface of the n-type semiconductor substrate 11. The heat treatment conditions for the composition layer are as described above. As described above, the solar cell element of the present invention can be manufactured.

図2に示すような構造の太陽電池素子は、受光面側に電極が存在しないため、受光領域の面積を大きくでき、発電効率に優れる。更に、パッシベーション層形成用組成物を用いて裏面にパッシベーション層を形成することで、より発電効率に優れる太陽電池素子とすることができる。   Since the solar cell element having the structure as shown in FIG. 2 has no electrode on the light receiving surface side, the area of the light receiving region can be increased and the power generation efficiency is excellent. Furthermore, it can be set as the solar cell element which is more excellent in power generation efficiency by forming a passivation layer in the back surface using the composition for formation of a passivation layer.

図2(c)ではn型半導体基板11の裏面にのみパッシベーション層を形成しているが、裏面に加えて側面(エッジ)にパッシベーション層を更に形成してもよい(図示せず)。これにより、発電効率により優れた太陽電池素子を製造することができる。パッシベーション層は、側面のような結晶欠陥が多い場所に使用すると、その効果が特に大きい。   In FIG. 2C, the passivation layer is formed only on the back surface of the n-type semiconductor substrate 11, but a passivation layer may be further formed on the side surface (edge) in addition to the back surface (not shown). Thereby, the solar cell element excellent in power generation efficiency can be manufactured. The effect of the passivation layer is particularly great when used in a place where there are many crystal defects such as side surfaces.

本発明の太陽電池素子は、図3に示すように、受光面側にもパッシベーション層16を有していてもよい。また、図2に示す製造方法の一例では電極の形成後にパッシベーション層を形成しているが、パッシベーション層の形成後に電極を形成してもよい。更に、図2では半導体基板としてn型半導体基板を用いた例を示したが、p型半導体基板を用いた場合も同様の方法で変換効率に優れる太陽電池素子を製造することができる。   As shown in FIG. 3, the solar cell element of the present invention may have a passivation layer 16 on the light receiving surface side. In the example of the manufacturing method shown in FIG. 2, the passivation layer is formed after the electrode is formed. However, the electrode may be formed after the passivation layer is formed. Further, although an example in which an n-type semiconductor substrate is used as a semiconductor substrate is shown in FIG. 2, a solar cell element having excellent conversion efficiency can be manufactured by a similar method even when a p-type semiconductor substrate is used.

本発明の太陽電池素子は、ビアホール型バックコンタクト構造を有していてもよい。図4はビアホール型バックコンタクト構造の一例を模式的に示す。図4に示すように、ビアホール型バックコンタクト構造の太陽電池素子は、半導体基板の受光面から裏面に貫通したスルーホールを有している。スルーホールは、例えば、半導体基板にレーザー光を照射することによって形成される。スルーホールの開口部の直径は、例えば50μm〜150μm程度とすることができ、半導体基板表面におけるスルーホールの開口部の密度は、例えば100個/cm程度とすることができる。The solar cell element of the present invention may have a via hole type back contact structure. FIG. 4 schematically shows an example of a via hole type back contact structure. As shown in FIG. 4, the solar cell element with the via-hole type back contact structure has a through hole penetrating from the light receiving surface to the back surface of the semiconductor substrate. The through hole is formed, for example, by irradiating a semiconductor substrate with laser light. The diameter of the opening of the through hole can be about 50 μm to 150 μm, for example, and the density of the opening of the through hole on the surface of the semiconductor substrate can be about 100 / cm 2 , for example.

スルーホールの形成後に、半導体基板へのレーザー光の照射により生じたダメージ層をエッチングにより除去し、裏面の所望の領域にp型拡散領域14を形成する。次いで、受光面にn型拡散領域12を形成する。形成されたp型拡散領域14及びn型拡散領域12の上に、第一の金属電極15及び第二の金属電極17をそれぞれ形成する。更に、裏面の電極が形成されていない領域にパッシベーション層16を形成する。p型拡散領域、n型拡散領域、電極及びパッシベーション層の形成方法は、上記した方法と同様とすることができる。パッシベーション層16は半導体基板の裏面以外に形成してもよく、側面及びスルーホールの壁面にも形成してよい(図示せず)。   After the formation of the through hole, the damaged layer generated by the laser beam irradiation to the semiconductor substrate is removed by etching, and a p-type diffusion region 14 is formed in a desired region on the back surface. Next, the n-type diffusion region 12 is formed on the light receiving surface. A first metal electrode 15 and a second metal electrode 17 are formed on the formed p-type diffusion region 14 and n-type diffusion region 12, respectively. Further, a passivation layer 16 is formed in a region where the back electrode is not formed. The method for forming the p-type diffusion region, the n-type diffusion region, the electrode, and the passivation layer can be the same as described above. The passivation layer 16 may be formed other than the back surface of the semiconductor substrate, and may also be formed on the side surface and the wall surface of the through hole (not shown).

図5は図4に示すビアホール型バックコンタクト構造を有する太陽電池素子の裏面の電極パターンの一例を模式的に示す平面図である。図5においてBB線で切断したときの断面図が図4に相当する。図5ではパッシベーション層16の記載を省略してある。   FIG. 5 is a plan view schematically showing an example of an electrode pattern on the back surface of the solar cell element having the via-hole back contact structure shown in FIG. A cross-sectional view taken along line BB in FIG. 5 corresponds to FIG. In FIG. 5, the description of the passivation layer 16 is omitted.

<太陽電池モジュール>
本発明の太陽電池モジュールは、本発明の太陽電池素子と、前記太陽電池素子の電極上に配置された配線材料と、を有する。前記太陽電池モジュールは、配線材料を介して連結された複数の太陽電池素子を含んでもよく、封止材で封止されていてもよい。前記配線材料及び封止材は特に制限されず、当技術分野で通常用いられている材料から適宜選択することができる。前記太陽電池モジュールの大きさに特に制限はなく、例えば0.5m〜3mとすることができる。
<Solar cell module>
The solar cell module of this invention has the solar cell element of this invention, and the wiring material arrange | positioned on the electrode of the said solar cell element. The solar cell module may include a plurality of solar cell elements connected via a wiring material, and may be sealed with a sealing material. The wiring material and the sealing material are not particularly limited, and can be appropriately selected from materials usually used in this technical field. There is no particular restriction on the size of the solar cell module can be, for example, 0.5m 2 ~3m 2.

以下、本発明を実施例により具体的に説明するが、本発明はこれらの実施例に限定されるものではない。   EXAMPLES The present invention will be specifically described below with reference to examples, but the present invention is not limited to these examples.

<実施例1>
(パッシベーション層形成用組成物の調製)
Al薄膜塗布材料(株式会社高純度化学研究所、SYM−Al04、Al:2質量%、キシレン:87質量%、2−プロパノール:5質量%、安定化剤:6質量%)を1.0g、Nb薄膜塗布材料(株式会社高純度化学研究所、Nb−05、Nb:5質量%、酢酸n−ブチル:56質量%、安定化剤:16.5質量%、粘度調整剤:22.5質量%)を1.0g混合し、パッシベーション層形成用組成物1を調製した。
<Example 1>
(Preparation of a composition for forming a passivation layer)
Al 2 O 3 thin film coating material (High-Purity Chemical Laboratory, SYM-Al04, Al 2 O 3 : 2% by mass, xylene: 87% by mass, 2-propanol: 5% by mass, stabilizer: 6% by mass ) 1.0 g, Nb 2 O 5 thin film coating material (High Purity Chemical Laboratory, Nb-05, Nb 2 O 5 : 5% by mass, n-butyl acetate: 56% by mass, stabilizer: 16. The composition 1 for forming a passivation layer 1 was prepared by mixing 1.0 g of 5 mass%, viscosity modifier: 22.5 mass%).

(パッシベーション層の形成)
半導体基板として、表面がミラー形状の単結晶型p型シリコン基板(株式会社SUMCO、50mm角、厚さ:625μm)を用いた。シリコン基板をRCA洗浄液(関東化学株式会社、Frontier Cleaner−A01)を用いて70℃にて5分間、浸漬洗浄し、前処理を行った。
その後、上記で得られたパッシベーション層形成用組成物1を前処理したシリコン基板の片面の全面に、スピンコータ(ミカサ株式会社、MS−100)を用いて、4000rpm(min−1)で30秒間の条件で付与した。その後、150℃で3分間乾燥処理した。次いで700℃で10分間、空気中で熱処理した後、室温(25℃)で放冷して、パッシベーション層を有する評価用基板を作製した。
(Formation of passivation layer)
As the semiconductor substrate, a single crystal p-type silicon substrate (SUMCO, 50 mm square, thickness: 625 μm) having a mirror-shaped surface was used. The silicon substrate was pre-treated by immersing and cleaning at 70 ° C. for 5 minutes using an RCA cleaning solution (Kanto Chemical Co., Ltd., Frontier Cleaner-A01).
Thereafter, a spin coater (Mikasa Co., Ltd., MS-100) is used for 30 seconds at 4000 rpm (min −1 ) over the entire surface of one side of the silicon substrate pretreated with the passivation layer forming composition 1 obtained above. Granted on condition. Then, it dried at 150 ° C. for 3 minutes. Subsequently, after heat-treating in the air at 700 ° C. for 10 minutes, the substrate was allowed to cool at room temperature (25 ° C.) to produce an evaluation substrate having a passivation layer.

(実効ライフタイムの測定)
上記で得られた評価用基板のパッシベーション層が形成された領域の実効ライフタイム(μs)を、ライフタイム測定装置(日本セミラボ株式会社、WT−2000PVN)を用いて、室温(25℃)で反射マイクロ波光電導減衰法により測定した。実効ライフタイムは、480μsであった。
(Measurement of effective lifetime)
The effective lifetime (μs) of the region where the passivation layer of the evaluation substrate obtained above is formed is reflected at room temperature (25 ° C.) using a lifetime measurement device (Nippon Semi-Lab Co., Ltd., WT-2000PVN). It was measured by the microwave photoconductive decay method. The effective lifetime was 480 μs.

(平均厚さの測定)
干渉式膜厚計(フィルメトリクス株式会社、F20膜厚測定システム)を用いて、パッシベーション層の厚さを面内の5点について測定し、平均値を算出した。平均値は82nmであった。
(Measurement of average thickness)
The thickness of the passivation layer was measured at five points in the plane using an interference film thickness meter (Filmetrics Co., Ltd., F20 film thickness measurement system), and the average value was calculated. The average value was 82 nm.

(密度の測定)
パッシベーション層の質量及び平均厚さから密度を算出した。密度は3.2g/cmであった。
(Density measurement)
The density was calculated from the mass and average thickness of the passivation layer. The density was 3.2 g / cm 3 .

(太陽電池素子の製造方法)
上記で得られたパッシベーション層形成用組成物を用いて、図4に示したようなビアホール型バックコンタクト構造を有する太陽電池素子を作製した。具体的には、レーザードリルでn型半導体基板11(株式会社アドバンテック、125mm角、厚さ:200μm、アズスライス後のn型シリコン基板)の両面を貫通した直径100μmのスルーホールを0.2個/cm形成した。n型半導体基板11を40質量%水酸化ナトリウム水溶液(和光純薬工業株式会社)に浸し、60℃にて10分間処理してダメージ層を除去した。その後、8質量%水酸化ナトリウム水溶液で、60℃で10分間処理し、両面にテクスチャーを形成した。次いで、拡散炉(光洋サーモシステム株式会社、206A−M100)を用い、POClを用いて870℃で20分間処理して全面にn型拡散層12を形成した。その後、基板を40質量%水酸化ナトリウム水溶液(和光純薬工業株式会社)に浮かべ、80℃で10分間処理して裏面のみをエッチングした。その後、パッシベーション層形成用組成物を受光面の全面及び裏面の電極形成予定領域以外の領域にインクジェット装置(株式会社マイクロジェット、MJP−1500V、ヘッド:IJH−80、ノズルサイズ:50μm×70μm)を用いて付与し、150℃で乾燥処理して組成物層を形成した。その後、700℃で熱処理して、Nb及びAlを含有するパッシベーション層16を形成した。
(Method for manufacturing solar cell element)
A solar cell element having a via-hole type back contact structure as shown in FIG. 4 was produced using the composition for forming a passivation layer obtained above. Specifically, 0.2 through-holes having a diameter of 100 μm penetrating both sides of an n-type semiconductor substrate 11 (Advantech Co., Ltd., 125 mm square, thickness: 200 μm, n-type silicon substrate after as-slicing) with a laser drill / Cm 2 was formed. The n-type semiconductor substrate 11 was immersed in a 40% by mass aqueous sodium hydroxide solution (Wako Pure Chemical Industries, Ltd.) and treated at 60 ° C. for 10 minutes to remove the damaged layer. Then, it processed for 10 minutes at 60 degreeC with 8 mass% sodium hydroxide aqueous solution, and formed the texture on both surfaces. Next, using a diffusion furnace (Koyo Thermo System Co., Ltd., 206A-M100), the treatment was performed at 870 ° C. for 20 minutes using POCl 3 to form the n-type diffusion layer 12 on the entire surface. Thereafter, the substrate was floated on a 40% by mass aqueous sodium hydroxide solution (Wako Pure Chemical Industries, Ltd.) and treated at 80 ° C. for 10 minutes to etch only the back surface. Thereafter, the composition for forming a passivation layer is applied to an area other than the electrode formation scheduled area on the entire light receiving surface and on the back surface with an ink jet device (Microjet Corporation, MJP-1500V, head: IJH-80, nozzle size: 50 μm × 70 μm). Used and dried at 150 ° C. to form a composition layer. Then heat treated at 700 ° C., to form a passivation layer 16 containing Nb 2 O 5 and Al 2 O 3.

次いで、受光面の半導体パッシベーション層16の上に窒化珪素を蒸着することで反射防止膜13を形成した。なお、n型拡散領域12は、スルーホール内部、及び裏面の一部にもそれぞれ形成した。次に、貫通孔内部にテルピネオールで5倍に希釈した銀電極ペースト(デュポン株式会社、PV159A)をインクジェット法により充填し、受光面側にも銀電極ペーストをスルーホール内部の電極同士が導通するパターン状にスクリーン印刷により付与した。   Next, the antireflection film 13 was formed by depositing silicon nitride on the semiconductor passivation layer 16 on the light receiving surface. The n-type diffusion region 12 was also formed inside the through hole and part of the back surface. Next, a silver electrode paste (DuPont Co., Ltd., PV159A) diluted 5 times with terpineol is filled into the through hole by an ink jet method, and the silver electrode paste is also connected to the inside of the through hole on the light receiving surface side. The shape was applied by screen printing.

一方、n型シリコン基板11に由来する裏面のn型拡散領域には、スルーホールの開口部を覆うように図5に示す第二の金属電極17の形状に銀電極ペースト(デュポン株式会社、PV159A)を付与した。また、アルミニウム電極ペースト(PVG Solutions株式会社、PVG−AD−02)を図5に示す第一の金属電極15の形状に付与した。銀電極ペースト及びアルミニウム電極ペーストの付与にはインクジェット装置(株式会社マイクロジェット、MJP―1500V、ヘッド:IJH−80、ノズルサイズ:50μm×70μm)を使用した。   On the other hand, in the n-type diffusion region on the back surface derived from the n-type silicon substrate 11, a silver electrode paste (DuPont, PV159A) is formed in the shape of the second metal electrode 17 shown in FIG. 5 so as to cover the opening of the through hole. ). Further, an aluminum electrode paste (PVG Solutions, PVG-AD-02) was applied to the shape of the first metal electrode 15 shown in FIG. An ink jet apparatus (Microjet Co., Ltd., MJP-1500V, head: IJH-80, nozzle size: 50 μm × 70 μm) was used for applying the silver electrode paste and the aluminum electrode paste.

銀電極ペースト及びアルミニウム電極ペーストが付与されたn型シリコン基板11について、トンネル炉(株式会社ノリタケカンパニーリミテッド)を用いて大気雰囲気下、最高温度800℃で保持時間10秒の熱処理を行って、第一の金属電極15及び第二の金属電極17が形成された太陽電池素子を作製した。アルミニウム電極ペーストを付与した部分には第一の金属電極15が形成され、n型シリコン基板11の内部にアルミニウムが拡散することでp型拡散領域14が形成されていた。   The n-type silicon substrate 11 provided with the silver electrode paste and the aluminum electrode paste is subjected to a heat treatment using a tunnel furnace (Noritake Co., Ltd.) at a maximum temperature of 800 ° C. and a holding time of 10 seconds. A solar cell element in which one metal electrode 15 and second metal electrode 17 were formed was produced. A first metal electrode 15 was formed in the portion to which the aluminum electrode paste was applied, and the p-type diffusion region 14 was formed by diffusing aluminum into the n-type silicon substrate 11.

太陽電池素子の作製直後(1時間後)に太陽電池素子ソーラシュミレータ(株式会社ワコム電創、XS−155S−10)を用いて発電特性を評価した。
評価は、擬似太陽光(装置名:WXS−155S−10、株式会社ワコム電創)と、電圧−電流(I−V)評価測定器(装置名:I−V CURVE TRACER MP−160、英弘精機株式会社)の測定装置を組み合わせて行った。太陽電池としての発電性能を示すJsc(短絡電流密度)、Voc(開放電圧)、FF(フィルファクター)、Eff1(変換効率)は、それぞれJIS−C−8913(2005年度)及びJIS−C−8914(2005年度)に準拠して測定を行い得られたものである。
結果を表2に示す。なお、受光面積は125mm×125mmとなるようにマスクを被せて評価した。 また、作製した太陽電池素子を、50℃、80%RHの恒温恒湿槽の中に入れ、1ヶ月保存した後の発電特性を評価した。結果を表3に示す。太陽電素子の保存後の変換効率は保存前の変換効率Eff2の98.8%であり、変換効率が1.2%低下した。
Immediately after production of the solar cell element (one hour later), the power generation characteristics were evaluated using a solar cell element solar simulator (Wacom Denso Co., Ltd., XS-155S-10).
Evaluation was made using simulated sunlight (device name: WXS-155S-10, Wacom Electric Co., Ltd.) and a voltage-current (IV) evaluation measuring device (device name: IV CURVE TRACER MP-160, Eihiro Seiki). This was performed in combination with a measuring device of Co., Ltd. Jsc (short circuit current density), Voc (open circuit voltage), FF (fill factor), and Eff1 (conversion efficiency) indicating the power generation performance as solar cells are JIS-C-8913 (2005) and JIS-C-8914, respectively. It was obtained by measuring according to (2005).
The results are shown in Table 2. The evaluation was performed with a mask so that the light receiving area was 125 mm × 125 mm. Moreover, the produced solar cell element was put in a constant temperature and humidity chamber at 50 ° C. and 80% RH, and power generation characteristics after storage for 1 month were evaluated. The results are shown in Table 3. Conversion efficiency after storage solar cell element is 98.8% efficiency Eff2 before storage, conversion efficiency was lowered 1.2%.

<実施例2>
(パッシベーション層形成用組成物の調製)
Ta薄膜塗布材料(株式会社高純度化学研究所、Ta−10−P、Ta:10質量%、n−オクタン:9質量%、酢酸n−ブチル:60質量%、安定化剤:21質量%)をパッシベーション層形成用組成物2として使用した。
<Example 2>
(Preparation of a composition for forming a passivation layer)
Ta 2 O 5 thin film coating material (High-Purity Chemical Laboratory, Ta-10-P, Ta 2 O 5 : 10% by mass, n-octane: 9% by mass, n-butyl acetate: 60% by mass, stabilization Agent: 21% by mass) was used as composition 2 for forming a passivation layer.

上記のパッシベーション層形成用組成物2を用いたこと以外は、実施例1と同様にして、前処理したシリコン基板上にパッシベーション層を形成して評価用基板を作製し、実施例1と同様にして評価した。実効ライフタイムは、450μsであった。パッシベーション層の平均厚さ及び密度はそれぞれ75nm、3.6g/cmであった。A substrate for evaluation was prepared by forming a passivation layer on a pretreated silicon substrate in the same manner as in Example 1 except that the above-described composition 2 for forming a passivation layer was used. And evaluated. The effective lifetime was 450 μs. The average thickness and density of the passivation layer were 75 nm and 3.6 g / cm 3 , respectively.

パッシベーション層形成用組成物1の代わりにパッシベーション層形成用組成物2を用いた以外は実施例1と同様にして太陽電池素子を作製し、発電特性を評価した。結果を表2及び3に示す。太陽電素子の保存後の変換効率は保存前の変換効率の98.2%であり、変換効率が1.8%低下した。 A solar cell element was produced in the same manner as in Example 1 except that the passivation layer forming composition 2 was used instead of the passivation layer forming composition 1, and power generation characteristics were evaluated. The results are shown in Tables 2 and 3. Conversion efficiency after storage solar cell element is 98.2% of the conversion efficiency before storage, conversion efficiency was reduced by 1.8%.

<実施例3>
HfO薄膜塗布材料(株式会社高純度化学研究所、Hf−05、HfO:5質量%、酢酸イソアミル:73質量%、n−オクタン:10質量%、2−プロパノール:5質量%、安定化剤:7質量%)をパッシベーション層形成用組成物3として使用した。
<Example 3>
HfO 2 thin film coating material (High Purity Chemical Laboratory, Hf-05, HfO 2 : 5% by mass, isoamyl acetate: 73% by mass, n-octane: 10% by mass, 2-propanol: 5% by mass, stabilization Agent: 7% by mass) was used as the passivation layer forming composition 3.

上記で調製したパッシベーション層形成用組成物3を用いたこと以外は、実施例1と同様にして、前処理したシリコン基板上にパッシベーション層を形成して評価用基板を作製し、実施例1と同様にして評価した。実効ライフタイムは、380μsであった。パッシベーション層の平均厚さ及び密度はそれぞれ71nm、3.2g/cmであった。A substrate for evaluation was prepared by forming a passivation layer on a pretreated silicon substrate in the same manner as in Example 1 except that the composition 3 for forming a passivation layer prepared above was used. Evaluation was performed in the same manner. The effective lifetime was 380 μs. The average thickness and density of the passivation layer were 71 nm and 3.2 g / cm 3 , respectively.

パッシベーション層形成用組成物1の代わりにパッシベーション層形成用組成物3を用いた以外は実施例1と同様にして太陽電池素子を作製し、発電特性を評価した。結果を表2及び3に示す。太陽電素子の保存後の変換効率は保存前の変換効率の98.3%であり、変換効率が1.7%低下した。 A solar cell element was produced in the same manner as in Example 1 except that the passivation layer forming composition 3 was used instead of the passivation layer forming composition 1, and power generation characteristics were evaluated. The results are shown in Tables 2 and 3. Conversion efficiency after storage solar cell element is 98.3% of the conversion efficiency before storage, conversion efficiency was reduced by 1.7%.

<実施例4>
薄膜塗布材料(株式会社高純度化学研究所、Y−03、Y:3質量%、2−エチルヘキサン酸:12.5質量%、酢酸n−ブチル:22.5質量%、酢酸エチル:8質量%、テルピン油:45質量%、粘度調剤:9質量%)をパッシベーション層形成用組成物4として使用した。
<Example 4>
Y 2 O 3 thin film coating material (High-Purity Chemical Laboratory, Y-03, Y 2 O 3 : 3% by mass, 2-ethylhexanoic acid: 12.5% by mass, n-butyl acetate: 22.5% by mass %, ethyl acetate: 8 wt%, terpine oil: 45 wt%, a viscosity adjustment agent: 9% by mass) was used as a passivation layer forming composition 4.

上記で調製したパッシベーション層形成用組成物4を用いたこと以外は、実施例1と同様にして、前処理したシリコン基板上にパッシベーション層を形成して評価用基板を作製し、実施例1と同様にして評価した。実効ライフタイムは、390μsであった。パッシベーション層の平均厚さ及び密度はそれぞれ68nm、2.8g/cmであった。A substrate for evaluation was prepared by forming a passivation layer on a pretreated silicon substrate in the same manner as in Example 1 except that the composition 4 for forming a passivation layer prepared above was used. Evaluation was performed in the same manner. The effective lifetime was 390 μs. The average thickness and density of the passivation layer were 68 nm and 2.8 g / cm 3 , respectively.

パッシベーション層形成用組成物1の代わりにパッシベーション層形成用組成物4を用いた以外は実施例1と同様にして太陽電池素子を作製し、発電特性を評価した。結果を表2及び3に示す。太陽電素子の保存後の変換効率は保存前の変換効率の97.6%であり、変換効率が2.4%低下した。 A solar cell element was produced in the same manner as in Example 1 except that the passivation layer forming composition 4 was used instead of the passivation layer forming composition 1, and power generation characteristics were evaluated. The results are shown in Tables 2 and 3. Conversion efficiency after storage solar cell element is 97.6% of the conversion efficiency before storage, conversion efficiency was reduced by 2.4%.

<実施例5>
アルミニウムエチルアセトアセテートジイソプロピレート(川研ファインケミカル株式会社、ALCH)、ペンタエトキシニオブ(北興化学工業株式会社)、アセチルアセトン(和光純薬工業株式会社)、キシレン(和光純薬工業株式会社)、2−プロパノール(和光純薬工業株式会社)、テルピネオール(日本テルペン化学株式会社)を表1に示す割合となるように混合し、パッシベーション層形成用組成物5として使用した。
<Example 5>
Aluminum ethyl acetoacetate diisopropylate (Kawaken Fine Chemical Co., Ltd., ALCH), pentaethoxyniobium (Hokuko Chemical Co., Ltd.), acetylacetone (Wako Pure Chemical Industries, Ltd.), xylene (Wako Pure Chemical Industries, Ltd.), 2- Propanol (Wako Pure Chemical Industries, Ltd.) and terpineol (Nippon Terpene Chemical Co., Ltd.) were mixed so as to have the ratio shown in Table 1 and used as the passivation layer forming composition 5.

上記で調製したパッシベーション層形成用組成物5を用いたこと以外は、実施例1と同様にして、前処理したシリコン基板上にパッシベーション層を形成して評価用基板を作製し、実施例1と同様にして評価した。実効ライフタイムは、420μsであった。パッシベーション層の平均厚さ及び密度はそれぞれ94nm、2.6g/cmであった。A substrate for evaluation was prepared by forming a passivation layer on a pretreated silicon substrate in the same manner as in Example 1 except that the composition 5 for forming a passivation layer prepared above was used. Evaluation was performed in the same manner. The effective lifetime was 420 μs. The average thickness and density of the passivation layer were 94 nm and 2.6 g / cm 3 , respectively.

パッシベーション層形成用組成物1の代わりにパッシベーション層形成用組成物5を用いた以外は実施例1と同様にして太陽電池素子を作製し、発電特性を評価した。結果を表2及び3に示す。太陽電素子の保存後の変換効率は保存前の変換効率の97.9%であり、変換効率が2.1%低下した。 A solar cell element was produced in the same manner as in Example 1 except that the passivation layer forming composition 5 was used instead of the passivation layer forming composition 1, and power generation characteristics were evaluated. The results are shown in Tables 2 and 3. Conversion efficiency after storage solar cell element is 97.9% of the conversion efficiency before storage, conversion efficiency was reduced by 2.1%.

<比較例1>
実施例1において、パッシベーション層形成用組成物1の付与を行わなかったこと以外は実施例1と同様にして評価用基板を作製し、実施例1と同様にして評価した。実効ライフタイムは、20μsであった。
<Comparative Example 1>
In Example 1, an evaluation substrate was prepared in the same manner as in Example 1 except that the passivation layer forming composition 1 was not applied, and evaluated in the same manner as in Example 1. The effective lifetime was 20 μs.

実施例1において、パッシベーション層形成用組成物1の付与を行わなかったこと以外は実施例1と同様にして太陽電池素子を作製し、発電特性を評価した。結果を表2及び3に示す。太陽電素子の保存後の変換効率は保存前の変換効率の91.9%であり、変換効率が8.1%低下した。 In Example 1, a solar cell element was produced in the same manner as in Example 1 except that the passivation layer forming composition 1 was not applied, and power generation characteristics were evaluated. The results are shown in Tables 2 and 3. Conversion efficiency after storage solar cell element is 91.9% of the conversion efficiency before storage, conversion efficiency was lowered 8.1%.

<比較例2>
エチルセルロース(ザ・ダウ・ケミカル・カンパニー、STD200)6.0g及びテルピネオール(日本テルペン化学株式会社製、ターピネオール−LW)34.0gを混合し、150℃で2時間混合して溶解し、15質量部エチルセルロース/テルピネオール溶液を調製した。次いで、Al粒子(株式会社高純度化学研究所、平均粒子径1μm)を2.00g、テルピネオールを3.9g及び上記で調製した15質量部エチルセルロース/テルピネオール溶液4.1gを混合して、組成物C2を調製した。
<Comparative example 2>
Ethylcellulose (The Dow Chemical Company, STD200) 6.0g and Terpineol (Nippon Terpene Chemical Co., Ltd., Turpineol-LW) 34.0g are mixed, and it melt | dissolves by mixing for 2 hours at 150 degreeC, 15 mass parts An ethylcellulose / terpineol solution was prepared. Next, 2.00 g of Al 2 O 3 particles (High Purity Chemical Laboratory, average particle size 1 μm), 3.9 g of terpineol, and 4.1 g of the 15 parts by mass ethylcellulose / terpineol solution prepared above were mixed. Composition C2 was prepared.

上記で調製した組成物C2を用いたこと以外は、実施例1と同様にして前処理したシリコン基板上にパッシベーション層を形成して評価用基板を作製し、実施例1と同様にして評価した。実効ライフタイムは、21μsであった。パッシベーション層の平均厚さ及び密度はそれぞれ2.1μm、1.4g/cmであった。パッシベーション層の平均厚さは触針式段差計(Ambios社、XP−2)で測定した。具体的には、パッシベーション層の一部をスパチュラで削り取り、パッシベーション層が残存する部分と削り取った部分の段差を速度0.1mm/s、針荷重0.5mgの条件で測定した。測定は3回行い、その平均値を算出して膜厚とした。A passivation layer was formed on a silicon substrate pretreated in the same manner as in Example 1 except that the composition C2 prepared above was used, and an evaluation substrate was produced. Evaluation was performed in the same manner as in Example 1. . The effective lifetime was 21 μs. The average thickness and density of the passivation layer were 2.1 μm and 1.4 g / cm 3 , respectively. The average thickness of the passivation layer was measured with a stylus type step meter (Ambios, XP-2). Specifically, a part of the passivation layer was scraped off with a spatula, and a step between the portion where the passivation layer remained and the scraped portion was measured under the conditions of a speed of 0.1 mm / s and a needle load of 0.5 mg. The measurement was performed three times, and the average value was calculated as the film thickness.

パッシベーション層形成用組成物1の代わりに上記で調製した組成物C2を用いたこと以外は実施例1と同様にして太陽電池素子を作製し、発電特性を評価した。結果を表2及び3に示す。太陽電素子の保存後の変換効率は保存前の変換効率の93.0%であり、変換効率が7.0%低下した。 A solar cell element was produced in the same manner as in Example 1 except that the composition C2 prepared above was used instead of the composition 1 for forming a passivation layer, and power generation characteristics were evaluated. The results are shown in Tables 2 and 3. Conversion efficiency after storage solar cell element is 93.0% of the conversion efficiency before storage, conversion efficiency was lowered 7.0%.

<比較例3>
テトラエトキシシランを2.01g、上記で調製した15質量部エチルセルロース/テルピネオール溶液4.02g及びテルピネオール3.97gを混合して無色透明の組成物C3を調製した。
<Comparative Example 3>
A colorless and transparent composition C3 was prepared by mixing 2.01 g of tetraethoxysilane, 4.02 g of the 15 parts by mass ethylcellulose / terpineol solution prepared above and 3.97 g of terpineol.

上記で調製した組成物C3を用いたこと以外は、実施例1と同様にして前処理したシリコン基板上にパッシベーション層を形成して評価用基板を作製し、実施例1と同様にして評価した。実効ライフタイムは、23μsであった。パッシベーション層の平均厚さ及び密度はそれぞれ85nm、2.1g/cmであった。A passivation layer was formed on a silicon substrate pretreated in the same manner as in Example 1 except that the composition C3 prepared above was used, and an evaluation substrate was produced. Evaluation was performed in the same manner as in Example 1. . The effective lifetime was 23 μs. The average thickness and density of the passivation layer were 85 nm and 2.1 g / cm 3 , respectively.

パッシベーション層形成用組成物1の代わりに上記で調製した組成物C3を用いたこと以外は実施例1と同様にして太陽電池素子を作製し、発電特性を評価した。結果を表2及び3に示す。太陽電素子の保存後の変換効率は保存前の変換効率の92.4%であり、変換効率が7.6%低下した。 A solar cell element was produced in the same manner as in Example 1 except that the composition C3 prepared above was used instead of the composition 1 for forming a passivation layer, and power generation characteristics were evaluated. The results are shown in Tables 2 and 3. Conversion efficiency after storage solar cell element is 92.4% of the conversion efficiency before storage, conversion efficiency was lowered 7.6%.

以上から、本発明の太陽電池素子は優れたパッシベーション効果を有するパッシベーション層を有するために高い変換効率を示し、かつ経時的な太陽電池特性の低下が抑制されていることがわかる。更に、本発明の太陽電池素子のパッシベーション層は簡便な工程で所望の形状に形成できることがわかる。   From the above, it can be seen that the solar cell element of the present invention has a passivation layer having an excellent passivation effect, and thus exhibits high conversion efficiency and suppresses deterioration of solar cell characteristics over time. Furthermore, it turns out that the passivation layer of the solar cell element of the present invention can be formed in a desired shape by a simple process.

<参考実施形態1>
以下は、参考実施形態1に係るパッシベーション膜、塗布型材料、太陽電池素子及びパッシベーション膜付シリコン基板である。
<Reference Embodiment 1>
The following are the passivation film, the coating material, the solar cell element, and the silicon substrate with the passivation film according to Reference Embodiment 1.

<1> 酸化アルミニウムと酸化ニオブとを含み、シリコン基板を有する太陽電池素子に用いられるパッシベーション膜。 <1> A passivation film used for a solar cell element including aluminum oxide and niobium oxide and having a silicon substrate.

<2> 前記酸化ニオブと前記酸化アルミニウムの質量比(酸化ニオブ/酸化アルミニウム)が30/70〜90/10である<1>に記載のパッシベーション膜。 <2> The passivation film according to <1>, wherein a mass ratio (niobium oxide / aluminum oxide) between the niobium oxide and the aluminum oxide is 30/70 to 90/10.

<3> 前記酸化ニオブ及び前記酸化アルミニウムの総含有率が90質量%以上である<1>又は<2>に記載のパッシベーション膜。 <3> The passivation film according to <1> or <2>, wherein a total content of the niobium oxide and the aluminum oxide is 90% by mass or more.

<4> 更に有機成分を含む<1>〜<3>のいずれか1項に記載のパッシベーション膜。 <4> The passivation film according to any one of <1> to <3>, further including an organic component.

<5> 酸化アルミニウム前駆体及び酸化ニオブ前駆体を含む塗布型材料の熱処理物である<1>〜<4>のいずれか1項に記載のパッシベーション膜。 <5> The passivation film according to any one of <1> to <4>, which is a heat-treated product of a coating material containing an aluminum oxide precursor and a niobium oxide precursor.

<6> 酸化アルミニウム前駆体及び酸化ニオブ前駆体を含み、シリコン基板を有する太陽電池素子のパッシベーション膜の形成に用いられる塗布型材料。 <6> A coating-type material that includes an aluminum oxide precursor and a niobium oxide precursor and is used to form a passivation film for a solar cell element having a silicon substrate.

<7> 単結晶シリコン又は多結晶シリコンからなり、受光面及び前記受光面とは反対側の裏面を有するp型のシリコン基板と、
前記シリコン基板の受光面側に形成されたn型の不純物拡散層と、
前記シリコン基板の受光面側の前記n型の不純物拡散層の表面に形成された第1電極と、
前記シリコン基板の裏面側の表面に形成され、複数の開口部を有する酸化アルミニウムと酸化ニオブを含むパッシベーション膜と、
前記複数の開口部を通して、前記シリコン基板の裏面側の表面と電気的な接続を形成している第2電極と、
を備える太陽電池素子。
<7> A p-type silicon substrate made of single crystal silicon or polycrystalline silicon and having a light receiving surface and a back surface opposite to the light receiving surface;
An n-type impurity diffusion layer formed on the light-receiving surface side of the silicon substrate;
A first electrode formed on the surface of the n-type impurity diffusion layer on the light-receiving surface side of the silicon substrate;
A passivation film comprising aluminum oxide and niobium oxide formed on the back surface of the silicon substrate and having a plurality of openings;
A second electrode forming an electrical connection with the surface on the back side of the silicon substrate through the plurality of openings;
A solar cell element comprising:

<8> 単結晶シリコン又は多結晶シリコンからなり、受光面及び前記受光面とは反対側の裏面を有するp型のシリコン基板と、
前記シリコン基板の受光面側に形成されたn型の不純物拡散層と、
前記シリコン基板の受光面側の前記n型の不純物拡散層の表面に形成された第1電極と、
前記シリコン基板の裏面側の一部又は全部に形成され、前記シリコン基板より高濃度に不純物が添加されたp型の不純物拡散層と、
前記シリコン基板の裏面側の表面に形成され、複数の開口部を有する酸化アルミニウムと酸化ニオブを含むパッシベーション膜と、
前記複数の開口部を通して、前記シリコン基板の裏面側の前記p型の不純物拡散層の表面と電気的な接続を形成している第2電極と、
を備える太陽電池素子。
<8> A p-type silicon substrate made of single crystal silicon or polycrystalline silicon and having a light receiving surface and a back surface opposite to the light receiving surface;
An n-type impurity diffusion layer formed on the light-receiving surface side of the silicon substrate;
A first electrode formed on the surface of the n-type impurity diffusion layer on the light-receiving surface side of the silicon substrate;
A p-type impurity diffusion layer formed on a part or all of the back side of the silicon substrate and doped with impurities at a higher concentration than the silicon substrate;
A passivation film comprising aluminum oxide and niobium oxide formed on the back surface of the silicon substrate and having a plurality of openings;
A second electrode that forms an electrical connection with the surface of the p-type impurity diffusion layer on the back side of the silicon substrate through the plurality of openings;
A solar cell element comprising:

<9> 単結晶シリコン又は多結晶シリコンからなり、受光面及び前記受光面とは反対側の裏面を有するn型のシリコン基板と、
前記シリコン基板の受光面側に形成されたp型の不純物拡散層と、
前記シリコン基板の裏面側に形成された第2電極と、
前記シリコン基板の受光面側の表面に形成され、複数の開口部を有する酸化アルミニウムと酸化ニオブを含むパッシベーション膜と、
前記シリコン基板の受光面側の前記p型の不純物拡散層の表面に形成され、前記複数の開口部を通して前記シリコン基板の受光面側の表面と電気的な接続を形成している第1電極と、
を備える太陽電池素子。
<9> An n-type silicon substrate made of single crystal silicon or polycrystalline silicon and having a light receiving surface and a back surface opposite to the light receiving surface;
A p-type impurity diffusion layer formed on the light-receiving surface side of the silicon substrate;
A second electrode formed on the back side of the silicon substrate;
A passivation film formed on the light-receiving surface side surface of the silicon substrate and including a plurality of openings and containing aluminum oxide and niobium oxide;
A first electrode formed on the surface of the p-type impurity diffusion layer on the light-receiving surface side of the silicon substrate and forming an electrical connection with the surface on the light-receiving surface side of the silicon substrate through the plurality of openings; ,
A solar cell element comprising:

<10> パッシベーション膜における酸化ニオブと酸化アルミニウムの質量比(酸化ニオブ/酸化アルミニウム)が30/70〜90/10である<7>〜<9>のいずれか1項に記載の太陽電池素子。 <10> The solar cell element according to any one of <7> to <9>, wherein the mass ratio of niobium oxide to aluminum oxide (niobium oxide / aluminum oxide) in the passivation film is 30/70 to 90/10.

<11> 前記パッシベーション膜における前記酸化ニオブ及び前記酸化アルミニウムの総含有率が90質量%以上である<7>〜<10>のいずれか1項に記載の太陽電池素子。 <11> The solar cell element according to any one of <7> to <10>, wherein a total content of the niobium oxide and the aluminum oxide in the passivation film is 90% by mass or more.

<12> シリコン基板と、
前記シリコン基板上の全面又は一部に設けられる<1>〜<5>のいずれか1項に記載のパッシベーション膜と、
を有するパッシベーション膜付シリコン基板。
<12> a silicon substrate;
The passivation film according to any one of <1> to <5> provided on the entire surface or a part of the silicon substrate;
A silicon substrate with a passivation film.

上記の参考実施形態によれば、シリコン基板のキャリアライフタイムを長くし且つ負の固定電荷を有するパッシベーション膜を低コストで実現することができる。また、そのパッシベーション膜の形成を実現するための塗布型材料を提供することができる。また、そのパッシベーション膜を用いた効率の高い太陽電池素子を低コストで実現することができる。また、キャリアライフタイムを長くし且つ負の固定電荷を有するパッシベーション膜付シリコン基板を低コストで実現することができる。   According to the reference embodiment described above, a passivation film having a long silicon carrier lifetime and a negative fixed charge can be realized at a low cost. In addition, a coating type material for realizing the formation of the passivation film can be provided. In addition, a highly efficient solar cell element using the passivation film can be realized at low cost. In addition, a silicon substrate with a passivation film having a long carrier lifetime and a negative fixed charge can be realized at low cost.

本実施の形態のパッシベーション膜は、シリコン太陽電池素子に用いられるパッシベーション膜であり、酸化アルミニウムと酸化ニオブとを含むようにしたものである。   The passivation film of the present embodiment is a passivation film used for a silicon solar cell element, and includes aluminum oxide and niobium oxide.

また、本実施の形態では、パッシベーション膜の組成を変えることにより、その膜が持つ固定電荷量を制御することができる。   In this embodiment mode, the fixed charge amount of the film can be controlled by changing the composition of the passivation film.

また、酸化ニオブと酸化アルミニウムの質量比が30/70〜80/20であることが、負の固定電荷を安定化できるという観点からより好ましい。また、酸化ニオブと酸化アルミニウムの質量比が35/65〜70/30であることが、負の固定電荷を更に安定化することができるという観点から更に好ましい。また、酸化ニオブと酸化アルミニウムの質量比が50/50〜90/10であることが、キャリアライフタイムの向上と負の固定電荷を両立できるという観点から好ましい。   Further, it is more preferable that the mass ratio of niobium oxide and aluminum oxide is 30/70 to 80/20 from the viewpoint that the negative fixed charge can be stabilized. Further, the mass ratio of niobium oxide and aluminum oxide is more preferably 35/65 to 70/30 from the viewpoint that the negative fixed charge can be further stabilized. In addition, it is preferable that the mass ratio of niobium oxide and aluminum oxide is 50/50 to 90/10 from the viewpoint that both improvement of carrier lifetime and negative fixed charge can be achieved.

パッシベーション膜中の酸化ニオブと酸化アルミニウムの質量比は、エネルギー分散型X線分光法(EDX)、二次イオン質量分析法(SIMS)及び高周波誘導結合プラズマ質量分析法(ICP−MS)によって測定することができる。具体的な測定条件は次の通りである。パッシベーション膜を酸又はアルカリ水溶液に溶解し、この溶液を霧状にしてArプラズマに導入し、励起された元素が基底状態に戻る際に放出される光を分光して波長及び強度を測定し、得られた波長から元素の定性を行い、得られた強度から定量を行う。   The mass ratio of niobium oxide to aluminum oxide in the passivation film is measured by energy dispersive X-ray spectroscopy (EDX), secondary ion mass spectrometry (SIMS), and high frequency inductively coupled plasma mass spectrometry (ICP-MS). be able to. Specific measurement conditions are as follows. Dissolving the passivation film in acid or alkaline aqueous solution, atomizing this solution and introducing it into Ar plasma, measuring the wavelength and intensity by spectroscopically analyzing the light emitted when the excited element returns to the ground state, Element qualification is performed from the obtained wavelength, and quantification is performed from the obtained intensity.

パッシベーション膜中の酸化ニオブ及び酸化アルミニウムの総含有率が、80質量%以上であることが好ましく、良好な特性を維持できる観点から90質量%以上であることがより好ましい。パッシベーション膜中の酸化ニオブ及び酸化アルミニウムの成分が多くなると、負の固定電荷の効果が大きくなる。   The total content of niobium oxide and aluminum oxide in the passivation film is preferably 80% by mass or more, and more preferably 90% by mass or more from the viewpoint of maintaining good characteristics. As the components of niobium oxide and aluminum oxide in the passivation film increase, the effect of negative fixed charges increases.

パッシベーション膜中の酸化ニオブ及び酸化アルミニウムの総含有率は、熱重量分析、蛍光X線分析、ICP−MS及びX線吸収分光法を組み合わせることによって測定することができる。具体的な測定条件は次の通りである。熱重量分析によって無機成分の割合を算出し、蛍光X線やICP−MS分析によってニオブ及びアルミニウムの割合を算出し、酸化物の割合はX線吸収分光法で調べることができる。   The total content of niobium oxide and aluminum oxide in the passivation film can be measured by combining thermogravimetric analysis, fluorescent X-ray analysis, ICP-MS, and X-ray absorption spectroscopy. Specific measurement conditions are as follows. The ratio of inorganic components can be calculated by thermogravimetric analysis, the ratio of niobium and aluminum can be calculated by fluorescent X-ray or ICP-MS analysis, and the ratio of oxide can be examined by X-ray absorption spectroscopy.

また、パッシベーション膜中には、膜質の向上や弾性率の調整の観点から、酸化ニオブ及び酸化アルミニウム以外の成分が有機成分として含まれていてもよい。パッシベーション膜中の有機成分の存在は、元素分析及び膜のFT−IRの測定から確認することができる。   Further, the passivation film may contain components other than niobium oxide and aluminum oxide as organic components from the viewpoint of improving the film quality and adjusting the elastic modulus. The presence of the organic component in the passivation film can be confirmed by elemental analysis and measurement of the FT-IR of the film.

パッシベーション膜中の有機成分の含有率は、パッシベーション膜中、10質量%未満であることがより好ましく、5質量%以下であることが更に好ましく、1質量%以下であることが特に好ましい。   The content of the organic component in the passivation film is more preferably less than 10% by mass, further preferably 5% by mass or less, and particularly preferably 1% by mass or less in the passivation film.

パッシベーション膜は、酸化アルミニウム前駆体及び酸化ニオブ前駆体を含む塗布型材料の熱処理物として得てもよい。塗布型材料の詳細を次に説明する。   The passivation film may be obtained as a heat-treated product of a coating type material containing an aluminum oxide precursor and a niobium oxide precursor. Details of the coating type material will be described next.

本実施の形態の塗布型材料は、酸化アルミニウム前駆体及び酸化ニオブ前駆体を含み、シリコン基板を有する太陽電池素子用のパッシベーション膜の形成に用いられる。   The coating material of the present embodiment includes an aluminum oxide precursor and a niobium oxide precursor, and is used for forming a passivation film for a solar cell element having a silicon substrate.

酸化アルミニウム前駆体は、酸化アルミニウムを生成するものであれば、特に限定されることなく用いることができる。酸化アルミニウム前駆体としては、酸化アルミニウムをシリコン基板上に均一に分散させる点、及び化学的に安定な点から、有機系の酸化アルミニウム前駆体を用いることが好ましい。有機系の酸化アルミニウム前駆体の例として、アルミニウムトリイソプロポキシド(構造式:Al(OCH(CH、(株)高純度化学研究所SYM−AL04等を挙げることができる。The aluminum oxide precursor can be used without particular limitation as long as it produces aluminum oxide. As the aluminum oxide precursor, it is preferable to use an organic aluminum oxide precursor from the viewpoint of uniformly dispersing aluminum oxide on the silicon substrate and chemically stable. Examples of the organic aluminum oxide precursor include aluminum triisopropoxide (structural formula: Al (OCH (CH 3 ) 2 ) 3 , High Purity Chemical Research Laboratory SYM-AL04, and the like.

酸化ニオブ前駆体は、酸化ニオブを生成するものであれば、特に限定されることなく用いることができる。酸化ニオブ前駆体としては、酸化ニオブをシリコン基板上に均一に分散させる点、及び化学的に安定な観点から有機系の酸化ニオブ前駆体を用いることが好ましい。有機系の酸化ニオブ前駆体の例として、ニオブ(V)エトキシド(構造式:Nb(OC、分子量:318.21)、(株)高純度化学研究所Nb−05等を挙げることができる。The niobium oxide precursor can be used without particular limitation as long as it produces niobium oxide. As the niobium oxide precursor, it is preferable to use an organic niobium oxide precursor from the viewpoint of uniformly dispersing niobium oxide on the silicon substrate and chemically stable. Examples of organic niobium oxide precursors include niobium (V) ethoxide (structural formula: Nb (OC 2 H 5 ) 5 , molecular weight: 318.21), High Purity Chemical Laboratory Nb-05, etc. be able to.

有機系の酸化ニオブ前駆体及び有機系の酸化アルミニウム前駆体を含む塗布型材料を塗布法又は印刷法を用いて成膜し、その後の熱処理(焼成)により有機成分を除去することにより、パッシベーション膜を得ることができる。したがって、結果として、有機成分を含むパッシベーション膜であってもよい。   A passivation film is formed by forming a coating type material containing an organic niobium oxide precursor and an organic aluminum oxide precursor using a coating method or a printing method, and then removing organic components by a subsequent heat treatment (firing). Can be obtained. Therefore, as a result, a passivation film containing an organic component may be used.

<太陽電池素子の構造説明>
本実施の形態の太陽電池素子の構造について図7〜図10を参照しながら説明する。図7〜図10は、本実施の形態の裏面にパッシベーション膜を用いた太陽電池素子の第1〜第4構成例を示す断面図である。
<Structure explanation of solar cell element>
The structure of the solar cell element of the present embodiment will be described with reference to FIGS. 7-10 is sectional drawing which shows the 1st-4th structural example of the solar cell element which used the passivation film for the back surface of this Embodiment.

本実施の形態で用いるシリコン基板(結晶シリコン基板、半導体基板)101としては、単結晶シリコン、又は、多結晶シリコンのどちらを用いてもよい。また、シリコン基板101としては、導電型がp型の結晶シリコン、又は、導電型がn型の結晶シリコンのどちらを用いてもよい。本実施の形態の効果をより発揮する観点からは、導電型がp型の結晶シリコンがより適している。   As the silicon substrate (crystalline silicon substrate, semiconductor substrate) 101 used in this embodiment mode, either single crystal silicon or polycrystalline silicon may be used. Further, as the silicon substrate 101, either p-type crystalline silicon or n-type crystalline silicon may be used. From the standpoint of exerting the effects of the present embodiment, p-type crystalline silicon is more suitable.

以下の図7〜図10においては、シリコン基板101として、p型単結晶シリコンを用いた例について説明する。尚、当該シリコン基板101に用いる単結晶シリコン又は多結晶シリコンは、任意のものでよいが、抵抗率が0.5Ω・cm〜10Ω・cmである単結晶シリコン又は多結晶シリコンが好ましい。   7 to 10 below, an example in which p-type single crystal silicon is used as the silicon substrate 101 will be described. Note that single crystal silicon or polycrystalline silicon used for the silicon substrate 101 may be any material, but single crystal silicon or polycrystalline silicon having a resistivity of 0.5 Ω · cm to 10 Ω · cm is preferable.

図7(第1構成例)に示すように、p型のシリコン基板101の受光面側(図中上側、第1面)に、リン等のV族の元素をドーピングしたn型の拡散層102が形成される。そして、シリコン基板101と拡散層102との間でpn接合が形成される。拡散層102の表面には、窒化ケイ素(SiN)膜等の受光面反射防止膜103、及び銀(Ag)等を用いた第1電極105(受光面側の電極、第1面電極、上面電極、受光面電極)が形成される。受光面反射防止膜103は、受光面パッシベーション膜としての機能を兼ね備えてもよい。SiN膜を用いることで、受光面反射防止膜と受光面パッシベーション膜の機能を両方兼ね備えることができる。   As shown in FIG. 7 (first configuration example), an n-type diffusion layer 102 doped with a group V element such as phosphorus on the light-receiving surface side (upper side, first surface in the figure) of a p-type silicon substrate 101. Is formed. A pn junction is formed between the silicon substrate 101 and the diffusion layer 102. On the surface of the diffusion layer 102, a light receiving surface antireflection film 103 such as a silicon nitride (SiN) film, and a first electrode 105 (light receiving surface side electrode, first surface electrode, upper surface electrode) using silver (Ag) or the like. , A light receiving surface electrode) is formed. The light receiving surface antireflection film 103 may also have a function as a light receiving surface passivation film. By using the SiN film, both functions of the light receiving surface antireflection film and the light receiving surface passivation film can be provided.

尚、本実施の形態の太陽電池素子は、受光面反射防止膜103を有していても有していなくてもよい。また、太陽電池素子の受光面には、表面での反射率を低減するため、凹凸構造(テクスチャー構造)が形成されることが好ましいが、本実施の形態の太陽電池素子は、テクスチャー構造を有していても有していなくてもよい。   Note that the solar cell element of the present embodiment may or may not have the light-receiving surface antireflection film 103. In addition, the light receiving surface of the solar cell element is preferably formed with a concavo-convex structure (texture structure) in order to reduce the reflectance on the surface, but the solar cell element of the present embodiment has a texture structure. It may or may not have.

一方、シリコン基板101の裏面側(図中下側、第2面、裏面)には、アルミニウム、ボロン等のIII族の元素をドーピングした層であるBSF(Back Surface Field)層104が形成される。ただし、本実施の形態の太陽電池素子は、BSF層104を有していても有していなくてもよい。   On the other hand, a BSF (Back Surface Field) layer 104, which is a layer doped with a group III element such as aluminum or boron, is formed on the back side (lower side, second side, back side in the figure) of the silicon substrate 101. . However, the solar cell element of this embodiment may or may not have the BSF layer 104.

このシリコン基板101の裏面側には、BSF層104(BSF層104が無い場合はシリコン基板101の裏面側の表面)とコンタクト(電気的接続)をとるために、アルミニウム等で構成される第2電極106(裏面側の電極、第2面電極、裏面電極)が形成されている。   A second surface made of aluminum or the like is used on the back surface side of the silicon substrate 101 to make contact (electrical connection) with the BSF layer 104 (or the surface on the back surface side of the silicon substrate 101 when the BSF layer 104 is not provided). Electrodes 106 (back side electrode, second side electrode, back side electrode) are formed.

更に、図7(第1構成例)においては、BSF層104(BSF層104が無い場合はシリコン基板101の裏面側の表面)と第2電極106とが電気的に接続されているコンタクト領域(開口部OA)を除いた部分に、酸化アルミニウム及び酸化ニオブを含むパッシベーション膜(パッシベーション層)107が形成されている。本実施の形態のパッシベーション膜107は、負の固定電荷を有することが可能である。この固定電荷により、光によりシリコン基板101内で発生したキャリアのうち少数キャリアである電子を表面側へ跳ね返す。このため、短絡電流が増加し、光電変換効率が向上することが期待される。   Further, in FIG. 7 (first configuration example), a contact region (a surface on the back side of the silicon substrate 101 when the BSF layer 104 is not provided) and the second electrode 106 are electrically connected ( A passivation film (passivation layer) 107 containing aluminum oxide and niobium oxide is formed in a portion excluding the opening OA). The passivation film 107 of this embodiment can have a negative fixed charge. With this fixed charge, electrons which are minority carriers among the carriers generated in the silicon substrate 101 by light are bounced back to the surface side. For this reason, a short circuit current increases and it is anticipated that photoelectric conversion efficiency will improve.

次いで、図8に示す第2構成例について説明する。図7(第1構成例)においては、第2電極106は、コンタクト領域(開口部OA)とパッシベーション膜107上の全面に形成されているが、図8(第2構成例)においては、コンタクト領域(開口部OA)のみに第2電極106が形成されている。コンタクト領域(開口部OA)とパッシベーション膜107上の一部のみに第2電極106が形成される構成としてもよい。図8に示す構成の太陽電池素子であっても図7(第1構成例)と同様の効果を得ることができる。   Next, a second configuration example shown in FIG. 8 will be described. In FIG. 7 (first configuration example), the second electrode 106 is formed over the entire surface of the contact region (opening OA) and the passivation film 107. In FIG. The second electrode 106 is formed only in the region (opening OA). The second electrode 106 may be formed only in part on the contact region (opening OA) and the passivation film 107. Even with the solar cell element having the configuration shown in FIG. 8, the same effect as that of FIG. 7 (first configuration example) can be obtained.

次いで、図9に示す第3構成例について説明する。図9に示す第3構成例においては、BSF層104が、第2電極106とのコンタクト領域(開口部OA部)を含む裏面側の一部のみに形成され、図7(第1構成例)のように、裏面側の全面に形成されていない。このような構成の太陽電池素子(図9)であっても、図7(第1構成例)と同様の効果を得ることができる。また、図9の第3構成例の太陽電池素子によれば、BSF層104、つまり、アルミニウム、ボロン等のIII族の元素をドーピングすることでシリコン基板101よりも不純物が高い濃度でドーピングされた領域が少ないため、図7(第1構成例)より高い光電変換効率を得ることが可能である。   Next, a third configuration example shown in FIG. 9 will be described. In the third configuration example shown in FIG. 9, the BSF layer 104 is formed only on a part of the back surface side including the contact region (opening OA portion) with the second electrode 106, and FIG. 7 (first configuration example). Thus, it is not formed on the entire back surface side. Even with the solar cell element having such a configuration (FIG. 9), the same effect as in FIG. 7 (first configuration example) can be obtained. Further, according to the solar cell element of the third configuration example of FIG. 9, the BSF layer 104, that is, the impurity is doped at a higher concentration than the silicon substrate 101 by doping a group III element such as aluminum or boron. Since there are few areas, it is possible to obtain higher photoelectric conversion efficiency than that in FIG. 7 (first configuration example).

次いで、図10に示す第4構成例について説明する。図9(第3構成例)においては、第2電極106は、コンタクト領域(開口部OA)とパッシベーション膜107上の全面に形成されているが、図10(第4構成例)においては、コンタクト領域(開口部OA)のみに第2電極106が形成されている。コンタクト領域(開口部OA)とパッシベーション膜107上の一部のみに第2電極106が形成される構成としてもよい。図10に示す構成の太陽電池素子であっても図9(第3構成例)と同様の効果を得ることができる。   Next, a fourth configuration example shown in FIG. 10 will be described. In FIG. 9 (third configuration example), the second electrode 106 is formed on the entire surface of the contact region (opening OA) and the passivation film 107, but in FIG. 10 (fourth configuration example), the contact is formed. The second electrode 106 is formed only in the region (opening OA). The second electrode 106 may be formed only in part on the contact region (opening OA) and the passivation film 107. Even with the solar cell element having the configuration shown in FIG. 10, the same effect as in FIG. 9 (third configuration example) can be obtained.

また、第2電極106を印刷法で付与し、高温で焼成することにより裏面側の全面に形成した場合は、降温過程で上に凸の反りが発生しやすい。このような反りは、太陽電池素子の破損を引き起こす場合があり、歩留りが低下する恐れがある。また、シリコン基板の薄膜化が進む際には反りの問題が大きくなる。この反りの原因は、シリコン基板よりも金属(例えばアルミニウム)よりなる第2電極106の熱膨張係数が大きく、その分、降温過程での収縮が大きいため、応力が発生することにある。   In addition, when the second electrode 106 is applied by a printing method and baked at a high temperature to form the entire surface on the back surface side, a convex warpage tends to occur in the temperature lowering process. Such warpage may cause damage to the solar cell element, which may reduce the yield. Further, the problem of warpage increases as the silicon substrate becomes thinner. The cause of this warp is that stress is generated because the thermal expansion coefficient of the second electrode 106 made of metal (for example, aluminum) is larger than that of the silicon substrate, and the shrinkage in the temperature lowering process is correspondingly large.

以上のことから、図8(第2構成例)及び図10(第4構成例)のように第2電極106を裏面側の全面に形成しない方が、電極構造が上下で対称になり易く、熱膨張係数の差による応力が発生しにくいため好ましい。ただし、その場合は、別途反射層を設けることが好ましい。   From the above, when the second electrode 106 is not formed on the entire back surface side as shown in FIG. 8 (second configuration example) and FIG. 10 (fourth configuration example), the electrode structure tends to be symmetrical vertically. This is preferable because stress due to the difference in thermal expansion coefficient is not easily generated. However, in that case, it is preferable to provide a separate reflective layer.

<太陽電池素子の製法説明>
次に、上記構成をもつ本実施の形態の太陽電池素子(図7〜図10)の製造方法の一例について説明する。ただし、本実施の形態は、以下に述べる方法で作製した太陽電池素子に限るものではない。
<Description of manufacturing method of solar cell element>
Next, an example of a method for manufacturing the solar cell element (FIGS. 7 to 10) of the present embodiment having the above-described configuration will be described. However, the present embodiment is not limited to the solar cell element manufactured by the method described below.

まず、図7等に示すシリコン基板101の表面にテクスチャー構造を形成する。テクスチャー構造の形成は、シリコン基板101の両面に形成しても、片面(受光面側)のみに形成してもよい。テクスチャー構造を形成するため、まず、シリコン基板101を加熱した水酸化カリウム又は水酸化ナトリウムの溶液に浸して、シリコン基板101のダメージ層を除去する。その後、水酸化カリウム及びイソプロピルアルコールを主成分とする溶液に浸すことで、シリコン基板101の両面又は片面(受光面側)にテクスチャー構造を形成する。尚、上述したとおり、本実施の形態の太陽電池素子は、テクスチャー構造を有していても有していなくてもよいため、本工程は省略してもよい。   First, a texture structure is formed on the surface of the silicon substrate 101 shown in FIG. The texture structure may be formed on both sides of the silicon substrate 101 or only on one side (light receiving side). In order to form a texture structure, first, the damaged layer of the silicon substrate 101 is removed by immersing the silicon substrate 101 in a heated potassium hydroxide or sodium hydroxide solution. Then, a texture structure is formed on both surfaces or one surface (light receiving surface side) of the silicon substrate 101 by dipping in a solution containing potassium hydroxide and isopropyl alcohol as main components. In addition, as above-mentioned, since the solar cell element of this Embodiment does not have to have a texture structure, you may abbreviate | omit this process.

続いて、シリコン基板101を塩酸、フッ酸等の溶液で洗浄した後、シリコン基板101にオキシ塩化リン(POCl)等の熱拡散により、拡散層102としてリン拡散層(n層)を形成する。リン拡散層は、例えば、リンを含んだ塗布型のドーピング材の溶液をシリコン基板101に付与し、熱処理をすることによって形成できる。熱処理後、表面に形成されたリンガラスの層をフッ酸等の酸で除去することで、拡散層102としてリン拡散層(n層)が形成される。リン拡散層を形成する方法は特に制限されない。リン拡散層は、シリコン基板101の表面からの深さが0.2μm〜0.5μmの範囲、シート抵抗が40Ω/□〜100Ω/□(ohm/square)の範囲となるように形成することが好ましい。Subsequently, after the silicon substrate 101 is washed with a solution of hydrochloric acid, hydrofluoric acid, etc., a phosphorus diffusion layer (n + layer) is formed as the diffusion layer 102 by thermal diffusion of phosphorus oxychloride (POCl 3 ) or the like on the silicon substrate 101. To do. The phosphorus diffusion layer can be formed, for example, by applying a coating-type doping material solution containing phosphorus to the silicon substrate 101 and performing heat treatment. After the heat treatment, the phosphorous glass layer formed on the surface is removed with an acid such as hydrofluoric acid, whereby a phosphorous diffusion layer (n + layer) is formed as the diffusion layer 102. The method for forming the phosphorus diffusion layer is not particularly limited. The phosphorus diffusion layer may be formed so that the depth from the surface of the silicon substrate 101 is in the range of 0.2 μm to 0.5 μm, and the sheet resistance is in the range of 40Ω / □ to 100Ω / □ (ohm / square). preferable.

その後、シリコン基板101の裏面側にボロン、アルミニウム等を含んだ塗布型のドーピング材の溶液を付与し、熱処理を行うことで、裏面側のBSF層104を形成する。付与には、スクリーン印刷、インクジェット、ディスペンス、スピンコート等の方法を用いることができる。熱処理後、裏面に形成されたボロンガラス、アルミニウム等の層をフッ酸、塩酸等によって除去することでBSF層104が形成される。BSF層104を形成する方法は特に制限されない。好ましくは、BSF層104は、ボロン、アルミニウム等の濃度の範囲が1018cm−3〜1022cm−3となるように形成されることが好ましく、ドット状又はライン状にBSF層104を形成することが好ましい。尚、本実施の形態の太陽電池素子は、BSF層104を有していても有していなくてもよいため、本工程は省略してもよい。Thereafter, a BSF layer 104 on the back surface side is formed by applying a coating-type doping material solution containing boron, aluminum or the like to the back surface side of the silicon substrate 101 and performing heat treatment. For the application, methods such as screen printing, inkjet, dispensing, spin coating and the like can be used. After the heat treatment, the BSF layer 104 is formed by removing a layer of boron glass, aluminum, or the like formed on the back surface with hydrofluoric acid, hydrochloric acid, or the like. The method for forming the BSF layer 104 is not particularly limited. Preferably, the BSF layer 104 is preferably formed such that the concentration range of boron, aluminum, or the like is 10 18 cm −3 to 10 22 cm −3, and the BSF layer 104 is formed in a dot shape or a line shape It is preferable to do. Note that the solar cell element of the present embodiment may or may not have the BSF layer 104, and thus this step may be omitted.

また、受光面の拡散層102、及び裏面のBSF層104とも塗布型のドーピング材の溶液を用いて形成する場合は、上記のドーピング材の溶液をそれぞれシリコン基板101の両面に付与して、拡散層102としてのリン拡散層(n層)とBSF層104の形成を一括して行い、その後、表面に形成したリンガラス、ボロンガラス等を一括して除去してもよい。Further, when the diffusion layer 102 on the light-receiving surface and the BSF layer 104 on the back surface are formed using a coating-type doping material solution, the above-described doping material solution is applied to both sides of the silicon substrate 101 to diffuse. The phosphorous diffusion layer (n + layer) and the BSF layer 104 as the layer 102 may be formed in a lump, and then phosphorous glass, boron glass, or the like formed on the surface may be removed all at once.

その後、拡散層102の上に、受光面反射防止膜103である窒化ケイ素膜を形成する。受光面反射防止膜103を形成する方法は特に制限されない。受光面反射防止膜103は、厚さが50〜100nmの範囲、屈折率が1.9〜2.2の範囲となるように形成することが好ましい。受光面反射防止膜103は、窒化ケイ素膜に限られず、酸化ケイ素膜、酸化アルミニウム膜、酸化チタン膜等であってもよい。窒化イ素膜等の表面反射防止膜103は、プラズマCVD、熱CVD等の方法で作製でき、350℃〜500℃の温度範囲で形成可能なプラズマCVDで作製することが好ましい。 Thereafter, a silicon nitride film as the light-receiving surface antireflection film 103 is formed on the diffusion layer 102. The method for forming the light receiving surface antireflection film 103 is not particularly limited. The light-receiving surface antireflection film 103 is preferably formed to have a thickness in the range of 50 to 100 nm and a refractive index in the range of 1.9 to 2.2. The light-receiving surface antireflection film 103 is not limited to a silicon nitride film, and may be a silicon oxide film, an aluminum oxide film, a titanium oxide film, or the like. Nitride silicic Motomaku such surface reflection preventing film 103 of a plasma CVD, can be manufactured by a method such as thermal CVD, it is preferably prepared in a form capable of plasma CVD at a temperature range of 350 ° C. to 500 ° C..

次に、シリコン基板101の裏面側にパッシベーション膜107を形成する。パッシベーション膜107は、酸化アルミニウムと酸化ニオブを含み、例えば、熱処理(焼成)により酸化アルミニウムが得られる有機金属分解塗布型材料に代表される酸化アルミニウム前駆体と、熱処理(焼成)により酸化ニオブが得られる市販の有機金属分解塗布型材料に代表される酸化ニオブ前駆体とを含む材料(パッシベーション材料)を付与し、熱処理(焼成)することにより形成される。   Next, a passivation film 107 is formed on the back side of the silicon substrate 101. The passivation film 107 contains aluminum oxide and niobium oxide. For example, an aluminum oxide precursor typified by an organometallic decomposition coating material from which aluminum oxide can be obtained by heat treatment (firing), and niobium oxide obtained by heat treatment (firing). It is formed by applying a material (passivation material) containing a niobium oxide precursor typified by a commercially available organometallic decomposition coating type material and heat-treating (firing).

パッシベーション膜107の形成は、例えば、以下のようにして行うことができる。上記の塗布型材料を、濃度0.049質量%のフッ酸で自然酸化膜をあらかじめ除去した725μm厚で8インチ(20.32cm)のp型のシリコン基板(8Ωcm〜12Ωcm)の片面に回転塗布し、ホットプレート上において120℃、3分間のプリベークを行う。その後、窒素雰囲気下で、650℃、1時間の熱処理を行う。この場合、酸化アルミニウム及び酸化ニオブを含むパッシベーション膜が得られる。上記のような方法で形成されるパッシベーション膜107のエリプソメーターにより測定される膜厚は、通常は数十nm程度である。   The formation of the passivation film 107 can be performed as follows, for example. The above coating material is spin-coated on one side of a 725 μm thick 8-inch (20.32 cm) p-type silicon substrate (8 Ωcm to 12 Ωcm) from which a natural oxide film has been previously removed with hydrofluoric acid having a concentration of 0.049% by mass. Then, pre-baking is performed on a hot plate at 120 ° C. for 3 minutes. Thereafter, heat treatment is performed at 650 ° C. for 1 hour in a nitrogen atmosphere. In this case, a passivation film containing aluminum oxide and niobium oxide is obtained. The thickness of the passivation film 107 formed by the above method is usually about several tens of nanometers as measured by an ellipsometer.

上記の塗布型材料は、スクリーン印刷、オフセット印刷、インクジェットによる印刷、ディスペンサーによる印刷等の方法により、コンタクト領域(開口部OA)を含んだ所定のパターンに付与される。尚、上記の塗布型材料は、付与後、80℃〜180℃の範囲でプリベークして溶媒を蒸発させた後、窒素雰囲気下又は空気中において、600℃〜1000℃で、30分〜3時間程度の熱処理(アニール)を施し、パッシベーション膜107(酸化物の膜)とすることが好ましい。   The coating material is applied to a predetermined pattern including the contact region (opening OA) by a method such as screen printing, offset printing, ink jet printing, or dispenser printing. In addition, after apply | coating the said coating type material, after pre-baking in the range of 80 to 180 degreeC and evaporating a solvent, in nitrogen atmosphere or in air, it is 600 to 1000 degreeC, and 30 minutes to 3 hours. It is preferable to perform a degree of heat treatment (annealing) to form a passivation film 107 (oxide film).

更に、開口部(コンタクト用の孔)OAは、BSF層104上に、ドット状又はライン状に形成することが好ましい。   Furthermore, the opening (contact hole) OA is preferably formed on the BSF layer 104 in a dot shape or a line shape.

上記の太陽電池素子に用いるパッシベーション膜107としては、酸化ニオブと酸化アルミニウムの質量比(酸化ニオブ/酸化アルミニウム)が30/70〜90/10であることが好ましく、30/70〜80/20であることがより好ましく、35/65〜70/30であることが更に好ましい。これにより、負の固定電荷を安定化させることができる。また、酸化ニオブと酸化アルミニウムの質量比が50/50〜90/10であることが、キャリアライフタイムの向上と負の固定電荷を両立できるという観点から好ましい。   As the passivation film 107 used for the above solar cell element, the mass ratio of niobium oxide to aluminum oxide (niobium oxide / aluminum oxide) is preferably 30/70 to 90/10, and 30/70 to 80/20. More preferably, it is more preferably 35/65 to 70/30. Thereby, the negative fixed charge can be stabilized. In addition, it is preferable that the mass ratio of niobium oxide and aluminum oxide is 50/50 to 90/10 from the viewpoint that both improvement of carrier lifetime and negative fixed charge can be achieved.

更にパッシベーション膜107において、酸化ニオブ及び酸化アルミニウムの総含有率が80質量%以上であることが好ましく、90質量%以上であることがより好ましい。   Further, in the passivation film 107, the total content of niobium oxide and aluminum oxide is preferably 80% by mass or more, and more preferably 90% by mass or more.

次に、受光面側の電極である第1電極105を形成する。第1電極105は、受光面反射防止膜103上に銀(Ag)を主成分とするペーストをスクリーン印刷により形成し、熱処理(ファイアースルー)を行うことで形成される。第1電極105の形状は、任意の形状でよく、例えば、フィンガー電極とバスバー電極とからなる周知の形状でよい。   Next, the first electrode 105 which is an electrode on the light receiving surface side is formed. The first electrode 105 is formed by forming a paste mainly composed of silver (Ag) on the light-receiving surface antireflection film 103 by screen printing and performing a heat treatment (fire through). The shape of the 1st electrode 105 may be arbitrary shapes, for example, may be a known shape which consists of a finger electrode and a bus-bar electrode.

そして、裏面側の電極である第2電極106を形成する。第2電極106は、アルミニウムを主成分とするペーストをスクリーン印刷又はディスペンサーを用いて付与し、それを熱処理することによって形成できる。また、第2電極106の形状は、BSF層104の形状と同じ形状、裏面側の全面を覆う形状、櫛型状、格子状等であることが好ましい。尚、受光面側の電極である第1電極105と第2電極106とを形成するためのペーストの印刷をそれぞれ先に行って、その後、熱処理(ファイアスルー)することにより第1電極105と第2電極106とを一括して形成してもよい。   And the 2nd electrode 106 which is an electrode of the back side is formed. The second electrode 106 can be formed by applying a paste containing aluminum as a main component using screen printing or a dispenser and heat-treating it. The shape of the second electrode 106 is preferably the same shape as the shape of the BSF layer 104, a shape covering the entire back surface, a comb shape, a lattice shape, or the like. The paste for forming the first electrode 105 and the second electrode 106, which are the electrodes on the light receiving surface side, is first printed, and then heat-treated (fire-through), whereby the first electrode 105 and the second electrode 106 are formed. The two electrodes 106 may be formed together.

また第2電極106の形成にアルミニウム(Al)を主成分とするペーストを用いることにより、アルミニウムがドーパントとして拡散して、自己整合で第2電極106とシリコン基板101との接触部にBSF層104が形成される。尚、先に述べたように、シリコン基板101の裏面側にボロン、アルミニウム等を含んだ塗布型のドーピング材の溶液を付与し、それを熱処理することで別途BSF層104を形成してもよい。   Further, by using a paste containing aluminum (Al) as a main component for forming the second electrode 106, aluminum diffuses as a dopant, and the BSF layer 104 is formed in a contact portion between the second electrode 106 and the silicon substrate 101 in a self-alignment manner. Is formed. As described above, the BSF layer 104 may be separately formed by applying a coating-type doping material solution containing boron, aluminum, or the like to the back side of the silicon substrate 101 and heat-treating it. .

尚、上記においては、シリコン基板101にp型のシリコンを用いた構造例及び製法例を示したが、シリコン基板101としてn型のシリコン基板も用いることができる。この場合は、拡散層102は、ボロン等のIII族の元素をドーピングした層で形成され、BSF層104は、リン等のV族の元素をドーピングして形成される。ただし、この場合は、負の固定電荷により界面に形成された反転層と裏面側の金属が接触した部分を通じて漏れ電流が流れ、変換効率が上がりにくい場合がある点に留意すべきである。   In the above description, a structural example and a manufacturing method example using p-type silicon for the silicon substrate 101 are shown, but an n-type silicon substrate can also be used as the silicon substrate 101. In this case, the diffusion layer 102 is formed by a layer doped with a group III element such as boron, and the BSF layer 104 is formed by doping a group V element such as phosphorus. However, it should be noted that in this case, a leakage current flows through a portion where the inversion layer formed at the interface due to the negative fixed charge and the metal on the back surface are in contact with each other, and the conversion efficiency may be difficult to increase.

またn型のシリコン基板を用いる場合には、酸化ニオブ及び酸化アルミニウムを含むパッシベーション膜107を図11に示すように受光面側に用いることができる。図11は、本実施の形態の受光面パッシベーション膜を用いた太陽電池素子の構成例を示す断面図である。   When an n-type silicon substrate is used, a passivation film 107 containing niobium oxide and aluminum oxide can be used on the light receiving surface side as shown in FIG. FIG. 11 is a cross-sectional view illustrating a configuration example of a solar cell element using the light-receiving surface passivation film of the present embodiment.

この場合、受光面側の拡散層102は、ボロンをドーピングしてp型となっており、生成したキャリアのうち正孔を受光面側に、電子を裏面側に集める。このために、負の固定電荷をもったパッシベーション膜107が受光面側にあることが好ましい。   In this case, the diffusion layer 102 on the light receiving surface side is p-type doped with boron, and collects holes of the generated carriers on the light receiving surface side and electrons on the back surface side. For this reason, it is preferable that the passivation film 107 having a negative fixed charge is on the light receiving surface side.

酸化ニオブ及び酸化アルミニウムを含むパッシベーション膜の上には、更にCVD等によりSiN等で構成される反射防止膜を形成してもよい。   On the passivation film containing niobium oxide and aluminum oxide, an antireflection film made of SiN or the like may be further formed by CVD or the like.

以下、本実施の形態の参考実施例及び参考比較例を参照しながら詳細に説明する。   Hereafter, it demonstrates in detail, referring the reference Example and reference comparative example of this Embodiment.

[参考実施例1−1]
熱処理(焼成)により酸化アルミニウム(Al)が得られる市販の有機金属分解塗布型材料[株式会社高純度化学研究所SYM−AL04、濃度2.3質量%]を3.0gと、熱処理(焼成)により酸化ニオブ(Nb)が得られる市販の有機金属分解塗布型材料[株式会社高純度化学研究所Nb−05、濃度5質量%]を3.0gとを混合して、塗布型材料であるパッシベーション材料(a−1)を調製した。
[Reference Example 1-1]
3.0 g of a commercially available organometallic decomposition coating type material [High Purity Chemical Laboratory, Ltd. SYM-AL04, concentration 2.3 mass%] from which aluminum oxide (Al 2 O 3 ) can be obtained by heat treatment (firing), and heat treatment A commercially available organometallic decomposition coating-type material [High Purity Chemical Laboratory Nb-05, concentration 5% by mass] from which niobium oxide (Nb 2 O 5 ) is obtained by (baking) is mixed with 3.0 g, A passivation material (a-1) which is a coating type material was prepared.

パッシベーション材料(a−1)を、濃度0.049質量%のフッ酸で自然酸化膜をあらかじめ除去した725μm厚で8インチのp型のシリコン基板(8Ωcm〜12Ωcm)の片面に回転塗布し、ホットプレート上において120℃、3分間のプリベークを行った。その後、窒素雰囲気下で、650℃、1時間の熱処理(焼成)を行い、酸化アルミニウム及び酸化ニオブを含むパッシベーション膜[酸化ニオブ/酸化アルミニウム=68/32(質量比)]を得た。エリプソメーターにより膜厚を測定したところ43nmであった。パッシベーション膜のFT−IRを測定したところ、1200cm−1付近に、ごくわずかのアルキル基に起因するピークが見られた。The passivation material (a-1) was spin-coated on one side of a 725 μm-thick 8-inch p-type silicon substrate (8 Ωcm to 12 Ωcm) from which a natural oxide film was previously removed with hydrofluoric acid having a concentration of 0.049% by mass. Pre-baking was performed on the plate at 120 ° C. for 3 minutes. Thereafter, a heat treatment (firing) was performed at 650 ° C. for 1 hour in a nitrogen atmosphere to obtain a passivation film containing nitric oxide and niobium oxide [niobium oxide / aluminum oxide = 68/32 (mass ratio)]. It was 43 nm when the film thickness was measured with the ellipsometer. When the FT-IR of the passivation film was measured, a peak due to a very few alkyl groups was observed in the vicinity of 1200 cm −1 .

次に、上記のパッシベーション膜上に、メタルマスクを介して、直径1mmのアルミ電極を複数個蒸着により形成し、MIS(Metal−Insulator−Semiconductor;金属−絶縁体−半導体)構造のキャパシタを作製した。このキャパシタの静電容量の電圧依存性(C−V特性)を市販のプローバー及びLCRメーター(HP社、4275A)により測定した。その結果、フラットバンド電圧(Vfb)が理想値の−0.81Vから、+0.32Vにシフトしたことが判明した。このシフト量からパッシベーション材料(a−1)から得たパッシベーション膜は、固定電荷密度(Nf)が−7.4×1011cm−2で負の固定電荷を示すことがわかった。Next, a plurality of aluminum electrodes having a diameter of 1 mm were formed by vapor deposition on the passivation film through a metal mask, and a capacitor having a MIS (Metal-Insulator-Semiconductor) structure was produced. . The voltage dependence (CV characteristics) of the capacitance of this capacitor was measured with a commercially available prober and LCR meter (HP, 4275A). As a result, it was found that the flat band voltage (Vfb) shifted from an ideal value of −0.81 V to +0.32 V. From this shift amount, it was found that the passivation film obtained from the passivation material (a-1) showed a negative fixed charge with a fixed charge density (Nf) of −7.4 × 10 11 cm −2 .

上記と同様に、パッシベーション材料(a−1)を8インチのp型のシリコン基板の両面に付与し、プリベークして、窒素雰囲気下で、650℃、1時間の熱処理(焼成)を行い、シリコン基板の両面がパッシベーション膜で覆われたサンプルを作製した。このサンプルのキャリアライフタイムをライフタイム測定装置(株式会社コベルコ科研、RTA−540)により行った。その結果、キャリアライフタイムは530μsであった。比較のために、同じ8インチのp型のシリコン基板をヨウ素パッシベーション法によりパッシベーションして測定したところ、キャリアライフタイムは、1100μsであった。   In the same manner as described above, the passivation material (a-1) is applied to both sides of an 8-inch p-type silicon substrate, pre-baked, and subjected to heat treatment (baking) at 650 ° C. for 1 hour in a nitrogen atmosphere. A sample in which both surfaces of the substrate were covered with a passivation film was produced. The carrier lifetime of this sample was measured by a lifetime measuring device (Kobelco Research Institute, RTA-540). As a result, the carrier lifetime was 530 μs. For comparison, the same 8-inch p-type silicon substrate was measured by passivation using the iodine passivation method, and the carrier lifetime was 1100 μs.

以上のことから、パッシベーション材料(a−1)を熱処理(焼成)して得られるパッシベーション膜は、ある程度のパッシベーション性能を示し、負の固定電荷を示すことがわかった。   From the above, it was found that the passivation film obtained by heat-treating (sintering) the passivation material (a-1) exhibits a certain degree of passivation performance and a negative fixed charge.

[参考実施例1−2]
参考実施例1−1と同様に、熱処理(焼成)により酸化アルミニウム(Al)が得られる市販の有機金属分解塗布型材料[株式会社高純度化学研究所、SYM−AL04、濃度2.3質量%]と、熱処理(焼成)により酸化ニオブ(Nb)が得られる市販の有機金属分解塗布型材料[株式会社高純度化学研究所、Nb−05、濃度5質量%]とを、比率を変えて混合して、表4に示すパッシベーション材料(a−2)〜(a−7)を調製した。
[Reference Example 1-2]
As in Reference Example 1-1, a commercially available organometallic decomposition coating material from which aluminum oxide (Al 2 O 3 ) can be obtained by heat treatment (firing) [High Purity Chemical Laboratory, SYM-AL04, concentration 2. 3 mass%] and a commercially available organometallic decomposable coating material from which niobium oxide (Nb 2 O 5 ) is obtained by heat treatment (firing) [High Purity Chemical Laboratory, Nb-05, concentration 5 mass%] , And changing the ratio, the passivation materials (a-2) to (a-7) shown in Table 4 were prepared.

参考実施例1−1と同様に、パッシベーション材料(a−2)〜(a−7)のそれぞれをp型のシリコン基板の片面に付与し、熱処理(焼成)してパッシベーション膜を作製した。得られたパッシベーション膜の静電容量の電圧依存性を測定し、そこから固定電荷密度を算出した。   Similarly to Reference Example 1-1, each of the passivation materials (a-2) to (a-7) was applied to one side of a p-type silicon substrate, and heat treatment (firing) was performed to produce a passivation film. The voltage dependence of the capacitance of the obtained passivation film was measured, and the fixed charge density was calculated therefrom.

更に、参考実施例1−1と同様に、パッシベーション材料をp型のシリコン基板の両面に付与し、熱処理(焼成)して得たサンプルを用いて、キャリアライフタイムを測定した。得られた結果を表4にまとめた。   Further, in the same manner as in Reference Example 1-1, the carrier lifetime was measured using a sample obtained by applying a passivation material to both sides of a p-type silicon substrate and performing heat treatment (firing). The results obtained are summarized in Table 4.

熱処理(焼成)後の酸化ニオブ/酸化アルミニウムの比率(質量比)により、異なる結果ではあるが、パッシベーション材料(a−2)〜(a−7)については、熱処理(焼成)後にキャリアライフタイムもある程度の値を示していることから、パッシベーション膜として機能することが示唆された。パッシベーション材料(a−2)〜(a−7)から得られるパッシベーション膜は、いずれも安定的に負の固定電荷を示し、p型のシリコン基板のパッシベーションとしても好適に用いることができることが分かった。   Although the results are different depending on the ratio (mass ratio) of niobium oxide / aluminum oxide after heat treatment (firing), the passivation materials (a-2) to (a-7) also have a carrier lifetime after heat treatment (firing). Since it showed a certain value, it was suggested that it functions as a passivation film. It was found that all of the passivation films obtained from the passivation materials (a-2) to (a-7) stably show negative fixed charges and can be suitably used as a passivation for a p-type silicon substrate. .

[参考実施例1−3]
市販のニオブ(V)エトキシド(構造式:Nb(OC、分子量:318.21)を3.18g(0.010mol)と、市販のアルミニウムトリイソプロポキシド(構造式:Al(OCH(CH、分子量:204.25)を1.02g(0.005mol)とをシクロヘキサン80gに溶解して、濃度5質量%のパッシベーション材料(c−1)を調製した。
[Reference Example 1-3]
3.18 g (0.010 mol) of commercially available niobium (V) ethoxide (structural formula: Nb (OC 2 H 5 ) 5 , molecular weight: 318.21) and commercially available aluminum triisopropoxide (structural formula: Al ( A passivation material (c-1) having a concentration of 5% by mass was prepared by dissolving 1.02 g (0.005 mol) of OCH (CH 3 ) 2 ) 3 , molecular weight: 204.25) in 80 g of cyclohexane.

パッシベーション材料(c−1)を、濃度0.049質量%のフッ酸で自然酸化膜をあらかじめ除去した725μm厚で8インチのp型のシリコン基板(8Ωcm〜12Ωcm)の片面に回転塗布し、ホットプレート上において120℃、3分間のプリベークをした。その後、窒素雰囲気下で、600℃、1時間の熱処理(焼成)を行い、酸化アルミニウム及び酸化ニオブを含むパッシベーション膜を得た。エリプソメーターにより膜厚を測定したところ50nmであった。元素分析の結果、Nb/Al/C=81/14/5(質量%)であることがわかった。パッシベーション膜のFT−IRを測定したところ、1200cm−1付近に、ごくわずかのアルキル基に起因するピークが見られた。The passivation material (c-1) is spin-coated on one side of a 725 μm-thick 8-inch p-type silicon substrate (8 Ωcm to 12 Ωcm) from which a natural oxide film has been previously removed with hydrofluoric acid having a concentration of 0.049% by mass. Pre-baking was performed at 120 ° C. for 3 minutes on the plate. Thereafter, heat treatment (baking) was performed at 600 ° C. for 1 hour in a nitrogen atmosphere to obtain a passivation film containing aluminum oxide and niobium oxide. When the film thickness was measured with an ellipsometer, it was 50 nm. As a result of elemental analysis, it was found that Nb / Al / C = 81/14/5 (mass%). When the FT-IR of the passivation film was measured, a peak due to a very few alkyl groups was observed in the vicinity of 1200 cm −1 .

次に、上記のパッシベーション膜上に、メタルマスクを介して、直径1mmのアルミ電極を複数個蒸着により形成し、MIS(Metal−Insulator−Semiconductor;金属−絶縁体−半導体)構造のキャパシタを作製した。このキャパシタの静電容量の電圧依存性(C−V特性)を市販のプローバー及びLCRメーター(HP社、4275A)により測定した。その結果、フラットバンド電圧(Vfb)が理想値の−0.81Vから、+4.7Vにシフトしたことが判明した。このシフト量からパッシベーション材料(c−1)から得たパッシベーション膜は、固定電荷密度(Nf)が−3.2×1012cm−2で負の固定電荷を示すことがわかった。Next, a plurality of aluminum electrodes having a diameter of 1 mm were formed by vapor deposition on the passivation film through a metal mask, and a capacitor having a MIS (Metal-Insulator-Semiconductor) structure was produced. . The voltage dependence (CV characteristics) of the capacitance of this capacitor was measured with a commercially available prober and LCR meter (HP, 4275A). As a result, it was found that the flat band voltage (Vfb) was shifted from an ideal value of −0.81 V to +4.7 V. From this shift amount, it was found that the passivation film obtained from the passivation material (c-1) had a fixed charge density (Nf) of −3.2 × 10 12 cm −2 and a negative fixed charge.

上記と同様に、パッシベーション材料(c−1)を8インチのp型のシリコン基板の両面に付与し、プリベークして、窒素雰囲気下で、600℃、1時間の熱処理(焼成)を行い、シリコン基板の両面がパッシベーション膜で覆われたサンプルを作製した。このサンプルのキャリアライフタイムをライフタイム測定装置(株式会社コベルコ科研、RTA−540)により行った。その結果、キャリアライフタイムは330μsであった。比較のために、同じ8インチのp型のシリコン基板をヨウ素パッシベーション法によりパッシベーションして測定したところ、キャリアライフタイムは、1100μsであった。   In the same manner as above, the passivation material (c-1) is applied to both sides of an 8-inch p-type silicon substrate, pre-baked, and subjected to heat treatment (baking) at 600 ° C. for 1 hour in a nitrogen atmosphere to obtain silicon. A sample in which both surfaces of the substrate were covered with a passivation film was produced. The carrier lifetime of this sample was measured by a lifetime measuring device (Kobelco Research Institute, RTA-540). As a result, the carrier lifetime was 330 μs. For comparison, the same 8-inch p-type silicon substrate was measured by passivation using the iodine passivation method, and the carrier lifetime was 1100 μs.

以上のことから、パッシベーション材料(c−1)を熱処理(焼成)して得られるパッシベーション膜は、ある程度のパッシベーション性能を示し、負の固定電荷を示すことがわかった。   From the above, it was found that the passivation film obtained by heat-treating (sintering) the passivation material (c-1) showed a certain degree of passivation performance and a negative fixed charge.

[参考実施例1−4]
市販のニオブ(V)エトキシド(構造式:Nb(OC、分子量:318.21)を2.35g(0.0075mol)と、市販のアルミニウムトリイソプロポキシド(構造式:Al(OCH(CH、分子量:204.25)を1.02g(0.005mol)と、ノボラック樹脂10gとを、ジエチレングリコールモノブチルエーテルアセタート10gとシクロヘキサン10gに溶解して、パッシベーション材料(c−2)を調製した。
[Reference Example 1-4]
2.35 g (0.0075 mol) of commercially available niobium (V) ethoxide (structural formula: Nb (OC 2 H 5 ) 5 , molecular weight: 318.21) and commercially available aluminum triisopropoxide (structural formula: Al ( 1.02 g (0.005 mol) of OCH (CH 3 ) 2 ) 3 , molecular weight: 204.25) and 10 g of novolac resin were dissolved in 10 g of diethylene glycol monobutyl ether acetate and 10 g of cyclohexane to obtain a passivation material (c -2) was prepared.

パッシベーション材料(c−2)を、濃度0.049質量%のフッ酸で自然酸化膜をあらかじめ除去した725μm厚で8インチのp型のシリコン基板(8Ωcm〜12Ωcm)の片面に回転塗布し、ホットプレート上において120℃、3分間のプリベークをした。その後、窒素雰囲気下で、600℃、1時間の熱処理(焼成)を行い、酸化アルミニウム及び酸化ニオブを含むパッシベーション膜を得た。エリプソメーターにより膜厚を測定したところ14nmであった。元素分析の結果、Nb/Al/C=75/17/8(質量%)であることがわかった。パッシベーション膜のFT−IRを測定したところ、1200cm−1付近に、ごくわずかのアルキル基に起因するピークが見られた。The passivation material (c-2) is spin-coated on one side of a 725 μm-thick 8-inch p-type silicon substrate (8 Ωcm to 12 Ωcm) from which a natural oxide film has been removed in advance with a hydrofluoric acid having a concentration of 0.049% by mass. Pre-baking was performed at 120 ° C. for 3 minutes on the plate. Thereafter, heat treatment (baking) was performed at 600 ° C. for 1 hour in a nitrogen atmosphere to obtain a passivation film containing aluminum oxide and niobium oxide. When the film thickness was measured by an ellipsometer, it was 14 nm. As a result of elemental analysis, it was found that Nb / Al / C = 75/17/8 (mass%). When the FT-IR of the passivation film was measured, a peak due to a very few alkyl groups was observed in the vicinity of 1200 cm −1 .

次に、上記のパッシベーション膜上に、メタルマスクを介して、直径1mmのアルミ電極を複数個蒸着して形成し、MIS(Metal−Insulator−Semiconductor;金属−絶縁体−半導体)構造のキャパシタを作製した。このキャパシタの静電容量の電圧依存性(C−V特性)を市販のプローバー及びLCRメーター(HP社、4275A)により測定した。その結果、フラットバンド電圧(Vfb)が理想値の−0.81Vから、+0.10Vにシフトしたことが判明した。このシフト量からパッシベーション材料(c−2)から得たパッシベーション膜は、固定電荷密度(Nf)が−0.8×1011cm−2で負の固定電荷を示すことがわかった。Next, a plurality of 1 mm diameter aluminum electrodes are deposited on the passivation film through a metal mask to form a MIS (Metal-Insulator-Semiconductor) capacitor. did. The voltage dependence (CV characteristics) of the capacitance of this capacitor was measured with a commercially available prober and LCR meter (HP, 4275A). As a result, it was found that the flat band voltage (Vfb) shifted from an ideal value of −0.81 V to +0.10 V. From this shift amount, it was found that the passivation film obtained from the passivation material (c-2) showed a negative fixed charge with a fixed charge density (Nf) of −0.8 × 10 11 cm −2 .

上記と同様に、パッシベーション材料(c−2)を8インチのp型のシリコン基板の両面に付与し、プリベークして、窒素雰囲気下で、600℃、1時間の熱処理(焼成)を行い、シリコン基板の両面がパッシベーション膜で覆われたサンプルを作製した。このサンプルのキャリアライフタイムをライフタイム測定装置(株式会社コベルコ科研RTA−540)により行った。その結果、キャリアライフタイムは200μsであった。比較のために、同じ8インチのp型のシリコン基板をヨウ素パッシベーション法によりパッシベーションして測定したところ、キャリアライフタイムは、1100μsであった。 In the same manner as described above, the passivation material (c-2) is applied to both sides of an 8-inch p-type silicon substrate, pre-baked, and subjected to heat treatment (firing) at 600 ° C. for 1 hour in a nitrogen atmosphere to obtain silicon. A sample in which both surfaces of the substrate were covered with a passivation film was produced. The carrier lifetime of this sample was measured by a lifetime measuring apparatus (Kobelco Research Institute , Inc. , RTA-540). As a result, the carrier lifetime was 200 μs. For comparison, the same 8-inch p-type silicon substrate was measured by passivation using the iodine passivation method, and the carrier lifetime was 1100 μs.

以上のことから、パッシベーション材料(c−2)から得られるパッシベーション膜は、ある程度のパッシベーション性能を示し、負の固定電荷を示すことがわかった。   From the above, it was found that the passivation film obtained from the passivation material (c-2) exhibited a certain degree of passivation performance and a negative fixed charge.

[参考実施例1−5及び参考比較例1−1]
参考実施例1−1と同様に、熱処理(焼成)により酸化アルミニウム(Al)が得られる市販の有機金属分解塗布型材料[株式会社高純度化学研究所SYM−AL04、濃度2.3質量%]と、熱処理(焼成)により酸化ニオブ(Nb)が得られる市販の有機金属分解塗布型材料[株式会社高純度化学研究所Nb−05、濃度5質量%]とを、比率を変えて混合して、表5に示すパッシベーション材料(b−1)〜(b−7)を調製した。
[Reference Example 1-5 and Reference Comparative Example 1-1]
As in Reference Example 1-1, a commercially available organometallic decomposition coating material from which aluminum oxide (Al 2 O 3 ) can be obtained by heat treatment (calcination) [SYM-AL04, Purity Chemical Laboratory Co., Ltd., concentration 2.3]. % By mass] and a commercially available organometallic decomposable coating type material [High Purity Chemical Laboratory Nb-05, concentration 5% by mass] from which niobium oxide (Nb 2 O 5 ) can be obtained by heat treatment (firing) The materials were changed and mixed to prepare passivation materials (b-1) to (b-7) shown in Table 5.

参考実施例1−1と同様に、パッシベーション材料(b−1)〜(b−7)のそれぞれをp型のシリコン基板の片面に付与し、熱処理(焼成)して、パッシベーション膜を作製し、それを用いて、静電容量の電圧依存性を測定し、そこから固定電荷密度を算出した。   As in Reference Example 1-1, each of the passivation materials (b-1) to (b-7) was applied to one side of a p-type silicon substrate, and heat treatment (firing) was performed to produce a passivation film. Using this, the voltage dependence of the capacitance was measured, and the fixed charge density was calculated therefrom.

更に、参考実施例1−1と同様に、パッシベーション材料(塗布型材料)をp型のシリコン基板の両面に付与し、硬化させたサンプルを用いて、キャリアライフタイムを測定した。得られた結果を表5にまとめた。   Furthermore, as in Reference Example 1-1, a carrier material was measured using a sample obtained by applying a passivation material (coating material) to both sides of a p-type silicon substrate and curing it. The results obtained are summarized in Table 5.


パッシベーション材料(b−1)〜(b−6)から得られるパッシベーション膜は、キャリアライフタイムがいずれも大きくパッシベーションとしての機能があることがわかった。また、酸化ニオブ/酸化アルミニウムが10/90及び20/80の場合には、固定電荷密度の値にばらつきが大きく、負の固定電荷密度を安定的に得ることができなかったが、酸化アルミニウムと酸化ニオブを用いることで負の固定電荷密度を実現できることが確認できた。酸化ニオブ/酸化アルミニウムが10/90及び20/80のパッシベーション材料を用いてCV法により測定した際には、場合によって正の固定電荷を示すパッシベーション膜となるため、負の固定電荷を安定的に示すまでには至っていないことが分かる。なお、正に固定電荷を示すパッシベーション膜は、n型のシリコン基板のパッシベーションとして使用可能である。一方、酸化アルミニウムが100質量%となるパッシベーション材料(b−7)では、負の固定電荷密度を得ることができなかった。 It has been found that the passivation film obtained from the passivation materials (b-1) to (b-6) has a large carrier lifetime and functions as a passivation film . In addition, when the niobium oxide / aluminum oxide ratios were 10/90 and 20/80, the fixed charge density values varied greatly, and a negative fixed charge density could not be stably obtained. It was confirmed that a negative fixed charge density can be realized by using niobium oxide. When measured by the CV method using passivation materials with niobium oxide / aluminum oxide of 10/90 and 20/80, a negative fixed charge is stably generated because a passivation film showing a positive fixed charge is obtained in some cases. It turns out that it has not reached to show. Note that a passivation film exhibiting a fixed charge can be used as a passivation film for an n-type silicon substrate. On the other hand, a negative fixed charge density could not be obtained with the passivation material (b-7) containing 100% by mass of aluminum oxide.

[参考比較例1−2]
パッシベーション材料(d−1)として、熱処理(焼成)により酸化チタン(TiO)が得られる市販の有機金属分解塗布型材料[株式会社高純度化学研究所Ti−03−P、濃度3質量%]、パッシベーション材料(d−2)として、熱処理(焼成)によりチタン酸バリウム(BaTiO)が得られる市販の有機金属分解塗布型材料[株式会社高純度化学研究所BT−06、濃度6質量%]、パッシベーション材料(d−3)として、熱処理(焼成)により酸化ハフニウム(HfO)が得られる市販の有機金属分解塗布型材料[株式会社高純度化学研究所Hf−05、濃度5質量%]を準備した。
[Reference Comparative Example 1-2]
Commercially available organometallic decomposable coating material that can obtain titanium oxide (TiO 2 ) by heat treatment (firing) as the passivation material (d-1) [High-Purity Chemical Laboratory Co., Ltd. Ti-03-P, concentration 3 mass%] As a passivation material (d-2), a commercially available organometallic decomposition coating type material [High Purity Chemical Research Institute BT-06, concentration 6 mass%] from which barium titanate (BaTiO 3 ) is obtained by heat treatment (firing) As a passivation material (d-3), a commercially available organometallic decomposition coating material [High-Purity Chemical Laboratory Co., Ltd., Hf-05, concentration 5 mass%] from which hafnium oxide (HfO 2 ) is obtained by heat treatment (firing) is used. Got ready.

参考実施例1−1と同様に、パッシベーション材料(d−1)〜(d−3)のそれぞれをp型のシリコン基板の片面に付与し、その後、熱処理(焼成)して、パッシベーション膜を作製し、それを用いて、静電容量の電圧依存性を測定し、そこから固定電荷密度を算出した。   As in Reference Example 1-1, each of the passivation materials (d-1) to (d-3) is applied to one side of a p-type silicon substrate, and then heat-treated (fired) to produce a passivation film. Using this, the voltage dependence of the capacitance was measured, and the fixed charge density was calculated therefrom.

更に、参考実施例1−1と同様に、パッシベーション材料をp型のシリコン基板の両面に付与し、熱処理(焼成)により得たサンプルを用いて、キャリアライフタイムを測定した。得られた結果を表6にまとめた。   Further, as in Reference Example 1-1, a passivation material was applied to both sides of a p-type silicon substrate, and a carrier lifetime was measured using a sample obtained by heat treatment (firing). The results obtained are summarized in Table 6.


パッシベーション材料(d−1)〜(d−3)から得られるパッシベーション膜は、キャリアライフタイムがいずれも小さくパッシベーションとしての機能が不充分であることがわかった。また、正の固定電荷を示した。パッシベーション材料(d−3)から得られるパッシベーション膜は、負の固定電荷ではあるが、その値が小さかった。またキャリアライフタイムも比較的小さくパッシベーションとして機能が不十分であることがわかった。 It has been found that the passivation film obtained from the passivation materials (d-1) to (d-3) has a small carrier lifetime and an insufficient function as a passivation film . It also showed a positive fixed charge. The passivation film obtained from the passivation material (d-3) had a negative fixed charge, but its value was small. It was also found that the carrier lifetime was relatively small and the function as a passivation film was insufficient.

[参考実施例1−6]
シリコン基板101として、ボロンをドーパントした単結晶シリコン基板を用いて、図9に示す構造の太陽電池素子を作製した。シリコン基板101の表面をテクスチャー処理した後、塗布型のリン拡散材を受光面側に付与し、熱処理により拡散層102(リン拡散層)を形成した。その後、塗布型のリン拡散材を希フッ酸で除去した。
[Reference Example 1-6]
Using a single crystal silicon substrate doped with boron as the silicon substrate 101, a solar cell element having the structure shown in FIG. 9 was manufactured. After the surface of the silicon substrate 101 was textured, a coating type phosphorous diffusion material was applied to the light receiving surface side, and a diffusion layer 102 (phosphorus diffusion layer) was formed by heat treatment. Thereafter, the coating type phosphorus diffusing material was removed with dilute hydrofluoric acid.

次に、受光面側に、受光面反射防止膜103として、プラズマCVDで作製したSiN膜を形成した。その後、参考実施例1−1で調製したパッシベーション材料(a−1)をインクジェット法により、シリコン基板101の裏面側に、コンタクト領域(開口部OA)を除いた領域に付与した。その後、熱処理を行って、開口部OAを有するパッシベーション膜107を形成した。
また、パッシベーション膜107として、参考実施例1−3で調製したパッシベーション材料(c−1)を用いたサンプルも別途作製した。
Next, an SiN film produced by plasma CVD was formed as the light-receiving surface antireflection film 103 on the light-receiving surface side. Thereafter, the passivation material (a-1) prepared in Reference Example 1-1 was applied to the region excluding the contact region (opening OA) on the back surface side of the silicon substrate 101 by an inkjet method. Thereafter, heat treatment was performed to form a passivation film 107 having an opening OA.
In addition, a sample using the passivation material (c-1) prepared in Reference Example 1-3 was separately prepared as the passivation film 107.

次に、シリコン基板101の受光面側に形成された受光面反射防止膜103(SiN膜)の上に、銀を主成分とするペーストを所定のフィンガー電極及びバスバー電極の形状でスクリーン印刷した。裏面側においては、アルミニウムを主成分とするペーストを全面にスクリーン印刷した。その後、850℃で熱処理(ファイアスルー)を行って、電極(第1電極105及び第2電極106)を形成し、且つ裏面の開口部OAの部分にアルミニウムを拡散させて、BSF層104を形成して、図9に示す構造の太陽電池素子を形成した。   Next, on the light-receiving surface antireflection film 103 (SiN film) formed on the light-receiving surface side of the silicon substrate 101, a paste mainly composed of silver was screen-printed in the shape of predetermined finger electrodes and bus bar electrodes. On the back side, a paste mainly composed of aluminum was screen-printed on the entire surface. Thereafter, heat treatment (fire-through) is performed at 850 ° C. to form electrodes (first electrode 105 and second electrode 106), and aluminum is diffused into the opening OA on the back surface to form the BSF layer 104. Thus, a solar cell element having the structure shown in FIG. 9 was formed.

尚、ここでは、受光面の銀電極に関しては、SiN膜に穴あけをしないファイアスルー工程を記載したが、SiN膜に初めに開口部OAをエッチング等により形成し、その後に銀電極を形成することもできる。   In this case, regarding the silver electrode on the light receiving surface, the fire-through process in which the SiN film is not perforated is described, but the opening OA is first formed in the SiN film by etching or the like, and then the silver electrode is formed. You can also.

比較のために、上記作製工程のうち、パッシベーション膜107の形成を行わず、裏面側の全面にアルミニウムペーストを印刷し、BSF層104と対応するp層114及び第2電極と対応する電極116を全面に形成して、図6に示す構造の太陽電池素子を形成した。図6中、符号111はシリコン基板、符号112は拡散層、符号113は受光面反射防止膜、符号115は第1電極である。これらの太陽電池素子について、特性評価(短絡電流、開放電圧、曲線因子及び変換効率)を行った。特性評価は、JIS−C−8913(2005年度)及びJIS−C−8914(2005年度)に準拠して測定した。その結果を表7に示す。 For comparison, the passivation film 107 is not formed in the above manufacturing process, aluminum paste is printed on the entire back surface, and the p + layer 114 corresponding to the BSF layer 104 and the electrode 116 corresponding to the second electrode. Was formed on the entire surface to form a solar cell element having the structure shown in FIG. In FIG. 6, reference numeral 111 denotes a silicon substrate, reference numeral 112 denotes a diffusion layer, reference numeral 113 denotes a light-receiving surface antireflection film, and reference numeral 115 denotes a first electrode. About these solar cell elements, characteristic evaluation (a short circuit current, an open circuit voltage, a fill factor, and conversion efficiency) was performed. Characteristic evaluation was measured based on JIS-C-8913 (2005) and JIS-C-8914 (2005). The results are shown in Table 7.

表7より、酸化ニオブ及び酸化アルミニウム層を含むパッシベーション膜107を有する太陽電池素子は、パッシベーション膜107を有しない太陽電池素子と比較すると、短絡電流及び開放電圧が共に増加しており、変換効率(光電変換効率)が最大で1%向上することが判明した。   According to Table 7, the solar cell element having the passivation film 107 including the niobium oxide and aluminum oxide layers has both increased short-circuit current and open-circuit voltage as compared with the solar cell element not having the passivation film 107, and the conversion efficiency ( It was found that the photoelectric conversion efficiency was improved by 1% at the maximum.


<参考実施形態2>
以下は、参考実施形態2に係るパッシベーション膜、塗布型材料、太陽電池素子及びパッシベーション膜付シリコン基板である。
<Reference Embodiment 2>
The following are the passivation film, coating material, solar cell element, and silicon substrate with passivation film according to Reference Embodiment 2.

<1>酸化アルミニウムと、酸化バナジウム及び酸化タンタルからなる群より選択される少なくとも1種のバナジウム族元素の酸化物と、を含み、シリコン基板を有する太陽電池素子に用いられるパッシベーション膜。   <1> A passivation film for use in a solar cell element having a silicon substrate, comprising aluminum oxide and at least one oxide of vanadium group element selected from the group consisting of vanadium oxide and tantalum oxide.

<2>前記バナジウム族元素の酸化物と前記酸化アルミニウムの質量比(バナジウム族元素の酸化物/酸化アルミニウム)が30/70〜90/10である<1>に記載のパッシベーション膜。   <2> The passivation film according to <1>, wherein a mass ratio of the vanadium group element oxide to the aluminum oxide (vanadium group element oxide / aluminum oxide) is 30/70 to 90/10.

<3>前記バナジウム族元素の酸化物及び前記酸化アルミニウムの総含有率が90%以上である<1>又は<2>に記載のパッシベーション膜。   <3> The passivation film according to <1> or <2>, in which a total content of the oxide of the vanadium group element and the aluminum oxide is 90% or more.

<4>前記バナジウム族元素の酸化物として、酸化バナジウム、酸化ニオブ及び酸化タンタルよりなる群から選択される2種又は3種のバナジウム族元素の酸化物を含む<1>〜<3>のいずれか1項に記載のパッシベーション膜。   <4> The oxide of the vanadium group element includes any of oxides of two or three vanadium group elements selected from the group consisting of vanadium oxide, niobium oxide, and tantalum oxide. Any of <1> to <3> The passivation film according to claim 1.

<5>酸化アルミニウムの前駆体と、酸化バナジウムの前駆体及び酸化タンタルの前駆体からなる群より選択される少なくとも1種のバナジウム族元素の酸化物の前駆体と、を含む塗布型材料の熱処理物である<1>〜<4>のいずれか1項に記載のパッシベーション膜。   <5> Heat treatment of a coating-type material comprising: a precursor of aluminum oxide; and a precursor of an oxide of at least one vanadium group element selected from the group consisting of a precursor of vanadium oxide and a precursor of tantalum oxide. The passivation film according to any one of <1> to <4>, which is a product.

<6>酸化アルミニウムの前駆体と、酸化バナジウムの前駆体及び酸化タンタルの前駆体からなる群より選択される少なくとも1種のバナジウム族元素の酸化物の前駆体と、を含み、シリコン基板を有する太陽電池素子のパッシベーション膜の形成に用いられる塗布型材料。   <6> an aluminum oxide precursor, and at least one vanadium group element oxide precursor selected from the group consisting of a vanadium oxide precursor and a tantalum oxide precursor, and having a silicon substrate A coating type material used for forming a passivation film of a solar cell element.

<7>p型のシリコン基板と、
前記シリコン基板の受光面側である第1面側に形成されたn型の不純物拡散層と、
前記不純物拡散層上に形成された第1電極と、
前記シリコン基板の受光面側とは逆の第2面側に形成され、開口部を有するパッシベーション膜と、
前記シリコン基板の第2面側に形成され、前記シリコン基板の第2面側と前記パッシベーション膜の開口部を通して電気的に接続されている第2電極と、を備え、
前記パッシベーション膜は、酸化アルミニウムと、酸化バナジウム及び酸化タンタルからなる群より選択される少なくとも1種のバナジウム族元素の酸化物と、を含む太陽電池素子。
<7> a p-type silicon substrate;
An n-type impurity diffusion layer formed on the first surface side which is the light-receiving surface side of the silicon substrate;
A first electrode formed on the impurity diffusion layer;
A passivation film formed on the second surface side opposite to the light receiving surface side of the silicon substrate and having an opening;
A second electrode formed on the second surface side of the silicon substrate and electrically connected to the second surface side of the silicon substrate through the opening of the passivation film;
The said passivation film is a solar cell element containing aluminum oxide and the oxide of the at least 1 sort (s) of vanadium group element selected from the group which consists of vanadium oxide and a tantalum oxide.

<8>前記シリコン基板の第2面側の一部又は全部に形成され、前記シリコン基板より高濃度に不純物が添加されたp型の不純物拡散層を有し、
前記第2電極は、前記p型の不純物拡散層と前記パッシベーション膜の開口部を通して電気的に接続されている、<7>に記載の太陽電池素子。
<8> A p-type impurity diffusion layer formed on part or all of the second surface side of the silicon substrate and doped with an impurity at a higher concentration than the silicon substrate,
The solar cell element according to <7>, wherein the second electrode is electrically connected to the p-type impurity diffusion layer through an opening of the passivation film.

<9>n型のシリコン基板と、
前記シリコン基板の受光面側である第1面側に形成されたp型の不純物拡散層と、
前記不純物拡散層上に形成された第1電極と、
前記シリコン基板の受光面側とは逆の第2面側に形成され、開口部を有するパッシベーション膜と、
前記シリコン基板の第2面側に形成され、前記シリコン基板の第2面側と前記パッシベーション膜の開口部を通して電気的に接続されている第2電極と、を備え、
前記パッシベーション膜は、酸化アルミニウムと、酸化バナジウム及び酸化タンタルからなる群より選択される少なくとも1種のバナジウム族元素の酸化物と、を含む太陽電池素子。
<9> an n-type silicon substrate;
A p-type impurity diffusion layer formed on the first surface which is the light-receiving surface side of the silicon substrate;
A first electrode formed on the impurity diffusion layer;
A passivation film formed on the second surface side opposite to the light receiving surface side of the silicon substrate and having an opening;
A second electrode formed on the second surface side of the silicon substrate and electrically connected to the second surface side of the silicon substrate through the opening of the passivation film;
The said passivation film is a solar cell element containing aluminum oxide and the oxide of the at least 1 sort (s) of vanadium group element selected from the group which consists of vanadium oxide and a tantalum oxide.

<10>前記シリコン基板の第2面側の一部又は全部に形成され、前記シリコン基板より高濃度に不純物が添加されたn型の不純物拡散層を有し、
前記第2電極は、前記n型の不純物拡散層と前記パッシベーション膜の開口部を通して電気的に接続されている、<9>に記載の太陽電池素子。
<10> An n-type impurity diffusion layer formed on a part or all of the second surface side of the silicon substrate and doped with impurities at a higher concentration than the silicon substrate,
The solar cell element according to <9>, wherein the second electrode is electrically connected to the n-type impurity diffusion layer through an opening of the passivation film.

<11>前記パッシベーション膜の前記バナジウム族元素の酸化物と前記酸化アルミニウムの質量比が30/70〜90/10である、<7>〜<10>のいずれか1項に記載の太陽電池素子。   <11> The solar cell element according to any one of <7> to <10>, wherein a mass ratio of the oxide of the vanadium group element and the aluminum oxide in the passivation film is 30/70 to 90/10. .

<12>前記パッシベーション膜の前記バナジウム族元素の酸化物及び前記酸化アルミニウムの総含有率が90%以上である、<7>〜<11>のいずれか1項に記載の太陽電池素子。   <12> The solar cell element according to any one of <7> to <11>, wherein a total content of the oxide of the vanadium group element and the aluminum oxide in the passivation film is 90% or more.

<13>前記バナジウム族元素の酸化物として、酸化バナジウム、酸化ニオブ、及び酸化タンタルよりなる群から選択される2種又は3種のバナジウム族元素の酸化物を含む、<7>〜<12>のいずれか1項に記載の太陽電池素子。   <13> The oxide of the vanadium group element includes oxides of two or three vanadium group elements selected from the group consisting of vanadium oxide, niobium oxide, and tantalum oxide, <7> to <12> The solar cell element according to any one of the above.

<14>シリコン基板と、
前記シリコン基板上の全面又は一部に設けられる<1>〜<5>のいずれか1項に記載の太陽電池素子用パッシベーション膜と、
を有するパッシベーション膜付シリコン基板。
<14> a silicon substrate;
The passivation film for solar cell elements according to any one of <1> to <5>, provided on the entire surface or a part of the silicon substrate,
A silicon substrate with a passivation film.

上記の参考実施形態によれば、シリコン基板のキャリアライフタイムを長くし且つ負の固定電荷を有するパッシベーション膜を低コストで実現することができる。また、そのパッシベーション膜の形成を実現するための塗布型材料を提供することができる。また、そのパッシベーション膜を用いた低コストで効率の高い太陽電池素子を実現することができる。また、シリコン基板のキャリアライフタイムを長くし且つ負の固定電荷を有するパッシベーション膜付シリコン基板を低コストで実現することができる。   According to the reference embodiment described above, a passivation film having a long silicon carrier lifetime and a negative fixed charge can be realized at a low cost. In addition, a coating type material for realizing the formation of the passivation film can be provided. In addition, a low-cost and highly efficient solar cell element using the passivation film can be realized. In addition, a silicon substrate with a passivation film having a long carrier lifetime and a negative fixed charge can be realized at low cost.

本実施の形態のパッシベーション膜は、シリコン太陽電池素子に用いられるパッシベーション膜であり、酸化アルミニウムと、酸化バナジウム及び酸化タンタルからなる群より選択される少なくとも1種のバナジウム族元素の酸化物と、を含むようにしたものである。   The passivation film of the present embodiment is a passivation film used for a silicon solar cell element, and includes aluminum oxide and an oxide of at least one vanadium group element selected from the group consisting of vanadium oxide and tantalum oxide. It is what was included.

また、本実施の形態では、パッシベーション膜の組成を変えることにより、パッシベーション膜が有する固定電荷の量を制御することができる。ここで、バナジウム族元素とは、周期律表の第5族元素であり、バナジウム、ニオブ及びタンタルから選ばれる元素である。   In this embodiment mode, the amount of fixed charges included in the passivation film can be controlled by changing the composition of the passivation film. Here, the vanadium group element is a Group 5 element in the periodic table, and is an element selected from vanadium, niobium, and tantalum.

また、バナジウム族元素の酸化物と酸化アルミニウムの質量比が35/65〜90/10であることが、負の固定電荷を安定化できるという観点からより好ましく、50/50〜90/10であることが更に好ましい。   The mass ratio of the vanadium group element oxide to aluminum oxide is more preferably 35/65 to 90/10, from the viewpoint that the negative fixed charge can be stabilized, and is 50/50 to 90/10. More preferably.

パッシベーション膜中のバナジウム族元素の酸化物と酸化アルミニウムの質量比は、エネルギー分散型X線分光法(EDX)、二次イオン質量分析法(SIMS)及び高周波誘導結合プラズマ質量分析法(ICP−MS)によって測定することができる。具体的な測定条件は、例えばICP−MSの場合は次の通りである。パッシベーション膜を酸又はアルカリ水溶液に溶解し、この溶液を霧状にしてArプラズマに導入し、励起された元素が基底状態に戻る際に放出される光を分光して波長及び強度を測定し、得られた波長から元素の定性を行い、得られた強度から定量を行う。   The mass ratio of vanadium group element oxide and aluminum oxide in the passivation film is determined by energy dispersive X-ray spectroscopy (EDX), secondary ion mass spectrometry (SIMS), and high frequency inductively coupled plasma mass spectrometry (ICP-MS). ) Can be measured. Specific measurement conditions are as follows in the case of ICP-MS, for example. Dissolving the passivation film in acid or alkaline aqueous solution, atomizing this solution and introducing it into Ar plasma, measuring the wavelength and intensity by spectroscopically analyzing the light emitted when the excited element returns to the ground state, Element qualification is performed from the obtained wavelength, and quantification is performed from the obtained intensity.

パッシベーション膜中のバナジウム族元素の酸化物及び酸化アルミニウムの総含有率は80質量%以上であることが好ましく、良好な特性を維持できる観点から90質量%以上であることがより好ましい。パッシベーション膜中のバナジウム族元素の酸化物及び酸化アルミニウム以外の成分が多くなると、負の固定電荷の効果が大きくなる。   The total content of vanadium group oxide and aluminum oxide in the passivation film is preferably 80% by mass or more, and more preferably 90% by mass or more from the viewpoint of maintaining good characteristics. When the components other than the oxide of vanadium group elements and aluminum oxide in the passivation film increase, the effect of negative fixed charges increases.

また、パッシベーション膜中には、膜質の向上及び弾性率の調整の観点から、バナジウム族元素の酸化物及び酸化アルミニウム以外の成分が有機成分として含まれていてもよい。パッシベーション膜中の有機成分の存在は、元素分析及び膜のFT−IRの測定から確認することができる。   Further, in the passivation film, components other than the oxide of vanadium group element and aluminum oxide may be contained as an organic component from the viewpoint of improving the film quality and adjusting the elastic modulus. The presence of the organic component in the passivation film can be confirmed by elemental analysis and measurement of the FT-IR of the film.

前記バナジウム族元素の酸化物としては、より大きい負の固定電荷を得る観点からは、酸化バナジウム(V)を選択することが好ましい。As the oxide of the vanadium group element, it is preferable to select vanadium oxide (V 2 O 5 ) from the viewpoint of obtaining a larger negative fixed charge.

前記パッシベーション膜は、バナジウム族元素の酸化物として、酸化バナジウム、酸化ニオブ及び酸化タンタルからなる群より選択される2種又は3種のバナジウム族元素の酸化物を含んでもよい。   The passivation film may include an oxide of a vanadium group element selected from the group consisting of vanadium oxide, niobium oxide, and tantalum oxide as an oxide of a vanadium group element.

前記パッシベーション膜は、塗布型材料を熱処理することにより得られることが好ましく、塗布型材料を塗布法や印刷法を用いて成膜し、その後に熱処理により有機成分を除去することにより得られることがより好ましい。すなわち、パッシベーション膜は、酸化アルミニウム前駆体及びバナジウム族元素の酸化物の前駆体を含む塗布型材料の熱処理物として得てもよい。塗布型材料の詳細を後述する。   The passivation film is preferably obtained by heat-treating a coating-type material, and can be obtained by forming a coating-type material using a coating method or a printing method, and then removing organic components by heat treatment. More preferred. That is, the passivation film may be obtained as a heat-treated product of a coating type material containing an aluminum oxide precursor and a vanadium group element oxide precursor. Details of the coating material will be described later.

本実施の形態の塗布型材料は、シリコン基板を有する太陽電池素子用のパッシベーション膜に用いる塗布型材料であって、酸化アルミニウムの前駆体と、酸化バナジウムの前駆体及び酸化タンタルの前駆体からなる群より選択される少なくとも1種のバナジウム族元素の酸化物の前駆体と、を含む。塗布型材料が含有するバナジウム族元素の酸化物の前駆体としては、塗布材料より形成されるパッシベーション膜の負の固定電荷の観点からは、酸化バナジウム(V)の前駆体を選択することが好ましい。塗布型材料は、バナジウム族元素の酸化物の前駆体として、酸化バナジウムの前駆体、酸化ニオブの前駆体及び酸化タンタルの前駆体からなる群より選択される2種又は3種のバナジウム族元素の酸化物の前駆体を含んでもよい。The coating type material of the present embodiment is a coating type material used for a passivation film for a solar cell element having a silicon substrate, and includes a precursor of aluminum oxide, a precursor of vanadium oxide, and a precursor of tantalum oxide. And a precursor of an oxide of at least one vanadium group element selected from the group. As a precursor of the oxide of the vanadium group element contained in the coating material, a precursor of vanadium oxide (V 2 O 5 ) is selected from the viewpoint of the negative fixed charge of the passivation film formed from the coating material. It is preferable. The coating type material is composed of two or three vanadium group elements selected from the group consisting of vanadium oxide precursors, niobium oxide precursors and tantalum oxide precursors as vanadium group oxide precursors. An oxide precursor may also be included.

酸化アルミニウム前駆体は、酸化アルミニウムを生成するものであれば、特に限定されることなく用いることができる。酸化アルミニウム前駆体としては、酸化アルミニウムをシリコン基板上に均一に分散させる点、及び化学的に安定な観点から、有機系の酸化アルミニウム前駆体を用いることが好ましい。有機系の酸化アルミニウム前駆体の例として、アルミニウムトリイソプロポキシド(構造式:Al(OCH(CH、(株)高純度化学研究所、SYM−AL04を挙げることができる。The aluminum oxide precursor can be used without particular limitation as long as it produces aluminum oxide. As the aluminum oxide precursor, it is preferable to use an organic aluminum oxide precursor from the viewpoint of uniformly dispersing aluminum oxide on the silicon substrate and a chemically stable viewpoint. Examples of the organic aluminum oxide precursor include aluminum triisopropoxide (structural formula: Al (OCH (CH 3 ) 2 ) 3 , Kojundo Chemical Laboratory, SYM-AL04.

バナジウム族元素の酸化物の前駆体は、バナジウム族元素の酸化物を生成するものであれば、特に限定されることなく用いることができる。バナジウム族元素の酸化物の前駆体としては、酸化アルミニウムをシリコン基板上に均一に分散させる点、及び化学的に安定な観点から有機系のバナジウム族元素の酸化物の前駆体を用いることが好ましい。   The precursor of the oxide of the vanadium group element can be used without particular limitation as long as it generates an oxide of the vanadium group element. The vanadium group element oxide precursor is preferably an organic vanadium group oxide oxide precursor from the viewpoint of uniformly dispersing aluminum oxide on the silicon substrate and chemically stable. .

有機系の酸化バナジウムの前駆体の例としては、バナジウム(V)オキシトリエトキシド(構造式:VO(OC、分子量:202.13)、(株)高純度化学研究所、V−02を挙げることができる。有機系の酸化タンタルの前駆体の例としては、タンタル(V)メトキシド(構造式:Ta(OCH、分子量:336.12)、(株)高純度化学研究所、Ta−10−Pを挙げることができる。有機系の酸化ニオブ前駆体の例としては、ニオブ(V)エトキシド(構造式:Nb(OC、分子量:318.21)、(株)高純度化学研究所、Nb−05を挙げることができる。Examples of organic vanadium oxide precursors include vanadium (V) oxytriethoxide (structural formula: VO (OC 2 H 5 ) 3 , molecular weight: 202.13), High Purity Chemical Laboratory, V-02 can be mentioned. Examples of organic tantalum oxide precursors include tantalum (V) methoxide (structural formula: Ta (OCH 3 ) 5 , molecular weight: 336.12), Kojundo Chemical Laboratory, Ta-10-P Can be mentioned. Examples of organic niobium oxide precursors include niobium (V) ethoxide (structural formula: Nb (OC 2 H 5 ) 5 , molecular weight: 318.21), High Purity Chemical Laboratory, Nb-05. Can be mentioned.

有機系のバナジウム族元素の酸化物の前駆体及び有機系の酸化アルミニウム前駆体を含む塗布型材料を塗布法又は印刷法を用いて成膜し、その後の熱処理により有機成分を除去することにより、パッシベーション膜を得ることができる。したがって、結果として、有機成分を含むパッシベーション膜であってもよい。パッシベーション膜中の有機成分の含有率は、10質量%未満であることがより好ましく、5質量%以下であることが更に好ましく、1質量%以下であることが特に好ましい。   By forming a coating type material containing an organic vanadium group oxide precursor and an organic aluminum oxide precursor using a coating method or a printing method, and then removing the organic components by a heat treatment, A passivation film can be obtained. Therefore, as a result, a passivation film containing an organic component may be used. The content of the organic component in the passivation film is more preferably less than 10% by mass, still more preferably 5% by mass or less, and particularly preferably 1% by mass or less.

本実施の形態の太陽電池素子(光電変換装置)は、シリコン基板の光電変換界面の近傍に上記実施の形態で説明したパッシベーション膜(絶縁膜、保護絶縁膜)、すなわち、酸化アルミニウムと、酸化バナジウム及び酸化タンタルからなる群より選択される少なくとも1種のバナジウム族元素の酸化物とを含む膜を有するものである。酸化アルミニウムと、酸化バナジウム及び酸化タンタルからなる群より選択される少なくとも1種のバナジウム族元素の酸化物とを含むことにより、シリコン基板のキャリアライフタイムを長くし且つ負の固定電荷を有することができ、太陽電池素子の特性(光電変換効率)を向上させることができる。   The solar cell element (photoelectric conversion device) of the present embodiment includes the passivation film (insulating film, protective insulating film) described in the above embodiment in the vicinity of the photoelectric conversion interface of the silicon substrate, that is, aluminum oxide and vanadium oxide. And at least one oxide of a vanadium group element selected from the group consisting of tantalum oxide. By containing aluminum oxide and an oxide of at least one vanadium group element selected from the group consisting of vanadium oxide and tantalum oxide, the carrier lifetime of the silicon substrate can be extended and negative fixed charges can be obtained. And the characteristics (photoelectric conversion efficiency) of the solar cell element can be improved.

本実施の形態に係る太陽電池素子の構造説明及び製法説明は、参考実施形態1に係る太陽電池素子の構造説明及び製法説明を参照することができる。   For the description of the structure and the manufacturing method of the solar cell element according to the present embodiment, the description of the structure and the manufacturing method of the solar cell element according to Reference Embodiment 1 can be referred to.

以下、本実施の形態の参考実施例及び参考比較例を参照しながら詳細に説明する。   Hereafter, it demonstrates in detail, referring the reference Example and reference comparative example of this Embodiment.

<バナジウム族元素の酸化物として酸化バナジウムを使用した場合>
[参考実施例2−1]
熱処理(焼成)により酸化アルミニウム(Al)が得られる市販の有機金属薄膜塗布型材料[(株)高純度化学研究所、SYM−AL04、濃度2.3質量%]を3.0gと、熱処理(焼成)により酸化バナジウム(V)が得られる市販の有機金属薄膜塗布型材料[(株)高純度化学研究所、V−02、濃度2質量%]を6.0gとを混合して、塗布型材料であるパッシベーション材料(a2−1)を調製した。
<When vanadium oxide is used as the oxide of vanadium group element>
[Reference Example 2-1]
3.0 g of a commercially available organometallic thin film coating type material [High purity chemical research laboratory, SYM-AL04, concentration 2.3 mass%] from which aluminum oxide (Al 2 O 3 ) can be obtained by heat treatment (firing) And 6.0 g of a commercially available organometallic thin film coating material [Vitamin Purity Laboratory, V-02, concentration 2 mass%] from which vanadium oxide (V 2 O 5 ) can be obtained by heat treatment (firing). By mixing, a passivation material (a2-1) which is a coating type material was prepared.

パッシベーション材料(a2−1)を、濃度0.49質量%のフッ酸で自然酸化膜をあらかじめ除去した725μm厚で8インチのp型のシリコン基板(8Ω・cm〜12Ω・cm)の片面に回転塗布し、ホットプレート上に置いて120℃、3分間のプリベークを行った。その後、窒素雰囲気下で、700℃、30分の熱処理(焼成)を行い、酸化アルミニウム及び酸化バナジウムを含むパッシベーション膜[酸化バナジウム/酸化アルミニウム=63/37(質量%)]を得た。エリプソメーターにより膜厚を測定したところ51nmであった。パッシベーション膜のFT−IRを測定したところ、1200cm−1付近に、ごくわずかのアルキル基に起因するピークが見られた。Passivation of passivation material (a2-1) to one side of a 725 μm thick 8-inch p-type silicon substrate (8 Ω · cm to 12 Ω · cm) with natural oxide film removed beforehand with hydrofluoric acid at a concentration of 0.49% by mass It was applied and placed on a hot plate and prebaked at 120 ° C. for 3 minutes. Thereafter, a heat treatment (firing) was performed at 700 ° C. for 30 minutes in a nitrogen atmosphere to obtain a passivation film containing vanadium oxide and vanadium oxide [vanadium oxide / aluminum oxide = 63/37 (mass%)]. It was 51 nm when the film thickness was measured with the ellipsometer. When the FT-IR of the passivation film was measured, a peak due to a very few alkyl groups was observed in the vicinity of 1200 cm −1 .

次に、上記のパッシベーション膜上に、メタルマスクを介して、直径1mmのアルミ電極を複数個蒸着により形成し、MIS(metal-insulator-semiconductor;金属−絶縁体−半導体)構造のキャパシタを作製した。このキャパシタの静電容量の電圧依存性(C−V特性)を市販のプローバー及びLCRメーター(HP社、4275A)により測定した。その結果、フラットバンド電圧(Vfb)が理想値の−0.81Vから、+0.02Vにシフトしたことが判明した。このシフト量からパッシベーション材料(a2−1)から得たパッシベーション膜は、固定電荷密度(Nf)が−5.2×1011cm−2で負の固定電荷を示すことがわかった。Next, a plurality of aluminum electrodes having a diameter of 1 mm were formed on the above-described passivation film by vapor deposition through a metal mask, thereby manufacturing a capacitor having a MIS (metal-insulator-semiconductor) structure. . The voltage dependence (CV characteristics) of the capacitance of this capacitor was measured with a commercially available prober and LCR meter (HP, 4275A). As a result, it was found that the flat band voltage (Vfb) shifted from an ideal value of −0.81 V to +0.02 V. From this shift amount, it was found that the passivation film obtained from the passivation material (a2-1) showed a negative fixed charge with a fixed charge density (Nf) of −5.2 × 10 11 cm −2 .

上記と同様に、パッシベーション材料(a2−1)を8インチのp型のシリコン基板の両面に塗布し、プリベークして、窒素雰囲気下で、650℃、1時間の熱処理(焼成)を行い、シリコン基板の両面がパッシベーション膜で覆われたサンプルを作製した。このサンプルのキャリアライフタイムをライフタイム測定装置((株)コベルコ科研、RTA−540)により測定した。その結果、キャリアライフタイムは400μsであった。比較のために、同じ8インチのp型のシリコン基板をヨウ素パッシベーション法によりパッシベーションして測定したところ、キャリアライフタイムは、1100μsであった。また、サンプルの作製から14日後に、再度キャリアライフタイムを測定したところ、キャリアライフタイムは380μsであった。これにより、キャリアライフタイムの低下(400μsから380μs)は−10%以内となり、キャリアライフタイムの低下が小さいことがわかった。   In the same manner as described above, the passivation material (a2-1) was applied to both sides of an 8-inch p-type silicon substrate, pre-baked, and subjected to heat treatment (baking) at 650 ° C. for 1 hour in a nitrogen atmosphere. A sample in which both surfaces of the substrate were covered with a passivation film was produced. The carrier lifetime of this sample was measured with a lifetime measuring device (Kobelco Research Institute, RTA-540). As a result, the carrier lifetime was 400 μs. For comparison, the same 8-inch p-type silicon substrate was measured by passivation using the iodine passivation method, and the carrier lifetime was 1100 μs. Further, when the carrier lifetime was measured again 14 days after the preparation of the sample, the carrier lifetime was 380 μs. Thereby, it was found that the decrease in carrier lifetime (from 400 μs to 380 μs) was within −10%, and the decrease in carrier lifetime was small.

以上のことから、パッシベーション材料(a2−1)を熱処理(焼成)して得られるパッシベーション膜は、ある程度のパッシベーション性能を示し、負の固定電荷を示すことがわかった。   From the above, it was found that the passivation film obtained by heat-treating (sintering) the passivation material (a2-1) exhibits a certain degree of passivation performance and a negative fixed charge.

[参考実施例2−2]
参考実施例2−1と同様に、熱処理(焼成)により酸化アルミニウム(Al)が得られる市販の有機金属薄膜塗布型材料[(株)高純度化学研究所、SYM−AL04、濃度2.3質量%]と、熱処理により酸化バナジウム(V)が得られる市販の有機金属薄膜塗布型材料[(株)高純度化学研究所、V−02、濃度2質量%]とを、比率を変えて混合して、表8に示すパッシベーション材料(a2−2)〜(a2−7)を調製した。
[Reference Example 2-2]
Similar to Reference Example 2-1, a commercially available organometallic thin film coated material from which aluminum oxide (Al 2 O 3 ) can be obtained by heat treatment (firing) [High Purity Chemical Laboratory, SYM-AL04, concentration 2 .3 mass%] and a commercially available organic metal thin film coating type material [Vitamin Purity Laboratory, V-02, concentration 2 mass%] from which vanadium oxide (V 2 O 5 ) is obtained by heat treatment, Passivation materials (a2-2) to (a2-7) shown in Table 8 were prepared by changing the ratio.

参考実施例2−1と同様に、パッシベーション材料(a2−2)〜(a2−7)のそれぞれをp型のシリコン基板の片面に塗布し、熱処理(焼成)してパッシベーション膜を作製した。得られたパッシベーション膜の静電容量の電圧依存性を測定し、そこから固定電荷密度を算出した。   As in Reference Example 2-1, each of the passivation materials (a2-2) to (a2-7) was applied to one side of a p-type silicon substrate, and heat treatment (firing) was performed to produce a passivation film. The voltage dependence of the capacitance of the obtained passivation film was measured, and the fixed charge density was calculated therefrom.

更に、参考実施例2−1と同様に、パッシベーション材料をp型のシリコン基板の両面に塗布し、熱処理(焼成)して得たサンプルを用いて、キャリアライフタイムを測定した。   Further, in the same manner as in Reference Example 2-1, the carrier lifetime was measured using a sample obtained by applying a passivation material to both surfaces of a p-type silicon substrate and performing heat treatment (firing).

得られた結果を表8にまとめた。またサンプルの作製から14日後に、再度キャリアライフタイムを測定したところ、キャリアライフタイムの低下は、表8に示すパッシベーション材料(a2−2)〜(a2−7)を用いたパッシベーション膜のいずれも−10%以内であり、キャリアライフタイムの低下が小さいことがわかった。   The results obtained are summarized in Table 8. Further, when the carrier lifetime was measured again 14 days after the preparation of the sample, the decrease in the carrier lifetime was found in any of the passivation films using the passivation materials (a2-2) to (a2-7) shown in Table 8. It was within -10%, and it was found that the decrease in carrier lifetime was small.

熱処理(焼成)後の酸化バナジウム/酸化アルミニウムの比率(質量比)により、異なる結果ではあるが、パッシベーション材料(a2−2)〜(a2−7)については、熱処理(焼成)後にいずれも負の固定電荷を示し、キャリアライフタイムもある程度の値を示していることから、パッシベーション膜として機能することが示唆された。パッシベーション材料(a2−2)〜(a2−7)から得られるパッシベーション膜は、いずれも安定的に負の固定電荷を示し、p型のシリコン基板のパッシベーションとしても好適に用いることができることが分かった。   Although the results are different depending on the ratio (mass ratio) of vanadium oxide / aluminum oxide after heat treatment (firing), the passivation materials (a2-2) to (a2-7) are all negative after heat treatment (firing). Since it showed a fixed charge and a certain carrier lifetime, it was suggested that it functions as a passivation film. It was found that all the passivation films obtained from the passivation materials (a2-2) to (a2-7) stably show negative fixed charges, and can be suitably used as a passivation for a p-type silicon substrate. .


[参考実施例2−3]
熱処理(焼成)により酸化バナジウム(V)が得られる化合物として、市販のバナジウム(V)オキシトリエトキシド(構造式:VO(OC、分子量:202.13)を1.02g(0.010mol)と、熱処理(焼成)により酸化アルミニウム(Al)が得られる化合物として、市販のアルミニウムトリイソプロポキシド(構造式:Al(OCH(CH、分子量:204.25)を2.04g(0.010mol)とをシクロヘキサン60gに溶解して、濃度5質量%のパッシベーション材料(b2−1)を調製した。
[Reference Example 2-3]
As a compound for obtaining vanadium oxide (V 2 O 5 ) by heat treatment (firing), commercially available vanadium (V) oxytriethoxide (structural formula: VO (OC 2 H 5 ) 3 , molecular weight: 202.13) is 1 0.02 g (0.010 mol) and a compound obtained from aluminum oxide (Al 2 O 3 ) by heat treatment (calcination), commercially available aluminum triisopropoxide (structure: Al (OCH (CH 3 ) 2 ) 3 , A passivation material (b2-1) having a concentration of 5% by mass was prepared by dissolving 2.04 g (0.010 mol) of molecular weight: 204.25) in 60 g of cyclohexane.

パッシベーション材料(b2−1)を、濃度0.49質量%のフッ酸で自然酸化膜をあらかじめ除去した725μm厚で8インチのp型のシリコン基板(8Ω・cm〜12Ω・cm)の片面に回転塗布し、ホットプレート上において120℃、3分間のプリベークを行った。その後、窒素雰囲気下で、650℃、1時間の熱処理(焼成)を行い、酸化アルミニウム及び酸化バナジウムを含むパッシベーション膜を得た。エリプソメーターにより膜厚を測定したところ、60nmであった。元素分析の結果、V/Al/C=64/33/3(質量%)であることがわかった。パッシベーション膜のFT−IRを測定したところ、1200cm−1付近に、ごくわずかのアルキル基に起因するピークが見られた。Passivation of passivation material (b2-1) on one side of a 725 μm thick 8-inch p-type silicon substrate (8Ω · cm to 12Ω · cm) from which a natural oxide film was previously removed with hydrofluoric acid having a concentration of 0.49% by mass This was applied and prebaked at 120 ° C. for 3 minutes on a hot plate. Thereafter, a heat treatment (firing) was performed at 650 ° C. for 1 hour in a nitrogen atmosphere to obtain a passivation film containing aluminum oxide and vanadium oxide. When the film thickness was measured with an ellipsometer, it was 60 nm. As a result of elemental analysis, it was found that V / Al / C = 64/33/3 (mass%). When the FT-IR of the passivation film was measured, a peak due to a very few alkyl groups was observed in the vicinity of 1200 cm −1 .

次に、上記のパッシベーション膜上に、メタルマスクを介して、直径1mmのアルミ電極を複数個蒸着により形成し、MIS(metal-insulator-semiconductor;金属−絶縁体−半導体)構造のキャパシタを作製した。このキャパシタの静電容量の電圧依存性(C−V特性)を市販のプローバー及びLCRメーター(HP社、4275A)により測定した。その結果、フラットバンド電圧(Vfb)が理想値の−0.81Vから、+0.10Vにシフトしたことが判明した。このシフト量からパッシベーション材料(b2−1)から得たパッシベーション膜は、固定電荷密度(Nf)が−6.2×1011cm−2で負の固定電荷を示すことがわかった。Next, a plurality of aluminum electrodes having a diameter of 1 mm were formed on the above-described passivation film by vapor deposition through a metal mask, thereby manufacturing a capacitor having a MIS (metal-insulator-semiconductor) structure. . The voltage dependence (CV characteristics) of the capacitance of this capacitor was measured with a commercially available prober and LCR meter (HP, 4275A). As a result, it was found that the flat band voltage (Vfb) shifted from an ideal value of −0.81 V to +0.10 V. From this shift amount, it was found that the passivation film obtained from the passivation material (b2-1) showed a negative fixed charge with a fixed charge density (Nf) of −6.2 × 10 11 cm −2 .

上記と同様に、パッシベーション材料(b2−1)を8インチのp型のシリコン基板の両面に塗布し、プリベークして、窒素雰囲気下で、600℃、1時間の熱処理(焼成)を行い、シリコン基板の両面がパッシベーション膜で覆われたサンプルを作製した。このサンプルのキャリアライフタイムをライフタイム測定装置((株)コベルコ科研、RTA−540)により行った。その結果、キャリアライフタイムは400μsであった。比較のために、同じ8インチのp型のシリコン基板をヨウ素パッシベーション法によりパッシベーションして測定したところ、キャリアライフタイムは、1100μsであった。   In the same manner as described above, the passivation material (b2-1) was applied to both sides of an 8-inch p-type silicon substrate, pre-baked, and subjected to heat treatment (baking) at 600 ° C. for 1 hour in a nitrogen atmosphere. A sample in which both surfaces of the substrate were covered with a passivation film was produced. The carrier lifetime of this sample was measured by a lifetime measuring device (Kobelco Research Institute, RTA-540). As a result, the carrier lifetime was 400 μs. For comparison, the same 8-inch p-type silicon substrate was measured by passivation using the iodine passivation method, and the carrier lifetime was 1100 μs.

以上のことから、パッシベーション材料(b2−1)を熱処理(焼成)して得られるパッシベーション膜は、ある程度のパッシベーション性能を示し、負の固定電荷を示すことがわかった。   From the above, it was found that the passivation film obtained by heat-treating (sintering) the passivation material (b2-1) exhibited a certain degree of passivation performance and a negative fixed charge.

[参考実施例2−4]
市販のバナジウム(V)オキシトリエトキシド(構造式:VO(OC、分子量:202.13)を1.52g(0.0075mol)と、市販のアルミニウムトリイソプロポキシド(構造式:Al(OCH(CH、分子量:204.25)を1.02g(0.005mol)と、ノボラック樹脂10gとを、ジエチレングリコールモノブチルエーテルアセタート10gとシクロヘキサン10gに溶解して、パッシベーション材料(b2−2)を調製した。
[Reference Example 2-4]
1.52 g (0.0075 mol) of commercially available vanadium (V) oxytriethoxide (structural formula: VO (OC 2 H 5 ) 3 , molecular weight: 202.13) and commercially available aluminum triisopropoxide (structural formula : Al (OCH (CH 3 ) 2 ) 3 , molecular weight: 204.25), 1.02 g (0.005 mol) and 10 g of novolak resin were dissolved in 10 g of diethylene glycol monobutyl ether acetate and 10 g of cyclohexane to passivate. Material (b2-2) was prepared.

パッシベーション材料(b2−2)を、濃度0.49質量%のフッ酸で自然酸化膜をあらかじめ除去した725μm厚で8インチのp型のシリコン基板(8Ω・cm〜12Ω・cm)の片面に回転塗布し、ホットプレート上に置いて120℃、3分間のプリベークを行った。その後、窒素雰囲気下で、650℃、1時間の加熱を行い、酸化アルミニウム及び酸化バナジウムを含むパッシベーション膜を得た。エリプソメーターにより膜厚を測定したところ、22nmであった。元素分析の結果、V/Al/C=71/22/7(質量%)であることがわかった。パッシベーション膜のFT−IRを測定したところ、1200cm−1付近に、ごくわずかのアルキル基に起因するピークが見られた。Passivation of passivation material (b2-2) on one side of a 725 μm thick 8-inch p-type silicon substrate (8 Ω · cm to 12 Ω · cm) with natural oxide film removed beforehand with hydrofluoric acid at a concentration of 0.49% by mass It was applied and placed on a hot plate and prebaked at 120 ° C. for 3 minutes. Thereafter, heating was performed at 650 ° C. for 1 hour in a nitrogen atmosphere to obtain a passivation film containing aluminum oxide and vanadium oxide. When the film thickness was measured with an ellipsometer, it was 22 nm. As a result of elemental analysis, it was found that V / Al / C = 71/22/7 (mass%). When the FT-IR of the passivation film was measured, a peak due to a very few alkyl groups was observed in the vicinity of 1200 cm −1 .

次に、上記のパッシベーション膜上に、メタルマスクを介して、直径1mmのアルミ電極を複数個蒸着により形成し、MIS(metal-insulator-semiconductor;金属−絶縁体−半導体)構造のキャパシタを作製した。このキャパシタの静電容量の電圧依存性(C−V特性)を市販のプローバー及びLCRメーター(HP社、4275A)により測定した。その結果、フラットバンド電圧(Vfb)が理想値の−0.81Vから、+0.03Vにシフトしたことが判明した。このシフト量からパッシベーション材料(b2−2)から得たパッシベーション膜は、固定電荷密度(Nf)が−2.0×1011cm−2で負の固定電荷を示すことがわかった。Next, a plurality of aluminum electrodes having a diameter of 1 mm were formed on the above-described passivation film by vapor deposition through a metal mask, thereby manufacturing a capacitor having a MIS (metal-insulator-semiconductor) structure. . The voltage dependence (CV characteristics) of the capacitance of this capacitor was measured with a commercially available prober and LCR meter (HP, 4275A). As a result, it was found that the flat band voltage (Vfb) shifted from the ideal value of −0.81 V to +0.03 V. From this shift amount, it was found that the passivation film obtained from the passivation material (b2-2) had a fixed charge density (Nf) of −2.0 × 10 11 cm −2 and a negative fixed charge.

上記と同様に、パッシベーション材料(b2−2)を8インチのp型のシリコン基板の両面に塗布し、プリベークして、窒素雰囲気下で、600℃、1時間の熱処理(焼成)を行い、シリコン基板の両面がパッシベーション膜で覆われたサンプルを作製した。このサンプルのキャリアライフタイムをライフタイム測定装置((株)コベルコ科研、RTA−540)により行った。その結果、キャリアライフタイムは170μsであった。比較のために、同じ8インチのp型のシリコン基板をヨウ素パッシベーション法によりパッシベーションして測定したところ、キャリアライフタイムは、1100μsであった。   In the same manner as described above, the passivation material (b2-2) is applied to both sides of an 8-inch p-type silicon substrate, pre-baked, and subjected to heat treatment (baking) at 600 ° C. for 1 hour in a nitrogen atmosphere to obtain silicon. A sample in which both surfaces of the substrate were covered with a passivation film was produced. The carrier lifetime of this sample was measured by a lifetime measuring device (Kobelco Research Institute, RTA-540). As a result, the carrier lifetime was 170 μs. For comparison, the same 8-inch p-type silicon substrate was measured by passivation using the iodine passivation method, and the carrier lifetime was 1100 μs.

以上のことから、パッシベーション材料(b2−2)が硬化したパッシベーション膜は、ある程度のパッシベーション性能を示し、負の固定電荷を示すことがわかった。   From the above, it was found that the passivation film obtained by curing the passivation material (b2-2) exhibited a certain degree of passivation performance and a negative fixed charge.

<バナジウム族元素の酸化物として酸化タンタルを使用した場合>
[参考実施例2−5]
熱処理(焼成)により酸化アルミニウム(Al)が得られる市販の有機金属薄膜塗布型材料[(株)高純度化学研究所、SYM−AL04、濃度2.3質量%]と、熱処理により酸化タンタル(Ta)が得られる市販の有機金属薄膜塗布型材料[(株)高純度化学研究所、Ta−10−P、濃度10質量%]とを比率を変えて混合して、表9に示すパッシベーション材料(c2−1)〜(c2−6)を調製した。
<When tantalum oxide is used as the oxide of vanadium group element>
[Reference Example 2-5]
Commercially available organometallic thin film coating type material [High Purity Chemical Laboratory, SYM-AL04, concentration 2.3 mass%] from which aluminum oxide (Al 2 O 3 ) can be obtained by heat treatment (firing) and oxidation by heat treatment A commercially available organometallic thin film coating type material [Tapuro Chemical Laboratory Co., Ltd., Ta-10-P, concentration 10% by mass] from which tantalum (Ta 2 O 5 ) can be obtained is mixed at different ratios. The passivation materials (c2-1) to (c2-6) shown in 9 were prepared.

パッシベーション材料(c2−1)〜(c2−6)のそれぞれを濃度0.49質量%のフッ酸で自然酸化膜をあらかじめ除去した725μm厚で8インチのp型のシリコン基板(8Ω・cm〜12Ω・cm)の片面に回転塗布し、ホットプレート上に置いて120℃、3分間のプリベークを行った。その後、窒素雰囲気下で、700℃、30分の熱処理(焼成)を行い、酸化アルミニウム及び酸化タンタルを含むパッシベーション膜を得た。このパッシベーション膜を用いて、静電容量の電圧依存性を測定し、そこから固定電荷密度を算出した。   Each of the passivation materials (c2-1) to (c2-6) is a 725 μm thick 8-inch p-type silicon substrate (8Ω · cm to 12Ω) from which the natural oxide film has been removed in advance with hydrofluoric acid having a concentration of 0.49% by mass. (Cm) was spin-coated on one side, placed on a hot plate, and pre-baked at 120 ° C. for 3 minutes. Thereafter, a heat treatment (firing) was performed at 700 ° C. for 30 minutes in a nitrogen atmosphere to obtain a passivation film containing aluminum oxide and tantalum oxide. Using this passivation film, the voltage dependence of the capacitance was measured, and the fixed charge density was calculated therefrom.

次いで、パッシベーション材料(c2−1)〜(c2−6)のそれぞれを8インチのp型のシリコン基板の両面に塗布し、プリベークして、窒素雰囲気下で、650℃、1時間の熱処理(焼成)を行い、シリコン基板の両面がパッシベーション膜で覆われたサンプルを作製した。このサンプルのキャリアライフタイムをライフタイム測定装置((株)コベルコ科研、RTA−540)により行った。   Next, each of the passivation materials (c2-1) to (c2-6) was applied to both sides of an 8-inch p-type silicon substrate, pre-baked, and heat-treated (fired) at 650 ° C. for 1 hour in a nitrogen atmosphere. ) To prepare a sample in which both surfaces of the silicon substrate were covered with a passivation film. The carrier lifetime of this sample was measured by a lifetime measuring device (Kobelco Research Institute, RTA-540).

得られた結果を表9にまとめた。またサンプルの作製から14日後に、再度キャリアライフタイムを測定したところ、キャリアライフタイムの低下は、表9に示すパッシベーション材料(c2−1)〜(c2−6)を用いたパッシベーション膜のいずれも−10%以内であり、キャリアライフタイムの低下が小さいことがわかった。   The results obtained are summarized in Table 9. Further, when the carrier lifetime was measured again 14 days after the preparation of the sample, the decrease in the carrier lifetime was any of the passivation films using the passivation materials (c2-1) to (c2-6) shown in Table 9. It was within -10%, and it was found that the decrease in carrier lifetime was small.

熱処理(焼成)後の酸化タンタル/酸化アルミニウムの比率(質量比)により、異なる結果ではあるが、パッシベーション材料(c2−1)〜(c2−6)については、熱処理(焼成)後にいずれも負の固定電荷を示し、キャリアライフタイムもある程度の値を示していることから、パッシベーション膜として機能することが示唆された。   Although the results differ depending on the ratio (mass ratio) of tantalum oxide / aluminum oxide after heat treatment (firing), the passivation materials (c2-1) to (c2-6) are all negative after heat treatment (firing). Since it showed a fixed charge and a certain carrier lifetime, it was suggested that it functions as a passivation film.


[参考実施例2−6]
熱処理(焼成)により酸化タンタル(Ta)が得られる化合物として、市販のタンタル(V)メトキシド(構造式:Ta(OCH、分子量:336.12)を1.18g(0.0025mol)と、熱処理(焼成)により酸化アルミニウム(Al)が得られる化合物として、市販のアルミニウムトリイソプロポキシド(構造式:Al(OCH(CH、分子量:204.25)を2.04g(0.010mol)とをシクロヘキサン60gに溶解して、濃度5質量%のパッシベーション材料(d2−1)を調製した。
[Reference Example 2-6]
As a compound from which tantalum oxide (Ta 2 O 5 ) can be obtained by heat treatment (firing), 1.18 g (0.002) of commercially available tantalum (V) methoxide (structural formula: Ta (OCH 3 ) 5 , molecular weight: 336.12) is obtained. As a compound from which aluminum oxide (Al 2 O 3 ) can be obtained by heat treatment (firing), commercially available aluminum triisopropoxide (structural formula: Al (OCH (CH 3 ) 2 ) 3 , molecular weight: 204.25 2.04 g (0.010 mol) was dissolved in 60 g of cyclohexane to prepare a passivation material (d2-1) having a concentration of 5% by mass.

パッシベーション材料(d2−1)を、濃度0.49質量%のフッ酸で自然酸化膜をあらかじめ除去した725μm厚で8インチのp型のシリコン基板(8Ω・cm〜12Ω・cm)の片面に回転塗布し、ホットプレート上に置いて120℃、3分間のプリベークをした。その後、窒素雰囲気下で、700℃、1時間の加熱を行い、酸化アルミニウム及び酸化タンタルを含むパッシベーション膜を得た。エリプソメーターにより膜厚を測定したところ、40nmであった。元素分析の結果、Ta/Al/C=75/22/3(wt%)であることがわかった。パッシベーション膜のFT−IRを測定したところ、1200cm−1付近に、ごくわずかのアルキル基に起因するピークが見られた。Passivation of passivation material (d2-1) to one side of a 725 μm thick 8-inch p-type silicon substrate (8 Ω · cm to 12 Ω · cm) with natural oxide film removed beforehand with hydrofluoric acid at a concentration of 0.49% by mass It was applied and placed on a hot plate and prebaked at 120 ° C. for 3 minutes. Thereafter, heating was performed at 700 ° C. for 1 hour in a nitrogen atmosphere to obtain a passivation film containing aluminum oxide and tantalum oxide. When the film thickness was measured with an ellipsometer, it was 40 nm. As a result of elemental analysis, it was found that Ta / Al / C = 75/22/3 (wt%). When the FT-IR of the passivation film was measured, a peak due to a very few alkyl groups was observed in the vicinity of 1200 cm −1 .

次に、上記のパッシベーション膜上に、メタルマスクを介して、直径1mmのアルミ電極を複数個蒸着により形成し、MIS(metal-insulator-semiconductor;金属−絶縁体−半導体)構造のキャパシタを作製した。このキャパシタの静電容量の電圧依存性(C−V特性)を市販のプローバー及びLCRメーター(HP社、4275A)により測定した。その結果、フラットバンド電圧(Vfb)が理想値の−0.81Vから、−0.30Vにシフトしたことが判明した。このシフト量から、パッシベーション材料(d2−1)から得たパッシベーション膜は、固定電荷密度(Nf)が−6.2×1010cm−2で負の固定電荷を示すことがわかった。Next, a plurality of aluminum electrodes having a diameter of 1 mm were formed on the above-described passivation film by vapor deposition through a metal mask, thereby manufacturing a capacitor having a MIS (metal-insulator-semiconductor) structure. . The voltage dependence (CV characteristics) of the capacitance of this capacitor was measured with a commercially available prober and LCR meter (HP, 4275A). As a result, it was found that the flat band voltage (Vfb) was shifted from an ideal value of −0.81 V to −0.30 V. From this shift amount, it was found that the passivation film obtained from the passivation material (d2-1) showed a negative fixed charge at a fixed charge density (Nf) of −6.2 × 10 10 cm −2 .

上記と同様に、パッシベーション材料(d2−1)を8インチのp型のシリコン基板の両面に塗布し、プリベークして、窒素雰囲気下で、600℃、1時間の熱処理(焼成)を行い、シリコン基板の両面がパッシベーション膜で覆われたサンプルを作製した。このサンプルのキャリアライフタイムをライフタイム測定装置((株)コベルコ科研、RTA−540)により行った。その結果、キャリアライフタイムは610μsであった。比較のために、同じ8インチのp型のシリコン基板をヨウ素パッシベーション法によりパッシベーションして測定したところ、キャリアライフタイムは、1100μsであった。   In the same manner as described above, the passivation material (d2-1) was applied to both sides of an 8-inch p-type silicon substrate, pre-baked, and subjected to heat treatment (baking) at 600 ° C. for 1 hour in a nitrogen atmosphere. A sample in which both surfaces of the substrate were covered with a passivation film was produced. The carrier lifetime of this sample was measured by a lifetime measuring device (Kobelco Research Institute, RTA-540). As a result, the carrier lifetime was 610 μs. For comparison, the same 8-inch p-type silicon substrate was measured by passivation using the iodine passivation method, and the carrier lifetime was 1100 μs.

以上のことから、パッシベーション材料(d2−1)を熱処理して得られるパッシベーション膜は、ある程度のパッシベーション性能を示し、負の固定電荷を示すことがわかった。   From the above, it was found that the passivation film obtained by heat-treating the passivation material (d2-1) exhibits a certain degree of passivation performance and a negative fixed charge.

[参考実施例2−7]
熱処理(焼成)により酸化タンタル(Ta)が得られる化合物として、市販のタンタル(V)メトキシド(構造式:Ta(OCH、分子量:336.12)1.18g(0.005mol)と、熱処理(焼成)により酸化アルミニウム(Al)が得られる化合物として、市販のアルミニウムトリイソプロポキシド(構造式:Al(OCH(CH、分子量:204.25)を1.02g(0.005mol)と、ノボラック樹脂10gとを、ジエチレングリコールモノブチルエーテルアセタート10gとシクロヘキサン10gの混合物に溶解して、パッシベーション材料(d2−2)を調製した。
[Reference Example 2-7]
As a compound for obtaining tantalum oxide (Ta 2 O 5 ) by heat treatment (firing), 1.18 g (0.005 mol) of commercially available tantalum (V) methoxide (structural formula: Ta (OCH 3 ) 5 , molecular weight: 336.12) ) And aluminum oxide (Al 2 O 3 ) obtained by heat treatment (firing), a commercially available aluminum triisopropoxide (structure: Al (OCH (CH 3 ) 2 ) 3 , molecular weight: 204.25) 1.02 g (0.005 mol) and 10 g of novolak resin were dissolved in a mixture of 10 g of diethylene glycol monobutyl ether acetate and 10 g of cyclohexane to prepare a passivation material (d2-2).

パッシベーション材料(d2−2)を、濃度0.49質量%のフッ酸で自然酸化膜をあらかじめ除去した725μm厚で8インチのp型のシリコン基板(8Ω・cm〜12Ω・cm)の片面に回転塗布し、ホットプレート上において120℃、3分間のプリベークをした。その後、窒素雰囲気下で、650℃、1時間の加熱を行い、酸化アルミニウム及び酸化タンタルを含むパッシベーション膜を得た。エリプソメーターにより膜厚を測定したところ、18nmであった。元素分析の結果、Ta/Al/C=72/20/8(wt%)であることがわかった。パッシベーション膜のFT−IRを測定したところ、1200cm−1付近に、ごくわずかのアルキル基に起因するピークが見られた。Passivation of passivation material (d2-2) on one side of a 725 μm thick 8-inch p-type silicon substrate (8 Ω · cm to 12 Ω · cm) with natural oxide film removed beforehand with hydrofluoric acid at a concentration of 0.49% by mass This was applied and prebaked at 120 ° C. for 3 minutes on a hot plate. Thereafter, heating was performed at 650 ° C. for 1 hour in a nitrogen atmosphere to obtain a passivation film containing aluminum oxide and tantalum oxide. When the film thickness was measured with an ellipsometer, it was 18 nm. As a result of elemental analysis, it was found that Ta / Al / C = 72/20/8 (wt%). When the FT-IR of the passivation film was measured, a peak due to a very few alkyl groups was observed in the vicinity of 1200 cm −1 .

次に、上記のパッシベーション膜上に、メタルマスクを介して、直径1mmのアルミ電極を複数個蒸着により形成し、MIS(metal-insulator-semiconductor;金属−絶縁体−半導体)構造のキャパシタを作製した。このキャパシタの静電容量の電圧依存性(C−V特性)を市販のプローバー及びLCRメーター(HP社、4275A)により測定した。その結果、フラットバンド電圧(Vfb)が理想値の−0.81Vから、−0.43Vにシフトしたことが判明した。このシフト量から、パッシベーション材料(d−2)から得たパッシベーション膜は、固定電荷密度(Nf)が−5.5×1010cm−2で負の固定電荷を示すことがわかった。Next, a plurality of aluminum electrodes having a diameter of 1 mm were formed on the above-described passivation film by vapor deposition through a metal mask, thereby manufacturing a capacitor having a MIS (metal-insulator-semiconductor) structure. . The voltage dependence (CV characteristics) of the capacitance of this capacitor was measured with a commercially available prober and LCR meter (HP, 4275A). As a result, it was found that the flat band voltage (Vfb) shifted from an ideal value of −0.81 V to −0.43 V. From this shift amount, it was found that the passivation film obtained from the passivation material (d-2) had a fixed charge density (Nf) of −5.5 × 10 10 cm −2 and a negative fixed charge.

上記と同様に、パッシベーション材料(d2−2)を8インチのp型のシリコン基板の両面に塗布し、プリベークして、窒素雰囲気下で、600℃、1時間の熱処理(焼成)を行い、シリコン基板の両面がパッシベーション膜で覆われたサンプルを作製した。このサンプルのキャリアライフタイムをライフタイム測定装置((株)コベルコ科研、RTA−540)により行った。その結果、キャリアライフタイムは250μsであった。比較のために、同じ8インチのp型のシリコン基板をヨウ素パッシベーション法によりパッシベーションして測定したところ、キャリアライフタイムは、1100μsであった。   In the same manner as above, the passivation material (d2-2) was applied to both sides of an 8-inch p-type silicon substrate, pre-baked, and subjected to heat treatment (baking) at 600 ° C. for 1 hour in a nitrogen atmosphere. A sample in which both surfaces of the substrate were covered with a passivation film was produced. The carrier lifetime of this sample was measured by a lifetime measuring device (Kobelco Research Institute, RTA-540). As a result, the carrier lifetime was 250 μs. For comparison, the same 8-inch p-type silicon substrate was measured by passivation using the iodine passivation method, and the carrier lifetime was 1100 μs.

以上のことから、パッシベーション材料(d2−2)を熱処理(焼成)して得たパッシベーション膜は、ある程度のパッシベーション性能を示し、負の固定電荷を示すことがわかった。   From the above, it was found that the passivation film obtained by heat-treating (sintering) the passivation material (d2-2) exhibited a certain degree of passivation performance and a negative fixed charge.

<2種以上のバナジウム族元素の酸化物を使用した場合>
[参考実施例2−8]
熱処理(焼成)により酸化アルミニウム(Al)が得られる市販の有機金属薄膜塗布型材料[(株)高純度化学研究所、SYM−AL04、濃度2.3質量%]、熱処理(焼成)により酸化バナジウム(V)が得られる市販の有機金属薄膜塗布型材料[(株)高純度化学研究所、V−02、濃度2質量%]、及び熱処理(焼成)により酸化タンタル(Ta)が得られる市販の有機金属薄膜塗布型材料[(株)高純度化学研究所、Ta−10−P、濃度10質量%]を混合して、塗布型材料であるパッシベーション材料(e2−1)を調製した(表10参照)。
<When two or more vanadium group element oxides are used>
[Reference Example 2-8]
Commercially available organometallic thin film coating type material that can obtain aluminum oxide (Al 2 O 3 ) by heat treatment (firing) [High Purity Chemical Laboratory, SYM-AL04, concentration 2.3 mass%], heat treatment (firing) Commercially available organometallic thin film coating type material (VCO, Co., Ltd., V-02, concentration 2% by mass) from which vanadium oxide (V 2 O 5 ) can be obtained by heat treatment, and tantalum oxide (Ta 2 O 5 ), a commercially available organometallic thin film coating material [High Purity Chemical Laboratory, Ta-10-P, concentration 10% by mass] is mixed to form a passivation material (e2) that is a coating material. -1) was prepared (see Table 10).

熱処理(焼成)により酸化アルミニウム(Al)が得られる市販の有機金属薄膜塗布型材料[(株)高純度化学研究所SYM−AL04、濃度2.3質量%]、熱処理(焼成)により酸化バナジウム(V)が得られる市販の有機金属薄膜塗布型材料[(株)高純度化学研究所V−02、濃度2質量%]、及び熱処理(焼成)により酸化ニオブ(Nb)が得られる市販の有機金属薄膜塗布型材料[(株)高純度化学研究所、Nb−05、濃度5質量%]を混合して、塗布型材料であるパッシベーション材料(e2−2)を調製した(表10参照)。By commercially available organometallic thin film coating type material [Coal Chemical Industries Ltd. SYM-AL04, concentration 2.3 mass%] from which aluminum oxide (Al 2 O 3 ) can be obtained by heat treatment (firing), heat treatment (firing) Niobium oxide (Nb 2 O) by commercially available organometallic thin film coating type material (Vitamin Co., Ltd., V-02, concentration 2 mass%) from which vanadium oxide (V 2 O 5 ) is obtained, and heat treatment (firing) 5 ) A commercially available organometallic thin film coating type material [Co., Ltd., High Purity Chemical Laboratory Co., Ltd., Nb-05, concentration 5 mass%] is mixed to obtain a passivation material (e2-2) which is a coating type material. Prepared (see Table 10).

熱処理(焼成)により酸化アルミニウム(Al)が得られる市販の有機金属薄膜塗布型材料[(株)高純度化学研究所SYM−AL04、濃度2.3質量%]、熱処理(焼成)により酸化タンタル(Ta)が得られる市販の有機金属薄膜塗布型材料[(株)高純度化学研究所Ta−10−P、濃度10質量%]、及び熱処理(焼成)により酸化ニオブ(Nb)が得られる市販の有機金属薄膜塗布型材料[(株)高純度化学研究所Nb−05、濃度5質量%]を混合して、塗布型材料であるパッシベーション材料(e2−3)を調製した(表10参照)。By commercially available organometallic thin film coating type material [Coal Chemical Industries Ltd. SYM-AL04, concentration 2.3 mass%] from which aluminum oxide (Al 2 O 3 ) can be obtained by heat treatment (firing), heat treatment (firing) Niobium oxide (Nb) by commercially available organometallic thin film coating material [Tapuro Chemical Laboratories Ta-10-P, concentration 10% by mass] from which tantalum oxide (Ta 2 O 5 ) can be obtained, and heat treatment (firing) 2 O 5 ), a commercially available organometallic thin film coating material [High Purity Chemical Laboratory Nb-05, concentration 5 mass%] is mixed to form a passivation material (e2-3) that is a coating material. Was prepared (see Table 10).

熱処理(焼成)により酸化アルミニウム(Al)が得られる市販の有機金属薄膜塗布型材料[(株)高純度化学研究所SYM−AL04、濃度2.3質量%]、熱処理(焼成)により酸化バナジウム(V)が得られる市販の有機金属薄膜塗布型材料[(株)高純度化学研究所V−02、濃度2質量%]、熱処理(焼成)により酸化タンタル(Ta)が得られる市販の有機金属薄膜塗布型材料[(株)高純度化学研究所Ta−10−P、濃度10質量%]、及び熱処理(焼成)により酸化ニオブ(Nb)が得られる市販の有機金属薄膜塗布型材料[(株)高純度化学研究所Nb−05、濃度5質量%]を混合して、塗布型材料であるパッシベーション材料(e2−4)を調製した(表10参照)。By commercially available organometallic thin film coating type material [Coal Chemical Industries Ltd. SYM-AL04, concentration 2.3 mass%] from which aluminum oxide (Al 2 O 3 ) can be obtained by heat treatment (firing), heat treatment (firing) Tantalum oxide (Ta 2 O 5 ) by commercially available organic metal thin film coating type material [Co., Ltd., Purity Chemical Laboratory V-02, concentration 2 mass%] from which vanadium oxide (V 2 O 5 ) is obtained, and heat treatment (firing) Niobium oxide (Nb 2 O 5 ) can be obtained by a commercially available organometallic thin film coating type material [High purity chemical research laboratory Ta-10-P, concentration 10% by mass] and heat treatment (firing). Commercially available organic metal thin film coating type material [Co., Ltd. High Purity Chemical Laboratory Nb-05, concentration 5 mass%] was mixed to prepare a passivation material (e2-4) which is a coating type material (see Table 10). ).

パッシベーション材料(e2−1)〜(e2−4)のそれぞれを、参考実施例2−1と同様に、濃度0.49質量%のフッ酸で自然酸化膜をあらかじめ除去した725μm厚で8インチのp型のシリコン基板(8Ω・cm〜12Ω・cm)の片面に回転塗布し、ホットプレート上に置いて120℃、3分間のプリベークをした。その後、窒素雰囲気下で、650℃、1時間の熱処理(焼成)を行い、酸化アルミニウムと2種以上のバナジウム族元素の酸化物を含むパッシベーション膜を得た。   Each of the passivation materials (e2-1) to (e2-4) has a thickness of 725 μm and 8 inches, in which the natural oxide film is previously removed with hydrofluoric acid having a concentration of 0.49% by mass, as in Reference Example 2-1. A p-type silicon substrate (8 Ω · cm to 12 Ω · cm) was spin-coated on one side, placed on a hot plate, and pre-baked at 120 ° C. for 3 minutes. Thereafter, a heat treatment (firing) was performed at 650 ° C. for 1 hour in a nitrogen atmosphere to obtain a passivation film containing aluminum oxide and two or more vanadium group element oxides.

上記で得られたパッシベーション膜を用いて、静電容量の電圧依存性を測定し、そこから固定電荷密度を算出した。   Using the passivation film obtained above, the voltage dependence of the capacitance was measured, and the fixed charge density was calculated therefrom.

次いで、パッシベーション材料(e2−1)〜(e2−4)のそれぞれを8インチのp型のシリコン基板の両面に塗布し、プリベークして、窒素雰囲気下で、650℃、1時間の熱処理(焼成)を行い、シリコン基板の両面がパッシベーション膜で覆われたサンプルを作製した。このサンプルのキャリアライフタイムをライフタイム測定装置((株)コベルコ科研、RTA−540)により行った。   Next, each of the passivation materials (e2-1) to (e2-4) is applied to both sides of an 8-inch p-type silicon substrate, pre-baked, and heat-treated (fired) at 650 ° C. for 1 hour in a nitrogen atmosphere. ) To prepare a sample in which both surfaces of the silicon substrate were covered with a passivation film. The carrier lifetime of this sample was measured by a lifetime measuring device (Kobelco Research Institute, RTA-540).

得られた結果を表10にまとめた。   The results obtained are summarized in Table 10.

熱処理(焼成)後の2種以上のバナジウム族元素の酸化物と酸化アルミニウムの比率(質量比)により、異なる結果ではあるが、パッシベーション材料(e2−1)〜(e2−4)を用いたパッシベーション膜については、熱処理(焼成)後にいずれも負の固定電荷を示し、キャリアライフタイムもある程度の値を示していることから、パッシベーション膜として機能することが示唆された。   Passivation using passivation materials (e2-1) to (e2-4), depending on the ratio (mass ratio) of the oxide of two or more vanadium group elements and the aluminum oxide after heat treatment (firing). Regarding the films, all showed negative fixed charges after heat treatment (firing), and the carrier lifetime also showed a certain value, suggesting that it functions as a passivation film.


[参考実施例2−9]
参考実施例2−1と同様に、熱処理(焼成)により酸化アルミニウム(Al)が得られる市販の有機金属薄膜塗布型材料[(株)高純度化学研究所、SYM−AL04、濃度2.3質量%]と、熱処理(焼成)により酸化バナジウム(V)が得られる市販の有機金属薄膜塗布型材料[(株)高純度化学研究所、V−02、濃度2質量%]、又は熱処理(焼成)により酸化タンタル(Ta)が得られる市販の有機金属薄膜塗布型材料[(株)高純度化学研究所、Ta−10−P、濃度10質量%]を混合して、塗布型材料であるパッシベーション材料(f2−1)〜(f2−8)を調製した(表11参照)。
[Reference Example 2-9]
Similar to Reference Example 2-1, a commercially available organometallic thin film coated material from which aluminum oxide (Al 2 O 3 ) can be obtained by heat treatment (firing) [High Purity Chemical Laboratory, SYM-AL04, concentration 2 .3 mass%] and a commercially available organic metal thin film coating type material that can be obtained by heat treatment (firing) vanadium oxide (V 2 O 5 ) [High Purity Chemical Laboratory, V-02, concentration 2 mass%] Or a commercially available organic metal thin film coating type material [Tapuro Chemical Laboratory Co., Ltd., Ta-10-P, concentration 10% by mass] from which tantalum oxide (Ta 2 O 5 ) can be obtained by heat treatment (firing) is mixed. Then, passivation materials (f2-1) to (f2-8), which are application-type materials, were prepared (see Table 11).

また、酸化アルミニウムを単独で用いたパッシベーション材料(f2−9)を調製した(表11参照)。   Moreover, the passivation material (f2-9) which used aluminum oxide independently was prepared (refer Table 11).

参考実施例2−1と同様に、パッシベーション材料(f2−1)〜(f2−9)のそれぞれをp型のシリコン基板の片面に塗布し、その後、熱処理(焼成)を行って、パッシベーション膜を作製し、それを用いて、静電容量の電圧依存性を測定し、そこから固定電荷密度を算出した。   As in Reference Example 2-1, each of the passivation materials (f2-1) to (f2-9) was applied to one side of a p-type silicon substrate, and then heat treatment (firing) was performed to form a passivation film. This was used to measure the voltage dependence of the capacitance, and the fixed charge density was calculated therefrom.

更に、参考実施例2−1と同様に、パッシベーション材料(f2−1)〜(f2−9)のそれぞれをp型のシリコン基板の両面に塗布し、熱処理(焼成)して得られたサンプルを用いて、キャリアライフタイムを測定した。得られた結果を表11にまとめた。   Further, as in Reference Example 2-1, samples obtained by applying each of the passivation materials (f2-1) to (f2-9) to both sides of a p-type silicon substrate and heat-treating (firing) were obtained. Used to measure the carrier lifetime. The results obtained are summarized in Table 11.

表11に示すように、パッシベーション材料中の酸化アルミニウム/酸化バナジウム又は酸化タンタルが90/10及び80/20の場合には、固定電荷密度の値にばらつきが大きく、負の固定電荷密度を安定的に得ることができなかったが、酸化アルミニウムと酸化ニオブを用いることで負の固定電荷密度を実現できることが確認できた。酸化アルミニウム/酸化バナジウム又は酸化タンタルが90/10及び80/20のパッシベーション材料を用いてCV法により測定した際には、場合によって正の固定電荷を示すパッシベーション膜となるため、負の固定電荷を安定的に示すまでには至っていないことが判る。なお、正の固定電荷を示すパッシベーション膜は、n型のシリコン基板のパッシベーション膜として使用可能である。一方、酸化アルミニウムが100質量%となるパッシベーション材料(f2−9)では、負の固定電荷密度を得ることができなかった。   As shown in Table 11, when the aluminum oxide / vanadium oxide or tantalum oxide in the passivation material is 90/10 and 80/20, the fixed charge density varies greatly, and the negative fixed charge density is stable. However, it was confirmed that a negative fixed charge density can be realized by using aluminum oxide and niobium oxide. When measured by the CV method using a passivation material in which aluminum oxide / vanadium oxide or tantalum oxide is 90/10 and 80/20, a passivation film showing a positive fixed charge is obtained in some cases. It turns out that it has not reached to show stably. Note that a passivation film exhibiting a positive fixed charge can be used as a passivation film for an n-type silicon substrate. On the other hand, in the passivation material (f2-9) in which aluminum oxide is 100% by mass, a negative fixed charge density could not be obtained.


[参考実施例2−10]
シリコン基板101として、ボロンをドーパントとした単結晶シリコン基板を用いて、図9に示す構造の太陽電池素子を作製した。シリコン基板101の表面をテクスチャー処理した後、塗布型のリン拡散材を受光面側のみに塗布し、熱処理により拡散層102(リン拡散層)を形成した。その後、塗布型のリン拡散材を希フッ酸で除去した。
[Reference Example 2-10]
Using a single crystal silicon substrate with boron as a dopant as the silicon substrate 101, a solar cell element having the structure shown in FIG. 9 was produced. After the surface of the silicon substrate 101 was textured, a coating type phosphorous diffusion material was applied only to the light receiving surface side, and a diffusion layer 102 (phosphorus diffusion layer) was formed by heat treatment. Thereafter, the coating type phosphorus diffusing material was removed with dilute hydrofluoric acid.

次に、受光面側に、受光面反射防止膜103として、プラズマCVDでSiN膜を形成した。その後、参考実施例2−1で調製したパッシベーション材料(a2−1)を、インクジェット法により、シリコン基板101の裏面側に、コンタクト領域(開口部OA)を除いた領域に塗布した。その後、熱処理を行って、開口部OAを有するパッシベーション膜107を形成した。また、パッシベーション膜107として、参考実施例2−5で調製したパッシベーション材料(c2−1)を用いたサンプルも別途作製した。   Next, a SiN film was formed on the light receiving surface side by plasma CVD as the light receiving surface antireflection film 103. Thereafter, the passivation material (a2-1) prepared in Reference Example 2-1 was applied to the region excluding the contact region (opening OA) on the back surface side of the silicon substrate 101 by an inkjet method. Thereafter, heat treatment was performed to form a passivation film 107 having an opening OA. In addition, a sample using the passivation material (c2-1) prepared in Reference Example 2-5 was separately prepared as the passivation film 107.

次に、シリコン基板101の受光面側に形成された受光面反射防止膜103(SiN膜)の上に、銀を主成分とするペーストを所定のフィンガー電極及びバスバー電極の形状でスクリーン印刷した。裏面側においては、アルミニウムを主成分とするペーストを全面にスクリーン印刷した。その後、850℃で熱処理(ファイアスルー)を行って、電極(第1電極105及び第2電極106)を形成し、且つ裏面の開口部OAの部分にアルミニウムを拡散させて、BSF層104を形成して、図9に示す構造の太陽電池素子を形成した。   Next, on the light-receiving surface antireflection film 103 (SiN film) formed on the light-receiving surface side of the silicon substrate 101, a paste mainly composed of silver was screen-printed in the shape of predetermined finger electrodes and bus bar electrodes. On the back side, a paste mainly composed of aluminum was screen-printed on the entire surface. Thereafter, heat treatment (fire-through) is performed at 850 ° C. to form electrodes (first electrode 105 and second electrode 106), and aluminum is diffused into the opening OA on the back surface to form the BSF layer 104. Thus, a solar cell element having the structure shown in FIG. 9 was formed.

尚、ここでは、受光面の銀電極の形成に関しては、SiN膜に穴あけをしないファイアスルー工程を記載したが、SiN膜に初めに開口部OAをエッチング等により形成し、その後に銀電極を形成することもできる。   In this case, regarding the formation of the silver electrode on the light receiving surface, the fire-through process in which the SiN film is not perforated is described. However, the opening OA is first formed in the SiN film by etching or the like, and then the silver electrode is formed. You can also

比較のために、上記作製工程のうち、パッシベーション膜107の形成を行わず、裏面側の全面にアルミニウムペーストを印刷し、BSF層104と対応するp層114及び第2電極と対応する電極116を全面に形成して、図6の構造の太陽電池素子を形成した。これらの太陽電池素子について、特性評価(短絡電流、開放電圧、曲線因子及び変換効率)を行った。特性評価は、JIS−C−8913(2005年度)及びJIS−C−8914(2005年度)に準拠して測定した。その結果を表12に示す。For comparison, the passivation film 107 is not formed in the above manufacturing process, aluminum paste is printed on the entire back surface, and the p + layer 114 corresponding to the BSF layer 104 and the electrode 116 corresponding to the second electrode. Was formed on the entire surface to form a solar cell element having the structure of FIG. About these solar cell elements, characteristic evaluation (a short circuit current, an open circuit voltage, a fill factor, and conversion efficiency) was performed. Characteristic evaluation was measured based on JIS-C-8913 (2005) and JIS-C-8914 (2005). The results are shown in Table 12.

表12より、パッシベーション膜107を有する太陽電池素子は、パッシベーション膜107を有しない太陽電素子と比較すると、短絡電流及び開放電圧が共に増加しており、変換効率(光電変換効率)が最大で0.6%向上することが判明した。 From Table 12, the solar cell element having a passivation layer 107 is different from the solar cells elements having no passivation film 107 has increased short-circuit current and open circuit voltage are both conversion efficiency (photoelectric conversion efficiency) at the maximum It was found to improve by 0.6%.


日本国特許出願第2012−160336号、第2012−218389号、第2013−011934号、第2013−040153号及び第2013−040154号の開示はその全体が参照により本明細書に取り込まれる。本明細書に記載された全ての文献、特許出願、及び技術規格は、個々の文献、特許出願、及び技術規格が参照により取り込まれることが具体的かつ個々に記された場合と同程度に、本明細書に参照により取り込まれる。   The disclosures of Japanese Patent Application Nos. 2012-160336, 2012-218389, 2013-011934, 2013-040153, and 2013-040154 are incorporated herein by reference in their entirety. All documents, patent applications, and technical standards mentioned in this specification are to the same extent as if each individual document, patent application, and technical standard were specifically and individually stated to be incorporated by reference, Incorporated herein by reference.

Claims (7)

受光面及び前記受光面とは反対側の裏面を有し、前記裏面にp型不純物を含有するp型拡散領域及びn型不純物を含有するn型拡散領域を有する半導体基板と、
前記半導体基板の裏面の一部又は全部の領域に設けられ、Nb、Ta、V、Y及びHfOからなる群より選択される1種以上を含有するパッシベーション層と、
前記p型拡散領域の少なくとも一部に設けられる第一の金属電極と、
前記n型拡散領域の少なくとも一部に設けられる第二の金属電極と、を含む太陽電池素子の製造方法であって、
受光面及び前記受光面とは反対側の裏面を有し、前記裏面にp型拡散領域及びn型拡散領域を有する半導体基板の前記p型拡散領域の少なくとも一部に第一の金属電極を、前記n型拡散領域の少なくとも一部に第二の金属電極をそれぞれ形成する工程と、
前記半導体基板の裏面の一部又は全部の領域に、下記一般式(I)で表される化合物を含むパッシベーション層形成用組成物を付与して組成物層を形成する工程と、
前記組成物層を熱処理してNb 、Ta 、V 、Y 及びHfO からなる群より選択される1種以上を含有するパッシベーション層を形成する工程と、を有する、太陽電池素子の製造方法。
M(OR )m (I)
[式中、MはNb、Ta、V、Y及びHfからなる群より選択される少なくとも1種の金属元素を含む。R はそれぞれ独立して炭素数1〜8のアルキル基又は炭素数6〜14のアリール基を表す。mは1〜5の整数を表す。]
A semiconductor substrate having a light-receiving surface and a back surface opposite to the light-receiving surface, and having a p-type diffusion region containing a p-type impurity and an n-type diffusion region containing an n-type impurity on the back surface;
Provided in part or all of the back surface of the semiconductor substrate, containing one or more selected from the group consisting of Nb 2 O 5 , Ta 2 O 5 , V 2 O 5 , Y 2 O 3 and HfO 2 A passivation layer to
A first metal electrode provided in at least a part of the p-type diffusion region;
A second metal electrode provided in at least a part of the n-type diffusion region ,
A first metal electrode on at least a part of the p-type diffusion region of the semiconductor substrate having a light-receiving surface and a back surface opposite to the light-receiving surface, and having a p-type diffusion region and an n-type diffusion region on the back surface; Forming a second metal electrode in at least a part of the n-type diffusion region;
Forming a composition layer by applying a passivation layer-forming composition containing a compound represented by the following general formula (I) to a part or all of the back surface of the semiconductor substrate;
Heat-treating the composition layer to form a passivation layer containing at least one selected from the group consisting of Nb 2 O 5 , Ta 2 O 5 , V 2 O 5 , Y 2 O 3 and HfO 2 ; The manufacturing method of the solar cell element which has these.
M (OR 1 ) m (I)
[Wherein M includes at least one metal element selected from the group consisting of Nb, Ta, V, Y and Hf. R 1 each independently represents an alkyl group having 1 to 8 carbon atoms or an aryl group having 6 to 14 carbon atoms. m represents an integer of 1 to 5. ]
前記p型拡散領域と前記n型拡散領域とは離間して配置されており、それぞれ短辺及び長辺を有する複数の矩形部分を有しており、
前記p型拡散領域が有する複数の矩形部分は、前記複数の矩形部分の長辺の方向が前記n型拡散領域が有する複数の矩形部分の長辺の方向に沿うように配置されており、
前記p型拡散領域が有する複数の矩形部分と前記n型拡散領域が有する複数の矩形部分とは交互に配置されている、請求項1に記載の太陽電池素子の製造方法
The p-type diffusion region and the n-type diffusion region are spaced apart from each other, and each has a plurality of rectangular portions having short sides and long sides,
The plurality of rectangular portions of the p-type diffusion region are arranged such that the long sides of the plurality of rectangular portions are along the long sides of the plurality of rectangular portions of the n-type diffusion region,
The method for manufacturing a solar cell element according to claim 1, wherein the plurality of rectangular portions included in the p-type diffusion region and the plurality of rectangular portions included in the n-type diffusion region are alternately arranged.
前記太陽電池素子はバックコンタクト構造を有する、請求項1又は請求項2に記載の太陽電池素子の製造方法The method for manufacturing a solar cell element according to claim 1, wherein the solar cell element has a back contact structure. 前記パッシベーション層が更にAlを含有する、請求項1〜請求項3のいずれか一項に記載の太陽電池素子の製造方法The passivation layer further contains Al 2 O 3, a method for manufacturing a solar cell device according to any one of claims 1 to 3. 前記パッシベーション層形成用組成物が、更に下記一般式(II)で表される化合物を含む、請求項1〜請求項4のいずれか一項に記載の太陽電池素子の製造方法。

[式中、Rはそれぞれ独立して炭素数1〜8のアルキル基を表す。nは0〜3の整数を表す。X及びXはそれぞれ独立して酸素原子又はメチレン基を表す。R、R及びRはそれぞれ独立して水素原子又は炭素数1〜8のアルキル基を表す。]
The passivation layer forming composition further comprises a compound represented by the following Symbol formula (II), a method for manufacturing a solar cell device according to any one of claims 1 to 4.

Wherein, R 2 each independently represent an alkyl group having 1 to 8 carbon atoms. n represents an integer of 0 to 3. X 2 and X 3 each independently represent an oxygen atom or a methylene group. R 3 , R 4 and R 5 each independently represent a hydrogen atom or an alkyl group having 1 to 8 carbon atoms. ]
前記熱処理の温度が400℃以上である、請求項1〜請求項5のいずれか一項に記載の太陽電池素子の製造方法。 The manufacturing method of the solar cell element as described in any one of Claims 1-5 whose temperature of the said heat processing is 400 degreeC or more. 前記組成物層を形成する工程は、スクリーン印刷法又はインクジェット法で前記パッシベーション層形成用組成物を付与することを含む、請求項1〜請求項6のいずれか一項に記載の太陽電池素子の製造方法。 The step of forming the composition layer includes applying the composition for forming a passivation layer by a screen printing method or an ink jet method, and the solar cell element according to any one of claims 1 to 6 . Production method.
JP2014525896A 2012-07-19 2013-07-19 SOLAR CELL DEVICE, ITS MANUFACTURING METHOD, AND SOLAR CELL MODULE Expired - Fee Related JP6295952B2 (en)

Applications Claiming Priority (11)

Application Number Priority Date Filing Date Title
JP2012160336 2012-07-19
JP2012160336 2012-07-19
JP2012218389 2012-09-28
JP2012218389 2012-09-28
JP2013011934 2013-01-25
JP2013011934 2013-01-25
JP2013040153 2013-02-28
JP2013040154 2013-02-28
JP2013040154 2013-02-28
JP2013040153 2013-02-28
PCT/JP2013/069702 WO2014014112A1 (en) 2012-07-19 2013-07-19 Solar cell element, production method therefor, and solar cell module

Publications (2)

Publication Number Publication Date
JPWO2014014112A1 JPWO2014014112A1 (en) 2016-07-07
JP6295952B2 true JP6295952B2 (en) 2018-03-20

Family

ID=49948932

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014525896A Expired - Fee Related JP6295952B2 (en) 2012-07-19 2013-07-19 SOLAR CELL DEVICE, ITS MANUFACTURING METHOD, AND SOLAR CELL MODULE

Country Status (4)

Country Link
JP (1) JP6295952B2 (en)
CN (1) CN104488088B (en)
TW (1) TWI569461B (en)
WO (1) WO2014014112A1 (en)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102014208054A1 (en) 2014-04-29 2015-10-29 Evonik Degussa Gmbh Method for producing differently doped semiconductors
KR102295984B1 (en) * 2014-11-04 2021-09-01 엘지전자 주식회사 Solar cell
WO2017002747A1 (en) * 2015-06-30 2017-01-05 シャープ株式会社 Photoelectric conversion element
JP6330108B1 (en) * 2016-11-07 2018-05-23 信越化学工業株式会社 High photoelectric conversion efficiency solar cell and method for producing high photoelectric conversion efficiency solar cell
CN110100317B (en) * 2016-12-13 2022-09-30 信越化学工业株式会社 High-efficiency back-contact solar cell unit, solar cell module, and photovoltaic power generation system
CN108389914A (en) * 2018-03-09 2018-08-10 中国科学院宁波材料技术与工程研究所 A kind of passivation tunnel layer material preparation and its application in solar cell
CN110527981B (en) * 2018-08-02 2023-06-16 北京北方华创微电子装备有限公司 Atomic layer deposition equipment and method
CN113130670A (en) * 2021-04-20 2021-07-16 浙江师范大学 Europium oxide/platinum passivated contact crystalline silicon solar cell and preparation method thereof

Family Cites Families (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6031104B2 (en) * 1979-08-24 1985-07-20 三菱電機株式会社 Glass for silicon semiconductor device packaging
JPS5823486A (en) * 1981-08-04 1983-02-12 Toshiba Corp Manufacture of solar cell
JPS59178778A (en) * 1983-03-30 1984-10-11 Toshiba Corp Solar battery and manufacture thereof
JPS6281070A (en) * 1985-10-03 1987-04-14 Sharp Corp Manufacture of thin asgs solar cell
JPH06125103A (en) * 1991-08-26 1994-05-06 Canon Inc Solar battery module
DE19735770C1 (en) * 1997-08-18 1999-05-27 Bayer Ag Process for the preparation of diaryl carbonates
JP2000294817A (en) * 1999-04-09 2000-10-20 Dainippon Printing Co Ltd Surface protection sheet for solar cells and solar cell using the same
US6548912B1 (en) * 1999-10-25 2003-04-15 Battelle Memorial Institute Semicoductor passivation using barrier coatings
JP4726354B2 (en) * 2001-08-22 2011-07-20 東洋アルミニウム株式会社 Paste composition and solar cell using the same
US7144751B2 (en) * 2004-02-05 2006-12-05 Advent Solar, Inc. Back-contact solar cells and methods for fabrication
JP4883559B2 (en) * 2006-03-10 2012-02-22 独立行政法人産業技術総合研究所 Photoelectric conversion electrode
JP2008138159A (en) * 2006-11-07 2008-06-19 Hitachi Chem Co Ltd Resin composition and semiconductor device using the same
JP4813416B2 (en) * 2007-04-27 2011-11-09 株式会社堀場製作所 Sensor having wetted part and measuring method using the same
JP2011035092A (en) * 2009-07-31 2011-02-17 Sanyo Electric Co Ltd Back-junction type solar cell and solar cell module using the same
US8735234B2 (en) * 2010-02-18 2014-05-27 Varian Semiconductor Equipment Associates, Inc. Self-aligned ion implantation for IBC solar cells
TW201138145A (en) * 2010-02-18 2011-11-01 Varian Semiconductor Equipment Self-aligned ion implantation for IBC solar cells
JP5487449B2 (en) * 2010-07-28 2014-05-07 学校法人明治大学 Solar cell
JP5477220B2 (en) * 2010-08-05 2014-04-23 信越化学工業株式会社 Solar cell and manufacturing method thereof
JP5638366B2 (en) * 2010-12-01 2014-12-10 株式会社アルバック Method for manufacturing photoelectric conversion device
CN105161404A (en) * 2011-01-13 2015-12-16 日立化成株式会社 Composition for forming p-type diffusion layer, method of producing silicon substrate having p-type diffusion layer, method for producing photovoltaic cell , and photovoltaic cell

Also Published As

Publication number Publication date
CN104488088A (en) 2015-04-01
WO2014014112A1 (en) 2014-01-23
TWI569461B (en) 2017-02-01
JPWO2014014112A1 (en) 2016-07-07
TW201411862A (en) 2014-03-16
WO2014014112A9 (en) 2014-07-31
CN104488088B (en) 2017-08-01

Similar Documents

Publication Publication Date Title
JP6295952B2 (en) SOLAR CELL DEVICE, ITS MANUFACTURING METHOD, AND SOLAR CELL MODULE
WO2014014109A1 (en) Passivation-layer-forming composition, semiconductor substrate having passivation layer, method for manufacturing semiconductor substrate having passivation layer, solar-cell element, method for manufacturing solar-cell element, and solar cell
JP6350278B2 (en) Solar cell element, method for manufacturing solar cell element, and solar cell module
US20160211389A1 (en) Composition for forming passivation layer, semiconductor substrate having passivation layer, method of producing semiconductor substrate having passivation layer, photov oltaic cell element, method of producing photovoltaic cell element, and photovoltaic cell
WO2014010743A1 (en) Passivation layer forming composition, semiconductor substrate with passivation layer and manufacturing method thereof, solar cell device and manufacturing method thereof, and solar cell
US9714262B2 (en) Composition for forming passivation layer, semiconductor substrate having passivation layer, method of producing semiconductor substrate having passivation layer, photovoltaic cell element, method of producing photovoltaic cell element and photovoltaic cell
JP2015026666A (en) Double-sided light-receiving solar cell element, method for producing the same, and double-sided light-receiving solar cell module
JP6295953B2 (en) SOLAR CELL DEVICE, ITS MANUFACTURING METHOD, AND SOLAR CELL MODULE
JPWO2014010745A1 (en) Solar cell element and manufacturing method thereof
JP6330661B2 (en) Passivation layer forming composition, semiconductor substrate with passivation layer and method for producing the same, solar cell element and method for producing the same
JP6269484B2 (en) Field effect passivation layer forming composition, semiconductor substrate with field effect passivation layer, method for manufacturing semiconductor substrate with field effect passivation layer, solar cell element, method for manufacturing solar cell element, and solar cell
JP6176249B2 (en) Semiconductor substrate with passivation layer and method for manufacturing the same
JP2014167961A (en) Composition for passivation film, semiconductor substrate with passivation film and manufacturing method thereof, and solar battery element and manufacturing method thereof
JP2018006432A (en) Composition for passivation layer formation, passivation layer-attached semiconductor substrate, method for manufacturing passivation layer-attached semiconductor substrate, solar battery element, method for manufacturing solar battery element, and solar battery
JP2018006433A (en) Passivation layer-attached semiconductor substrate, solar battery element, and solar battery
JP2018006431A (en) Composition for passivation layer formation, passivation layer-attached semiconductor substrate, method for manufacturing passivation layer-attached semiconductor substrate, solar battery element, method for manufacturing solar battery element, and solar battery
JP2018006421A (en) Passivation layer-attached semiconductor substrate, solar battery element, and solar battery
JP2018006422A (en) Passivation layer-attached semiconductor substrate, solar battery element, and solar battery

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150115

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20160610

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20170207

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20170410

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20170613

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20170911

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20170920

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20171010

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20171211

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20171211

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20180123

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20180205

R151 Written notification of patent or utility model registration

Ref document number: 6295952

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

LAPS Cancellation because of no payment of annual fees