JP6260115B2 - 製鋼スラグの炭酸化処理方法 - Google Patents

製鋼スラグの炭酸化処理方法 Download PDF

Info

Publication number
JP6260115B2
JP6260115B2 JP2013117703A JP2013117703A JP6260115B2 JP 6260115 B2 JP6260115 B2 JP 6260115B2 JP 2013117703 A JP2013117703 A JP 2013117703A JP 2013117703 A JP2013117703 A JP 2013117703A JP 6260115 B2 JP6260115 B2 JP 6260115B2
Authority
JP
Japan
Prior art keywords
carbonation
steelmaking slag
slag
mass
water
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2013117703A
Other languages
English (en)
Other versions
JP2014234332A (ja
Inventor
福山 博之
博之 福山
高橋 茂樹
茂樹 高橋
洋一 安部
安部  洋一
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP2013117703A priority Critical patent/JP6260115B2/ja
Publication of JP2014234332A publication Critical patent/JP2014234332A/ja
Application granted granted Critical
Publication of JP6260115B2 publication Critical patent/JP6260115B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

この発明は、製鋼スラグの炭酸化処理方法に関し、詳しくは、製鋼スラグを天然砕石や骨材等の代替品として有効利用するうえで、予め二酸化炭素と反応させて、高アルカリ水や白濁水が溶出するのを抑制する製鋼スラグの炭酸化処理方法に関するものである。
製鉄所で発生する予備処理スラグ、転炉スラグ、電気炉スラグ、鋳造スラグ等の製鋼スラグは、道路の路盤材をはじめ、土木、建築用の材料などとして広く利用されているが、元来、製鋼スラグにはCaOが含有されていることから、製鋼スラグをそのまま使用すると、高アルカリ水や白濁水を発生させてしまうおそれがある。また、製鋼スラグをエージング処理すると遊離のCaOによる膨張性を抑えることができるが、これによって生成したCa(OH)2は溶解性を有しており、やはりアルカリ発生源となる。
そこで、製鋼スラグに含まれた可溶性のカルシウム成分を不溶化させる方法のひとつとして、古くから製鋼スラグに二酸化炭素を反応させる炭酸化処理が行われている。この炭酸化処理は、製鋼スラグに含まれたCaOやCa(OH)2が水に溶けて生成するCa2+イオンと、CO2が水に溶けて生成するCO3 2-イオンとが作用して不溶性のCaCO3を生成する反応であることから、CaOやCa(OH)2とCO2とが一旦水に溶ける必要があり、反応の進行には水が不可欠である。ただし、水は反応を進行させる媒体として働くのみであり、消費されることはない。
そのため、製鋼スラグを迅速に炭酸化処理するには、従来、二酸化炭素を含有したガスの供給速度の調整のほか、スラグに水分を添加したり、雰囲気の相対湿度を制御して、スラグとガスとの接触が十分に確保されることが重要であると考えられてきた。
例えば、特許文献1には、大気雰囲気下、加圧雰囲気下又は水蒸気雰囲気下でエージング処理が施された製鋼スラグに自由水が存在し始める水分値未満で、かつ、該水分値よりも10質量%少ない値以上の範囲となるように添加する水分量を調整した後、炭酸ガスを含有し相対湿度が75〜100%のガスを流す製鋼スラグの安定化処理方法が記載されている。そして、当該特許文献における実施例の場合には添加水が15質量%であるといったように、炭酸化の促進にはある最適な添加水分の量が存在するとしている。また、特許文献2は、製鋼スラグをCO2吸収剤として利用する発明の例であるが、製鋼スラグと炭酸ガスの反応を効率的に行うには、スラグ粒子に表面付着水(水膜)が存在する程度に水分を添加する必要があるとしている。
一方で、製鋼スラグの炭酸化処理を生産性良く行うために、特許文献3では、回転ドラムを有して攪拌羽を設置したロータリータイプの反応容器等を用いて、製鋼スラグに機械攪拌を付与しながら、CO2含有ガスを供給して炭酸化処理する方法を記載している。すなわち、この特許文献3記載の方法によれば、常に新たなスラグ粒子をCO2と接触させて炭酸化を進行させると共に、炭酸化処理中に生成したCaCO3によりスラグ内部への水の浸透を阻害させないために、製鋼スラグに機械攪拌を付与してCaCO3膜を破壊させ、或いは亀裂を生じさせて、内部へのCO2の拡散を維持させるようにしている。そして、この場合にも、固体物100重量部に対して4〜30重量部の水分量となるように、水を適宜供給するのが望ましいと記載する。
更に、特許文献4には、粉状の製鋼スラグを自由水が存在し始める水分値未満で、かつ該水分値よりも5質量%少ない値以上の範囲に水分量を調整し、機械的な攪拌を付与して、炭酸ガスを含有したガスを供給して炭酸化処理する方法が記載されている。この特許文献4においても、やはり、水を添加することで炭酸化が円滑に始まり、添加水の量に伴い炭酸化の速度が増加するとしている。
特開2005−97076号公報(段落0036、図2) 特開2000−197810号公報(段落0015、0021) 特開2005−200234号公報(段落0016、0021) 特開2007−31220号公報(段落0037、図1)
上述したように、製鋼スラグを炭酸化するには水が不可欠であり、従来の方法では、炭酸化処理を迅速、かつ均一に行うようにするためには、スラグ粒子の表面を水膜が覆う程度、或いはその手前の状態まで、水を十分に存在させることが必要であると考えられてきた。ところが、本発明者らが製鋼スラグの炭酸化処理について更なる検討を行ったところ、従来法の程度に水分を添加すると、炭酸化処理中に製鋼スラグを攪拌した際に、水を介してスラグ粒子が擬似粒子を形成して造粒し、製鋼スラグの炭酸化処理をかえって遅らせてしまうという知見を得た。すなわち、製鋼スラグが造粒してしまうと、造粒物の内部まで二酸化炭素を含有したガスが浸入し難くなり、結果的に炭酸化処理を長時間化させてしまう。
そこで、本発明の目的は、製鋼スラグに攪拌を加えて炭酸化処理する方法において、スラグ粒子の造粒を抑えながら、効率的に製鋼スラグを炭酸化処理することができる方法を提供することにある。
従来、水を十分に添加しないと炭酸化の速度が増加しないと考えられてきた製鋼スラグの炭酸化処理において、本発明者らが新たな視点で検討を行った結果、製鋼スラグ自身が炭酸化処理前に保有する水分だけでも炭酸化が進行し、しかも、撹拌を加えて炭酸化処理する際に、炭酸化処理中の水分量を4質量%以下にすることで造粒がほとんど起こらずに、効率的に製鋼スラグを炭酸化処理できることを見出し、本発明を完成させた。
すなわち、本発明の要旨は次のとおりである。
(1)二酸化炭素を含有するCO 含有ガスを製鋼スラグに供給して、断続的又は連続的に攪拌して製鋼スラグを炭酸化処理する方法であって、炭酸化処理する対象の製鋼スラグを炭酸化処理前に乾燥処理して水分量を0.5質量%以上4質量%以下の範囲に調整し、炭酸化処理中の水分量を当該範囲にして行うことを特徴とする製鋼スラグの炭酸化処理方法(但し、CO 含有ガスのCO 濃度が1%以下の場合を除く)
(2)炭酸化処理する対象の製鋼スラグを炭酸化処理前に乾燥処理して水分量を0.5質量%以上3質量%未満の範囲に調整し、炭酸化処理中の水分量を当該範囲にして行う(1)に記載の製鋼スラグの炭酸化処理方法。
(3)エージング処理後の製鋼スラグを乾燥処理して水分量前記範囲に調整する(1)又は(2)に記載の製鋼スラグの炭酸化処理方法。
(4)二酸化炭素を含有するCO 含有ガスが、水分を含まない乾燥したCO2含有ガスであ(1)〜(3)のいずれかに記載の製鋼スラグの炭酸化処理方法。
(5)機械攪拌により製鋼スラグを連続的に攪拌しながら、二酸化炭素を含有するCO 含有ガスを供給して炭酸化処理する(1)〜(4)のいずれかに記載の製鋼スラグの炭酸化処理方法。
(6)炭酸化処理する対象の製鋼スラグが、道路用路盤材に相当する粒度に粒度調整されたものである(1)〜(5)のいずれかに記載の製鋼スラグの炭酸化処理方法。
(7)炭酸化処理の前後で製鋼スラグの2.36mm篩下通過率の値を比べたときに、炭酸化処理後の値が炭酸化処理前の値の70%超を示す(1)〜(6)のいずれかに記載の製鋼スラグの炭酸化処理方法。
本発明によれば、炭酸化時間の遅延を防いで、効率的に製鋼スラグを炭酸化処理することができる。
図1は、本発明における炭酸化処理中のスラグ粒子表面での水分の状態を示す模式図である。 図2は、ドラムミキサーを用いて製鋼スラグの炭酸化処理を行う様子を示す模式図である。 図3は、プロシェアミキサーを用いて製鋼スラグの炭酸化処理を行う様子を示す模式図である。 図4は、ロータリーキルンを用いて製鋼スラグの炭酸化処理を行う様子を示す模式図である。 図5は、固定床式を採用して製鋼スラグの炭酸化処理を行う様子を示す模式図である。 図6は、実験例1の炭酸化処理実験に用いた製鋼スラグA(原鉱)の粒度分布である。 図7は、実験例1の炭酸化処理実験での炭酸化処理時間とアルカリ溶出水のpHとの関係を示すグラフである。 図8は、実施例1の炭酸化処理実験における含水率5.0質量%の試験用製鋼スラグの水分保有量の経時変化を示すグラフである。 図9は、実験例1の実験終了後の各製鋼スラグについて粒度分布を測定した結果である。 図10は、実験例2の炭酸化処理実験に用いた製鋼スラグB(原鉱)の粒度分布である。 図11は、実験例2の炭酸化処理実験での炭酸化処理時間とアルカリ溶出水のpHとの関係を示すグラフである。 図12は、従来法においてスラグ粒子の表面に水膜が形成された様子を示す模式図である。 図13は、従来法においてスラグ粒子が擬似粒子を形成して造粒した様子を示す模式図である。
以下、本発明について詳しく説明する。
図12は、従来の炭酸化処理方法にあるように、スラグ粒子の表面に水膜(表面付着水)が形成された様子を模式的に表したものである。このような状態において、炭酸化処理中に製鋼スラグを攪拌すると、図13に示したように、水を介してスラグ粒子が擬似粒子を形成して造粒してしまい、表層のスラグは炭酸化されるものの、造粒物の内部には二酸化炭素を含有したガス(CO2含有ガス)が浸入できず、或いは侵入し難くなり、炭酸化処理に余計な時間が掛かるものと考えられる。すなわち、製鋼スラグを攪拌して炭酸化処理する場合に造粒が生じると、攪拌による破壊効果でスラグに亀裂が入り内部まで炭酸化が進行しやすくなる効果よりも、造粒物内部のスラグが炭酸化され難くなる造粒の影響の方が大きく、結果的に炭酸化時間が長時間化してしまう。
そこで、本発明では、炭酸化処理中の水分量を0.5質量%以上4質量%以下の範囲、好ましくは0.5質量%以上3質量%未満の範囲、より好ましくは1質量%以上3質量%未満の範囲にして、炭酸化処理を行うようにする。一般に、製鋼スラグは、遊離のCaO(フリーライム:f-CaO)による膨張性を抑えるために、数か月大気中に暴露する大気エージングや水蒸気に数日暴露する蒸気エージング等のエージング処理が施される。これらの処理後の製鋼スラグは、通常、ヤードにて山積み保管されるため、エージング処理後の製鋼スラグは、一般に6〜8質量%程度の水分を保有する。ところが、後述する実施例に示したように、このような含水率の製鋼スラグを炭酸化処理中に攪拌すると、造粒してしまうことが分かった。
そのため、本発明においては炭酸化処理中の水分量を0.5質量%以上4質量%以下にして行うようにする。水分量が4質量%以下であれば造粒を抑えることができ、3質量%未満であればほとんど造粒は起こらない。ここで、造粒の発生については、製鋼スラグの粒度分布において、炭酸化処理前の細粒分に比べて炭酸化処理後の細粒分の割合が減少した場合でもって判断することができる。例えば、下記実施例では、粒径2.36mm以下のスラグ(JIS Z8801-1に規定の目開き2.36mmふるいの篩下スラグ)の質量分率を炭酸化処理前の値と比較しており、炭酸化処理後の2.36mm篩下通過率が炭酸化処理前の値に比べて70%以下になる場合には、炭酸化処理に時間が掛かってしまう。
一方で、炭酸化処理中の水分量が0.5質量%あれば炭酸化の反応は進行する。この理由について、本発明者らは、次のように推察している。すなわち、炭酸化処理中の水分量が、スラグの平衡水分量(水分の蒸発と吸着が平衡状態の水分量)である0.5質量%以上であれば、図1に示したように、スラグ粒子からの水分の蒸発によりスラグ粒子周辺での湿度が高くなり、スラグ粒子表面に水分が吸着したり、蒸発したりする状態が繰り返されると推測する。そのため、炭酸化処理中にスラグが攪拌されることで、スラグ上での水分の吸着部位が逐一変化し、スラグ粒子の表面に水膜が形成されないような状態であっても、スラグ粒子の表面に水分が均一に供給されて、炭酸化が進行するものと考えられる。なお、炭酸化処理中の水分量とは、スラグ(dry)と水分の合計における水分の質量分率を表し、例えば水分量3質量%はスラグ97g(dry)に対して水が3g存在する状態である。
本発明においては、二酸化炭素を含有するガスを製鋼スラグに供給して、断続的又は連続的に攪拌して製鋼スラグを炭酸化処理することができればよく、攪拌式、流動床式、固定床式等の公知の手法を採用することができる。例えば、図2に示したように、ドラムミキサーを用いて、蓋を有した円筒形の容器内に製鋼スラグを収容し、容器自体(ミキサー)を回転させて製鋼スラグを連続的に攪拌しながら、二酸化炭素を含有したガスを供給して炭酸化処理することができる。すなわち、図2に示したドラムミキサー1では、蓋1bを有した円筒形の容器1a内に製鋼スラグSを投入して、容器自体(ミキサー)を回転させて製鋼スラグSを連続的に攪拌しながら、蓋1bに取り付けられたガス供給管2からCO2含有ガスを供給して、炭酸化処理する。反応に使用されなかったCO2含有ガスは、円筒形容器1aの底側の排気孔(図示外)から排気される。
また、図3のように、内部に攪拌翼(プロペラ)を備えたプロシェアミキサーを用いて、容器内に収容された製鋼スラグを攪拌翼で連続的に撹拌しながら、二酸化炭素を含有したガスを供給して炭酸化処理するようにしてもよい。すなわち、処理する製鋼スラグSを容器(ミキサー)11aに投入すると共に攪拌翼3を収容して、ミキサーの蓋11bをして攪拌翼3の回転を開始する。同時にCO2含有ガスを攪拌翼3の軸部3aから所定流量流入させ、炭酸化処理終了までその状態を維持する。炭酸化の反応に寄与しなかったCO2含有ガスは、軸部3aと蓋11bの隙間を通じて系外に放出される。
先の図2に示したドラムミキサーについては、容器内面に鉄板等で攪拌翼を取り付けたり、図3に示したようなプロペラを取り付けて、攪拌効果を高めるようにしてもよく、容器を傾斜させたパンミキサーのような形態にて処理することもできる。また、図4に示したロータリーキルン21のように、スラグ投入口4から容器21a内に製鋼スラグを投入し、連続的に炭酸化処理して、生産性をより高めることもできる。更に、図3に示したプロシェアミキサーについては、プロペラの枚数を増やしたり、回転軸の複数個所にプロペラを設けるようにしてもよく、アイリッヒミキサーのようにしてプロペラを容器の中心からずらした位置に取り付けるようにしてもよい。
これらの蓋を有したドラムミキサーやプロシェアミキサー等のように、製鋼スラグの乾燥を抑えることができる閉鎖系での炭酸化処理の場合には、処理対象の製鋼スラグの含水率を事前に調整して、炭酸化処理中の水分量が所定の範囲内になるように制御することができる。すなわち、エージング処理後の製鋼スラグのようにヤードに山積みで保管されて、スラグ自身が6〜8質量%程度の水分を保有するものは、予め乾燥処理するなどして製鋼スラグの含水率を調整し、炭酸化処理中の水分量が0.5質量%以上4質量%以下の範囲になるようにすれば、特に外部から水分を添加せずに炭酸化処理を行うことができる。仮に製鋼スラグの含水率が足りなければ、事前に加水して炭酸化処理中の水分量が上記範囲になるようにすればよい。もし、炭酸化処理中に乾燥が進行してしまう場合には、勿論、炭酸化処理中に水分を添加して所定の水分量を維持できるようにすればよい。なお、特に制限はないが、ドラムミキサーやプロシェアミキサー等を使用する場合には、容器内でスラグが十分に流動できるように、その容積に対して50%以下程度の占積率となるスラグ量で炭酸化するのが望ましい。
一方で、図5に示したように固定床式を採用して、シートで覆われた製鋼スラグの下方側の配管から二酸化炭素を含有したガスを供給し、製鋼スラグを断続的に攪拌して炭酸化処理を行うようにしてもよい。すなわち、耕運機等の重機を使うなどして、充填された製鋼スラグを所定の割合(一般的には1〜15時間に1回程度、多い場合には1〜3時間に1回程度)で混合して、再び固定床に積み直す操作(いわゆる山繰り)を行って、均一に製鋼スラグの炭酸化がなされるようにする。このように断続的に製鋼スラグを攪拌する場合にも、水分量が多くなり過ぎると、いわゆるだまのような粒状の塊が形成されてしまい、炭酸化処理の時間が必要以上に掛かってしまうことから、事前に炭酸化処理する対象の製鋼スラグの含水率を調整した上で、開放系の炭酸化処理によって系外に逃げた水分を補充して、上記範囲内の水分量にして炭酸化処理を行う。ただし、生産性や手間のほか、水分量を制御し易いことなどを考慮すれば、ドラムミキサーやプロシェアミキサー等のような機械攪拌によって製鋼スラグを連続的に攪拌しながら、二酸化炭素を含有するガスを供給して炭酸化処理するのが望ましい。
二酸化炭素を含有するガス(CO2含有ガス)については、常に一定流量を流し続ける連続式の供給であってもよく、或いは、ドラムミキサー等の密閉された容器内のCO2含有ガスを圧力制御して減少分を逐一供給する、圧力制御式で供給してもよい。連続式の場合には、例えば、供給量の目安として、スラグ1kg当たり、二酸化炭素を含有するガスを0.2L/min以上で供給するのが望ましい。圧力制御式の場合には、例えば、容器内を0.05MPaG程度の圧力にして、常にCO2濃度が高い状態を維持するのが望ましい。
また、CO2含有ガスは、排ガスのようなCO2濃度が数%程度の低濃度のものを用いることもできるが、効果的に炭酸化を行うためには、できる限りCO2濃度の高いものを使用するのが望ましい。更には、CO2含有ガスの相対湿度によって炭酸化処理中の水分量を調整することも可能であるが、蓋を有したドラムミキサー等のような密閉された容器を用いて、事前に含水率を調整した製鋼スラグを処理する場合には、炭酸化処理中の造粒を抑えるために、水分を含まない乾燥したCO2含有ガスを用いるのが好適である。
また、炭酸化処理は0〜80℃の温度で行うのが望ましい。0℃未満になるとスラグ中の水分が凍ってしまうことから反応が進まなくなる。一方で、80℃を超えると水分の蒸発によってスラグが乾燥してしまう。そのため、炭酸化処理の雰囲気が80℃を超えるような場合には、乾燥で失われた水分と同じ量の水分を加水しながら炭酸化を行うようにする。なお、処理対象の製鋼スラグの含水率を事前に把握していれば、水分計で炭酸化処理中の雰囲気を計測し、必要に応じて水分を添加するなどして水分量を制御することができる。
処理対象の製鋼スラグについては、天然砕石や骨材の代替品等に利用することなどを考慮すると、0−50mmの範囲で粒度分布を有するものであるのがよい。なかでも微粉が少ない方が望ましく、1mm以下の微粉が質量分率で20%以下であるのがよい。特に本発明においては、炭酸化処理による造粒が抑えられることから、例えば、CS−40(粒度範囲40〜0mm)、CS−30(同30〜0mm)、CS−20(同20〜0mm)等のようなJIS A5015に規定される道路用路盤材に相当する粒度に粒度調整された製鋼スラグを炭酸化処理することで、その後に有効利用する上で有利である。
以下、実験例に基づき本発明を具体的に説明する。なお、本発明は下記の内容に制限されるものではない。
(実験例1)
表1に示す組成を有すると共に、図6に示した粒度分布を持つCS−30の呼び名(JIS A5015に規定される道路用路盤材)の製鋼スラグAを原鉱として、以下のように連続的に攪拌して炭酸化処理する実験を行った。この原鉱の製鋼スラグAは、エージング処理が施されており、約6質量%の水分を保有していたため、一部を天日にて乾燥させ、一部には加水して水分調整を行って、含水率1.7質量%、同2.5質量%、同4.0質量%、同5.0質量%、同6.3質量%、及び同7.0質量%の6水準の実験用製鋼スラグを用意した。なお、製鋼スラグの含水率は、水分調整したスラグから約150gを採取し、110℃の乾燥炉で乾燥する前後の重量差を比較する事により求めたものである。また、図6には、原鉱の製鋼スラグAを絶乾状態(含水率0質量%)に乾燥させた場合の粒度分布を併せて示しているが、水分調整によってスラグの粒度分布にほとんど変化は見られなかった。
Figure 0006260115
上記で準備した各含水率の実験用製鋼スラグについて、図2に示したような内径φ=0.6m、長さL=0.6mのドラムミキサーの円筒形容器内にスラグ量60kgで投入して蓋をし(占積率40%)、蓋に取り付けられたガス供給管からCO2濃度が100%の乾燥した純CO2ガス(湿度0%)を0.2L/min/kg-slagの流量で供給して、円筒形容器の底側の排気孔(図示外)からガスを排気し、回転数23rpmで攪拌しながら炭酸化処理を行った。そして、炭酸化処理開始後15分、30分、60分、及び90分の時点でドラムミキサー内のスラグを一部取り出して、所定の時間で炭酸化処理したスラグから溶出されるアルカリ溶出水のpHを測定した(含水率6.3質量%、7.0質量%のスラグについては120分の時点でも実施。また、炭酸化処理前のpH測定は全てのスラグで実施)。このような炭酸化処理実験を6水準の実験用製鋼スラグごとに行い、図7にその結果を示す。なお、上記回転数による攪拌はフルード数(Fr)=1.0×10-2に相当する。
ここで、アルカリ溶出水のpH測定については、土懸濁液のpH試験方法(地盤工学会基準:JGS0211-200)を参考にし、スラグ70gと水210g(液固比L/S=3)を混合し、30秒間攪拌した後、14分30秒静置した試料についてガラス電極式pH計を用いて行った。この炭酸化処理実験は蓋をした閉鎖系での反応であって、系外に排出されるガス量も僅かであり、しかも炭酸化処理中の温度はおよそ30℃であったことから、各水準の実験用製鋼スラグの実験終了後の含水率の変化は殆どなかった。また、炭酸化処理中に外部からの水分添加は行わなかったことから、用意した実験用製鋼スラグの含水率が炭酸化処理中の水分量であるとみなすことができる。このうち、図8には、含水率5.0質量%の試験用製鋼スラグが試験中に保有した水分変化量を示しているが、初期水分量5.0質量%に対して、90分の炭酸化処理後の水分量は4.8質量%であり、炭酸化反応によって水分はほとんど消費されていないことが分かる。
炭酸化処理時間とアルカリ溶出水のpHとの関係については、製鋼スラグ中のCaOやCa(OH)2が炭酸化によって消費されるにつれて溶出水pHが低下することから、このpH推移を調べることで炭酸化の進行度合いを評価することができる。すなわち、図7に示した結果から明らかなように、炭酸化処理中の水分量が多くなるにつれて、炭酸化が進行する速度が低下することが分かる。なかでも水分量が6.3質量%及び7.0質量%の場合には、90分の炭酸化処理によってもpH=9.5を下回ることはできなかった。それに対して、水分量が1.7質量%、2.5質量%、及び4.0質量%の場合には炭酸化の進行が速く、特に開始後15分程度の反応初期に急速に炭酸化が進むことが分かる。
また、水分量2.5質量%、4.0質量%、5.0質量%、6.3質量%、及び7.0質量%の実験用製鋼スラグについて、それぞれ炭酸化処理実験の終了後の粒度分布を測定した。結果は図9に示したとおりであり、水分量5.0質量%、6.3質量%、及び7.0質量%の場合には、炭酸化処理実験により細粒分が減少し、原鉱スラグと比較してスラグ粒子が粗くなる傾向の粒度分布を示した。また、表2には、JIS Z8801-1に規定の目開き2.36mmふるいの篩下の質量分率を示しているが、水分量2.5質量%、及び4.0質量%の実験用製鋼スラグは原鉱スラグと比べて変化がなく、造粒が抑えられていることが分かる。なお、水分量6.3質量%、及び7.0質量%の実験用製鋼スラグについては、120分の炭酸化処理実験を行ったものを実験終了後のスラグとして粒度分布を測定した。それ以外の水分量の実験用製鋼スラグは、90分の炭酸化処理実験を行ったものを実験終了後のスラグとした。
Figure 0006260115
なお、CO2濃度100%のガスにかえて、排ガスを模したCO2濃度が約12%のガス(湿度0%)を使って上記と同様の炭酸化処理実験を行ったところ、いずれの水分量の場合にもCO2濃度100%のガスに比べて炭酸化の進行速度は遅くなったが、水分量が4.0質量%超の場合よりも、4.0質量%以下の場合の方が速く炭酸化が進行した。
(実験例2)
表3に示す組成を有すると共に、図10に示した粒度分布を持つCS−30の呼び名の製鋼スラグBを原鉱として、以下のようにして断続的に攪拌して炭酸化処理する実験を行った。この原鉱の製鋼スラグBは、エージング処理が施されており、約4質量%の水分を保有していたため、一部を天日にて乾燥させ、一部には加水して水分調整を行って、含水率0.1質量%、同0.8質量%、同1.7質量%、及び同3.7質量%の4水準の実験用製鋼スラグを用意した。なお、製鋼スラグの含水率は実験例1と同様にして求めた。
Figure 0006260115
上記で準備した各含水率の実験用製鋼スラグについて、内径φ=200mm、高さH=1mの円筒型試験装置にスラグ量5kgで投入して蓋をし、蓋に取り付けられたガス供給管からCO2濃度が100%の乾燥した純CO2ガス(湿度0%)を1L/minの流量で供給した。供給された純CO2ガスの一部は試験装置内でスラグと反応する。反応しなかったものはそのまま装置内を上昇し、装置上端より蓋の隙間を通じて系外に放出される。そして、CO2ガスの供給開始から30分後、1時間後、2時間後、3時間後にそれぞれ試験装置から一旦スラグを全量取り出し、よく攪拌してから再度試験装置内に戻す山繰りをして、固定床式の炭酸化処理を行った。
また、山繰りを行う際に試験装置内のスラグを一部取り出して、所定の時間で炭酸化処理したスラグからの溶出水のpHを実験例1と同様にして測定した(炭酸化処理前のpH測定は全てのスラグで実施)。このような炭酸化処理実験を4水準の実験用製鋼スラグごとに行った。結果を図11に示す。なお、参照例として、含水率を6.5質量%に調整したものを用意し、山繰りを一切行わずに炭酸化処理した場合の溶出水のpHについてもあわせて示している。また、この炭酸化処理中には外部から水分を添加することはなく、各水準で実験用製鋼スラグの実験終了後の含水率の変化は殆どなかったことから、この実験例2の場合にも、実験用製鋼スラグの含水率を炭酸化処理中の水分量とみなすことができる。
図11に示した結果から明らかなように、ほぼ絶乾状態である水分量0.1質量%のスラグでは炭酸化はあまり進行せず、また、山繰りを行わなかった場合には1日以上経過してもpHの低下は僅かであった。それに対して、水分量が0.8質量%、1.7質量%、及び3.7質量%の場合には、ほとんど同じような速度で炭酸化が進行し、特に開始後1時間程度の反応初期に急速に炭酸化が進むことが分かる。また、これら水分量0.8質量%、1.7質量%、及び3.7質量%の製鋼スラグでは、炭酸化処理実験が終了した後でも原鉱の製鋼スラグBと比べて粒度分布にほとんど変化はなく、山繰りによるスラグの造粒が抑えられることを確認した。
上記実験例1及び2から分かるように、本発明によれば、スラグの造粒化を抑制しながら効率的に製鋼スラグを炭酸化処理することができる。そのため、炭酸化処理する対象の製鋼スラグを例えば道路用路盤材に相当する粒度に粒度調整しておけば、炭酸化処理後の製鋼スラグを路盤材用途としてそのまま出荷することもできる。
1:ドラムミキサー
11:プロシェアミキサー
21:ロータリーキルン
1a、11a、21a:容器
1b、11b、21b:蓋
2:ガス供給管
3:攪拌翼
4:スラグ投入口
5:シート

Claims (7)

  1. 二酸化炭素を含有するCO 含有ガスを製鋼スラグに供給して、断続的又は連続的に攪拌して製鋼スラグを炭酸化処理する方法であって、炭酸化処理する対象の製鋼スラグを炭酸化処理前に乾燥処理して水分量を0.5質量%以上4質量%以下の範囲に調整し、炭酸化処理中の水分量を当該範囲にして行うことを特徴とする製鋼スラグの炭酸化処理方法(但し、CO 含有ガスのCO 濃度が1%以下の場合を除く)
  2. 炭酸化処理する対象の製鋼スラグを炭酸化処理前に乾燥処理して水分量を0.5質量%以上3質量%未満の範囲に調整し、炭酸化処理中の水分量を当該範囲にして行う請求項1に記載の製鋼スラグの炭酸化処理方法。
  3. エージング処理後の製鋼スラグを乾燥処理して水分量前記範囲に調整する請求項1又は2に記載の製鋼スラグの炭酸化処理方法。
  4. 二酸化炭素を含有するCO 含有ガスが、水分を含まない乾燥したCO2含有ガスである請求項1〜のいずれかに記載の製鋼スラグの炭酸化処理方法。
  5. 機械攪拌により製鋼スラグを連続的に攪拌しながら、二酸化炭素を含有するCO 含有ガスを供給して炭酸化処理する請求項1〜のいずれかに記載の製鋼スラグの炭酸化処理方法。
  6. 炭酸化処理する対象の製鋼スラグが、道路用路盤材に相当する粒度に粒度調整されたものである請求項1〜のいずれかに記載の製鋼スラグの炭酸化処理方法。
  7. 炭酸化処理の前後で製鋼スラグの2.36mm篩下通過率の値を比べたときに、炭酸化処理後の値が炭酸化処理前の値の70%超を示す請求項1〜6のいずれかに記載の製鋼スラグの炭酸化処理方法。
JP2013117703A 2013-06-04 2013-06-04 製鋼スラグの炭酸化処理方法 Active JP6260115B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013117703A JP6260115B2 (ja) 2013-06-04 2013-06-04 製鋼スラグの炭酸化処理方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013117703A JP6260115B2 (ja) 2013-06-04 2013-06-04 製鋼スラグの炭酸化処理方法

Publications (2)

Publication Number Publication Date
JP2014234332A JP2014234332A (ja) 2014-12-15
JP6260115B2 true JP6260115B2 (ja) 2018-01-17

Family

ID=52137293

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013117703A Active JP6260115B2 (ja) 2013-06-04 2013-06-04 製鋼スラグの炭酸化処理方法

Country Status (1)

Country Link
JP (1) JP6260115B2 (ja)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6551907B2 (ja) * 2015-12-22 2019-07-31 日本製鉄株式会社 鉄鋼スラグの処理方法及び鉄鋼スラグの処理装置
WO2022264668A1 (ja) * 2021-06-18 2022-12-22 Jfeスチール株式会社 CaO含有物質の炭酸化方法及び炭酸化物質の製造方法
CN115259784B (zh) * 2022-06-28 2023-09-15 碳固(河北)科技有限公司 一种基于钢渣硫化碳化协同制备水泥基建筑材料的方法

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5041772A (ja) * 1973-08-20 1975-04-16
JP2833826B2 (ja) * 1990-05-08 1998-12-09 太平工業株式会社 製鋼スラグを用いた膨張性のないスラグの製造方法
JP3248514B2 (ja) * 1998-10-29 2002-01-21 日本鋼管株式会社 排出炭酸ガスの削減方法
JP4328215B2 (ja) * 2004-01-13 2009-09-09 新日本製鐵株式会社 製鋼スラグの処理方法
JP2008247690A (ja) * 2007-03-30 2008-10-16 Jfe Steel Kk スラグの処理方法
JP5960086B2 (ja) * 2013-04-02 2016-08-02 株式会社神戸製鋼所 鉄鋼スラグの表面改質方法及びスラグ混合物の表面改質方法

Also Published As

Publication number Publication date
JP2014234332A (ja) 2014-12-15

Similar Documents

Publication Publication Date Title
JP3828897B2 (ja) 製鋼スラグの安定化処理方法および安定化製鋼スラグ
JP4676829B2 (ja) 製鋼スラグの処理方法
EP1989008A1 (en) Production of secondary aggregates
JP6260115B2 (ja) 製鋼スラグの炭酸化処理方法
EP1291442A1 (en) Method and apparatus for producing desulfurizing agent for hot-metal
JP4608382B2 (ja) スラグの造粒方法および造粒スラグ
JP4328215B2 (ja) 製鋼スラグの処理方法
JP6413451B2 (ja) 製鋼スラグの炭酸化処理方法
JP2013095941A (ja) 焼結鉱製造用の改質炭材の製造方法
Trung et al. Effects of sample crumbling and particle size on accelerated carbonation of alkaline construction sludge treated with paper-sludge ash-based stabilizers
JP6044565B2 (ja) 酸性土壌改良材
JP3828895B2 (ja) 製鋼スラグの安定化処理方法および安定化製鋼スラグ
JP2004167374A (ja) 汚染土壌・廃棄物の安定化方法及び装置
JP4789410B2 (ja) 廃棄物の安定化処理固化物及び処理装置
BRPI0816724B1 (pt) processo para aumento do valor de ph de corpos de água ácidos
US7658780B2 (en) Method of treatment of wood ash residue
JP6626342B2 (ja) スラグの炭酸化処理方法
KR100832225B1 (ko) 수화반응열을 이용한 반응지연성 생석회의 제조방법
JP6402762B2 (ja) 脱硫剤、機械攪拌式溶銑脱硫方法及び脱硫溶銑の製造方法
JP6644587B2 (ja) 含水フライアッシュの固結抑制方法
JP2008214150A (ja) 粉状製鋼スラグの安定化処理方法および安定化製鋼スラグ
JP4645195B2 (ja) 炭酸固化体の製造方法
JP5821778B2 (ja) 焼結原料の事前処理方法
JP2017036201A (ja) スラグの処理方法
JP5437595B2 (ja) コークスの製造方法及び製造システム

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20160203

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20170321

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20170323

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20170519

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20170629

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20171114

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20171127

R151 Written notification of patent or utility model registration

Ref document number: 6260115

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350