JP6224729B2 - シリコンナノ粒子を使用した太陽電池エミッタ領域の製造 - Google Patents

シリコンナノ粒子を使用した太陽電池エミッタ領域の製造 Download PDF

Info

Publication number
JP6224729B2
JP6224729B2 JP2015549361A JP2015549361A JP6224729B2 JP 6224729 B2 JP6224729 B2 JP 6224729B2 JP 2015549361 A JP2015549361 A JP 2015549361A JP 2015549361 A JP2015549361 A JP 2015549361A JP 6224729 B2 JP6224729 B2 JP 6224729B2
Authority
JP
Japan
Prior art keywords
silicon
layer
doped
region
silicon layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2015549361A
Other languages
English (en)
Other versions
JP2016506077A (ja
Inventor
ロスカトフ、ポール
ディー. スミス、デービッド
ディー. スミス、デービッド
モールス、マイケル
ワルドハウアー、アン
キム、テソク
モレサ、スティーブン、エドワード
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
SunPower Corp
Original Assignee
SunPower Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by SunPower Corp filed Critical SunPower Corp
Publication of JP2016506077A publication Critical patent/JP2016506077A/ja
Application granted granted Critical
Publication of JP6224729B2 publication Critical patent/JP6224729B2/ja
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/18Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof
    • H01L31/1804Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof comprising only elements of Group IV of the Periodic Table
    • H01L31/182Special manufacturing methods for polycrystalline Si, e.g. Si ribbon, poly Si ingots, thin films of polycrystalline Si
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/02Details
    • H01L31/0224Electrodes
    • H01L31/022408Electrodes for devices characterised by at least one potential jump barrier or surface barrier
    • H01L31/022425Electrodes for devices characterised by at least one potential jump barrier or surface barrier for solar cells
    • H01L31/022441Electrode arrangements specially adapted for back-contact solar cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/02Details
    • H01L31/0236Special surface textures
    • H01L31/02363Special surface textures of the semiconductor body itself, e.g. textured active layers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/0248Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
    • H01L31/0256Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by the material
    • H01L31/0264Inorganic materials
    • H01L31/028Inorganic materials including, apart from doping material or other impurities, only elements of Group IV of the Periodic Table
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/0248Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
    • H01L31/0352Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their shape or by the shapes, relative sizes or disposition of the semiconductor regions
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/0248Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
    • H01L31/0352Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their shape or by the shapes, relative sizes or disposition of the semiconductor regions
    • H01L31/035272Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their shape or by the shapes, relative sizes or disposition of the semiconductor regions characterised by at least one potential jump barrier or surface barrier
    • H01L31/035281Shape of the body
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/0248Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
    • H01L31/036Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their crystalline structure or particular orientation of the crystalline planes
    • H01L31/0368Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their crystalline structure or particular orientation of the crystalline planes including polycrystalline semiconductors
    • H01L31/03682Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their crystalline structure or particular orientation of the crystalline planes including polycrystalline semiconductors including only elements of Group IV of the Periodic Table
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/0248Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
    • H01L31/036Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their crystalline structure or particular orientation of the crystalline planes
    • H01L31/0384Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their crystalline structure or particular orientation of the crystalline planes including other non-monocrystalline materials, e.g. semiconductor particles embedded in an insulating material
    • H01L31/03845Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their crystalline structure or particular orientation of the crystalline planes including other non-monocrystalline materials, e.g. semiconductor particles embedded in an insulating material comprising semiconductor nanoparticles embedded in a semiconductor matrix
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/06Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by potential barriers
    • H01L31/068Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by potential barriers the potential barriers being only of the PN homojunction type, e.g. bulk silicon PN homojunction solar cells or thin film polycrystalline silicon PN homojunction solar cells
    • H01L31/0682Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by potential barriers the potential barriers being only of the PN homojunction type, e.g. bulk silicon PN homojunction solar cells or thin film polycrystalline silicon PN homojunction solar cells back-junction, i.e. rearside emitter, solar cells, e.g. interdigitated base-emitter regions back-junction cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/18Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/18Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof
    • H01L31/1804Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof comprising only elements of Group IV of the Periodic Table
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/546Polycrystalline silicon PV cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/547Monocrystalline silicon PV cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S977/00Nanotechnology
    • Y10S977/902Specified use of nanostructure
    • Y10S977/932Specified use of nanostructure for electronic or optoelectronic application
    • Y10S977/939Electron emitter, e.g. spindt emitter tip coated with nanoparticles
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S977/00Nanotechnology
    • Y10S977/902Specified use of nanostructure
    • Y10S977/932Specified use of nanostructure for electronic or optoelectronic application
    • Y10S977/948Energy storage/generating using nanostructure, e.g. fuel cell, battery

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Hardware Design (AREA)
  • General Physics & Mathematics (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Electromagnetism (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Manufacturing & Machinery (AREA)
  • Sustainable Energy (AREA)
  • Nanotechnology (AREA)
  • Inorganic Chemistry (AREA)
  • Photovoltaic Devices (AREA)

Description

本発明の実施形態は、再生可能エネルギーの分野におけるものであり、特にシリコンナノ粒子を使用した太陽電池エミッタ領域の製造の方法、及び結果として生じる太陽電池である。
太陽電池として既知の光起電力電池は、太陽放射を電力に直接変換させるための装置として既知である。一般に、太陽電池は、半導体処理技術を使用して半導体ウェハ上又は基板上に製造され、基板の表面近くにp−n接合が形成される。基板の表面に衝突し、これに進入する太陽放射は、基板のバルク内に電子−正孔対を生じる。電子−正孔対は、基板のP型ドープ領域及びN型ドープ領域内に移動し、それによってドープされた領域の間に電圧差を生じさせる。ドープ領域は、太陽電池の導電性領域に接続され、電流を太陽電池から太陽電池と連結された外部回路へと方向付ける。
効率は、電力を生成する太陽電池の能力に直接関連することから、太陽電池の重要な特性である。同様に、太陽電池を生産する上での効率は、このような太陽電池のコスト有効性に直接関連する。したがって、太陽電池効率を上げるための技術、又は太陽電池の製造効率を上げるための技術が、概ね望ましい。本発明のいくつかの実施形態は、太陽電池構造体を製造するための新規なプロセスを提供することによって、太陽電池の製造効率の増加を可能にする。本発明のいくつかの実施形態は、新規な太陽電池構造体を提供することによって、太陽電池の効率向上を可能にしている。
本発明の実施形態による、太陽電池の製造における様々な段階の断面図を例示する。 本発明の実施形態による、太陽電池の製造における様々な段階の断面図を例示する。 本発明の実施形態による、太陽電池の製造における様々な段階の断面図を例示する。 本発明の実施形態による、太陽電池の製造における様々な段階の断面図を例示する。
本発明の別の実施形態による、太陽電池の製造における様々な段階の断面図を例示する。 本発明の別の実施形態による、太陽電池の製造における様々な段階の断面図を例示する。 本発明の別の実施形態による、太陽電池の製造における様々な段階の断面図を例示する。
本発明の別の実施形態による、太陽電池の製造における様々な段階の断面図を例示する。 本発明の別の実施形態による、太陽電池の製造における様々な段階の断面図を例示する。 本発明の別の実施形態による、太陽電池の製造における様々な段階の断面図を例示する。 本発明の別の実施形態による、太陽電池の製造における様々な段階の断面図を例示する。 本発明の別の実施形態による、太陽電池の製造における様々な段階の断面図を例示する。 本発明の別の実施形態による、太陽電池の製造における様々な段階の断面図を例示する。
シリコンナノ粒子を使用した太陽電池エミッタ領域の製造の方法及び結果として生じる太陽電池が本明細書で説明される。以下の説明では、本発明の実施形態の完全な理解を提供するために、特定のプロセスフロー操作などの多数の特定の詳細が記載される。これらの特定の詳細なしに、本発明の実施形態を実践することができる点が、当業者には明らかであろう。他の場合には、本発明の実施形態を不必要に不明瞭にしないために、リソグラフィ及びパターニング技術などの、周知の製造技術は詳細に説明されない。更には、図に示される様々な実施形態は、例示的な表示であって、必ずしも一定の縮尺で描写されるものではないことを理解するべきである。
本明細書においては、太陽電池を製造する方法が開示されている。一実施形態では、太陽電池のエミッタ領域の製造の方法には、太陽電池の基板の表面の上方に配設された誘電体層の上方にドープシリコンナノ粒子領域を形成することが含まれる。シリコン層は、ドープシリコンナノ粒子領域上に形成される。少なくとも、シリコン層の一部は、誘電体層上に配設されたドープ多結晶シリコン層を形成するために、ドープシリコンナノ粒子領域の少なくとも一部と混合される。
別の実施形態では、太陽電池のエミッタ領域の製造の方法には、太陽電池の基板の背面の上方に配設された誘電体層の上方にドープシリコンナノ粒子領域を形成することが含まれる。背面は太陽電池の受光表面と反対側である。シリコン層は、ドープシリコンナノ粒子領域上の一部分及び誘電体層上の一部分を含む、受光表面上及び基板の背面の上方の両方に形成される。ドープシリコンナノ粒子領域上に形成されたシリコン層の部分は、誘電体層上に配設されたドープ多結晶シリコン層を形成するために、ドープシリコンナノ粒子領域の少なくとも一部分と混合される。基板の受光表面上のシリコン層、誘導体層上のシリコン層の部分、及びドープ多結晶シリコン層の最も外側の領域は、受光表面上及び基板の背面の上方に酸化ケイ素層を形成するために酸化される。反射防止コーティング層が受光表面上の酸化ケイ素層上及び基板の背面の上方の酸化ケイ素層上に形成される。
更に別の実施形態では、太陽電池のエミッタ領域の製造の方法には、N型ドープシリコンナノ粒子領域及び太陽電池の基板の背面の上方に配設された誘電体層の上方にP型ドープシリコンナノ粒子領域を形成することが含まれる。背面は太陽電池の受光表面と反対側である。N型ドープシリコンナノ粒子領域は、P型ドープシリコンナノ粒子領域と隣接しているが、接触していない。シリコン層は、N型及びP型ドープシリコンナノ粒子領域上の一部分並びに誘電体層上の一部分の上方を含む、基板の背面の少なくとも上方に形成される。N型及びP型ドープシリコンナノ粒子領域上に形成されたシリコン層の部分は、それぞれ、誘電体層上におのおの配設されるN型ドープ多結晶シリコン層及びP型ドープ多結晶シリコン層を形成するために、N型及びP型ドープシリコンナノ粒子領域のそれぞれの少なくとも一部分と混合される。誘電体上のシリコン層の部分、並びにN型及びP型ドープ多結晶シリコン層のそれぞれの最も外側の領域は、基板の背面の上方に酸化ケイ素層を形成するために酸化される。基板の背面の上方の酸化ケイ素層は、基板の背面に形成される溝部によって分離されるN型ドープ多結晶シリコン領域及びP型ドープ多結晶シリコン領域を提供するためにマスキング及びエッチングされ、N型ドープポリシリコン領域及びP型ドープ多結晶シリコン領域のそれぞれは、当該上の酸化ケイ素層の一部分を保持している。反射防止コーティング層が、N型ドープポリシリコン領域及びP型ドープ多結晶シリコン領域上並びに溝部に形成される。
第1の態様では、全体として、ポリシリコンエミッタは、ドープシリコンナノ粒子を印刷し、その後、低圧化学気相成長法(LPCVD)によって薄い非晶質シリコン(a−Si)層を堆積することによって形成され得る。高温で得られる構造を焼鈍しすると、材料スタックはドープポリシリコン層に稠密化され、これは太陽電池用のポリエミッタとして使用され得る。一実施形態では、n型及びp型のエミッタの一方又は両方がナノ粒子によって作製され、堆積時に基板上に直接パターン化され得る。そのような手法によって、ドーパントのドライブ、ドープ領域のパターン化、又はエミッタ間の溝部のパターン化をする必要性を取り除き得る。
更に概ね、基板−エミッタ製造プロセスに比べいくつかの追加のプロセス段階を必要とするポリシリコンエミッタは、製造するには高価な場合があり得る。例えば、ポリシリコンのブランケット堆積及び後続のドーパントフィルムの堆積には通常、パターン化されたドープ指部及びエミッタ間の溝部を製造するために、いくつかのエッチング操作が必要とされる。いくつかの過去の試行は、溝部を製造する必要性を取り除き得る長寿命のポリシリコンの使用など、そのようなプロセスでの操作の数を削減することを目指していた。一方、インクジェットドーパントの使用によって、ポリシリコン層上へのドーパントの直接パターニングが可能になった。ドープa−Si層のシャドーマスクプラズマ援用化学気相成長法(PECVD)は更に、操作低減プロセスフローのために使用されてきた。上記手法とは対照的に、又は上記手法と組み合わせて、本明細書で説明される実施形態には、以下でより詳細に説明されるとおり、基板の上方にエミッタ領域を形成するためのシリコンナノ粒子領域の使用が含まれる。
より具体的に、一実施形態では、ポリシリコンエミッタは、最初に、基板表面上にトンネル酸化物を増やし、それから、n型及びp型のシリコンナノ粒子をトンネル酸化物層に印刷することによって形成され得る。a−Si層がLPCVDによって堆積され、これは、ナノ粒子間のボイドを埋める。焼鈍しをすると、Siナノ粒子及びa−Si材料の得られる混合されたフィルムがポリシリコン層に結晶化するために稠密化される。ナノ粒子若しくはLPCVDベースのa−Siのいずれか、又はその両方に存在するドーパントは、形成されたポリシリコン層全体で拡散し得る。ポリシリコンの薄い層は、印刷されたナノ粒子のエミッタと接続したままである。一実施形態では、この層に問題がある場合、残りのポリシリコンを酸化物フィルムに変換するために酸化が行なわれ得、異なるエミッタ間の電気的接続を除去する。したがって、一実施形態では、n型及びp型のエミッタの一方又は両方は、ナノ粒子を使用して製造される。ドープナノ粒子の印刷能は、ドーパントをポリシリコン層にドライブする必要性を取り除き得る一方で、(堆積された)パターニングは、層をマスキング及びエッチングする必要性を取り除き得る。加えて、エミッタ間の薄いポリシリコン層を酸化することによって、エミッタ間の溝部をエッチングする必要性を取り除き得る。特定の実施形態では、LPCVDによるa−Siの比較的遅く均一な堆積がナノ粒子間のボイドを埋めるための卓越した方法である。したがって、基板内とは対照的に、基板の上方のエミッタ領域の形成に含まれる製造プロセスのプロセス操作の削減数は2〜8ほどのプロセス操作が削減され得、これらの例が以下で詳細に説明される。
一例として、図1A〜図1Dは、本発明の実施形態による、太陽電池の製造における様々な段階の断面図を例示する。
図1Aを参照すると、太陽電池のエミッタ領域の製造の方法には、基板100の表面102上に、例えば、トンネル酸化物層などの薄い誘電体層104を形成することが含まれる。
一実施形態では、基板100はバルクシリコン基板、例えばバルク単結晶のN型ドープシリコン基板である。しかし、基板100は、大体的太陽電池基板上に設けられた多結晶シリコン層などの層でもよいことを理解すべきである。一実施形態では、薄い誘電体層104は酸化ケイ素又は二酸化ケイ素層であり、例えば、熱酸化、化学酸化、又はUV/オゾン酸化などにより、下に横たわる結晶シリコン基板100の一部分の消費により形成される。別の実施形態では、薄い誘電体層104は、液体酸化物堆積又は他の適した堆積手法によって形成される酸化ケイ素又は二酸化ケイ素層である。
図1Bを参照すると、ドープシリコンナノ粒子領域106A及び106Bが薄い誘電体層104上に形成される。
一実施形態では、ドープシリコンナノ粒子領域106A及び106Bは、少なくともいくつかの開いた孔を有し、およそ5〜100ナノメーターの範囲の平均粒子サイズ及びおよそ10〜50%の範囲の多孔率を有するドープシリコンナノ粒子領域の印刷(例えば、スクリーン印刷、インクジェット印刷、ノズルジェット印刷、押出し印刷、又はエアゾールジェット印刷)、又はスピンオンコーティングによって形成される。特定の実施形態では、ドープシリコンナノ粒子は、後で蒸発又は焼却され得るキャリア溶剤又は液体が存在する状態で供給される。一実施形態では、スクリーン印刷プロセスを使用するとき、低い粘度の液体はにじみに至る場合があり、したがって、画定された領域の解像度の低下に至る場合があるので、供給には高い粘度の液体源を使用することが好ましい場合がある。
一実施形態では、p型ドープ領域(例えば、領域106A)及びn型ドープ領域106Bの両方が形成される。異なるドーパント型の領域は、n型領域が最初でp型領域が第2に、p型領域が最初でn型領域が第2に形成される、又は例えば、単一の印刷操作で、p型領域及びn型領域が同時に形成されるようにされ得る。一実施形態では、p型ドーパントはホウ素ドーパント不純物原子で、一方、n型ドーパントはリンドーパント不純物原子である。一実施形態では、ドープシリコンナノ粒子領域106A又は106Bのそれぞれは、およそ0.2〜3ミクロンの範囲の厚さに形成される。
図1Cを参照すると、シリコン層108がドープシリコンナノ粒子領域106A及び106B上に形成される。
一実施形態では、シリコン層108は非ドープの、真性の、又は低ドープのアモルファスシリコン層である。そのような実施形態では、シリコン層108は、およそ摂氏525〜565度の範囲の温度で、低圧化学気相成長(LPCVD)チャンバ内でシラン(SiH)から形成される。一実施形態では、ドープシリコンナノ粒子領域106A又は106Bが少なくともいくつかの開いた孔を含む場合、シリコン層108の少なくとも一部分は、ドープシリコンナノ粒子領域106A及び106B内に形成される。そのような実施形態では、シリコン層108がドープシリコンナノ粒子領域106A又は106Bの1又は複数の開いた孔をシリコン層108の一部分で閉じる。そのような特定の実施形態では、ドープシリコンナノ粒子領域106A又は106Bの1又は複数の開いた孔は、得られる角度の付いた縁部で閉じられる。一実施形態では、シリコン層108がおよそ200〜2000オングストロームの範囲の絶対厚さに形成される。
記載される一実施形態では、LPCVDベースのa−Si層は、ナノ粒子領域106A及び106Bのボイドを埋めるために使用されるが、APCVD又はPECVDなどの他の方法もそのようなボイドを埋めるために適用され得る。エミッタ(例えば、n型及び/又はp型)の一方又は両方は、この手法で製造され得る。それにもかかわらず、別の実施形態では、LPCVDが薄い誘電体層104上へのa−Si又はポリ−Siの薄い層の堆積に使用される。層がLPCVDによって堆積されるので、堆積はナノ粒子層全体で発生し、フィルムの孔を埋める。一実施形態では、堆積層はシリコンナノ粒子層の厚さより薄く、それ自体がp型又はn型のいずれかのドープフィルムとして堆積され得る。
図1Dを参照すると、シリコン層108の少なくとも一部分が、誘電体層104上に配設されるドープ多結晶シリコン領域110A及び110Bを形成するために、ドープシリコンナノ粒子領域106A及び106Bの少なくとも一部分と混合される。一実施形態では、領域106A及び106Bが、それぞれ、p型又はn型ドープの場合、多結晶シリコン領域110A及び110Bは、それぞれ、p型又はn型にドープされている。シリコン層108の未反応(例えば、混合されない)部分の残りの層112はドープ多結晶シリコン領域110A及び110Bの間に残っている。
一実施形態では、シリコン層108の部分は、基板100をおよそ摂氏700〜1100度の範囲の温度に加熱することによって、ドープシリコンナノ粒子領域106A及び106Bの部分が混合され、ドープ多結晶シリコン領域110A及び110Bが形成される。一実施形態では、ドープ多結晶シリコン領域110A及び110Bを形成するためにシリコン層108の部分とドープシリコンナノ粒子領域106A及び106Bの部分とを混合することによって、シリコン層108並びドープシリコンナノ粒子領域106A及び106Bの合わせた厚さがおよそ20〜50%の範囲の量、低減される。すなわち、領域110A又は110Bのそれぞれの厚さは、層108及び領域106A又は106Bの合わせた個々の厚さよりおよそ20〜50%少なくなる。一実施形態では、ドープシリコンナノ粒子領域106A及び106Bの1又は複数の開いた孔が、得られた角度の付いた縁部で閉じられる場合、それぞれ、ドープ多結晶シリコン領域110A及び110Bを形成するためにシリコン層108の部分とドープシリコンナノ粒子領域106A及び106Bの部分とを混合することには、角度の付いた縁部を有する閉じた孔を最終的に円形の閉じた孔に変更することが含まれる。
一実施形態では、基板100の表面102は、基板100の受光表面と反対側の(図1Dにおいて、方向101で図示される)、基板100の背面である。そのような実施形態では、ドープ多結晶シリコン領域110A及び110Bの形成後、金属コンタクトがドープ多結晶シリコン領域110A及び110B上に製造される。金属コンタクトは、得られるバックコンタクト型太陽電池用金属コンタクトとし得る。一実施形態では、金属コンタクトは、堆積、リソグラフィ、又はエッチング処理によって形成される。図1Dの構造体の製造の後に、及びドープ多結晶シリコン領域110A及び110Bへの金属コンタクトの実際の製造の前に、様々な処理の機会が存在することを理解すべきである。そのような製造の機会の例は、図2A〜2C及び3A〜3Fに関連して以下で説明される。
第2の態様では、概して、図1A〜1Dの一般的なエミッタ領域製造スキームが、長寿命n型ウェハ、プレダメージエッチングに基づくプロセスフローと共に使用される。一例として、ダメージエッチングが、基板の前面の単一側テクスチャリングと組み合される。一方、基板の背面の酸化は、高品質のトンネル酸化物を製造するために行なわれる。例えば、化学酸化、UV/オゾン酸化、又は液体酸化物堆積によって酸化が行なわれ得る。一実施形態では、この手法の利点には、太陽電池ウェハの表面上での親水性酸化物の製造が含まれ、親水性は、クリーンなウェハ表面を保守するために、疎水性表面よりも好ましいものであり得る。次に、ウェハは2重印刷操作を受け得、これは、n型及びp型のSiナノ粒子が適切なパターン(例えば、図1Bに関連付けられて説明された実施形態)で、表面上に堆積される。ナノ粒子堆積は、例えば、2段スクリーンプリンタ、インクジェットプリンタ、押出しプリンタ、又はエアゾールジェットプリンタによって行なわれ得る。
次にウェハは、LPCVD炉に単一スロットで装填され得る。LPCVD炉で、n型a−Si堆積が行なわれる(例えば、図1Cに関連付けられて説明された実施形態のように)。上述のように、a−Si層は、簡素化されたポリシリコンエミッタ形成のために粒子間のボイドを埋めるために使用され得る。焼鈍し時、Siナノ粒子/a−Siのスタックは、稠密化及び拡散し、ドープポリシリコンエミッタ領域を形成する。存在する場合、a−Si堆積からのn型ドーパントのわずかな量は、高濃度ドープp型Siナノ粒子全体で希釈され、p型のナノ粒子のポリシリコン層は、p型のままになる。前面上の対応する薄いn型のポリシリコン層は、前面のパッシベーション層として機能するために使用され得る。加えて、エミッタ間の薄いポリシリコン層(例えば、図1Dの残りの部分112)がpポリエミッタとの接合に起因して大幅な損失が可能な場合、酸化操作が、この薄いポリ層の厚さを薄くするために含まれ得る。更に、ポリシリコン層の厚さに起因する前面上の透過に損失がある場合、酸化操作は、ポリシリコン層を薄くするために使用され得る。焼鈍しの後、構造体は、例えば、LPCVDシリコン窒化物などの反射防止コーティング及び湿度バリアで末端保護され得る。
一例として、図2A〜図2Cは、本発明の実施形態による、太陽電池の製造における様々な段階の断面図を例示する。
図2Aを参照すると、プロセスフローは、いくつかの顕著な相違点を伴いながら、本質的に図1Dの構造体から始まる。基板100の表面102上に配設されている、誘電体層104上に配設されたドープ多結晶シリコン領域110A及び110Bは、図1A〜1Dに記載のとおりである。更に、シリコン層108の部分112は、上述のエミッタ領域製造プロセスからそのままである。一実施形態では、多結晶シリコン領域110A及び110Bは、それぞれ、p型及びn型にドープされている。
しかし、一実施形態では、図1Aと1Bの操作の間に、基板の前面101は粗面化され、バックコンタクト太陽電池の粗面化された受光表面としてなどの粗面化表面220を提供する。粗面化表面は、入射光を散乱させることによって太陽電池の受光表面から反射される光の量を減少させる、規則的又は不規則的な形状の表面を有するものであってよい。一実施形態では、粗面化表面は、水酸化カリウムに基づくアルカリ性エッチングなどの湿式エッチングプロセスを使用することによって行なわれるエッチングによって製造される。一実施形態では、薄い誘電体層は、エッチングの間、基板100の裏側102を保護する。しかし、別の実施形態では、前面は、片面粗面化プロセス又はツールを使用して粗面化される。
加えて、シリコン層222が粗面化表面220上に形成される。シリコン層222は、層108の製造と同じプロセス操作で製造され得、ここで、成分及び形成方法は上述のとおりである。再度図2Aを参照すると、シリコン層は、受光表面220上(例えば、層222として)、並びに多結晶シリコン領域110A及び110Bの間の、薄い誘電体層104の一部分上の両方に配設される。
図2Bを参照すると、基板100の受光表面220上のシリコン層222、誘電体層104上のシリコン層108の部分112、並びにドープ多結晶シリコン領域110A及び110Bの最も外側の領域は酸化され、受光表面220上で第1の酸化ケイ素層224二酸化ケイ素であり得る)及び基板100の背面102の上方の第2の酸化ケイ素層226(二酸化ケイ素であり得る)を形成する。一実施形態では、酸化ケイ素層224及び226は、低圧化学気相成長法(LPCVD)チャンバ内で、酸素(O)、水蒸気(HO)、又は亜酸化窒素(NO)が存在する状態で基板100を加熱することによって形成される。
あるいは、図2Bの操作は、省かれ得る、又は、例えば、領域110A及び110Bから形成されるエミッタを隔離するのに十分であり得る程度の、部分的な酸化にまで制限され得る。つまり、エミッタ間の薄いポリシリコン層の酸化は必ずしも完璧である必要はない。代わりに、薄いポリシリコン層は、単結晶基板上でエピタキシャル成長され得、又は、薄い層を通る横方向移送が主要な再結合方法ではない十分な抵抗とし得る。更に、層は部分的に酸化され、許容レベルまで導電性を低減する可能性がある。ドープa−Si層がLPCVDによって堆積された場合、ドープポリシリコン層は前面及びエミッタ間の背面上の領域の不活性化フィルムとして機能する可能性がある。代替として、2つのエミッタが電気的に隔離されていない場合、残りの薄いポリシリコン層は酸化及び/又はエッチングプロセスで除去され得る。
図2Cを参照すると、反射防止コーティング層228が受光表面220上の酸化ケイ素層224上及び基板100の背面102の上方の酸化ケイ素層226上に形成される。一実施形態では、反射防止コーティング層228は低圧化学気相成長法(LPCVD)チャンバで形成されるシリコン窒化物層である。一実施形態では、シリコン層108(したがって、残りの部分112)及び222の形成、残りの部分112及び層222の酸化、並びに反射防止コーティング層228の形成はすべて、例えば、LPCVDツールのチャンバの単一パスなどの単一のLPCVDツールで行なわれる。一実施形態(図示せず)では、上述のように、ドープ多結晶シリコン領域110A及び110Bに対して、金属コンタクトは、その後に形成される。
第3の態様では、概して、長寿命n型ウェハはダメージエッチングプロセスに供されるが、エッチングはウェハの背(及び場合により前)面上の酸化物の成長/堆積で終結する。酸化は化学酸化、UV/オゾン酸化、又は液体酸化物堆積などであり得る。得られる親水性酸化物表面は、例えば、疎水性表面と比較して、ウェハの汚染を低減させるために使用され得る。酸化物の堆積に続いて、ウェハは印刷操作に供され、これは、p型及びn型の両方のナノ粒子が、太陽電池の背面上にエミッタパターンで堆積される。Siナノ粒子は2重スクリーンプリンタ、インクジェットプリンタ、押出しプリンタ、又はエアゾールジェットプリンタなどで堆積され得る。次にウェハは薄いa−Si層の堆積のためにLPCVD炉に装填される。a−Si層は、上述のように、ナノ粒子間のボイドを埋めるために使用される。a−Siの堆積に続いて、ウェハは高温の焼鈍しに供され、Siナノ粒子及びa−Siフィルムのスタックを稠密化してポリシリコン層にされ、ポリシリコンフィルム全体にドーパントが拡散され及び電気的に起動される。稠密化後、酸化段階がウェハの表面に熱酸化物を成長させるために行なわれ得る。酸化は、湿式若しくは乾式酸化、又は低温酸化剤を使用して行なわれ得る。酸化物を無傷にすると、ウェハはLPCVD炉から除去可能で、溝部のマスキング操作を受け得る。溝部のマスキングに続いて、ウェハは溝部のエッチング(TOXE)及びランダム化テクスチャリング(ランテックス)、つまり前面を粗面化して、エミッタ間のいずれかの残りの薄いポリシリコンを除去することを受け得る。その後のエミッタ製造操作が更に、溝部の形成及びランテックス操作に続いて行なわれ得る。
一例として、図3A〜図3Fは、本発明の実施形態による、太陽電池の製造における様々な段階の断面図を例示する。
図3Aを参照すると、プロセスフローは、いくつかの顕著な相違点を伴ないながら、本質的に図1Dの構造体から始まる。基板100の表面102上に配設されている、誘電体層104上に配設されたドープ多結晶シリコン領域110A及び110Bは、図1A〜1Dに関連して説明されたとおりである。その上、シリコン層108の部分112は、上述のエミッタ領域製造プロセスからそのままである。一実施形態では、多結晶シリコン領域110A及び110Bは、それぞれ、p型及びn型にドープされている。
しかし、一実施形態では、シリコン層322は基板100の前面101上で形成される。シリコン層322は、層108の製造と同じプロセス操作で製造され得、ここでの成分及び形成方法は上述のとおりである。したがって、再度図2Aを参照すると、シリコン層は、受光表面101上(例えば、層322として)、並びに多結晶シリコン領域110A及び110Bの間の(例えば、層108の残りの部分112として)、薄い誘電体層104の一部上の両方に配設される。
図3Bを参照すると、基板100の受光表面101上のシリコン層322、誘電体層104上のシリコン層108の部分112、並びにドープ多結晶シリコン領域110A及び110Bの最も外側の領域は酸化され、受光表面101上で第1の酸化ケイ素層324(二酸化ケイ素であり得る)及び基板100の背面102の上方の第2の酸化ケイ素層326(二酸化ケイ素であり得る)を形成する。一実施形態では、酸化ケイ素層324及び326は、低圧化学気相成長法(LPCVD)チャンバ内で、酸素(O)、水蒸気(HO)、又は亜酸化窒素(NO)が存在する状態で基板100を加熱することによって形成される。
図3Cを参照すると、マスク層330が第2の酸化ケイ素層326の上方、特に、多結晶シリコン領域110A及び110Bを覆うそれら領域の上方に形成される。一実施形態では、マスク層330はパターンを有するために直接印刷される。別の実施形態では、レジスト層は、マスク層330がパターンを有するように提供されるためにリソグラフィ及び現像に供される。
図3Dを参照すると、図3Cの構造体がエッチングプロセスを受け、酸化ケイ素層326をエッチングし、基板100の背面102で形成された溝部342によって分離したN型ドープポリシリコンエミッタ領域340B及びP型ドープ多結晶シリコンエミッタ領域340Aを提供する。一実施形態では、薄い誘電体層104も、図3Dに図示されているように、エッチングプロセス中にパターン化される。更に、一実施形態では、N型ドープポリシリコン領域340B及びP型ドープ多結晶シリコンエミッタ領域340Aのそれぞれは、図3Dでも図示されているように、その上にポリ酸化ケイ素層326の一部分を保持している。
図3Dを再び参照すると、基板100の露出面101及び102が粗面化される。粗面化表面は、入射光を散乱させることによって太陽電池の受光表面から反射される光の量を減少させる、規則的又は不規則的な形状の表面を有するものであってよい。一実施形態では、粗面化表面は、水酸化カリウムに基づくアルカリ性エッチングなどの湿式エッチングプロセスを使用することによって行なわれるエッチングによって製造される。溝部342の底面の粗面化部分に関して、当該粗面化の場所は、前面101(すなわち、受光表面)の粗面化プロセスの間に使用されるプロセス操作のアーチファクトとなり得る。必要な場合、酸化物層326の残りの部分は粗面化に続き除去され得ることを理解すべきである。
図3Eを参照すると、一実施形態では、酸化ケイ素層326のマスキング及びエッチングの後に、N型ドーパントが基板100の露出部分に拡散又はインプラントされ、例えば、基板100内に、より高濃度のn型ドーパントを有する領域350が形成される。そのような実施形態では、N型ドーパントはリンを含む不純物原子である。
図3Fを参照すると、反射防止コーティング層360が、基板100のN型ドープポリシリコン領域340B及びP型ドープ多結晶シリコンエミッタ領域340B上、溝部内342、並びに前面101上に形成される。一実施形態では、反射防止コーティング層360は、低圧化学気相成長法(LPCVD)チャンバ内で形成されるシリコン窒化物層である。一実施形態では、シリコン層108(したがって、残りの部分112)及び322の形成、残りの部分112及び層322の酸化、並びに反射防止コーティング層360の形成はすべて、例えば、LPCVDツールのチャンバの単一パスなどの単一のLPCVDツールで行なわれる。しかし、別の実施形態では、プラズマ化学気相成長法(PECVD)ベースのシリコン窒化物(SiNx)層を使用することによって、パッシベーションが達成される。一実施形態(図示せず)では、N型ドープポリシリコン領域340B及びP型ドープ多結晶シリコン領域340Aへの金属コンタクトがその後に形成される。
別の態様では、印刷されたSiナノ粒子の「スティッチング」ネットワークによって、固体状態の拡散の経路が提供され、特定の条件下ではフィルムが稠密化する。本発明の別の実施形態では、そのようなネットワークを製造するための低コストのプロセスが提供され、ポリシリコン及び基板ベースの両方のエミッタ領域のプロセスフローに対してSiナノ粒子を使用して大幅なコスト削減が実現できる。より具体的には、大気圧化学気相成長法(APCVD)の使用で、シリコンナノ結晶の領域上にフィルムを堆積させる。APCVDは、大気圧及び例えば、摂氏500度未満の低温で行なわれる安価な手法であり得る。前駆体分子シランはSiOを形成するために空気中で酸素と直ぐに反応するので、純粋なSi層は一般的にAPCVDを使用して堆積されないが、上述のスティッチング層のための長寿命のポリシリコンを取得するには極低の酸素含有Siが必要とされ得ないことを理解すべきである。大部分のSiがナノ粒子層で、既に表面上に堆積されているので、ナノ結晶の領域上で形成される層の純度の厳密さの少ない要件が生じ得る。結果として、一実施形態では、APCVDは、堆積プロセス間に大気からツールを「封止」し、ツール内部の酸素含有量を低下させるツールのいくらかの軽微な変更で、Siナノ粒子にネットワーキングフィルムを生成するために使用される。一実施形態では、そのような変更には、CDAカーテンをNカーテンに変更することを含み得る。このことは、APCVDツールで、単に入力ガスをCDAからNに変更することによって容易に行なわれ得る。製造者は、これによってppmレベルのOでSiが作られるものと見積もる。しかし、代替の実施形態では、スティッチングネットワークでO含有量が低いことは、スティッチングネットワークがSi粒子が基板のドーピング源として機能するためにのみ必要とされることのために、それほど重要でない。
全体として、特定の材料が具体的に上述されたが、いくつかの材料は、本発明の実施形態の趣旨及び範囲を逸脱しない限り、残りの他のそのような実施形態と直ちに置換され得る。例えば、一実施形態では、グループIII−V材料基板などの異なる材料気分がシリコン基板の代わりに使用され得る。したがって、シリコンナノ粒子を使用した太陽電池エミッタ領域の製造の方法及び結果として生じる太陽電池が開示されている。本発明の一実施形態によると、太陽電池のエミッタ領域の製造の方法には、太陽電池の基板の表面の上方に配設された誘電体層の上方にドープシリコンナノ粒子領域を形成することが含まれる。シリコン層は、ドープシリコンナノ粒子領域上に形成される。少なくとも、シリコン層の一部は、誘電体層上に配設されたドープ多結晶シリコン層を形成するために、ドープシリコンナノ粒子領域の少なくとも一部と混合される。一実施形態では、本方法は更に、P型ドープシリコンナノ粒子領域に隣接するが接触しない、誘電体層の上方にN型ドープシリコンナノ粒子領域を形成することが含まれる。シリコン層は、N型ドープシリコンナノ粒子領域上に形成される。少なくとも、シリコン層の一部は、誘電体層上に配設されたN型ドープ多結晶シリコン層を形成するために、N型ドープシリコンナノ粒子領域の少なくとも一部と混合される。本明細書に記載の発明は、以下の項目に記載の形態によっても実施され得る。
[項目1]
太陽電池のエミッタ領域の製造方法であって、前記方法が、
前記太陽電池の基板の表面の上方に配設された誘電体層の上方にドープシリコンナノ粒子領域を形成することと、
前記ドープシリコンナノ粒子領域上にシリコン層を形成することと、
前記誘電体層上に配設されたドープ多結晶シリコン層を形成するために、前記シリコン層の少なくとも一部と前記ドープシリコンナノ粒子領域の少なくとも一部とを混合することと、を含む、方法。
[項目2]
前記ドープシリコンナノ粒子領域を形成することが、少なくともいくつかの開いた孔を有し、およそ5〜100ナノメーターの範囲の平均粒子サイズ及びおよそ10〜50%の範囲の多孔率を有する前記ドープシリコンナノ粒子領域を印刷すること又はスピンオンコーティングすることを含む、項目1に記載の方法。
[項目3]
前記シリコン層を形成することが、およそ摂氏525〜565度の範囲の温度で、低圧化学気相成長法(LPCVD)チャンバ内で、シラン(SiH )から非ドープの、真正の、又は低ドープのアモルファスシリコン層を形成することを含む、項目1に記載の方法。
[項目4]
前記シリコン層を形成することが、前記ドープシリコンナノ粒子領域内に前記シリコン層の一部を形成すること、及び前記シリコン層の一部で前記ドープシリコンナノ粒子領域の1又は複数の開いた孔を閉じることを含む、項目1に記載の方法。
[項目5]
前記シリコン層の前記一部で前記ドープシリコンナノ粒子領域の1又は複数の開いた孔を閉じることが、角度の付いた縁部を有する閉じた孔を形成することを含み、前記ドープ多結晶シリコン層を形成するために前記シリコン層の前記一部と前記ドープシリコンナノ粒子領域の前記一部とを混合することが、円形の閉じた孔を形成するために角度の付いた縁部を有する前記閉じた孔を変更することを含む、項目4に記載の方法。
[項目6]
前記ドープ多結晶シリコン層を形成するために、前記ドープシリコンナノ粒子領域の前記一部と前記シリコン層の前記一部を混合することが、前記基板をおよそ摂氏700〜1100度の範囲の温度に加熱することを含む、項目1に記載の方法。
[項目7]
前記ドープ多結晶シリコン層を形成するために前記シリコン層の前記一部と前記ドープシリコンナノ粒子領域の前記一部とを混合することが、前記シリコン層及び前記ドープシリコンナノ粒子領域の合わせた厚さが、およそ20〜50%の範囲の量まで低減されることを含む、項目1に記載の方法。
[項目8]
前記ドープシリコンナノ粒子領域が、およそ0.2〜3ミクロンの範囲の厚さに形成され、前記シリコン層がおよそ200〜2000オングストロームの範囲の絶対厚さに形成される、項目1に記載の方法。
[項目9]
前記ドープシリコンナノ粒子が、P型ドープシリコンナノ粒子であり、前記ドープ多結晶シリコン層が、P型ドープ多結晶シリコン層である、項目1に記載の方法。
[項目10]
前記P型ドープシリコンナノ粒子の領域に隣接するが接触しない、前記誘電体層の上方にN型ドープシリコンナノ粒子領域を形成することと、
前記N型ドープシリコンナノ粒子領域上に前記シリコン層を形成することと、
前記誘電体層上に配設されたN型ドープ多結晶シリコン層を形成するために、前記シリコン層の少なくとも一部と前記N型ドープシリコンナノ粒子領域の少なくとも一部とを混合することとを更に含む、項目9に記載の方法。
[項目11]
前記ドープシリコンナノ粒子が、N型ドープシリコンナノ粒子であり、前記ドープ多結晶シリコン層がN型ドープ多結晶シリコン層である、項目1に記載の方法。
[項目12]
前記誘電体層は、前記基板上に形成され、かつ前記エミッタ領域のトンネル誘電体層である、項目1に記載の方法。
[項目13]
前記基板の前記表面が、前記基板の受光表面と反対側の、前記基板の背面であり、前記方法が、
前記ドープ多結晶シリコン層上に金属コンタクトを形成することを更に含む、項目1に記載の方法。
[項目14]
太陽電池のエミッタ領域の製造方法であって、前記方法が、
前記太陽電池の基板の背面の上方に配設された誘電体層の上方にドープシリコンナノ粒子領域を形成することであって、前記背面が前記太陽電池の受光表面と反対側である、形成することと、
前記受光表面上及び前記基板の前記背面の上方の両方にシリコン層を形成することであって、前記基板の前記背面には、前記ドープシリコンナノ粒子領域上の部分及び前記誘電体層上の部分を含む、形成することと、
前記誘電体層上に配設されたドープ多結晶シリコン層を形成するために、前記ドープシリコンナノ粒子領域上に形成された前記シリコン層の前記部分と前記ドープシリコンナノ粒子領域の少なくとも一部とを混合することと、
前記受光表面上及び前記基板の前記背面の上方に酸化ケイ素層を形成するために、前記基板の前記受光表面上の前記シリコン層、前記誘導体層上の前記シリコン層の前記部分、及び前記ドープ多結晶シリコン層の最も外側の領域を酸化することと、
反射防止コーティング層を前記受光表面上の前記酸化ケイ素層上及び前記基板の前記背面の上方の前記酸化ケイ素層上に形成することとを含む、方法。
[項目15]
前記受光表面上及び前記基板の前記背面の上方に酸化ケイ素層を形成することが、低圧化学気相成長法(LPCVD)チャンバ内で、酸素(O )、水蒸気(H )、又は亜酸化窒素(N O)が存在する状態で前記基板を加熱することを含む、項目14に記載の方法。
[項目16]
前記酸化ケイ素層上に前記反射防止コーティング層を形成することが、低圧化学気相成長法(LPCVD)チャンバ内でシリコン窒化物層を形成することを含む、項目14に記載の方法。
[項目17]
前記ドープ多結晶シリコン層に金属コンタクトを形成することを更に含む、項目14に記載の方法。
[項目18]
太陽電池のエミッタ領域の製造方法であって、前記方法が、
前記太陽電池の基板の背面の上方に配設された誘電体層の上方にN型ドープシリコンナノ粒子領域及びP型ドープシリコンナノ粒子領域を形成することであって、前記背面は、前記太陽電池の受光表面と反対側であり、前記N型ドープシリコンナノ粒子領域は、前記P型ドープシリコンナノ粒子領域に隣接するが接触していない、形成することと、
シリコン層を、少なくとも、前記基板の前記背面の上方に形成することであって、前記基板の前記背面は、前記N型及びP型ドープシリコンナノ粒子領域上の部分並びに前記誘電体層上の部分を含む、形成することと、
前記誘電体層上にそれぞれ配設されるN型ドープ多結晶シリコン層及びP型ドープ多結晶シリコン層のそれぞれを形成するために、前記N型及びP型ドープシリコンナノ粒子領域上に形成された前記シリコン層の前記部分と、前記N型及びP型ドープシリコンナノ粒子領域のそれぞれの少なくとも一部とを混合することと、
前記基板の前記背面の上方に酸化ケイ素層を形成するために、前記誘電体上の前記シリコン層の前記部分、並びに前記N型及びP型ドープ多結晶シリコン層それぞれの最も外側の領域を酸化することと、
前記基板の前記背面に形成される溝部によって分離されるN型ドープ多結晶シリコン領域及びP型ドープ多結晶シリコン領域を提供するために、前記基板の前記背面の上方の前記酸化ケイ素層をマスキングすること及びエッチングすることであって、前記N型ドープポリシリコン領域及び前記P型ドープ多結晶シリコン領域のそれぞれが、前記N型ドープポリシリコン領域及び前記P型ドープ多結晶シリコン領域上に前記酸化ケイ素層の一部を保持している、マスキングすること及びエッチングすることと、
前記N型ドープポリシリコン領域及び前記P型ドープ多結晶シリコン領域上、並びに前記溝部に、反射防止コーティング層を形成することとを含む、方法。
[項目19]
前記反射防止コーティング層を形成する前に、前記受光表面を粗面化することを更に含む、項目18に記載の方法。
[項目20]
前記酸化ケイ素層をマスキングすること及びエッチンングすることの後に、かつ前記反射防止コーティング層を形成する前に、N型ドーパントを前記基板に拡散させることを更に含む、項目18に記載の方法。

Claims (9)

  1. 太陽電池のエミッタ領域の製造方法であって、前記方法が、
    前記太陽電池の基板の表面の上方に配設された誘電体層の上方にドープシリコンナノ粒子領域を形成することと、
    前記ドープシリコンナノ粒子領域上にシリコン層を形成することと、
    前記誘電体層上に配設されたドープ多結晶シリコン層を形成するために、前記シリコン層の少なくとも一部と前記ドープシリコンナノ粒子領域の少なくとも一部とを混合することと、を含
    前記ドープ多結晶シリコン層を形成するために、前記ドープシリコンナノ粒子領域の前記一部と前記シリコン層の前記一部を混合することが、前記基板を摂氏700〜1100度の範囲の温度に加熱することを含む、方法。
  2. 前記ドープシリコンナノ粒子領域を形成することが、少なくともいくつかの開いた孔を有し、5〜100ナノメーターの範囲の平均粒子サイズ及び10〜50%の範囲の多孔率を有する前記ドープシリコンナノ粒子領域を印刷すること又はスピンオンコーティングすることを含む、請求項1に記載の方法。
  3. 前記シリコン層を形成することが、摂氏525〜565度の範囲の温度で、低圧化学気相成長法(LPCVD)チャンバ内で、シラン(SiH)から非ドープの、真正の、又は低ドープのアモルファスシリコン層を形成することを含む、請求項1又は2に記載の方法。
  4. 前記シリコン層を形成することが、前記ドープシリコンナノ粒子領域内に前記シリコン層の一部を形成すること、及び前記シリコン層の一部で前記ドープシリコンナノ粒子領域の1又は複数の開いた孔を閉じることを含む、請求項1から3のいずれか一項に記載の方法。
  5. 前記シリコン層の前記一部で前記ドープシリコンナノ粒子領域の1又は複数の開いた孔を閉じることが、角ばった縁部を有する閉じた孔を形成することを含み、前記ドープ多結晶シリコン層を形成するために前記シリコン層の前記一部と前記ドープシリコンナノ粒子領域の前記一部とを混合することが、円形の孔を形成するために角ばった縁部を有する前記閉じた孔を変更することを含む、請求項4に記載の方法。
  6. 前記ドープ多結晶シリコン層を形成するために前記シリコン層の前記一部と前記ドープシリコンナノ粒子領域の前記一部とを混合することが、前記シリコン層及び前記ドープシリコンナノ粒子領域の合わせた厚さが、20〜50%の範囲の量まで低減されることを含む、請求項1からのいずれか一項に記載の方法。
  7. 前記ドープシリコンナノ粒子領域が、0.2〜3ミクロンの範囲の厚さに形成され、前記シリコン層が200〜2000オングストロームの範囲の絶対厚さに形成される、請求項1からのいずれか一項に記載の方法。
  8. 前記ドープシリコンナノ粒子が、P型ドープシリコンナノ粒子であり、前記ドープ多結晶シリコン層が、P型ドープ多結晶シリコン層である、請求項1からのいずれか一項に記載の方法。
  9. 前記P型ドープシリコンナノ粒子の領域に隣接するが接触しない、前記誘電体層の上方にN型ドープシリコンナノ粒子領域を形成することと、
    前記N型ドープシリコンナノ粒子領域上に前記シリコン層を形成することと、
    前記誘電体層上に配設されたN型ドープ多結晶シリコン層を形成するために、前記シリコン層の少なくとも一部と前記N型ドープシリコンナノ粒子領域の少なくとも一部とを混合することとを更に含む、請求項に記載の方法。
JP2015549361A 2012-12-19 2013-06-18 シリコンナノ粒子を使用した太陽電池エミッタ領域の製造 Expired - Fee Related JP6224729B2 (ja)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US13/720,060 US8785233B2 (en) 2012-12-19 2012-12-19 Solar cell emitter region fabrication using silicon nano-particles
US13/720,060 2012-12-19
PCT/US2013/046434 WO2014098981A1 (en) 2012-12-19 2013-06-18 Solar cell emitter region fabrication using silicon nano-particles

Publications (2)

Publication Number Publication Date
JP2016506077A JP2016506077A (ja) 2016-02-25
JP6224729B2 true JP6224729B2 (ja) 2017-11-01

Family

ID=50931395

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015549361A Expired - Fee Related JP6224729B2 (ja) 2012-12-19 2013-06-18 シリコンナノ粒子を使用した太陽電池エミッタ領域の製造

Country Status (8)

Country Link
US (3) US8785233B2 (ja)
JP (1) JP6224729B2 (ja)
KR (1) KR102051548B1 (ja)
CN (1) CN105453275B (ja)
AU (1) AU2013364371B2 (ja)
DE (1) DE112013006094T5 (ja)
TW (1) TWI591837B (ja)
WO (1) WO2014098981A1 (ja)

Families Citing this family (32)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101613843B1 (ko) * 2013-04-23 2016-04-20 엘지전자 주식회사 태양 전지 및 이의 제조 방법
KR101622089B1 (ko) * 2013-07-05 2016-05-18 엘지전자 주식회사 태양 전지 및 이의 제조 방법
KR101661807B1 (ko) 2014-07-28 2016-09-30 엘지전자 주식회사 태양 전지 및 그 제조 방법
US20160072000A1 (en) * 2014-09-05 2016-03-10 David D. Smith Front contact heterojunction process
US9837576B2 (en) * 2014-09-19 2017-12-05 Sunpower Corporation Solar cell emitter region fabrication with differentiated P-type and N-type architectures and incorporating dotted diffusion
US9246046B1 (en) * 2014-09-26 2016-01-26 Sunpower Corporation Etching processes for solar cell fabrication
US9520507B2 (en) * 2014-12-22 2016-12-13 Sunpower Corporation Solar cells with improved lifetime, passivation and/or efficiency
WO2017004624A1 (en) * 2015-07-02 2017-01-05 Solexel, Inc. Discrete carrier selective passivated contacts for solar cells
US10079319B2 (en) * 2015-12-16 2018-09-18 Sunpower Corporation Solar cell fabrication using laser patterning of ion-implanted etch-resistant layers and the resulting solar cells
SE540184C2 (en) 2016-07-29 2018-04-24 Exeger Operations Ab A light absorbing layer and a photovoltaic device including a light absorbing layer
USD822890S1 (en) 2016-09-07 2018-07-10 Felxtronics Ap, Llc Lighting apparatus
CN108075017B (zh) * 2016-11-10 2019-12-17 上海凯世通半导体股份有限公司 Ibc电池的制作方法
KR101995833B1 (ko) * 2016-11-14 2019-07-03 엘지전자 주식회사 태양 전지 및 이의 제조 방법
US10775030B2 (en) 2017-05-05 2020-09-15 Flex Ltd. Light fixture device including rotatable light modules
USD846793S1 (en) 2017-08-09 2019-04-23 Flex Ltd. Lighting module locking mechanism
USD877964S1 (en) 2017-08-09 2020-03-10 Flex Ltd. Lighting module
USD862777S1 (en) 2017-08-09 2019-10-08 Flex Ltd. Lighting module wide distribution lens
USD833061S1 (en) 2017-08-09 2018-11-06 Flex Ltd. Lighting module locking endcap
USD832494S1 (en) 2017-08-09 2018-10-30 Flex Ltd. Lighting module heatsink
USD872319S1 (en) 2017-08-09 2020-01-07 Flex Ltd. Lighting module LED light board
USD832495S1 (en) 2017-08-18 2018-10-30 Flex Ltd. Lighting module locking mechanism
USD862778S1 (en) 2017-08-22 2019-10-08 Flex Ltd Lighting module lens
USD888323S1 (en) 2017-09-07 2020-06-23 Flex Ltd Lighting module wire guard
FR3071358B1 (fr) * 2017-09-15 2019-09-13 Commissariat A L'energie Atomique Et Aux Energies Alternatives Procede de fabrication d'une cellule photovoltaique a homojonction
EP3550611A1 (en) * 2018-04-06 2019-10-09 Total Solar International Method for manufacturing a photovoltaic device
US11404270B2 (en) 2018-11-30 2022-08-02 Texas Instruments Incorporated Microelectronic device substrate formed by additive process
US10910465B2 (en) 2018-12-28 2021-02-02 Texas Instruments Incorporated 3D printed semiconductor package
US10861715B2 (en) 2018-12-28 2020-12-08 Texas Instruments Incorporated 3D printed semiconductor package
TWI765462B (zh) * 2020-12-11 2022-05-21 國立高雄科技大學 太陽能電池薄膜的製造方法
CN113299772A (zh) * 2021-06-04 2021-08-24 浙江爱旭太阳能科技有限公司 一种选择性接触区域掩埋型太阳能电池及其背面接触结构
CN115188833B (zh) * 2021-09-06 2023-10-27 上海晶科绿能企业管理有限公司 太阳能电池及其制作方法、光伏组件
CN118198165A (zh) * 2022-12-07 2024-06-14 浙江晶科能源有限公司 太阳能电池及其制备方法、光伏组件

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09213964A (ja) * 1996-01-30 1997-08-15 Seiko Epson Corp 薄膜半導体装置の製造方法
US6998288B1 (en) 2003-10-03 2006-02-14 Sunpower Corporation Use of doped silicon dioxide in the fabrication of solar cells
JP5248782B2 (ja) * 2004-01-20 2013-07-31 シリアム・テクノロジーズ・インコーポレーテッド エピタキシャルに成長させた量子ドット材料を有する太陽電池
US7705237B2 (en) * 2006-11-27 2010-04-27 Sunpower Corporation Solar cell having silicon nano-particle emitter
US20100147368A1 (en) 2007-05-17 2010-06-17 Day4 Energy Inc. Photovoltaic cell with shallow emitter
TW200924202A (en) * 2007-11-30 2009-06-01 Delta Electronics Inc Solar cell and manufacturing method thereof
DE102008013446A1 (de) 2008-02-15 2009-08-27 Ersol Solar Energy Ag Verfahren zur Herstellung monokristalliner n-Silizium-Solarzellen sowie Solarzelle, hergestellt nach einem derartigen Verfahren
TWI431130B (zh) * 2008-12-19 2014-03-21 Applied Materials Inc 銅黑銅鐵礦透明p型半導體之製造及應用方法
WO2012021750A1 (en) 2010-08-11 2012-02-16 Crystal Solar, Inc. Mwt architecture for thin si solar cells
US20120060904A1 (en) * 2010-09-13 2012-03-15 Smith David D Fabrication Of Solar Cells With Silicon Nano-Particles
US8802486B2 (en) 2011-04-25 2014-08-12 Sunpower Corporation Method of forming emitters for a back-contact solar cell
US20140179056A1 (en) * 2012-12-21 2014-06-26 Michael MORSE Laser-absorbing seed layer for solar cell conductive contact

Also Published As

Publication number Publication date
US20140295609A1 (en) 2014-10-02
US9252319B2 (en) 2016-02-02
KR20150097612A (ko) 2015-08-26
TWI591837B (zh) 2017-07-11
US8785233B2 (en) 2014-07-22
CN105453275B (zh) 2017-08-11
US20160071999A1 (en) 2016-03-10
JP2016506077A (ja) 2016-02-25
AU2013364371A1 (en) 2015-06-18
US20140170800A1 (en) 2014-06-19
US9559246B2 (en) 2017-01-31
WO2014098981A1 (en) 2014-06-26
CN105453275A (zh) 2016-03-30
KR102051548B1 (ko) 2019-12-03
DE112013006094T5 (de) 2015-08-27
TW201427037A (zh) 2014-07-01
AU2013364371B2 (en) 2017-11-23

Similar Documents

Publication Publication Date Title
JP6224729B2 (ja) シリコンナノ粒子を使用した太陽電池エミッタ領域の製造
US9018516B2 (en) Solar cell with silicon oxynitride dielectric layer
US8283559B2 (en) Silicon-based dielectric stack passivation of Si-epitaxial thin-film solar cells
JP4827550B2 (ja) 太陽電池の製造方法
US20120052618A1 (en) Diffusion Sources From Silicon Based Liquid Precursors
AU2017239612A1 (en) Solar cell emitter region fabrication using N-type doped silicon nano-particles
AU2013363569B2 (en) Solar cell emitter region fabrication using etch resistant film
JP2007081300A (ja) 太陽電池の製造方法
WO2010110106A1 (ja) 光電変換素子の製造方法および光電変換素子
JP2007019259A (ja) 太陽電池およびその製造方法
CN110808293A (zh) 太阳能电池光接收表面的钝化

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20160606

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20170228

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20170228

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20170524

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20170727

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20170905

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20171005

R150 Certificate of patent or registration of utility model

Ref document number: 6224729

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees