TW201427037A - 使用矽奈米粒子之太陽能電池射極區製造 - Google Patents

使用矽奈米粒子之太陽能電池射極區製造 Download PDF

Info

Publication number
TW201427037A
TW201427037A TW102121632A TW102121632A TW201427037A TW 201427037 A TW201427037 A TW 201427037A TW 102121632 A TW102121632 A TW 102121632A TW 102121632 A TW102121632 A TW 102121632A TW 201427037 A TW201427037 A TW 201427037A
Authority
TW
Taiwan
Prior art keywords
layer
region
doped
substrate
nanoparticle
Prior art date
Application number
TW102121632A
Other languages
English (en)
Other versions
TWI591837B (zh
Inventor
Paul Loscutoff
David D Smith
Michael Morse
Ann Waldhauer
Taeseok Kim
Steven Edward Molesa
Original Assignee
Sunpower Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sunpower Corp filed Critical Sunpower Corp
Publication of TW201427037A publication Critical patent/TW201427037A/zh
Application granted granted Critical
Publication of TWI591837B publication Critical patent/TWI591837B/zh

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/18Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof
    • H01L31/1804Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof comprising only elements of Group IV of the Periodic Table
    • H01L31/182Special manufacturing methods for polycrystalline Si, e.g. Si ribbon, poly Si ingots, thin films of polycrystalline Si
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/02Details
    • H01L31/0224Electrodes
    • H01L31/022408Electrodes for devices characterised by at least one potential jump barrier or surface barrier
    • H01L31/022425Electrodes for devices characterised by at least one potential jump barrier or surface barrier for solar cells
    • H01L31/022441Electrode arrangements specially adapted for back-contact solar cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/02Details
    • H01L31/0236Special surface textures
    • H01L31/02363Special surface textures of the semiconductor body itself, e.g. textured active layers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/0248Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
    • H01L31/0256Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by the material
    • H01L31/0264Inorganic materials
    • H01L31/028Inorganic materials including, apart from doping material or other impurities, only elements of Group IV of the Periodic Table
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/0248Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
    • H01L31/0352Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their shape or by the shapes, relative sizes or disposition of the semiconductor regions
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/0248Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
    • H01L31/0352Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their shape or by the shapes, relative sizes or disposition of the semiconductor regions
    • H01L31/035272Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their shape or by the shapes, relative sizes or disposition of the semiconductor regions characterised by at least one potential jump barrier or surface barrier
    • H01L31/035281Shape of the body
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/0248Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
    • H01L31/036Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their crystalline structure or particular orientation of the crystalline planes
    • H01L31/0368Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their crystalline structure or particular orientation of the crystalline planes including polycrystalline semiconductors
    • H01L31/03682Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their crystalline structure or particular orientation of the crystalline planes including polycrystalline semiconductors including only elements of Group IV of the Periodic Table
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/0248Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
    • H01L31/036Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their crystalline structure or particular orientation of the crystalline planes
    • H01L31/0384Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their crystalline structure or particular orientation of the crystalline planes including other non-monocrystalline materials, e.g. semiconductor particles embedded in an insulating material
    • H01L31/03845Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their crystalline structure or particular orientation of the crystalline planes including other non-monocrystalline materials, e.g. semiconductor particles embedded in an insulating material comprising semiconductor nanoparticles embedded in a semiconductor matrix
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/06Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by potential barriers
    • H01L31/068Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by potential barriers the potential barriers being only of the PN homojunction type, e.g. bulk silicon PN homojunction solar cells or thin film polycrystalline silicon PN homojunction solar cells
    • H01L31/0682Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by potential barriers the potential barriers being only of the PN homojunction type, e.g. bulk silicon PN homojunction solar cells or thin film polycrystalline silicon PN homojunction solar cells back-junction, i.e. rearside emitter, solar cells, e.g. interdigitated base-emitter regions back-junction cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/18Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/18Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof
    • H01L31/1804Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof comprising only elements of Group IV of the Periodic Table
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/546Polycrystalline silicon PV cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/547Monocrystalline silicon PV cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S977/00Nanotechnology
    • Y10S977/902Specified use of nanostructure
    • Y10S977/932Specified use of nanostructure for electronic or optoelectronic application
    • Y10S977/939Electron emitter, e.g. spindt emitter tip coated with nanoparticles
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S977/00Nanotechnology
    • Y10S977/902Specified use of nanostructure
    • Y10S977/932Specified use of nanostructure for electronic or optoelectronic application
    • Y10S977/948Energy storage/generating using nanostructure, e.g. fuel cell, battery

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Hardware Design (AREA)
  • General Physics & Mathematics (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Electromagnetism (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Manufacturing & Machinery (AREA)
  • Sustainable Energy (AREA)
  • Nanotechnology (AREA)
  • Inorganic Chemistry (AREA)
  • Photovoltaic Devices (AREA)

Abstract

所述者為使用矽奈米粒子製造太陽能電池射極區之方法與所得之太陽能電池。在實例中,製造太陽能電池之射極區的方法包括設置於太陽能電池之基板的表面上方之介電層上方形成摻雜矽奈米粒子區。矽層係形成於摻雜矽奈米粒子區上。矽層的至少一部分係與摻雜矽奈米粒子區的至少一部分混合以形成設置於介電層上之摻雜多晶矽層。

Description

使用矽奈米粒子之太陽能電池射極區製造
本發明之實施例屬於再生能源領域,尤其是使用矽奈米粒子製造太陽能電池射極區之方法與所得之太陽能電池。
光伏電池,通常稱為太陽能電池,是廣為人知之用於將太陽輻射直接轉換為電能的裝置。一般而言,太陽能電池係使用半導體加工技術於半導體晶圓或基板上形成在基板之表面附近之p-n接面而製造。太陽輻射撞擊在表面上並進入其中,基板於基板的塊材中產生電子電洞對。這些電子電洞對會遷移到該基板中的p-摻雜與n-摻雜區,從而在這些摻雜區間產生壓差。摻雜區連接至太陽能電池上的導電區,以將電流從該電池導引到與耦接其之外部電路。
效率是太陽能電池的一個重要特性,因為其直接與太陽能電池產生電力的能力相關。同樣地,生產太陽能電池的效率直接與太陽能電池之成本效益相關。因此,一般期望能有增加太陽能電池效率的技術,或增加太陽能電池製造效率的技術。本發明之某些實施例藉由提供用於製造太陽能電池結構之新穎方法,而使太陽能電池之製造效率提高。本發明之某些實施例藉由提供新穎太陽能電池結構,而使太陽能電池之效率提高。
本發明實施例之一態樣係提供製造太陽能電池之射極區的方法,該方法包含形成摻雜矽奈米粒子區於設置於太陽能電池之基板的表面上方之介電層上方;形成矽層於摻雜矽奈米粒子區上;以及混合矽層的至少一部分與摻雜矽奈米粒子區的至少一部分以形成設置於介電層上之摻雜多 晶矽層。
形成摻雜矽奈米粒子區可包含印刷或旋轉塗佈摻雜矽奈米粒子區,摻雜矽奈米粒子區之平均粒徑可約在5-100奈米的範圍並且孔隙率可約在10-50%的範圍,而且可至少具有一些開放孔隙。
形成矽層可包含於低壓化學氣相沉積(LPCVD)室中在溫度約在攝氏525–565度的範圍下自矽烷(SiH4)形成未經摻雜、本質或輕度摻雜之非晶矽層。
形成矽層可包含形成矽層之一部分於摻雜矽奈米粒子區內,並且用矽層之一部分封閉摻雜矽奈米粒子區之一或多個孔隙。
用矽層之部分封閉摻雜矽奈米粒子區之一或多個孔隙可包含形成具有尖角邊緣之經封閉孔隙,並且其中可混合矽層之部分與摻雜矽奈米粒子區之部分以形成摻雜多晶矽層包含修飾具有尖角邊緣之經封閉孔隙以形成圓角之經封閉孔隙。
混合矽層之部分與摻雜矽奈米粒子區之部分以形成摻雜多晶矽層可包含加熱基板至溫度約在攝氏700–1100度的範圍。
混合矽層之部分與摻雜矽奈米粒子區之部分以形成摻雜多晶矽層可包含降低矽層與摻雜矽奈米粒子區之合併厚度達約在20–50%的範圍之量。
摻雜矽奈米粒子區可形成為約在0.2–3微米的範圍之厚度,而矽層可形成為約在200–2000埃的範圍之絕對厚度。
摻雜矽奈米粒子可為P型摻雜矽奈米粒子,而摻雜多晶矽層可為P型摻雜多晶矽層。
此方法可進一步包含形成N型摻雜矽奈米粒子區於介電層上方,鄰近但未接觸P型摻雜矽奈米粒子區;形成矽層於N型摻雜矽奈米粒子區上;以及混合矽層的至少一部分與N型摻雜矽奈米粒子區的至少一部分以形成設置於介電層上之N型摻雜多晶矽層。
摻雜矽奈米粒子可為N型摻雜矽奈米粒子,而摻雜多晶矽層可為N型摻雜多晶矽層。
介電層可形成於基板上並且可為用於射極區之隧道介電層。
基板之表面可為基板之後表面,其位於基板之光接收表面的反側,方法可進一步包含:形成金屬接點於摻雜多晶矽層上。
本發明實施例之另一態樣係提供製造太陽能電池之射極區的方法,該方法包含:形成摻雜矽奈米粒子區於設置於太陽能電池之基板的後表面上方之介電層上方,後表面位於太陽能電池之光接收表面的反側;同時形成矽層於光接收表面上與於基板之後表面上方,包括一部分於摻雜矽奈米粒子區上而一部分於介電層上;混合形成於摻雜矽奈米粒子區上之矽層部分與摻雜矽奈米粒子區的至少一部分以形成設置於介電層上之摻雜多晶矽層;氧化位於基板之光接收表面上的矽層、位於介電層上之矽層部分以及摻雜多晶矽層之最外層區,以形成矽氧化物層於光接收表面與於該基板之後表面上方;以及形成抗反射塗層於位於光接收表面上之矽氧化物層上並且於位於基板之後表面上方的矽氧化物層上。
形成矽氧化物層於光接收表面上與於基板之後表面上方可包含於氧氣(O2)、水蒸汽(H2)或一氧化二氮(N2O)存在下在低壓化學氣相沉積(LPCVD)室中加熱基板。
形成抗反射塗層於矽氧化物層上可包含在低壓化學氣相沉積(LPCVD)室中形成氮化矽層。
此方法可進一步包含形成金屬接點於摻雜多晶矽層上。
本發明實施例之另一態樣係提供製造太陽能電池之射極區的方法,該方法包含:形成N型摻雜矽奈米粒子區與P型摻雜矽奈米粒子區於設置於太陽能電池之基板的後表面上方之介電層上方,後表面位於太陽能電池之光接收表面的反側,並且N型摻雜矽奈米粒子區鄰近但未接觸P型摻雜矽奈米粒子區;形成矽層至少於基板之後表面上方,包括一部分於N型摻雜矽奈米粒子區與P型摻雜矽奈米粒子區上而一部分於介電層上;混合形成於N型摻雜矽奈米粒子區與P型摻雜矽奈米粒子區上之矽層部分與各N型摻雜矽奈米粒子區及P型摻雜矽奈米粒子區的至少一部分,以分別形成各設置於介電層上之N型摻雜多晶矽層與P型摻雜多晶矽層;氧化位於介電層上之矽層部分以及各N型摻雜矽奈米粒子區與P型摻雜矽奈米粒子區的最外層區,以形成矽氧化物層於基板之後表面上方;遮罩與蝕刻位於基板之後表面上方的矽氧化物層,以提供由形成於基板之後表面中的溝槽所分隔之N型摻雜多晶矽區與P型摻雜多晶矽區,各N型摻雜多晶矽區與P型摻雜多晶矽區保持矽氧化物層之一部分於其上;以及形成抗反射塗層於N型摻雜多晶矽區與P型摻雜多晶矽區上以及於溝槽中。
此方法可進一步包含在形成抗反射塗層之前,粗化光接收表面。
此方法可進一步包含在遮罩與蝕刻矽氧化物層之後以及在形成抗反射塗層之前,將N型摻雜物擴散至基板中。
100...基板
102...表面
104...介電層
106A...摻雜矽奈米粒子區
106B...摻雜矽奈米粒子區
108、222、322...矽層
110A...摻雜多晶矽區
110B...摻雜多晶矽區
112...部分
220...光接收表面
224、324...第一矽氧化物層
226、326...第二矽氧化物層
228...抗反射塗層
330...遮罩層
340A...P型摻雜多晶矽射極區
340B...N型摻雜多晶矽射極區
342...溝槽
350...具有較高濃度N型摻雜物之區
360...抗反射塗層
第1A圖至第1D圖繪示依據本發明之實施例之太陽能電池製造中各階段的剖視圖。
第2A圖至第2C圖繪示依據本發明之實施例之太陽能電池製造中各階段的剖視圖。
第3A圖至第3F圖繪示依據本發明之實施例之太陽能電池製造中各階段的剖視圖。
使用矽奈米粒子製造太陽能電池射極區之方法與所得之太陽能電池係描述於本說明書中。在以下說明中會提出許多具體細節,例如具體的製程流程操作,以對於本發明之實施例提供全面性的瞭解。對於熟習該項技術者而言以下將為顯而易見,即本發明之實施例在沒有這些具體細節下還是可以實施。在其他示例中,並未詳細說明熟知的製造技術如微影與圖型化技術,以避免不必要地使本發明之實施例不易理解。此外,可理解顯示於圖式中的各種實施例為說明性的表示,而且並非依比例繪製。
本說明書中所公開者為製造太陽能電池之方法。在一實施例中,製造太陽能電池之射極區的方法包括於設置於太陽能電池之基板的表面上方之介電層上方形成摻雜矽奈米粒子區。矽層係形成於摻雜矽奈米粒子區上。矽層的至少一部分係與摻雜矽奈米粒子區的至少一部分混合以形成設置於介電層上之摻雜多晶矽層。
在另一實施例中,製造太陽能電池之射極區的方法包括於設置於太陽能電池之基板的後表面上方之介電層上方形成摻雜矽奈米粒子區。後表面係位於太陽能電池的光接收表面的反側。矽層係同時形成於光接收表面與基板之後表面上方,包括於摻雜矽奈米粒子區上之一部分及於介電層上之一部分。形成於摻雜矽奈米粒子區上之矽層部分係與摻雜矽奈米粒子區的至少一部分混合以形成設置於介電層上之摻雜多晶矽層。位於基板之光接收表面上的矽層、位於介電層上之矽層部分,以及摻雜多晶矽層之最外層區係經氧化,以形成矽氧化物層於光接收表面與基板之後表面上方。抗反射塗層係形成於位於光接收表面上之矽氧化物層上以及於位於基板之後表面上方的矽氧化物層上。
在又一實施例中,製造太陽能電池之射極區的方法包括形成N型摻雜矽奈米粒子區與P型摻雜矽奈米粒子區於設置於太陽能電池之基板的後表面上方之介電層上方。後表面係位於太陽能電池的光接收表面的反側。N型摻雜矽奈米粒子區係鄰近於但未接觸P型摻雜矽奈米粒子區。矽層係至少形成於基板之後表面上方,包括一部分於N型與P型摻雜矽奈米粒子區上方而一部分於介電層上。形成於N型與P型摻雜矽奈米粒子區上之矽層部分與各N型與P型摻雜矽奈米粒子區之至少一部分混合,以分別形成各設置於介電層上之N型摻雜多晶矽層與P型摻雜多晶矽層。位於介電層上之矽層部分以及各N型與P型摻雜矽奈米粒子區之最外層區係經氧化,以形成矽氧化物層於基板之後表面上方。位於基板之後表面上方的矽氧化物層係經遮罩與蝕刻,以提供由形成於基板之後表面中的溝槽所分隔之N型摻雜多晶矽區與P型摻雜多晶矽區, 各N型摻雜多晶矽區與P型摻雜多晶矽區保持矽氧化物層之一部分於其上。抗反射塗層係形成於N型摻雜多晶矽區與P型摻雜多晶矽區上以及溝槽中。
在作為概觀之第一態樣中,多晶矽射極可藉由印刷摻雜矽奈米粒子,接著透過低壓化學氣相沉積(LPCVD)來沉積薄非晶矽(a-Si)層而形成。經由在高溫下退火所得之結構,材料堆疊會密實化為摻雜多晶矽層,其可作為用於太陽能電池之多晶矽射極(poly emitter)。在一實施例中,N型與P型射極其中之一或兩者可用奈米粒子來產生,並且直接圖型化於基板上,如沉積。此方法可無需驅入摻雜物、圖型化摻雜區或在射極間圖型化一溝槽。
更一般而言,多晶矽射極可能製造成本高昂,相對於基板-射極製程常需要數種額外製程步驟。例如,多晶矽的包覆式沉積(blanket deposition)與後續的摻雜物膜沉積通常需要數個蝕刻操作,以製造出圖型化的摻雜指狀電極與射極間的溝槽。過去的數次嘗試都針對減少此一程序中的操作數目,例如使用能夠無需製造溝槽的高壽命多晶矽。同時,使用噴墨摻雜物以使摻雜物得以直接圖型化於多晶矽層上。摻雜a-Si層的陰影遮罩式(shadowmask)電漿增強化學氣相沉積(PECVD)亦已用於操作減少之程序流程。相比之下,或者搭配以上方法,本說明書中所述之實施例包括使用矽奈米粒子區以於基板上方形成射極區,如以下所進一步描述者。
更具體而言,在一實施例中,多晶矽射極可藉由先成長隧道氧化物於基板表面,接著將N型與P型矽奈米粒子印刷於隧道氧化物層上來形成。a-Si層係藉由LPCVD而沉積,其會填滿奈米粒子間的空洞。一經退火,所得之Si奈米粒子與a-Si材料摻合膜係經密實化以結晶為多晶矽層。存在於奈米粒子或基於LPCVD之a-Si的任一或兩者中之摻雜物可擴散遍及已形成之多晶矽層。多晶矽薄層可保持印刷奈米粒子射極的連接。在一實施例中,如果此層有問題,可執行氧化以將剩餘多晶矽氧化為氧化物膜,從而去除不同射極間之電連接。因此,在一實施例中,N型與P型射極之一或兩者係使用奈米粒子來製造。印刷摻雜奈米粒子之能力可無需將摻雜物驅入多晶矽層,而(如所沉積者)圖型化可無需遮罩與蝕刻該些層。此外,氧化射極間之薄多晶矽層可無需在射極間蝕刻溝槽。在一特定實施例中,透過LPCVD進行相對緩慢且均勻的a-Si沉積是用於填滿奈米粒子間之空洞的極佳方法。因此,涉及形成射極區於基板上方之製程中的程序操作數目削減,相較於形成於基板中,可減少多達2至8個程序操作,其實例詳細說明如下。
作為一實例,第1A圖至第1D圖繪示依據本發明之實施例之太陽能電池製造中之各階段的剖視圖。
請參照第1A圖,製造太陽能電池之射極區的方法包括形成薄介電層104(例如隧道氧化物層)於基板100之表面102上。
在一實施例中,該基板100為矽塊材基板( /臭氧氧化來消耗。在另一實施例中,該薄介電層104為透過液相氧化物沉積或其他合適沉積方法所形成之矽氧化物或二氧化矽層。
請參照第1B圖,摻雜矽奈米粒子區106A與106B係形成於該薄介電層104上。
在一實施例中,摻雜矽奈米粒子區106A與106B係藉由印刷(例如網版印刷、噴墨印刷、噴嘴噴流印刷、擠出印刷或氣溶膠噴流印刷)或旋轉塗佈摻雜矽奈米粒子區而形成,奈米粒子之平均粒徑約在5–100奈米的範圍,孔隙度約在10-50%的範圍並且至少具有一些開放孔隙。在一具體實施例中,摻雜矽奈米粒子係於稍後可蒸去或燒去之載體溶劑或流體存在下傳遞。在一實施例中,當使用網版印刷程序時,較佳為使用具有高黏度之液體來源來傳遞,因為使用低黏度液體可能導致滲出,並因而造成定義區的解析度降低。
在一實施例中,同時形成P型摻雜區(例如區106A)與N型摻雜區106B。不同摻雜物類型之區可先形成為N型區再形成為P型區、先形成為P型區再形成為N型區,或者同時,例如在單一印刷操作中,形成為P型區與N型區。在一實施例中,P型摻雜物為硼摻雜物雜質原子,而N型摻雜物為磷摻雜物雜質原子。在一實施例中,各摻雜矽奈米粒子區106A或106B形成約在0.2–3微米的範圍之厚度。
請參照第1C圖,矽層108係形成於摻雜矽奈米粒子區106A與106B上。
在一實施例中,矽層108為未經摻雜、本質(intrinsic)或輕度摻雜非晶矽之層。在此類實施例中,矽層108係於低壓化學氣相沉積(LPCVD)室中在溫度約在攝氏525–565度的範圍下自矽烷(SiH 4)形成。在一實施例中,在摻雜矽奈米粒子106A與106B包括至少一些開放孔隙的情況下,矽層108的至少一部分形成於摻雜矽奈米粒子區106A與106B內。在此類實施例中,矽層108會用矽層108的一部分封閉摻雜矽奈米粒子106A與106B的一或多個開放孔隙。在具體之此類實施例中,摻雜矽奈米粒子區106A與106B的一或多個孔隙被以所得之尖角邊緣封閉。在一實施例中,矽層108係形成為在200–2000埃的範圍之絕對厚度。
雖然在一個所述實例中,使用基於LPCVD之a-Si層來填滿奈米粒子區106A與106B中的空洞,但可改用其他方法如APCVD或PECVD來填滿此空洞。射極類型之一或兩者(例如N型及 /或P型)可用此方法來製造。然而,在另一實施例中,LPCVD被用來將a-Si或多晶Si薄層沉積於薄介電層104上。因為該層係透過LPCVD來沉積,沉積會遍及奈米粒子層上發生,從而填滿該膜之孔隙。在一實施例中,沉積層係比矽奈米粒子層的厚度還薄,並且其本身可沉積為摻雜膜,可為P型或N型。
請參照第1D圖,矽層108的至少一部分係與摻雜矽奈米粒子區106A與106B的至少一部分混合,以形成設置於介電層104上之摻雜多晶矽區110A與110B。在一實施例中,在區106A與106B分別為P型或N型摻雜的情況下,多晶矽區110A與110B分別為P型或N型摻雜。矽層108之未反應(例如未經混合)部分的剩餘層112保持在摻雜多晶矽區110A與110B之間。
在一實施例中,矽層108之部分係藉由將基板100加熱至約在攝氏700–1100度的範圍之溫度而與摻雜矽奈米粒子區106A與106B的部分混合,以形成摻雜多晶矽區110A與110B。在一實施例中,混合矽層108的部分與摻雜矽奈米粒子區106A與106B的部分以形成摻雜多晶矽區110A與110B,會降低矽層108與摻雜矽奈米粒子區106A與106B之合併厚度達約在20–50%的範圍的量。亦即比起個別合併層108與區106A或106B之厚度,各該區110A或110B的厚度減少約20-50%。在一實施例中,在摻雜矽奈米粒子區106A與106B之一或多個開放孔隙係以所得之尖角邊緣封閉的情況下,混合矽層108之部分與摻雜矽奈米粒子區106A與106B之部分以分別形成摻雜多晶矽區110A與110B,包括修飾具有尖角邊緣之封閉孔隙以最終產生圓角封閉孔隙。
在一實施例中,基板100之表面102為基板100之後表面,其位於基板100之光接收表面的反側(如第1D圖之方向101所示)。在此類實施例中,在形成摻雜多晶矽區110A與110B之後,於摻雜多晶矽區110A與110B上製造金屬接點。金屬接點可為用於所得之背面接觸式太陽能電池之金屬接點。在一實施例中,金屬接點係藉由沉積、微影與蝕刻處理而形成。應理解的是,在製造第1D圖之結構之後,以及在實際將金屬接點製造於摻雜多晶矽區110A與110B上之前,存在有各種處理機會。此類製造機會的實例搭配第2A圖至第2C圖與第3A圖至第3F圖而詳細說明如下。
在作為概觀之第二態樣中,第1A圖至第1D圖之一般射極區製造示意圖係用於搭配以高壽命N型晶圓為基礎之程序流程,預損傷蝕刻(pre-damage etch)。作為一實例,損傷蝕刻係與基板之前表面的單側粗化(texturing)組合。同時,執行基板之後表面的氧化以製造高品質隧道氧化物。氧化可藉由例如化學氧化、UV /臭氧氧化或液相氧化物沉積來執行。在一實施例中,此方法的優勢包括製造一親水性氧化物於太陽能電池晶圓之表面上,此在維持清潔之晶圓表面方面較疏水性表面為佳。之後可使晶圓接受雙印刷操作,其中將N型與P型Si奈米粒子同時以合適圖型沉積於表面(例如搭配第1B圖描述之實施例)。奈米粒子沉積可藉由例如兩段式網版印刷機、噴墨印刷機、擠出印刷機或氣溶膠噴流印刷機來執行。
接下來,該晶圓可以單狹縫方式載入LPCVD爐中。在LPCVD爐中,執行N型a-Si沉積(例如搭配第1C圖描述之實施例)。如上所述,該a-Si層可用來填滿粒子間的空洞以簡化多晶矽射極之形成。一經退火,Si奈米粒子/a-Si堆疊會密實化並擴散以形成摻雜多晶矽射極區。如果存在來自a-Si沉積之少量N型摻雜物,則其被稀釋遍及重度摻雜之P型Si奈米粒子中,從而使用於P型奈米粒子之多晶矽層保持為P型。位於前表面上之對應薄N型多晶矽層可用來作為用於前表面之鈍化層。此外,如果射極間之薄多晶矽層(例如第1D圖中之剩餘部分112)容許由於與P型多晶矽射極之接合之相當的損失,可包括氧化操作以降低此薄多晶矽層之厚度。如果因為多晶矽之厚度而造成穿透率之損失,氧化操作亦可用來薄化多晶矽層。在退火後,結構可用抗反射塗層與隔濕層,例如LPCVD氮化矽來封蓋。
作為一實例,第2A至第2C圖繪示依據本發明之實施例之太陽能電池製造中之各階段的剖視圖。
請參照第2A圖,程序流程基本上以第1D圖之結構開始,並且有一些顯著的差異。該設置於介電層104上之摻雜多晶矽區110A與110B係如搭配第1A圖至第1D圖所描述者,介電層係設置於基板100之表面102上。此外,矽層108之部分112保持來自上述之射極區製程。在一實施例中,多晶矽區110A與110B分別為P型與N型摻雜。
然而,在一實施例中,在第1A圖與第1B圖之操作間,基板之前表面101係經粗化以提供粗化表面220,例如作為背面接觸式太陽能電池之粗化光接收表面。粗化表面可為具有規則或不規則形狀之表面者以散射入射光,進而減少由太陽能電池之光接收表面反射回去的光量。在一實施例中,粗化表面係藉由使用濕式蝕刻程序,例如基於氫氧化鉀之鹼性蝕刻而執行之蝕刻來製造。在一實施例中,薄介電層會在蝕刻期間保護基板100之後側102。在另一實施例中,然而前表面係使用單側粗化程序或工具來粗化。
此外,矽層222係形成於粗化表面220上。矽層222可用如同製造層108之相同程序操作來製造,其中組成與形成方法係如上所述。因此,請再次參照第2A圖,矽層係同時設置於光接收表面220(例如作為層222)與薄介電層104之一部分上,位於多晶矽區110A與110B間。
請參照第2B圖,位於基板100之光接收表面220上的矽層222、位於介電層104上之矽層108部分112,以及摻雜多晶矽區110A與110B之最外層區係經氧化,以形成第一矽氧化物層224(其可為二氧化矽)於光接收表面220上與第二矽氧化物層226(其可為二氧化矽)於基板100之後表面102上方。在一實施例中,矽氧化物層224與226係藉由於氧氣(O2)、水蒸汽(H2O)或一氧化二氮(N2O)存在下在低壓化學氣相沉積(LPCVD)室中加熱基板100而形成。
或者,第2B圖之操作可省略或減省為部分氧化,例如可為足以絕緣形成自區110A與110B之射極者。亦即,氧化射極間之薄多晶矽層不必然需要為完整。可改為將薄多晶矽層磊晶成長於單晶基板上,或者可使薄多晶矽層之電阻大到足以讓通過薄層之側向傳輸並非主要的復合方法。層亦可經部分氧化以將傳導率降低至可接受的程度。如果藉由LPCVD沉積摻雜之a-Si層,則摻雜多晶矽層可作為前表面與位於後表面上之射極間區域的鈍化膜。或者,如果兩個射極未經電性絕緣,剩餘薄多晶矽層可透過氧化及 /或蝕刻處理來移除。
請參照第2C圖,抗反射塗層228係形成於位於光接收表面220上之矽氧化物層224上,以及形成於位於基板100之後表面102上方的矽氧化物層226上。在一實施例中,抗反射塗層228為在低壓化學氣相沉積(LPCVD)室中所形成之氮化矽層。在一實施例中,矽層108(與因而剩餘者112)及222之形成、剩餘者112與層222之氧化,以及抗反射塗層228之形成皆在單一LPCVD工具中執行,例如作為在LPCVD工具中之單程操作。在一實施例中(未顯示),金屬接點係接著形成為摻雜多晶矽區110A與110B,如上所述者。
在作為概觀之第三態樣中,使高壽命N型晶圓經歷損傷蝕刻程序,但蝕刻係以使氧化物生長 /沉積於晶圓之後(並且可能包括前)表面上來完結。氧化可為化學氧化、UV/臭氧氧化或液相氧化物沉積等。所得之(多個)親水性氧化物表面可用來降低晶圓之汙染,例如在與疏水性表面比較之下。在氧化物沉積之後,使晶圓經歷印刷操作,其中同時將P型與N型奈米粒子以射極圖型沉積於電池之後表面上。Si奈米粒子可藉由雙網版印刷、噴墨印刷機、擠出印刷機或氣溶膠印刷機等來沉積。接著將該晶圓載入LPCVD爐以進行薄a-Si層之沉積。a-Si層係用來填滿奈米粒子間的空洞,如上所述。在沉積a-Si之後,使晶圓經歷高溫退火以將Si奈米粒子與a-Si膜堆疊密實化為多晶矽層,並且讓摻雜物之擴散及電活化能夠遍及多晶矽膜。在密實化之後,可執行氧化步驟來生長熱氧化物於晶圓之表面。氧化可使用濕式或乾式氧化或者低溫氧化劑來進行。在該氧化物保持完整的情況下,可將晶圓從該LPCVD爐取出並使其經歷溝槽遮罩作業。在溝槽遮罩之後,可使晶圓經歷溝槽蝕刻(TOXE)與隨機化粗化(rantex),其會粗化前表面並移除射極間之任何殘餘薄多晶矽。可在溝槽形成與隨機化粗化操作之後進一步執行後續射極製造操作。
以下作為一實例,第3A圖至第3F圖繪示依據本發明之實施例之太陽能電池製造中之各階段的剖視圖。
請參照第3A圖,程序流程基本上以第1D圖之結構開始,並且有一些顯著的差異。於設置於基板100之表面102之介電層104上設置之摻雜多晶矽區110A與110B係如搭配第1A圖至第1D圖所描述者。此外,矽層108之部分112保持來自如上所述之射極區製程。在一實施例中,多晶矽區110A與110B分別為P型與N型摻雜。
然而在一實施例中,矽層322係形成於基板100之前表面101上。矽層322可用如同製造層108之相同程序操作來製造,其中形成組成物與方法係如上所述。因此,請再次參照第2A圖,矽層係同時設置於光接收表面101(例如作為層322)上與於薄介電層104之一部分上,位於多晶矽區110A與110B間(例如為層108之剩餘部分112)。
請參照第3B圖,位於基板100之光接收表面101上的矽層322、位於介電層104上之矽層108之部分112,以及摻雜多晶矽區110A與110B之最外層區係經氧化,以形成第一矽氧化物層324(其可為二氧化矽)於光接收表面101上與第二矽氧化物層326(其可為二氧化矽)於基板100之後表面102上方。在一實施例中,矽氧化物層324與326係藉由於氧氣(O2)、水蒸汽(H2O)或一氧化二氮(N2O)存在下在低壓化學氣相沉積(LPCVD)室中加熱基板100而形成。
請參照第3C圖,遮罩層330係形成於第二矽氧化物層區326上方,尤其是於覆蓋多晶矽區110A與110B之區上方。在一實施例中,直接印刷遮罩層330以具有一圖型。在另一實施例中,使電阻層經歷微影與顯影以提供具有圖型之遮罩層330。
請參照第3D圖,使第3C圖之結構經歷蝕刻程序以蝕刻矽氧化物層326,並且提供由形成於基板100之後表面102中的溝槽342來分隔之N型摻雜多晶矽射極區340B與P型摻雜多晶矽射極區340A。在一實施例中,薄介電層104亦在蝕刻程序期間被圖型化,如第3D圖中所繪示者。此外在一實施例中,各N型摻雜多晶矽區340B與P型摻雜多晶矽區340A保持矽氧化物層326之一部分於其上,如第3D圖所亦繪示者。
請再次參照第3D圖,基板100之外露表面101與102係經粗化。粗化表面可為具有規則或不規則形狀之表面以散射入射光,進而減少由太陽能電池之光接收表面反射回去的光量者。在一實施例中,粗化表面係藉由使用濕式蝕刻程序,例如基於氫氧化鉀之鹼性蝕刻而執行之蝕刻。關於在溝槽342底部之粗化部分,此粗化之位置可為在前表面101(即光接收表面)之粗化程序期間所使用之程序操作的典型結果。應理解的是,如果需要,氧化物層326之剩餘部分可在粗化之後移除。
請參照第3E圖,在一實施例中,在遮罩與蝕刻矽氧化物層326之後,使N型摻雜物擴散或佈植至基板100之外露部分中,例如以在基板100內形成具有較高濃度N型摻雜物之區350。在一個此類實施例中,N型摻雜物為磷雜質原子。
請參照第3F圖,抗反射塗層360係形成於N型摻雜多晶矽區340B與P型摻雜多晶矽區340B上、於溝槽342中,以及於基板100之前表面101上。在一實施例中,抗反射塗層360為在低壓化學氣相沉積(LPCVD)室中所形成之氮化矽層。在一實施例中,矽層108(與因而剩餘者112)及322之形成、剩餘者112與層322之氧化,以及抗反射塗層360之形成皆在單一LPCVD工具中執行,例如作為在LPCVD工具中之單程操作。然而在另一實施例中,鈍化係藉由使用基於電漿輔助化學氣相沉積(PECVD)之氮化矽(SiNx)層來達成。在一實施例(未顯示),金屬接點係接著形成在N型摻雜多晶矽區340B與P型摻雜多晶矽區340A上。
在另一態樣中,已發現使用「縫綴」(stitching)網絡在經印刷之Si奈米粒子中會為固態擴散提供路徑,並且在特定條件下會造成膜密實化。在本發明之另一實施例中,所提供者為用於製造此網絡之低成本程序,並且程序可透過同時在多晶矽與基於基板之射極區程序流程中使用Si奈米粒子來顯著降低成本。更具體而言,使用常壓化學氣相沉積(APCVD)來將膜沉積在矽奈米晶體區上。APCVD可為在常壓與低溫,例如小於攝氏500度下執行之低成本方法。應理解的是,雖然通常不會使用APCVD來沉積純Si層,因為其前驅物分子,矽烷會迅速與空氣中的氧反應而形成SiO2,但可能不需要使用極低氧含量之矽來獲得用於上述縫綴層之高壽命多晶矽。因為該奈米粒子層中絕大部分的矽已經沉積在該表面上,可能對於形成於奈米晶體區上之層會有較不嚴格的純度要求。結果,在一實施例中,APCVD在經過一些小規模工具修改後用來在Si奈米粒子中產生網絡交聯膜,這些修改會密封工具而使其免於接觸大氣並且會在沉積程序期間降低內部氧含量。在一實施例中,此類修改可能涉及將CDA氣簾變更為N2氣簾。這可藉由單純將輸入氣體由CDA變更為N2而在該APCVD工具中輕易達成。製造商評估這會產生具有ppm級O2含量的Si。然而在替代性實施例中,由於僅需要縫綴網絡以使Si粒子作為用於基板之摻雜來源的事實,在縫綴網絡中有低O2含量的重要性遠為較低。
整體而言,雖然以上具體描述特定材料,但在其他此類實施例仍保持在本發明實施例之精神與範疇的情況下,部分材料可用他者來輕易取代。例如在一實施例中,可改用不同材料之基板(如一III-V族材料基板)來取代矽基板。
因此,使用矽奈米粒子製造太陽能電池射極區之方法與所得之太陽能電池已公開於本說明書中。依據本發明之一實施例,製造太陽能電池之射極區的方法包括形成摻雜矽奈米粒子區於設置於太陽能電池之基板的表面上方之介電層上方。矽層係形成於摻雜矽奈米粒子區上。矽層的至少一部分係與摻雜矽奈米粒子區的至少一部分混合以形成設置於介電層上之摻雜多晶矽層。在一實施例中,方法進一步包括形成N型摻雜矽奈米粒子區於介電層上方,鄰近但未接觸P型摻雜矽奈米粒子區。矽層係形成於N型摻雜矽奈米粒子區上。矽層的至少一部分係與N型摻雜矽奈米粒子區的至少一部分混合以形成設置於介電層上之N型摻雜多晶矽層。

Claims (20)

  1. 一種製造一太陽能電池之一射極區的方法,該方法包含:
    形成一摻雜矽奈米粒子區於設置於該太陽能電池之一基板的一表面上方之一介電層上方;

    形成一矽層於該摻雜矽奈米粒子區上;以及

    混合該矽層的至少一部分與該摻雜矽奈米粒子區的至少一部分以形成設置於該介電層上之一摻雜多晶矽層。
  2. 如申請專利範圍第1項所述之方法,其中形成該摻雜矽奈米粒子區包含印刷或旋轉塗佈該摻雜矽奈米粒子區,該摻雜矽奈米粒子區之平均粒徑約在5-100奈米的範圍並且孔隙率約在10-50%的範圍,而且至少具有一些開放孔隙。
  3. 如申請專利範圍第1項所述之方法,其中形成該矽層包含於一低壓化學氣相沉積(LPCVD)室中在溫度約在攝氏525–565度的範圍下自矽烷(SiH
    4

    )形成未經摻雜、本質或輕度摻雜之一非晶矽層。
  4. 如申請專利範圍第1項所述之方法,其中形成該矽層包含形成該矽層之一部分於該摻雜矽奈米粒子區內,並且用該矽層之一部分封閉該摻雜矽奈米粒子區之一或多個孔隙。
  5. 如申請專利範圍第4項所述之方法,其中用該矽層之部分封閉該摻雜矽奈米粒子區之一或多個孔隙包含形成具有尖角邊緣之一經封閉孔隙,並且其中混合該矽層之部分與該摻雜矽奈米粒子區之部分以形成該摻雜多晶矽層包含修飾具有尖角邊緣之該經封閉孔隙以形成圓角之一經封閉孔隙。
  6. 如申請專利範圍第1項所述之方法,其中混合該矽層之部分與該摻雜矽奈米粒子區之部分以形成該摻雜多晶矽層包含加熱該基板至溫度約在攝氏700–1100度的範圍。
  7. 如申請專利範圍第1項所述之方法,其中混合該矽層之部分與該摻雜矽奈米粒子區之部分以形成該摻雜多晶矽層包含降低該矽層與該摻雜矽奈米粒子區之合併厚度達約在20–50%的範圍之量。
  8. 如申請專利範圍第1項所述之方法,其中該摻雜矽奈米粒子區係形成為約在0.2–3微米的範圍之厚度,而該矽層係形成為約在200–2000埃的範圍之絕對厚度。
  9. 如申請專利範圍第1項所述之方法,其中一摻雜矽奈米粒子為一P型摻雜矽奈米粒子,而該摻雜多晶矽層為一P型摻雜多晶矽層。
  10. 如申請專利範圍第9項所述之方法,其進一步包含:
    形成一N型摻雜矽奈米粒子區於該介電層上方,鄰近但未接觸該P型摻雜矽奈米粒子區;

    形成該矽層於該N型摻雜矽奈米粒子區上;以及

    混合該矽層的至少一部分與該N型摻雜矽奈米粒子區的至少一部分以形成設置於該介電層上之一N型摻雜多晶矽層。
  11. 如申請專利範圍第1項所述之方法,其中一摻雜矽奈米粒子為一N型摻雜矽奈米粒子,而該摻雜多晶矽層為一N型摻雜多晶矽層。
  12. 如申請專利範圍第1項所述之方法,其中該介電層係形成於該基板上並且為用於該射極區之一隧道介電層。
  13. 如申請專利範圍第1項所述之方法,其中該基板之該表面為該基板之一後表面,位於該基板之一光接收表面的反側,該方法進一步包含:
    形成一金屬接點於該摻雜多晶矽層上。
  14. 一種製造一太陽能電池之一射極區的方法,該方法包含:
    形成一摻雜矽奈米粒子區於設置於該太陽能電池之一基板的一後表面上方之一介電層上方,該後表面位於該太陽能電池之一光接收表面的反側;

    同時形成一矽層於該光接收表面上與於該基板之該後表面上方,包括一部分於該摻雜矽奈米粒子區上而一部分於該介電層上;

    混合形成於該摻雜矽奈米粒子區上之該矽層部分與該摻雜矽奈米粒子區的至少一部分以形成設置於該介電層上之一摻雜多晶矽層;

    氧化位於該基板之該光接收表面上的該矽層、位於該介電層上之該矽層部分以及該摻雜多晶矽層之最外層區,以形成一矽氧化物層於該光接收表面與於該基板之該後表面上方;以及

    形成一抗反射塗層於位於該光接收表面上之該矽氧化物層上並且於位於該基板之該後表面上方的該矽氧化物層上。
  15. 如申請專利範圍第14項所述之方法,其中形成該矽氧化物層於該光接收表面上與於該基板之該後表面上方包含於氧氣(O
    2

    )、水蒸汽(H

    2

    )或一氧化二氮(N

    2

    O)存在下在一低壓化學氣相沉積(LPCVD)室中加熱該基板。
  16. 如申請專利範圍第14項所述之方法,其中形成該抗反射塗層於該矽氧化物層上包含在一低壓化學氣相沉積(LPCVD)室中形成一氮化矽層。
  17. 如申請專利範圍第14項所述之方法,其進一步包含
    形成一金屬接點於該摻雜多晶矽層上。
  18. 一種製造一太陽能電池之一射極區的方法,該方法包含:
    形成一N型摻雜矽奈米粒子區與一P型摻雜矽奈米粒子區於設置於該太陽能電池之一基板的一後表面上方之一介電層上方,該後表面位於該太陽能電池之一光接收表面的反側,並且該N型摻雜矽奈米粒子區鄰近但未接觸該P型摻雜矽奈米粒子區;

    形成一矽層至少於該基板之該後表面上方,包括一部分於該N型摻雜矽奈米粒子區與該P型摻雜矽奈米粒子區上而一部分於該介電層上;

    混合形成於該N型摻雜矽奈米粒子區與該P型摻雜矽奈米粒子區上之該矽層部分與各該N型摻雜矽奈米粒子區及該P型摻雜矽奈米粒子區的至少一部分,以分別形成各設置於該介電層上之一N型摻雜多晶矽層與一P型摻雜多晶矽層;

    氧化位於該介電層上之該矽層部分以及各該N型摻雜矽奈米粒子區與該P型摻雜矽奈米粒子區的最外層區,以形成一矽氧化物層於該基板之該後表面上方;

    遮罩與蝕刻位於該基板之該後表面上方的該矽氧化物層,以提供由形成於該基板之該後表面中的一溝槽所分隔之一N型摻雜多晶矽區與一P型摻雜多晶矽區,各該N型摻雜多晶矽區與該P型摻雜多晶矽區保持該矽氧化物層之一部分於其上;以及

    形成一抗反射塗層於該N型摻雜多晶矽區與該P型摻雜多晶矽區上以及於該溝槽中。
  19. 如申請專利範圍第18項所述之方法,其進一步包含:
    在形成該抗反射塗層之前,粗化該光接收表面。
  20. 如申請專利範圍第18項所述之方法,其進一步包含:
    在遮罩與蝕刻該矽氧化物層之後以及在形成該抗反射塗層之前,將一N型摻雜物擴散至該基板中。
TW102121632A 2012-12-19 2013-06-18 使用矽奈米粒子之太陽能電池射極區製造 TWI591837B (zh)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US13/720,060 US8785233B2 (en) 2012-12-19 2012-12-19 Solar cell emitter region fabrication using silicon nano-particles

Publications (2)

Publication Number Publication Date
TW201427037A true TW201427037A (zh) 2014-07-01
TWI591837B TWI591837B (zh) 2017-07-11

Family

ID=50931395

Family Applications (1)

Application Number Title Priority Date Filing Date
TW102121632A TWI591837B (zh) 2012-12-19 2013-06-18 使用矽奈米粒子之太陽能電池射極區製造

Country Status (8)

Country Link
US (3) US8785233B2 (zh)
JP (1) JP6224729B2 (zh)
KR (1) KR102051548B1 (zh)
CN (1) CN105453275B (zh)
AU (1) AU2013364371B2 (zh)
DE (1) DE112013006094T5 (zh)
TW (1) TWI591837B (zh)
WO (1) WO2014098981A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI685120B (zh) * 2014-09-26 2020-02-11 美商太陽電子公司 製造太陽能電池的方法
TWI765462B (zh) * 2020-12-11 2022-05-21 國立高雄科技大學 太陽能電池薄膜的製造方法

Families Citing this family (30)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101613843B1 (ko) * 2013-04-23 2016-04-20 엘지전자 주식회사 태양 전지 및 이의 제조 방법
KR101622089B1 (ko) * 2013-07-05 2016-05-18 엘지전자 주식회사 태양 전지 및 이의 제조 방법
KR101661807B1 (ko) 2014-07-28 2016-09-30 엘지전자 주식회사 태양 전지 및 그 제조 방법
US20160072000A1 (en) * 2014-09-05 2016-03-10 David D. Smith Front contact heterojunction process
US9837576B2 (en) * 2014-09-19 2017-12-05 Sunpower Corporation Solar cell emitter region fabrication with differentiated P-type and N-type architectures and incorporating dotted diffusion
US9520507B2 (en) * 2014-12-22 2016-12-13 Sunpower Corporation Solar cells with improved lifetime, passivation and/or efficiency
WO2017004624A1 (en) * 2015-07-02 2017-01-05 Solexel, Inc. Discrete carrier selective passivated contacts for solar cells
US10079319B2 (en) * 2015-12-16 2018-09-18 Sunpower Corporation Solar cell fabrication using laser patterning of ion-implanted etch-resistant layers and the resulting solar cells
SE540184C2 (en) 2016-07-29 2018-04-24 Exeger Operations Ab A light absorbing layer and a photovoltaic device including a light absorbing layer
USD822890S1 (en) 2016-09-07 2018-07-10 Felxtronics Ap, Llc Lighting apparatus
CN108075017B (zh) * 2016-11-10 2019-12-17 上海凯世通半导体股份有限公司 Ibc电池的制作方法
KR101995833B1 (ko) * 2016-11-14 2019-07-03 엘지전자 주식회사 태양 전지 및 이의 제조 방법
US10775030B2 (en) 2017-05-05 2020-09-15 Flex Ltd. Light fixture device including rotatable light modules
USD833061S1 (en) 2017-08-09 2018-11-06 Flex Ltd. Lighting module locking endcap
USD877964S1 (en) 2017-08-09 2020-03-10 Flex Ltd. Lighting module
USD862777S1 (en) 2017-08-09 2019-10-08 Flex Ltd. Lighting module wide distribution lens
USD872319S1 (en) 2017-08-09 2020-01-07 Flex Ltd. Lighting module LED light board
USD846793S1 (en) 2017-08-09 2019-04-23 Flex Ltd. Lighting module locking mechanism
USD832494S1 (en) 2017-08-09 2018-10-30 Flex Ltd. Lighting module heatsink
USD832495S1 (en) 2017-08-18 2018-10-30 Flex Ltd. Lighting module locking mechanism
USD862778S1 (en) 2017-08-22 2019-10-08 Flex Ltd Lighting module lens
USD888323S1 (en) 2017-09-07 2020-06-23 Flex Ltd Lighting module wire guard
FR3071358B1 (fr) * 2017-09-15 2019-09-13 Commissariat A L'energie Atomique Et Aux Energies Alternatives Procede de fabrication d'une cellule photovoltaique a homojonction
EP3550611A1 (en) * 2018-04-06 2019-10-09 Total Solar International Method for manufacturing a photovoltaic device
US11404270B2 (en) 2018-11-30 2022-08-02 Texas Instruments Incorporated Microelectronic device substrate formed by additive process
US10910465B2 (en) 2018-12-28 2021-02-02 Texas Instruments Incorporated 3D printed semiconductor package
US10861715B2 (en) 2018-12-28 2020-12-08 Texas Instruments Incorporated 3D printed semiconductor package
CN113299772A (zh) * 2021-06-04 2021-08-24 浙江爱旭太阳能科技有限公司 一种选择性接触区域掩埋型太阳能电池及其背面接触结构
CN117038744A (zh) * 2021-09-06 2023-11-10 上海晶科绿能企业管理有限公司 太阳能电池及光伏组件
CN118198165A (zh) * 2022-12-07 2024-06-14 浙江晶科能源有限公司 太阳能电池及其制备方法、光伏组件

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09213964A (ja) * 1996-01-30 1997-08-15 Seiko Epson Corp 薄膜半導体装置の製造方法
US6998288B1 (en) 2003-10-03 2006-02-14 Sunpower Corporation Use of doped silicon dioxide in the fabrication of solar cells
EP1709690A4 (en) * 2004-01-20 2009-03-11 Cyrium Technologies Inc SOLAR CELL WITH EPITAXIAL GROWTH QUANTUM DOT MATERIAL
US7705237B2 (en) * 2006-11-27 2010-04-27 Sunpower Corporation Solar cell having silicon nano-particle emitter
US20100147368A1 (en) 2007-05-17 2010-06-17 Day4 Energy Inc. Photovoltaic cell with shallow emitter
TW200924202A (en) * 2007-11-30 2009-06-01 Delta Electronics Inc Solar cell and manufacturing method thereof
DE102008013446A1 (de) 2008-02-15 2009-08-27 Ersol Solar Energy Ag Verfahren zur Herstellung monokristalliner n-Silizium-Solarzellen sowie Solarzelle, hergestellt nach einem derartigen Verfahren
TWI431130B (zh) * 2008-12-19 2014-03-21 Applied Materials Inc 銅黑銅鐵礦透明p型半導體之製造及應用方法
WO2012021750A1 (en) 2010-08-11 2012-02-16 Crystal Solar, Inc. Mwt architecture for thin si solar cells
US20120060904A1 (en) * 2010-09-13 2012-03-15 Smith David D Fabrication Of Solar Cells With Silicon Nano-Particles
US8802486B2 (en) 2011-04-25 2014-08-12 Sunpower Corporation Method of forming emitters for a back-contact solar cell
US20140179056A1 (en) * 2012-12-21 2014-06-26 Michael MORSE Laser-absorbing seed layer for solar cell conductive contact

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI685120B (zh) * 2014-09-26 2020-02-11 美商太陽電子公司 製造太陽能電池的方法
TWI765462B (zh) * 2020-12-11 2022-05-21 國立高雄科技大學 太陽能電池薄膜的製造方法

Also Published As

Publication number Publication date
US20160071999A1 (en) 2016-03-10
JP2016506077A (ja) 2016-02-25
CN105453275B (zh) 2017-08-11
DE112013006094T5 (de) 2015-08-27
AU2013364371B2 (en) 2017-11-23
KR20150097612A (ko) 2015-08-26
US9252319B2 (en) 2016-02-02
US8785233B2 (en) 2014-07-22
KR102051548B1 (ko) 2019-12-03
JP6224729B2 (ja) 2017-11-01
AU2013364371A1 (en) 2015-06-18
CN105453275A (zh) 2016-03-30
US20140295609A1 (en) 2014-10-02
US9559246B2 (en) 2017-01-31
WO2014098981A1 (en) 2014-06-26
US20140170800A1 (en) 2014-06-19
TWI591837B (zh) 2017-07-11

Similar Documents

Publication Publication Date Title
TWI591837B (zh) 使用矽奈米粒子之太陽能電池射極區製造
US10957809B2 (en) Solar cell having an emitter region with wide bandgap semiconductor material
TWI587529B (zh) 混成放射器之全背側接觸式太陽能電池
US10304972B2 (en) Solar cell with silicon oxynitride dielectric layer
AU2017239612A1 (en) Solar cell emitter region fabrication using N-type doped silicon nano-particles
AU2013363569B2 (en) Solar cell emitter region fabrication using etch resistant film
WO2010110106A1 (ja) 光電変換素子の製造方法および光電変換素子
TWI612682B (zh) 具氮氧化矽介電層之太陽能電池