JP6217580B2 - エンジンの燃料制御装置 - Google Patents

エンジンの燃料制御装置 Download PDF

Info

Publication number
JP6217580B2
JP6217580B2 JP2014200995A JP2014200995A JP6217580B2 JP 6217580 B2 JP6217580 B2 JP 6217580B2 JP 2014200995 A JP2014200995 A JP 2014200995A JP 2014200995 A JP2014200995 A JP 2014200995A JP 6217580 B2 JP6217580 B2 JP 6217580B2
Authority
JP
Japan
Prior art keywords
injection
amount
fuel
stage
combustion
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2014200995A
Other languages
English (en)
Other versions
JP2016070191A (ja
Inventor
良枝 角田
良枝 角田
大西 毅
毅 大西
大輔 志茂
大輔 志茂
康太朗 ▲高▼橋
康太朗 ▲高▼橋
武史 松原
武史 松原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mazda Motor Corp
Original Assignee
Mazda Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mazda Motor Corp filed Critical Mazda Motor Corp
Priority to JP2014200995A priority Critical patent/JP6217580B2/ja
Publication of JP2016070191A publication Critical patent/JP2016070191A/ja
Application granted granted Critical
Publication of JP6217580B2 publication Critical patent/JP6217580B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Electrical Control Of Air Or Fuel Supplied To Internal-Combustion Engine (AREA)
  • Combined Controls Of Internal Combustion Engines (AREA)

Description

本発明は、気筒内に燃料を噴射可能な噴射装置と、当該噴射装置を制御する噴射制御手段とを備えたエンジンの燃料制御装置に関する。
従来から、エンジントルクを発生させるための燃焼をより確実に、また、効率よく実施するために、圧縮上死点付近において主たる燃料を噴射する主噴射と、この主噴射の前に主噴射の噴射量よりも少ない量の燃料を噴射する前段噴射とを実施することが行われている。すなわち、前段噴射を実施すれば、燃料と空気との混合を促進して燃料を効率よく燃焼させることができるとともに、この前段噴射の燃焼により気筒内の温度圧力を高めて主噴射された燃料の着火性を高めることができる。
ここで、前段噴射の発熱量によっては、主噴射の燃焼状態を適正にすることができず適正なエンジン性能を確保できないおそれがある。具体的には、前段噴射の発熱量が大きい場合には、主噴射された燃料が適正な時期よりも早期に着火してしまい煤の発生量が多くなる等の問題、また、前段噴射の発熱量が小さい場合には、前段噴射によって気筒内の温度圧力を十分に高めることができず主噴射された燃料の着火性が悪化する等の問題が生じる。
これに対して、例えば、特許文献1には、主噴射による燃焼の開始時期が適正な時期となるようにこの開始時期に応じて前段噴射の発熱量の目標値を決定し、この目標値に応じて前段噴射の噴射量を決定する装置が開示されている。
特開2009−185628号公報
上記特許文献1に開示されている装置では、主噴射による燃焼の開始時期が適正な時期となるように前段噴射の発熱量の目標値が決定されているため、前段噴射の発熱量がこの目標値に制御されれば、主噴射の燃焼具合ひいてはエンジン性能を適正にすることができる。
しかしながら、本願発明者らは、この装置を用いても、主噴射の燃焼状態を適正な状態にできず適正なエンジン性能を確保できない場合があることを突き止めた。具体的には、この装置では、前段噴射の発熱量の目標値に基づいてのみ前段噴射の噴射量を決定しているが、この決定された噴射量を噴射しても前段噴射の発熱量が目標値にならず、前段噴射および主噴射による燃焼を適正な状態にすることができない場合がある。
本発明は、上記のような事情に鑑みてなされたものであり、前段噴射の発熱量を適正量確保して、主噴射の燃焼およびエンジン性能をより適正にすることのできるエンジンの燃料制御装置を提供することを目的とする。
上記問題について鋭意研究の結果、本願発明者らは、エンジンのピストン冠面にシリンダヘッドの底面から離間する方向に凹むキャビティが形成されたエンジンでは、前段噴射の噴射量の一部がこのキャビティから外側にこぼれて拡散してしまい、燃焼に寄与しないことを突き止めた。
本発明は、この知見に基づいてなされたものであり、気筒に形成された燃焼室内に燃料を噴射可能な噴射装置と、当該噴射装置を制御する噴射制御手段とを備えたエンジンの燃料制御装置において、上記エンジンのピストン冠面には、シリンダヘッドの底面から離間する方向に凹むキャビティが形成されており、上記噴射装置は、ピストンが上死点よりも下方に位置する状態で当該噴射装置から噴射された燃料が上記キャビティと当該キャビティよりも径方向外側の領域との境界部に向かうように配置されており、上記噴射制御手段は、少なくとも一部の運転領域において、主噴射と、当該主噴射よりも前に当該主噴射の噴射量よりも少ない量の燃料を気筒内に噴射する前段噴射とを、上記主噴射の少なくとも一部の燃料および上記前段噴射の少なくとも一部の燃料が上記境界部に向かって噴射されるように、上記噴射装置に、実施させるとともに、運転条件に基づいて、上記前段噴射された燃料が燃焼することで上記燃焼室内に生じる発熱量の目標値である目標前段発熱量を決定する目標前段発熱量決定手段と、運転条件に応じて、上記前段噴射の噴射量のうち上記キャビティの外側にこぼれるこぼれ量を算出するこぼれ量算出手段と、上記算出されたこぼれ量に基づいて上記前段噴射により噴射された燃料の燃焼効率を算出するとともに、当該燃焼効率と上記算出された目標前段発熱量とに基づいて、上記前段噴射の噴射量を、上記こぼれ量分の燃料が上記キャビティの外側にこぼれても上記主噴射の燃焼が開始する前における当該前段噴射により噴射された燃料の発熱量が上記目標前段発熱量となるように、決定する前段噴射量決定手段とを含み、上記前段噴射と上記主噴射とが実施される運転領域において、上記前段噴射では、上記キャビティの外側にこぼれるこぼれ量に基づいて上記前段噴射量決定手段によって決定された噴射量を上記噴射装置に噴射させ、上記主噴射では、当該主噴射の噴射量のうち上記キャビティの外側にこぼれる量によらずに決定された量の燃料を上記噴射装置に噴射させ、上記前段噴射量決定手段は、上記前段噴射により噴射された燃料の燃焼効率を、上記こぼれ量が多い方が低い値となるように算出することを特徴とするものである(請求項1)。
本発明によれば、上記のように、ピストン冠面にシリンダヘッドの底面から離間する方向に凹むキャビティが形成されたエンジンにおいて、前段噴射の噴射量のうち上記キャビティの外側にこぼれるこぼれ量を算出し、このこぼれ量と、前段噴射による発熱量の目標値である目標前段発熱量とに基づいて、前段噴射の噴射量を決定しており、キャビティから外側にこぼれて燃焼に寄与しない噴射量が考慮されて前段噴射の噴射量が決定されるため、前段噴射の発熱量を適正量確保することができ、これにより、主噴射による燃焼の燃焼状態ひいてはエンジン性能をより確実に適正にすることができる。
ここで、前段噴射の噴射圧が高く前段噴射された燃料が到達する距離が遠いほどキャビティ外に飛散する燃料量すなわちこぼれ量は多くなり、前段噴射の噴射時期が進角側であるほど噴射装置とキャビティとの距離が遠くなりキャビティ外に飛散する燃料量すなわちこぼれ量は多くなる。
そこで、本発明において、上記こぼれ量算出手段は、上記前段噴射の噴射圧が高く且つ上記前段噴射の噴射時期が進角側であるほど上記こぼれ量を多く算出するのが好ましい(請求項2)。
このようにすれば、こぼれ量ひいては前段噴射の噴射量をより精度よく算出して、主噴射による燃焼の燃焼状態ひいてはエンジン性能をより確実に適正にすることができる。
また、本発明において、上記前段噴射量決定手段は、上記こぼれ量に基づいて算出された上記前段噴射により噴射された燃料の燃焼効率を、上記燃焼室の壁面温度と当該燃焼室内のガスの温度と当該燃焼室内の酸素濃度と当該燃焼室内の圧力との少なくとも一つに応じて補正するのが好ましい(請求項3)。
このようにすれば、こぼれ量に加えて、前段噴射の発熱量を左右する燃焼室の状態(燃焼室の壁面温度、燃焼室内のガスの温度、燃焼室内の酸素濃度、燃焼室内の圧力)に応じて前段噴射の噴射量をより適正に算出することができ、主噴射による燃焼の燃焼状態ひいてはエンジン性能をより確実に適正にすることができる。
また、本発明において、上記噴射制御手段は、上記前段噴射を、2回以上の複数回にわけて実施し、上記目標前段発熱量決定手段は、すべての前段噴射によって上記燃焼室内に生じる発熱量の目標値を上記目標前段発熱量として算出し、上記こぼれ量算出手段は、最初に実施される前段噴射のこぼれ量を算出し、上記前段噴射量決定手段は、上記目標前段発熱量と、2回目以降の前段噴射の噴射量と、上記こぼれ量とに基づいて、最初に実施される前段噴射の噴射量を決定するのが好ましい(請求項4)。
この構成によれば、前段噴射のうちキャビティ外にこぼれる燃料量が最も多くなる最初の噴射についてのみこぼれ量に基づいて噴射量を決定しているので、こぼれ量を考慮して前段噴射の噴射量を適正な値にして、主噴射による燃焼の燃焼状態ひいてはエンジン性能を適正にしつつ、噴射量の算出手順を簡素化することができる。
本発明の一実施形態にかかるディーゼルエンジンシステムの全体構成を示す図である。 エンジン本体の一部を拡大して示す断面図である。 ピストンの一部拡大断面図である。 ピストンの平面図である。 エンジンの制御系統を示すブロック図である。 燃焼モードの切り替え領域を示す図である。 (a)拡散燃焼モードの噴射パターンおよび熱発生率の例を示す図である。(b)拡散燃焼モードの噴射パターンおよび熱発生率の他の例を示す図である。(b)予混合燃焼モードの噴射パターンおよび熱発生率の例を示す図である。 噴射系の制御手順の全体の流れを示したフローチャートである。 噴射系の制御手順の全体の流れを示したフローチャートである。 こぼれ量を説明するための図である。 噴射時期および噴射圧とこぼれ量との関係を示したグラフである。 こぼれ量と燃焼効率との関係を示したグラフである。
(1)エンジンシステムの全体構成
図1は、本発明の一実施形態にかかるディーゼルエンジンシステムの全体構成を示す図である。本図に示されるディーゼルエンジンは、走行用の動力源として車両に搭載される4サイクルのディーゼルエンジンである。具体的に、このディーゼルエンジンは、複数の気筒2を有し軽油を主成分とする燃料の供給を受けて駆動されるエンジン本体1と、エンジン本体1に燃焼用の空気を導入するための吸気通路30と、エンジン本体1で生成された排ガス(燃焼ガス)を排出するための排気通路40と、排気通路40を通過する排ガスの一部を吸気通路30に還流するためのEGR装置50と、排気通路40を通過する排ガスにより駆動されるターボ過給機60とを備えている。
吸気通路30には、上流側から順に、エアクリーナ31と、ターボ過給機60のコンプレッサ61と、スロットルバルブ36と、インタークーラ35と、サージタンク37とが設けられている。サージタンク37よりも下流側には、各気筒2とそれぞれ個別に連通する独立通路が設けられており、サージタンク37内のガスはこれら独立通路を通ってそれぞれ気筒2に分配される。
排気通路40には、上流側から順に、ターボ過給機60のタービン62と、排気浄化装置41とが設けられている。
ターボ過給機60は、タービン62が、排気通路40を流れる排ガスのエネルギーを受けて回転し、これに連動してコンプレッサ61が回転することにより、吸気通路30を流通する空気を圧縮(過給)する。
インタークーラ35は、コンプレッサ61により圧縮された空気を冷却するためのものである。
スロットルバルブ36は、吸気通路30を開閉するものである。ただし、本実施形態では、エンジンの運転中は基本的に全開もしくはこれに近い高開度に維持されており、エンジンの停止時等の必要時にのみ閉弁されて吸気通路30を遮断する。
排気浄化装置41は、排ガス中の有害成分を浄化するためのものである。本実施形態では、この排気浄化装置41には、排気ガス中のCOおよびHCを酸化する酸化触媒41aと、排気ガス中のスート(煤)を捕集するDPF41bとが含まれる。
EGR装置50は、排ガスを吸気側に還流するためのものである。本実施形態では、EGR装置50として、高圧側EGR装置(以下、HP_EGR装置という)51と、低圧側EGR装置(以下、LP_EGR装置という)52とを備えている。
HP_EGR装置51は、排気通路40におけるタービン62よりも上流側の部分と、吸気通路30のうちインタークーラ35よりも下流側の部分とを接続するHP_EGR通路51aと、このHP_EGR通路51aを開閉するHP_EGRバルブ51bとを備えており、排気通路40に排出された比較的高圧の排ガス(以下、高圧EGRガスという場合がある)を吸気側に還流させる。
一方、LP_EGR装置52は、排気通路40におけるDPF41bよりも下流側の部分と、吸気通路30のうちエアクリーナ31とコンプレッサ61との間の部分とを接続するLP_EGR通路52aと、このLP_EGR通路52aを開閉するLP_EGRバルブ52bとを備えており、排気通路40に排出された比較的低圧の排ガス(以下、低圧EGRガスという場合がある)を吸気側に還流させる。LP_EGR通路52aのうちLP_EGRバルブ52bよりも上流側(排気通路40側)には、この通路52aを通過する低圧EGRガスを冷却するためのEGRクーラ52cが設けられている。
(2)エンジン本体の構成
図2は、エンジン本体1の一部を拡大して示す断面図である。この図2および先の図1に示すように、エンジン本体1は、上下方向に延びるシリンダ(気筒)2が内部に形成されたシリンダブロック3と、シリンダ2に往復動(上下動)可能に収容されたピストン4と、ピストン4の冠面4aと対向する側からシリンダ2の端面(上面)を覆うように設けられたシリンダヘッド5と、潤滑油を貯溜するためにシリンダブロック3の下側に配設されたオイルパン6とを有している。
ピストン4は、エンジン本体1の出力軸であるクランク軸7とコネクティングロッド8を介して連結されている。また、ピストン4の上方には燃焼室9が形成されており、この燃焼室9では、後述するインジェクタ20から噴射された燃料が空気と混合されつつ拡散燃焼する。そして、当該燃焼に伴う膨張エネルギーにより、ピストン4が往復運動するとともにクランク軸7が中心軸回りに回転するようになっている。
ここで、エンジン本体1の幾何学的圧縮比、つまり、ピストン4が下死点にあるときの燃焼室容積とピストン4が上死点にあるときの燃焼室容積との比は、12以上15以下(例えば14)に設定されている。この12以上15以下という幾何学的圧縮比は、ディーゼルエンジンとしてはかなり低い値である。これは、燃焼温度の抑制によるエミッション性能の向上や熱効率の向上を狙ってのことである。
シリンダヘッド5には、吸気通路30から供給される空気を燃焼室9に導入するための吸気ポート16と、燃焼室9で生成された排気ガスを排気通路40に導出するための排気ポート17と、吸気ポート16の燃焼室9側の開口を開閉する吸気弁18と、排気ポート17の燃焼室9側の開口を開閉する排気弁19とが設けられている。
また、シリンダヘッド5には、燃焼室9に燃料を噴射するインジェクタ(噴射装置)20が取り付けられている。このインジェクタ20は、そのピストン4側の先端部21aがキャビティ10の中心部を臨むような姿勢で取り付けられている。インジェクタ20は、燃料流路を介してコモンレール等の図外の蓄圧室と接続されている。蓄圧室内には、図外の燃料ポンプにより加圧された高圧の燃料が貯留されており、インジェクタ20は、この蓄圧室から燃料の供給を受けて、燃焼室9内に燃料を噴射する。燃料ポンプと蓄圧室との間には、蓄圧室内の圧力すなわちインジェクタ20から噴射される燃料の圧力である噴射圧を変更するための燃圧レギュレータ(不図示)が設けられている。
ピストン4の冠面4aには、その中心部を含む領域をシリンダヘッド5とは反対側(下方)に凹ませたキャビティ10が形成されている。このキャビティ10は、ピストン4が上死点まで上昇したときの燃焼室9の大部分を占める容積を有するように形成されている。
図3および図4は、燃焼室9周辺を拡大して示した拡大断面図および平面図である。これら図3および図4において、符号Fは、インジェクタ20から噴射された燃料の噴霧を示したものである。また、図4は、ピストン4が上死点にある状態を示したものである。
これら図に示すように、本実施形態では、インジェクタ20は、シリンダ2と同軸に(インジェクタ20の中心軸とシリンダ2の中心軸とが一致するように)取り付けられている。また、インジェクタ20として、先端部21aに複数の噴孔22が形成された多噴孔式のインジェクタが用いられている。各噴孔22は、周方向にほぼ等間隔に並ぶように配設されており、このような噴孔22を通過することにより、インジェクタ20からは燃焼室9内に燃料が平面視で放射状に噴射される。
また、図3および図4に示すように、キャビティ10は、いわゆるリエントラント型のキャビティとされている。すなわち、キャビティ10を形成する壁面は、ほぼ山型の中央隆起部11と、中央隆起部11よりもピストン4の径方向外側に形成された平面視円形の周辺凹部12と、周辺凹部12とピストン4の冠面4aとの間に形成された平面視円形のリップ部13とを有している。
中央隆起部11は、キャビティ10の中心側ほどインジェクタ20に近づくように隆起しており、その隆起の頂部がインジェクタ20の先端部21aの直下方に位置するように形成されている。周辺凹部12は、中央隆起部11と連続し、断面視でピストン4の径方向外側に凹入する円弧状をなすように形成されている。リップ部13は、周辺凹部12と連続し、断面視でピストン4の径方向内側に凸となる円弧状をなすように形成されている。
上記のような構成のキャビティ10は、全体として、ピストン4の冠面4aに近づくほど開口面積が小さくなる上窄まり状の断面形状を有する。このようなリエントラント型のキャビティ10は、特にエンジンの中負荷以上の運転領域において比較的多くの燃料が噴射されたときに、その燃料の噴霧Fを、主に周辺凹部12および中央隆起部11に沿って径方向外側から内側(キャビティ10の中心側)に反転させる機能を発揮するので、燃料のミキシングを促進するのに有利である。
(3)制御系統
(3−1)システム構成
図5は、エンジンの制御系統を示すブロック図である。本図に示すように、当実施形態のディーゼルエンジンは、PCM(パワートレイン・コントロール・モジュール)70によって統括的に制御される。PCM70は、周知のとおり、CPU、ROM、RAM等から構成されるマイクロプロセッサである。
PCM70は、エンジンの運転状態を検出するための各種センサと電気的に接続されている。
例えば、シリンダブロック3には、クランク軸7の回転角度(クランク角)および回転速度を検出するクランク角センサSN1が設けられている。このクランク角センサSN1は、クランク軸7と一体に回転する図略のクランクプレートの回転に応じてパルス信号を出力するものであり、このパルス信号に基づいて、クランク軸7の回転角度および回転速度すなわちエンジン回転数が特定されるようになっている。
吸気通路30のうちエアクリーナ31付近(エアクリーナ31と、LP_EGR通路52aの接続部分との間の部分)には、エアクリーナ31を通過して各気筒2に吸入される空気量(新気量)を検出するエアフローセンサSN2が設けられている。
サージタンク37には、サージタンク37内のガスすなわち各気筒2に吸入されるガスの温度を検出するインマニ温度センサSN3が設けられている。
吸気通路30のうちインタークーラ35よりも下流側の部分には、この部分を通過する空気ひいては気筒2に吸入される吸気の圧力を検出するインマニ圧力センサSN4が設けられている。
エンジン本体1には、エンジン本体を冷却する冷却水の温度を検出する水温センサSN5が設けられている。
インジェクタ20に燃料を供給する蓄圧室には、この蓄圧室内の圧力すなわちインジェクタ20の噴射圧を検出する燃圧センサSN6が設けられている。
また、車両には、運転者により操作される図外のアクセルペダルの開度(アクセル開度)を検出するアクセル開度センサSN7が設けられている。
PCM70は、上記各種センサからの入力信号に基づいて種々の判定や演算等を実行しつつ、エンジンの各部を制御する。すなわち、PCM70は、インジェクタ20、スロットルバルブ36、燃圧レギュレータ、HP_EGRバルブ51b、LP_EGRバルブ51c等の各部と電気的に接続されており、上記演算の結果等に基づいて、これらの機器にそれぞれ駆動用の制御信号を出力する。
(3−2)吸気系の制御
本実施形態におけるPCM70による吸気系の制御の流れを簡単に説明する。
PCM70は、アクセル開度(アクセル開度センサSN7の検出値)に基づいてエンジントルクの目標値である目標トルクを決定し、この目標トルクとエンジン回転数(クランク角センサSN1の検出値により特定される)とに基づいてインジェクタ20から燃焼室9内に噴射する燃料量の総量の基本値である要求トータル噴射量を決定する。例えば、PCM70は、予め設定され記憶しているアクセル開度と目標トルクとのマップから、また、目標トルクとエンジン回転数と要求トータル噴射量とのマップから、それぞれアクセル開度等に応じた値を抽出することで上記各値を決定する。
そして、PCM70は、要求トータル噴射量とエンジン回転数とに基づいて、気筒2に吸入されるガス中の酸素濃度の目標値である目標吸気酸素濃度、気筒2に吸入されるガス温度の目標値である目標吸気温度、EGR制御モード(LP_EGR51を作動させるか、HP_EGR52を作動させるか)を決定するとともに、これら決定した内容から、気筒2に吸入されるガスの圧力である過給圧、HP_EGR51によって吸気通路30に還流させる排ガス量である高圧EGRガス量、LP_EGR52によって吸気通路30に還流させる排ガス量である低圧EGRガス量、を決定し、この過給圧、各EGRガス量が実現されるように、スロットルバルブ36、HP_EGRバルブ51b、LP_EGRバルブ51cを制御する。
(3−3)噴射系の制御
本実施形態におけるPCM70による噴射系の制御について次に説明する。
(3−3−1)燃焼モードおよび噴射パターン
図6は、エンジンの運転状態に応じた燃焼モードを示す図である。この図6に示すように、本実施形態では、運転領域(主としてエンジン回転数とエンジン負荷すなわち要求トータル噴射量とで決定される運転領域)に応じて、燃焼モードを拡散燃焼モードと予混合燃焼モードとの2つのモードとを切り替える。
拡散燃焼モードは、圧縮上死点付近(ピストン4が圧縮上死点付近にあるとき)において、燃料を噴射しながら燃料と空気の混合気を着火させていく燃焼モードである。
予混合燃焼モードは、燃焼室9(気筒2)内で燃料と空気とを予め混合しておき、圧縮上死点付近において、この混合気を着火させる燃焼モードである。
予混合燃焼モードでは、燃料と空気とが予め混合された後に燃焼が開始するため燃料を効率よく燃焼させることができ、燃費性能の向上および煤の発生の抑制を図ることができる。ただし、この予混合燃焼モードでは、燃焼が開始するまでの比較的短時間の間に燃料と空気とを十分に混合させる必要があるため、噴射量が少ないすなわちエンジン負荷が比較的低い、また、エンジン回転数が比較的低い領域でのみ実現可能である。そこで、本実施形態では、エンジン回転数が低くエンジン負荷が小さい低負荷低回転数領域A1を、予混合燃焼モードを実施する予混合燃焼領域に設定し、残余の領域A2を、拡散燃焼モードを実施する拡散燃焼領域に設定している。
各燃焼モードを実現するための噴射パターンおよび各燃焼モードにおける熱発生率の例を図7(a)、(b)、(c)に示す。図7(a)、(b)は、それぞれ拡散燃焼モードの例を、図7(c)は、予混合燃焼モードの例を示したものである。
図7(a)に示すように、拡散燃焼モードでは、圧縮上死点付近において、エンジントルクを発生させるための主たる燃料が噴射され、この燃料の噴射とともに混合気が燃焼していく。
本実施形態では、拡散燃焼領域A2のうちエンジン回転数が高くエンジン負荷が高い高回転高負荷領域A2_c(図6参照)を除く領域すべてにおいて、空気利用率を向上させるため、および、上記主たる燃料の着火性を高めるために、この主たる燃料の噴射の前に燃焼室9内に燃料を噴射する。すなわち、本実施形態では、拡散燃焼領域A2のうち高回転高負荷領域A2_cを除く特定領域では、圧縮上死点付近においてエンジントルクを生成するための燃料を燃焼室9内に噴射するメイン噴射(主噴射)Qmと、この主噴射の前のタイミングで燃焼室9内にメイン噴射の噴射量よりも少ない量の燃料を噴射する前段噴射とを実施する。なお、高回転高負荷領域A2_cではメイン噴射のみを実施する。また、上記特定領域においては、メイン噴射Qmの後に、メイン噴射Qmよりも少ない量の燃料を噴射するアフター噴射を実施する場合がある。
また、本実施形態では、上記特定領域のうち比較的エンジン負荷の低い第1領域A2_a(図6参照)では、図7(a)に示すように、前段噴射として2回の噴射(パイロット噴射Qpi、プレ噴射Qpr)を実施する。具体的には、比較的早期にパイロット噴射Qpiを実施し、その後、メイン噴射のタイミングに比較的近いタイミングでプレ噴射Qprを実施する。この噴射パターンでは、最初の噴射であるパイロット噴射Qpiの実施によって燃料と空気との予混合性を高めて空気利用率を高めることができる。そして、このパイロット噴射Qpiと次の噴射であるプレ噴射Qprとの実施によって、メイン噴射Qmされた燃料が燃焼する直前すなわち主燃焼が生じる直前に、熱発生量の小さい燃焼であるプレ燃焼を生じさせて、メイン噴射された燃料が燃焼しやすい状態にすることができる。また、上記噴射では前段噴射(パイロット噴射Qpi、プレ噴射Qpr)を、キャビティ10内に収まるタイミング、特に、燃焼室9内に局所的に当量比が2.0以上の混合気が生成されるタイミングで実施して、メイン燃焼前の燃焼室9内の局所当量比を大きくしている。
一方、上記特定領域のうちエンジン負荷が比較的高く第2領域A2_b(図6参照)では、パイロット噴射Qpiを実施するとこのパイロット噴射Qpiされた燃料が早期に着火するおそれがあるため、図7(b)に示すように、メイン噴射Qmのタイミングに比較的近いタイミングで実施されるプレ噴射Qprのみを実施する。
ここで、本実施形態では、この前段噴射(パイロット噴射Qpi+プレ噴射Qpr、または、プレ噴射Qpr)を、図7(a)、(b)の熱発生率の図に示すように、前段噴射された燃料により生成される燃焼(以下、プレ燃焼という場合がある)と、メイン噴射された燃料により生成される燃焼(以下、メイン燃焼という場合がある)とが連続して生じ、前段噴射とメイン噴射とによって燃焼室9内に一連の燃焼が生じるように実施する。
一方、図7(c)に示すように、予混合燃焼モードでは、圧縮行程中の比較的早いタイミングで燃焼室9内に燃料が噴射され、噴射終了後に、混合気が燃焼を開始する。この図7(c)では、圧縮行程中に3回に分けて燃料を噴射する場合について示したが、噴射回数はこれに限らない。
以上のように、本実施形態では、運転領域によって燃焼モードが切り替えられるよう構成されており、PCM70は、運転領域に応じて噴射パターンを変更する。
(3−3−2)拡散燃焼モードにおける噴射系の制御手順
次に、図8を用いながら、拡散燃焼モード実施時における噴射系の制御手順について説明する。以下では、第1領域A2_aにおける噴射系の制御手順、すなわち、前段噴射としてパイロット噴射Qpiとプレ噴射Qprとを実施する場合の噴射系の制御手順について説明する。なお、第2領域A2_bにおける制御手順は、以下に説明する手順(この(3−3−2)で説明する噴射系の制御手順および(3−3−3)で説明する噴射時期の補正手順)において、プレ噴射Qprに関するものを省略して、パイロット噴射Qpiをプレ噴射Qprと読みかえたものとなる。
PCM70は、機能的に、噴射系の制御を実施する噴射制御部71を含んでおり、この噴射制御部71が、噴射系の制御を実施する。
まず、ステップS1にて、噴射制御部71は、燃圧センサSN6の検出値である噴射圧、インマニ温度センサSN3の検出値である吸気温、エアフローセンサSN2の検出値である吸気量(新気量)、エンジン水温センサSN5の検出値であるエンジン水温を読み込む。
次に、ステップS2にて、ステップS1で読み込んだ各値等に基づき、吸気弁18が閉弁した後であって燃料を噴射する前の燃焼室9(気筒2)内の状態(以下、筒内状態という場合がある)を推定する。
本実施形態では、筒内状態として、燃焼室9の壁面温度、燃焼室9内のガスの温度である筒内温度、燃焼室9内のガスの酸素濃度である筒内酸素濃度、燃焼室9内の圧力である筒内圧力を推定する。
燃焼室9の壁面温度は、エンジン水温とエンジン回転数およびエンジン負荷とから推定される。この推定は、例えばマップから値を抽出することで行う。また、筒内温度は、吸気温とEGR率等とから推定される。また、筒内酸素濃度は、吸気量とEGR率等とから推定される。また、筒内圧力は、吸気弁の閉弁時期における吸気の圧力とエンジン回転数等から推定される。
次に、ステップS3にて、噴射制御部71は、上記のように目標トルクとエンジン回転数とに基づいて決定された要求トータル噴射量と、エンジン回転数とに基づいて、噴射圧すなわち蓄圧室内の圧力(燃圧)の目標値である目標噴射圧を決定する。例えば、噴射制御部71は、予め設定記憶されている要求トータル噴射量とエンジン回転数と目標噴射圧のマップから、要求トータル噴射量等に対応する目標噴射圧を抽出する。
また、ステップS4にて、噴射制御部71は、要求トータル噴射量と、エンジン回転数と、上記ステップS2で推定した筒内状態とに基づいて、プレ噴射Qprの噴射量を決定する。例えば、噴射制御部71は、予め設定記憶されている要求トータル噴射量とエンジン回転数とプレ噴射Qprの基本噴射量のマップから、要求トータル噴射量等に対応する値を、プレ噴射Qprの基本噴射量として抽出する。その後、噴射制御部71は、このプレ噴射Qprの基本噴射量を筒内状態に応じて補正する。具体的には、燃焼室9の壁面温度が低いほど、筒内温度が低いほど、筒内酸素濃度が低いほど、筒内圧力が低いほど、プレ噴射Qprの噴射量が多くなるように補正する。これは、燃焼室9の壁面温度、筒内温度、筒内酸素濃度、筒内圧力が低いほど、燃料の燃焼効率が下がるためであり、プレ噴射Qprによる発熱量を所定量確保するために、これらによってプレ噴射量を補正する。
次に、噴射制御部71は、要求トータル噴射量とエンジン回転数とに基づいて、各噴射の噴射時期(噴射開始時期)を決定する。
具体的には、ステップS5にて、噴射制御部71は、要求トータル噴射量とエンジン回転数に応じて、メイン噴射の噴射時期を決定する。また、要求トータル噴射量とエンジン回転数に応じて、各噴射(パイロット、プレ、メイン噴射)の噴射時期(噴射開始時期)どうしの間の期間であるインターバルを決定する。
そして、ステップS6にて、噴射制御部71は、メイン噴射の噴射時期とこのインターバルとに基づいて、パイロット噴射とプレ噴射の噴射時期をそれぞれ決定する。
次に、ステップS7にて、噴射制御部71は、パイロット噴射量を決定する。このパイロット噴射量の決定手順については後述する。
次に、ステップS8にて、噴射制御部71は、要求トータル噴射量と、ステップS4で決定されたプレ噴射の噴射量およびステップS7で決定されたパイロット噴射の噴射量とに基づいて、メイン噴射Qmの噴射量を決定する。
ステップS8の後はステップS9に進み、噴射制御部71は、各噴射の噴射量、噴射時期が上記決定された各値となるようにインジェクタ20を制御する(インジェクタ20に指令を出す)とともに、噴射圧がステップS2で決定された値となるように、燃圧レギュレータを制御する。
(3−3−3)パイロット噴射量の決定手順
上記ステップS7のパイロット噴射量の決定手順について、図9を参照しながら説明する。
本実施形態では、図5に示すように、パイロット噴射量を決定するための部分として、噴射制御部71は、機能的に、目標前段発熱量決定部(目標前段発熱量決定手段)72と、こぼれ量算出部(こぼれ量算出手段)73と、パイロット噴射量決定部(前段噴射量決定手段)74とを含む。
目標前段発熱量決定部72は、メイン燃焼の燃焼状態を適正にして適正なエンジン性能を確保するために必要な前段噴射(パイロット噴射Qpiおよびプレ噴射Qpr)により生成される合計発熱量の目標値である要求前段発熱量を算出する(図9のフローチャートにおけるステップS11)。
すなわち、主噴射の燃焼状態ひいてはエンジン性能は、前段噴射の発熱量によって変化する。具体的には、前段噴射の発熱量が過剰に大きい場合には、主噴射時の燃焼室9内の温度圧力が高くなること等によって、主噴射された燃料が適正な時期よりも早期に着火してしまい、煤の発生量が多くなる。一方、前段噴射の発熱量が小さい場合には前段噴射によって燃焼室9内の温度圧力を十分に高めることができず、主噴射された燃料の着火性が悪化する等の問題が生じる。これに対して、目標前段発熱量決定部72は、上記問題が生じるのを回避できる前段噴射の発熱量(要求前段発熱量)を決定する。本実施形態では、要求トータル噴射量とエンジン回転数とに基づいて要求前段発熱量を決定する。例えば、予め設定され記憶している要求トータル噴射量とエンジン回転数と要求前段発熱量とのマップから値を抽出する。
こぼれ量算出部73は、前段噴射された燃料量(噴射量)のうちキャビティ10内に収まらずキャビティ10の外側にこぼれた量であるこぼれ量を算出する(ステップS12)。
図10を用いて具体的に説明する。図10は、パイロット噴射が実施される時期付近における燃焼室9内の様子を示した図である。この図10に示すように、パイロット噴射Qpiは、圧縮上死点付近で実施されるメイン噴射よりも早期のタイミングであって、ピストン4の冠面4aひいてはキャビティ10と、インジェクタ20の先端部21aとが、比較的遠く離れている状態で燃料が噴射される。そのため、噴射された燃料の一部F1は、キャビティ10内に収まらず、キャビティ10の外側(リップ部13よりも径方向外側)の部分、すなわち、ピストン冠面12のうちリップ部13よりも径方向外側の部分とシリンダヘッド5との間のいわゆるスキッシュエリアに拡散していく。上記こぼれ量は、このスキッシュエリアに拡散した燃料量であり、こぼれ量算出部73は、この量を推定・算出する。
ここで、パイロット噴射の噴射圧が高く燃料噴霧の到達距離が長いほど、リップ部13を超えて径方向外側に向かう燃料すなわちこぼれ量は多くなる。また、パイロット噴射の噴射時期が早く、インジェクタ20の先端部21aとピストン4の冠面4aとの距離が遠いほど、こぼれ量は多くなる。
具体的には、こぼれ量と噴射時期と噴射圧との関係は、図11のようになる。図11は、横軸を噴射時期、縦軸をこぼれ量とし、異なる噴射圧についてこれらの関係を示したものである。この図11に示されるように、噴射時期が所定時期よりも早い場合には、噴射量の多くがリップ部13を超えてしまいこぼれ量はほぼ一定となるが、噴射時期がこの時期よりも遅角側では噴射時期が遅くなるほど(圧縮上死点に近づくほど)こぼれ量は小さくなる。また、噴射圧が低いほどこぼれ量は多くなる。
これ対応して、本実施形態では、こぼれ量算出部73は、噴射圧と噴射時期とに基づいてこぼれ量を算出するとともに、噴射圧が高く、パイロット噴射の噴射時期が早い(進角側である)ほど、上記こぼれ量が多くなるように、こぼれ量を算出する。例えば、こぼれ量算出部73は、図11に示すグラフと同様のマップを記憶しており、このマップから、ステップS1で検出した噴射圧と、ステップS6で決定したパイロット噴射の噴射時期とに対応した値を抽出する。
パイロット噴射量決定部74は、上記こぼれ量等に基づいてパイロット噴射の噴射量を決定する部分である。パイロット噴射量決定部74は、機能的に、燃焼効率算出部(燃焼効率算出手段)74aと、燃焼効率補正部(燃焼効率補正手段)74bとを含む。
燃焼効率算出部74aは、上記算出されたこぼれ量に基づいてパイロット噴射Qpiの燃焼効率を算出する(ステップS13)。
上記のように、スキッシュエリアにこぼれた燃料は、その後、このスキッシュエリアにおいてさらに拡散していく。そのため、スキッシュエリアにおける当量比は極めて小さく、その後のピストンの上昇に伴う圧縮によってもこのスキッシュエリア内の燃料はほとんど燃焼しない。すなわち、スキッシュエリアにこぼれた燃料は、少なくともメイン燃焼の開始前において燃焼せずプレ燃焼に寄与しない。そのため、こぼれ量が多いほどパイロット噴射Qpiの燃焼効率は悪化する。
これに対応して、本実施形態では、燃焼効率算出部74aは、こぼれ量が多いほど燃焼効率が小さくなるようにパイロット噴射Qpiの燃焼効率を算出する。
具体的には、こぼれ量と燃焼効率との関係は、図12に示す関係となる。図12は、こぼれ量と燃焼効率との関係について詳細に調べた結果であり、横軸をこぼれ量、縦軸を燃焼効率としたグラフである。この図12に示されるように、基本的にはこぼれ量が多くなるほど燃焼効率は悪化するが、こぼれ量が所定量以上多い場合、および、所定量以下の場合では、こぼれ量が変化しても燃焼効率はあまり変化しなくなる。本実施形態では、燃焼効率算出部74aは、こぼれ量と燃焼効率との関係が、この図12に示す関係となるように、こぼれ量から燃焼効率を算出する。例えば、燃焼効率算出部74aは、記憶している図12に示すグラフと同様のマップから、こぼれ量に対応する燃焼効率を抽出する。
燃焼効率補正部74bは、燃焼効率算出部74aにおいてこぼれ量に基づいて算出したパイロット噴射Qpiの燃焼効率を、筒内状態に応じて補正する(ステップS14)。すなわち、燃焼効率は、筒内状態によっても変化する。そこで、燃焼効率補正部74bは、燃焼効率算出部74aで算出した燃焼効率を、筒内状態に基づいて補正する。具体的には、燃焼効率補正部74bは、燃焼室9の壁面温度が低いほど、筒内温度が低いほど、筒内酸素濃度が低いほど、筒内圧力が低いほど、それぞれ燃焼効率が小さくなるように補正する。
パイロット噴射量決定部74は、上記のようにして決定、算出された各値に基づいてパイロット噴射量を決定する。
具体的には、パイロット噴射量決定部74は、ステップS4にて決定されたプレ噴射量からプレ噴射Qprの発熱量を算出するとともに、目標前段発熱量決定部72で決定された要求前段発熱量から、このプレ噴射Qprの発熱量を差し引き、パイロット噴射Qpiの発熱量の目標値を算出する(ステップS15)。その後、パイロット噴射量決定部74は、この目標値と、燃焼効率補正部74bで補正された後のパイロット噴射Qpiの燃焼効率とに基づいて、この目標値を実現可能な噴射量を算出し、この算出した値をパイロット噴射量として決定する(ステップS16)。
このようにして、本実施形態では、こぼれ量、筒内状態が加味された状態で、要求前段発熱量を満足する適正なパイロット噴射量が決定される。
(4)作用等
以上のように、本実施形態によれば、前段噴射(パイロット噴射とプレ噴射が実施される場合はパイロット噴射、プレ噴射のみの場合はプレ噴射)の噴射量の一部が、キャビティ10外にこぼれて少なくともメイン燃焼に寄与しないことが考慮された上で、この噴射量が決定される。そのため、前段噴射による発熱量を適正量確保して、メイン燃焼の燃焼状態ひいてはエンジン性能をより確実に適正にすることができる。
特に、本実施形態では、上記前段噴射のうちキャビティ10外にこぼれるこぼれ量が、その噴射圧および噴射時期に応じて推定される。そのため、より精度よくこぼれ量を推定することができ、前段噴射の噴射量および発熱量をより確実に適正にすることができる。
より詳細には、噴射圧が高くなり前段噴射された燃料が到達する距離が遠いほど、および、前段噴射の噴射時期が進角側であって噴射装置とキャビティとの距離が遠くなるほど、こぼれ量が多くなるよう推定されており、噴射圧および噴射時期に応じてこぼれ量を適正に推定することができる。
さらに、本実施形態では、推定したこぼれ量に基づいて前段噴射の燃焼効率を算出するとともに、この燃焼効率を筒内状態(燃焼室9の壁面温度、筒内温度、筒内酸素濃度、筒内圧力)に応じて補正し、この燃焼効率に基づいて前段噴射の噴射量を決定しているため、こぼれ量に加えて筒内状態に応じたより適正な前段噴射の噴射量すなわち発熱量を実現することができ、メイン燃焼の燃焼状態ひいてはエンジン性能をより一層適正にすることができる。
(5)変形例
ここで、上記実施形態では、パイロット噴射とプレ噴射とを実施する場合においてパイロット噴射のこぼれ量のみを推定する場合について説明したが、パイロット噴射に加えてプレ噴射についてもこぼれ量を推定し、この推定値に基づいてプレ噴射の噴射量を決定してもよい。すなわち、複数回に分けて前段噴射を実施する場合において、各噴射についてこぼれ量を推定し、この推定値に基づいて各噴射の噴射量を決定してもよい。
ただし、複数回に分けて前段噴射を実施する場合には、最初に行われ、圧縮上死点から最も離れたタイミングで実施される噴射のこぼれ量が最も多くなる。そのため、この最初の噴射についてのみこぼれ量の推定を行い、この推定値に基づいて最初の噴射の噴射量のみを決定するようにすれば、比較的簡単に前段噴射の発熱量を適正にすることができる。
また、各運転領域の噴射パターンは上記に限らない。例えば、拡散燃焼モードにおいて、メイン噴射の後にさらに噴射(いわゆるアフター噴射等)を行ってもよい。また、前段噴射として、2回以上の噴射を行ってもよい。
また、キャビティ10の具体的な形状は上記に限らない。
1 エンジン本体
2 気筒
71 噴射制御部(噴射制御手段)
72 目標前段発熱量決定部(目標前段発熱量決定手段)
73 こぼれ量算出部(こぼれ量算出手段)
74 パイロット噴射量決定部(前段噴射量決定手段)
74a 燃焼効率算出部(燃焼効率算出手段)
74b 燃焼効率補正部(燃焼効率補正手段)

Claims (4)

  1. 気筒に形成された燃焼室内に燃料を噴射可能な噴射装置と、当該噴射装置を制御する噴射制御手段とを備えたエンジンの燃料制御装置において、
    上記エンジンのピストン冠面には、シリンダヘッドの底面から離間する方向に凹むキャビティが形成されており、
    上記噴射装置は、ピストンが上死点よりも下方に位置する状態で当該噴射装置から噴射された燃料が上記キャビティと当該キャビティよりも径方向外側の領域との境界部に向かうように配置されており、
    上記噴射制御手段は、
    少なくとも一部の運転領域において、主噴射と、当該主噴射よりも前に当該主噴射の噴射量よりも少ない量の燃料を気筒内に噴射する前段噴射とを、上記主噴射の少なくとも一部の燃料および上記前段噴射の少なくとも一部の燃料が上記境界部に向かって噴射されるように、上記噴射装置に、実施させるとともに、
    運転条件に基づいて、上記前段噴射された燃料が燃焼することで上記燃焼室内に生じる発熱量の目標値である目標前段発熱量を決定する目標前段発熱量決定手段と、
    運転条件に応じて、上記前段噴射の噴射量のうち上記キャビティの外側にこぼれるこぼれ量を算出するこぼれ量算出手段と、
    上記算出されたこぼれ量に基づいて上記前段噴射により噴射された燃料の燃焼効率を算出するとともに、当該燃焼効率と上記算出された目標前段発熱量とに基づいて、上記前段噴射の噴射量を、上記こぼれ量分の燃料が上記キャビティの外側にこぼれても上記主噴射の燃焼が開始する前における当該前段噴射により噴射された燃料の発熱量が上記目標前段発熱量となるように、決定する前段噴射量決定手段とを含み、
    上記前段噴射と上記主噴射とが実施される運転領域において、上記前段噴射では、上記キャビティの外側にこぼれるこぼれ量に基づいて上記前段噴射量決定手段によって決定された噴射量を上記噴射装置に噴射させ、上記主噴射では、当該主噴射の噴射量のうち上記キャビティの外側にこぼれる量によらずに決定された量の燃料を上記噴射装置に噴射させ、
    上記前段噴射量決定手段は、上記前段噴射により噴射された燃料の燃焼効率を、上記こぼれ量が多い方が低い値となるように算出することを特徴とするエンジンの燃料制御装置。
  2. 請求項1に記載のエンジンの燃料制御装置において、
    上記こぼれ量算出手段は、上記前段噴射の噴射圧が高く且つ上記前段噴射の噴射時期が進角側であるほど上記こぼれ量を多く算出することを特徴とするエンジンの燃料制御装置。
  3. 請求項1または2に記載のエンジンの燃料制御装置において、
    上記前段噴射量決定手段は、
    上記こぼれ量に基づいて算出された上記前段噴射により噴射された燃料の燃焼効率を、上記燃焼室の壁面温度と当該燃焼室内のガスの温度と当該燃焼室内の酸素濃度と当該燃焼室内の圧力との少なくとも一つに応じて補正することを特徴とするエンジンの燃料制御装置。
  4. 請求項1〜3のいずれかに記載のエンジンの燃料制御装置において、
    上記噴射制御手段は、上記前段噴射を、2回以上の複数回にわけて実施し、
    上記目標前段発熱量決定手段は、すべての前段噴射によって上記燃焼室内に生じる発熱量の目標値を上記目標前段発熱量として決定し、
    上記こぼれ量算出手段は、最初に実施される前段噴射のこぼれ量を算出し、
    上記前段噴射量決定手段は、上記目標前段発熱量と、2回目以降の前段噴射の噴射量と、上記こぼれ量とに基づいて、最初に実施される前段噴射の噴射量を決定することを特徴とするエンジンの燃料制御装置。
JP2014200995A 2014-09-30 2014-09-30 エンジンの燃料制御装置 Active JP6217580B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014200995A JP6217580B2 (ja) 2014-09-30 2014-09-30 エンジンの燃料制御装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014200995A JP6217580B2 (ja) 2014-09-30 2014-09-30 エンジンの燃料制御装置

Publications (2)

Publication Number Publication Date
JP2016070191A JP2016070191A (ja) 2016-05-09
JP6217580B2 true JP6217580B2 (ja) 2017-10-25

Family

ID=55866366

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014200995A Active JP6217580B2 (ja) 2014-09-30 2014-09-30 エンジンの燃料制御装置

Country Status (1)

Country Link
JP (1) JP6217580B2 (ja)

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3330336B2 (ja) * 1995-12-06 2002-09-30 株式会社豊田中央研究所 火花点火式内燃機関
JP2000073803A (ja) * 1998-06-16 2000-03-07 Nissan Motor Co Ltd 筒内噴射ガソリンエンジン
JP3963044B2 (ja) * 1998-06-29 2007-08-22 日産自動車株式会社 直噴ガソリンエンジンの制御装置
JP3642243B2 (ja) * 1999-12-21 2005-04-27 日産自動車株式会社 内燃機関の排気浄化装置
JP2009167821A (ja) * 2008-01-11 2009-07-30 Toyota Motor Corp 内燃機関の燃料噴射制御装置
JP2012013010A (ja) * 2010-07-01 2012-01-19 Honda Motor Co Ltd 内燃機関の燃料噴射制御装置
JP2014031772A (ja) * 2012-08-03 2014-02-20 Nippon Soken Inc 内燃機関の制御装置

Also Published As

Publication number Publication date
JP2016070191A (ja) 2016-05-09

Similar Documents

Publication Publication Date Title
JP5482716B2 (ja) ディーゼルエンジンの制御装置及びディーゼルエンジンの制御方法
JP5062340B2 (ja) 燃料噴射装置
US20180340488A1 (en) Method and system for controlling engine
JP5494568B2 (ja) ガソリンエンジン
US20120000197A1 (en) Automobile-mount diesel engine with turbocharger and method of controlling the diesel engine
JP5494545B2 (ja) 火花点火式ガソリンエンジン
JP6373777B2 (ja) 燃焼制御装置
JP4039382B2 (ja) ディーゼルエンジン
EP2511505B1 (en) Combustion control device
JP2006105046A (ja) ディーゼルエンジンの制御装置
JP6287740B2 (ja) エンジンの燃料制御装置
JP4747553B2 (ja) 圧縮着火内燃機関
JP2014015894A (ja) 燃料噴射弁の制御装置
JP5158245B1 (ja) 燃焼制御装置
JP5093407B2 (ja) 内燃機関の燃焼制御装置
JP6217580B2 (ja) エンジンの燃料制御装置
JP2012026412A (ja) 内燃機関の燃料噴射制御装置
JP6079740B2 (ja) エンジンの燃料制御装置
JP2013124636A (ja) ディーゼルエンジン
JP6075166B2 (ja) 燃焼制御装置
JP7275955B2 (ja) エンジンの制御装置
JP7137145B2 (ja) 車両の制御装置
JP2018172981A (ja) 予混合圧縮着火式エンジンの制御装置
JP2020118103A (ja) 車両の制御装置
JP2009185689A (ja) 圧縮着火エンジン及びその制御方法

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20160323

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20170127

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20170207

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20170407

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20170509

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20170707

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20170829

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20170911

R150 Certificate of patent or registration of utility model

Ref document number: 6217580

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150