JP6206703B2 - マイクロ波無電極ランプ及びこれを使用した光照射装置 - Google Patents

マイクロ波無電極ランプ及びこれを使用した光照射装置 Download PDF

Info

Publication number
JP6206703B2
JP6206703B2 JP2013097909A JP2013097909A JP6206703B2 JP 6206703 B2 JP6206703 B2 JP 6206703B2 JP 2013097909 A JP2013097909 A JP 2013097909A JP 2013097909 A JP2013097909 A JP 2013097909A JP 6206703 B2 JP6206703 B2 JP 6206703B2
Authority
JP
Japan
Prior art keywords
discharge vessel
electrodeless lamp
enlarged diameter
microwave
outer diameter
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2013097909A
Other languages
English (en)
Other versions
JP2014220081A (ja
Inventor
和明 佐藤
和明 佐藤
静二 齋藤
静二 齋藤
日出海 折戸
日出海 折戸
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Iwasaki Denki KK
Original Assignee
Iwasaki Denki KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Iwasaki Denki KK filed Critical Iwasaki Denki KK
Priority to JP2013097909A priority Critical patent/JP6206703B2/ja
Publication of JP2014220081A publication Critical patent/JP2014220081A/ja
Application granted granted Critical
Publication of JP6206703B2 publication Critical patent/JP6206703B2/ja
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Physics & Mathematics (AREA)
  • Physical Or Chemical Processes And Apparatus (AREA)
  • Discharge Lamps And Accessories Thereof (AREA)
  • Electromagnetism (AREA)
  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Plasma & Fusion (AREA)
  • Health & Medical Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Toxicology (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)

Description

本発明は、マイクロ波給電方式のマイクロ波無電極ランプ、及び、これを使用する光照射装置に関する。
インク、塗料、樹脂等の硬化処理及び紫外線殺菌に、マイクロ波無電極ランプを搭載する光照射装置が使用される。この光照射装置は、マイクロ波発振器とマイクロ波空洞を備え、マイクロ波空洞には放電管(発光管)として無電極ランプが設けられている。マイクロ波空洞には、更に、無電極ランプからの放射光を方向付けする反射鏡が設けられている。
マイクロ波発振器からのマイクロ波によってマイクロ波空洞に定在波が生成される。無電極ランプ内に、定在波の腹とその両側の節が生じる。定在波の腹の部分の温度は比較的高く、節の部分の温度は比較的低い。無電極ランプの軸線方向の温度は不均一となる。
従来、マイクロ波無電極ランプでは、軸線方向の温度の不均一化の課題を解決するために様々な工夫がなされている。特許文献1及び2に記載されたマイクロ波無電極光源装置では、中央に直径が減少した小径部分が形成されたランプを備える。特許文献3に記載された無電極ランプでは、発光管を定在波の形状に適するように、中央に直径が減少した小径部分を設け、その両側で肉厚を大きくしている。
特公平3−37277号公報 特表2003−510773号公報 特開2011−91007号公報
マイクロ波無電極ランプは、通常よりも高いエネルギーを供給して点灯させると、使用中に変形または破裂することがある。本願の発明者は、マイクロ波無電極ランプの破裂の課題に鋭意取り組んだ。
そこで本発明の目的は、通常よりも高いエネルギーを供給して点灯させても、変形または破裂することがないマイクロ波無電極ランプ及びこれを使用した光照射装置を提供することにある。
本願の発明者は、通常よりも高いエネルギーを供給して点灯させると、無電極ランプが破裂するメカニズムを究明した。そこで、次のような知見が得られた。無電極ランプが破裂する瞬間を注意深く観察すると、破裂の直前に、ランプが局部的に膨らむことが判った。そこで本願の発明者は、予め、当該箇所で局部的に膨らんだ形状のランプを試作した。その結果、ランプの変形と破裂を回避することができた。
本発明によると、マイクロ波発振器と、該マイクロ波発振器に付属するアンテナと、該アンテナからのマイクロ波エネルギーを受けて発光する無電極ランプと、該無電極ランプから放射される光を制御する反射鏡と、を有する光照射装置において、前記無電極ランプは不活性ガスと発光物質が封入された放電容器を有し、前記放電容器は、仮想の直管状の円筒の外径と比較して拡大した外径を有する部位を拡径部と定義するとき、中央部と、該中央部の両側の拡径部と、前記2つの拡径部の外側の端部からなり、前記放電容器は、マイクロ波エネルギーによって生成される定在波の腹に対応して形成される2つの高温領域と、該定在波の節に対応して形成される3つの低温領域とを有し、前記放電容器の中央部は前記3つの低温領域のうちの中央の低温領域に対応して配置され、前記放電容器の2つの拡径部は前記2つの高温領域に対応して配置され、前記放電容器の2つの端部は前記3つの低温領域のうちの両側の低温領域に対応して配置され、前記拡径部は、前記高温領域の最高温位置にて最大外径を有し、該最高温位置から両側に遠ざかるにしたがって外径が減少するように構成されている。
本実施形態では、前記光照射装置において、前記放電容器の軸線方向の寸法Lに対する前記拡径部の軸線方向の寸法L1の比は、L1/L=0.25〜0.35であってよい。
本実施形態では、前記光照射装置において、前記拡径部の最高温位置における外径をD1とし、前記拡径部の両端における外径をDとするとき、前記最高温位置における拡径率はΔD/D=(D1−D)/D=0.16〜0.20であってよい。
本実施形態では、前記光照射装置において、前記放電容器の端部は、前記2つの定在波の両端の節の形状に対応して、外端に向かって外径が徐々に小さくなる縮径端部として構成されてよい。
本実施形態では、前記光照射装置において、前記放電容器の中央部は、前記2つの定在波の間の節の形状に対応して、中央に向かって外径が徐々に小さくなる縮径中央部として構成されてよい。
本実施形態では、前記光照射装置において、前記放電容器の肉厚は1mm、軸線方向の寸法Lは138mm、前記拡径部の両端における外径Dは11mmであってよい。
本発明によると、マイクロ波エネルギーを受けて発光するマイクロ波無電極ランプにおいて、前記無電極ランプは不活性ガスと発光物質が封入された放電容器を有し、前記放電容器は、仮想の直管状の円筒の外径と比較して拡大した外径を有する部位を拡径部と定義するとき、中央部と、該中央部の両側の拡径部と、前記2つの拡径部の外側の端部からなり、前記放電容器は、マイクロ波エネルギーによって生成される定在波の腹に対応して形成される2つの高温領域と、該定在波の節に対応して形成される3つの低温領域とを有し、前記放電容器の中央部は前記3つの低温領域のうちの中央の低温領域に対応して配置され、前記放電容器の2つの拡径部は前記2つの高温領域に対応して配置され、前記放電容器の2つの端部は前記3つの低温領域のうちの両側の低温領域に対応して配置され、前記拡径部は、前記高温領域の最高温位置にて最大外径を有し、該最高温位置から両側に遠ざかるにしたがって外径が減少するように構成されている。
本実施形態によると前記マイクロ波無電極ランプにおいて、前記放電容器の軸線方向の寸法Lに対する前記拡径部の軸線方向の寸法L1の比は、L1/L=0.25〜0.35であってよい。
本実施形態によると前記マイクロ波無電極ランプにおいて、前記拡径部の最高温位置における外径をD1とし、前記拡径部の両端における外径をDとするとき、前記最高温位置における拡径率はΔD/D=(D1−D)/D=0.16〜0.20であってよい。
本発明によれば、通常よりも高いエネルギーを供給して点灯させても、変形または破裂することがないマイクロ波無電極ランプ及びこれを使用した光照射装置を提供することができる。
図1Aは、本実施形態に係るマイクロ波無電極ランプを使用した光照射装置の一例を示す概略斜視図である。 図1Bは、図1Aの光照射装置を正面から見た概略正面図である。 図2は、本実施形態に係る光照射装置の筐体の前側内部の断面構成を示す図である。 図3は、従来の直管型無電極ランプの一例を示す図である。 図4Aは、従来の直管型無電極ランプの例の寸法を説明する図である。 図4Bは、本実施形態による無電極ランプの第1の例の形状を説明する図である。 図4Cは、本実施形態による無電極ランプの第2の例の形状を説明する図である。 図4Dは、本実施形態による無電極ランプの第3の例の形状を説明する図である。 図5Aは、従来の直管型無電極ランプの例の寸法を説明する図である。 図5Bは、本実施形態による無電極ランプの第1の例の形状を説明する図である。 図5Cは、本実施形態による無電極ランプの第2の例の形状を説明する図である。 図5Dは、本実施形態による無電極ランプの第3の例の形状を説明する図である。 図6Aは、従来の放電容器にて局所的な膨らみが発生する状態を模式的に示す図である。 図6Bは、本実施形態の放電容器にて局所的な膨らみが発生しない状態を模式的に示す図である。 図7Aは、薄肉円筒に働く応力を説明する図である。 図7Bは、薄肉円筒を小さなセグメントに分解したときに、1つのセグメントに働く応力を説明する図である。
以下、本発明に係る無電極ランプ及びこれを使用した光照射装置の実施形態に関して、添付の図面を参照しながら詳細に説明する。なお、この実施形態は、例示であって、本発明を何等限定するものではないことを承知されたい。
図1A及び図1Bは、本実施形態に係るマイクロ波無電極ランプを使用した光照射装置の一例を説明する図である。図1Aは、光照射装置10の斜視図である。図1Bは、図1Aの光照射装置10を正面から見た概略正面図である。図示のように、光照射装置10のランプ軸線方向に沿ってX軸、光照射装置10からの発光方向(矢印方向)に沿ってZ軸、X−Z面に垂直方向にY軸を設定する。
光照射装置10は、矩形の筐体4を有し、筐体4の後側内部にマイクロ波発振器3(図示なし)が設けられ、筐体4の上側には冷却用送風ダクト6(図1Bでは省略)が取り付けられている。光照射装置10は、更に、マイクロ波発振器3に付属するアンテナ8と、アンテナ8からのマイクロ波エネルギーを受けて発光する無電極ランプ12と、無電極ランプ12の軸線に沿って配置された反射鏡14を有する。反射鏡14によって囲まれた空間は、マイクロ波空洞5を形成している。無電極ランプ12は、マイクロ波空洞5に配置されている。
マイクロ波は、波長1m〜100μm、周波数300MHz〜3THzの電磁波を指し、電波の中で最も短い波長域である。マイクロ波発振器3として、マグネトロン、クライストロン、進行波管(TWT)、ジャイロトロン、ガンダイオードを用いた回路等がある。本実施形態では、マイクロ波発振器としてマグネトロンを使用する。マグネトロンは、発振用真空管の一種であり、強力なノンコヒーレントマイクロ波を発生する。身近なところでは、マグネトロンは、レーダーや電子レンジに使われている。本実施形態では、電子レンジ、好ましくは業務用電子レンジに使用されているマグネトロンを使用する。なお、電子レンジでは周波数2,450MHzが使用されているが、これは技術的な制限によるものではなく、法的規制によるものである。
図2は、本実施形態に係る光照射装置10の筐体4の前側内部の断面構成を示す。反射鏡14は、代表的には、被照射面に集光させる楕円面反射鏡、被照射面に平行光を当てる放物面反射鏡等が有る。楕円面も放物面も少なくとも1つの焦点を有する。図2の実施例では、反射鏡14は樋型楕円面反射鏡であり、無電極ランプ12は直管型で、その中心軸が前記楕円面反射鏡の焦点に位置するように配置されている。なお、無電極ランプと反射鏡との位置関係に関しては、必ずしも無電極ランプの中心(中心軸)が焦点位置に一致している必要は無く、ランプ設置の位置的誤差等も考慮して、ランプ本体の中央部分が焦点を含む位置に配置されてさえいればよい。
反射鏡14の筐体4の前面には光出射口2が形成され、光出射口は導電性メッシュ16によって覆われている。導電性メッシュ16は、マイクロ波に対しては不透過性であるが、マイクロ波空洞からの照射光18、即ち、可視光線及び紫外線に対しては透過性である。
マイクロ波発振器3から発生したマイクロ波は、アンテナ8を介して放射され、マイクロ波空洞5に供給され、そこで定在波を形成する。マイクロ波空洞5に配置された無電極ランプ12の内部にプラズマを励起する。プラズマが放射する可視光線或いは紫外線は、照射光18として反射鏡14を反射し、又は、直接、光出射口2に向かって放射され、導電性メッシュ16を通過して、被照射面に照射される。
冷却用送風ダクト6からの冷却用空気17は、反射鏡14の孔14Aを介してマイクロ波空洞5に供給される。冷却用空気17は無電極ランプ12の外周面に衝突し、無電極ランプ12を冷却する。
図3を参照して直管型の無電極ランプの例を説明する。直管型の無電極ランプ12は、円筒状の放電容器12Aとその両端の突起部12Bを有する。放電容器の両端の突起部12Bを筐体の両側の内壁の係合部に係合させることによって、無電極ランプ12はマイクロ波空洞内に保持される。
無電極ランプ12は石英ガラス製である。放電容器の内部には、不活性ガスと発光物質が封入されている。本例の無電極ランプ12では、不活性ガスとして2.7kPaのアルゴン(Ar)が封入されてよい。発光物質として45mgの水銀が封入されてよい。この場合、無電極ランプ12は、出力1,800Wの紫外線照射ランプ(UVランプ)として使用される。尚、発光物質は水銀に限定されない。例えば、水銀とハロゲン化金属等を封入してもよい。この場合には、無電極ランプはメタルハライドランプとなる。
マグネトロンを発振させると、2,450MHzのマイクロ波エネルギーがマイクロ波空洞5に供給され定在波が形成される。マイクロ波が無電極ランプ12の放電容器12Aと結合されて内部にプラズマが励起される。発光物質から可視光線或いは紫外線が放射される。
無電極ランプ12を点灯すると、放電容器12Aの内部に、破線で示すように、2つのプラズマ領域13が形成される。プラズマ領域13は、腹131とその両側の節132を有する定在波を形成する。この定在波の波長は、λ=伝播速度/周波数=2.99×108(m/s)/2.45GHz≒123mmとなる。無電極ランプの放電容器12Aの軸線方向長さは、一波長の長さに略等しく形成されている。
定在波の腹131の部分は比較的温度が高く、比較的強い発光をする。ここは高温領域(ホットゾーン)12a、12bと呼ばれる。定在波の節132の部分は比較的温度が低く、比較的弱い発光をする。ここは低温領域(コールドゾーン又はクールゾーン)12c、12d、12eと呼ばれる。低温領域12c、12d、12eでは、封入物質の蒸発が阻害され、又は、再凝縮が起こることがある。従って、無電極ランプ12の放電容器12Aの温度分布は軸線方向に沿って不均一となる。
図4Aを参照して、従来の直管型の無電極ランプの例の寸法を説明する。無電極ランプ12は放電容器12Aと両側の突起部12B、12Bを有する。図示のように、放電容器12Aの軸線方向の寸法をL、突起部12B、12Bの軸線方向の寸法をそれぞれLtとする。各高温領域12a、12b(図3)において、定在波の腹の振幅が最大の位置にて、最も温度が高くなる。ランプが水平姿勢で点灯している場合には、最高温度位置Hは、各高温領域12a、12bにて、放電容器12Aの上側面に生じる。中央の低温領域12c(図3)において、定在波の節の振幅が最小の位置にて、最も温度が低くなる。放電容器12Aにて定在波は左右対称的に形成される。従って、中央の最低温位置Cは、放電容器12Aの軸線方向の中央の位置にある。
放電容器12Aの中央の最低温位置Cから、両側の最高温位置Hまでの距離を、それぞれLbとし、両端までの距離を、それぞれLaとする。この放電容器12Aでは、L=138mm、Lt=8.5mm、La=69mm、Lb=34.5mmである。無電極ランプ12の全長、即ち、両側の突起部12B、12Bの外端の間の寸法は155mmである。
放電容器12Aの外径をDとする。D=11mmである。放電容器12Aの肉厚は1mmである。
図4Bを参照して、本実施形態による無電極ランプの第1の例の外径の寸法を説明する。本実施形態の無電極ランプの放電容器は、直管中央部122、その両側の拡径部121、121、更にその外側の直管端部123、123を有する。
直管中央部122は、放電容器の中央の低温領域12cに形成され、その外径は、従来の直管型の無電極ランプの放電容器12Aの外径Dに等しい。直管端部123、123は、放電容器の両側の低温領域12d、12eに形成され、その外径は、従来の直管型の無電極ランプの放電容器12Aの外径Dに等しい。尚、直管端部123、123は、従来の直管型の無電極ランプの放電容器12Aの両端部と同様に、球面形状、楕円球面状等の回転曲面状に形成されてよい。
拡径部121、121は、放電容器の2つの高温領域12a、12bにそれぞれ形成される。拡径部121、121は、最高温位置Hにて最大径を有し、その両側では徐々に外径が小さくなっている。即ち、拡径部121、121は、最高温位置Hから両側に遠ざかるにしたがって外径が減少するように構成されている。ここで、拡径部121、121の最高温位置Hにおける外径をD1とし、それ以外の位置における外径をDhとする。拡径部121、121の外径D1及びDhは、直管中央部122の外径Dより大きく、直管端部123、123の外径Dより大きい。即ち、拡径部121、121の外径D1及びDhは、従来の直管型の無電極ランプの放電容器12Aの外径Dより大きい。即ち、D1>Dh>Dである。
本実施形態では、外径D1はD1=13mmである。拡径部121、121の両端における外径DはD=11mmである。従って、拡径部121、121の最高温位置Hにおける拡径量ΔDは、ΔD=D1−D=13−11=2mm、拡径率はΔD/D=0.18(18%)である。
図4Cを参照して、本実施形態による無電極ランプの第2の例の外径の寸法を説明する。本実施形態の無電極ランプの放電容器は、直管中央部122、その両側の拡径部121、121、更にその外側の縮径端部124、124を有する。本実施形態の無電極ランプの放電容器は、図4Bの放電容器と比較して、直管端部123、123の代わりに、縮径端部124、124が形成されている点が異なる。縮径端部124、124の外形は、プラズマ領域13の形状に対応して形成されている。即ち、縮径端部124、124の外径は、定在波の腹131から節132の外形に対応して減少している。拡径部121、121と縮径端部124、124の接続部(境界)における外径は、直管端部123、123の外径Dに等しいが、縮径端部124、124の外径は両側の端部に向かって徐々に小さくなっている。
図4Dを参照して、本実施形態による無電極ランプの第3の例の外径の寸法を説明する。本実施形態の無電極ランプの放電容器は、縮径中央部125、その両側の拡径部121、121、更にその外側の縮径端部124、124を有する。本実施形態の無電極ランプの放電容器は、図4Cの放電容器と比較して、直管中央部122の代わりに、縮径中央部125が形成されている点が異なる。縮径中央部125の外形は、プラズマ領域13の形状に対応して形成されている。即ち、縮径中央部125の外径は、定在波の腹131からその間の節132に対応して減少しており、節132の部分では縮径されている。拡径部121、121と縮径中央部125の接続部(境界)における外径は、直管中央部122の外径Dに等しいが、縮径中央部125の外径は中心に向かって徐々に小さくなっており、中央では縮径されている。
本実施形態では、縮径中央部125の中央の最小外径をD2とすると、D2=4.3mmである。従って、縮径中央部125における最大縮径量ΔDは、ΔD=D−D2=11−4.3=6.7mmである。
これらの実施形態では、放電容器12Aの軸線方向の寸法はL=138mmであり、放電容器の拡径部121、121における拡径率はΔD/D=0.18(18%)である。しかしながら、これは単なる例示であって、拡径率はΔD/D=0.16〜0.20(16〜20%)であってよい。
図4Dの実施態様では、直管端部123、123の代わりに縮径端部124、124が形成され、直管中央部122の代わりに縮径中央部125が形成されているが、直管端部123、123はそのままで、直管中央部122の代わりに縮径中央部125が形成されてもよい。
図5Aは従来の直管型の無電極ランプの例を示す。無電極ランプ12は放電容器12Aと両側の突起部12B、12Bを有する。無電極ランプ12の各部の寸法は図4Aを参照して説明した。
図5Bを参照して、本実施形態による無電極ランプの第1の例の軸線方向の寸法を説明する。本実施形態の無電極ランプの放電容器は、直管中央部122、その両側の拡径部121、121、更にその外側の直管端部123、123を有する。一点鎖線は、仮想の直管状の円筒の外形であるが、ここでは、従来の直管型の無電極ランプの放電容器の外形を示す。本実施形態の放電容器の外形は、従来の放電容器の外形と比較して、拡径部121、121が形成されている点が異なる。
拡径部121、121は、放電容器の高温領域12a、12b(図3)に形成されている。拡径部121、121は、外側に膨らんだ形状を有する。直管中央部122は、放電容器の中央の低温領域12c(図3)に形成されている。直管中央部122は、直管状に形成されている。直管中央部122の外径は一定であり、従来の放電容器12Aの外径に等しい。
直管端部123、123は、放電容器の両側の低温領域12d、12e(図3)に形成され、その外径は、従来の直管型の無電極ランプの放電容器12Aの外径に等しい。尚、直管端部123、123の端面は、従来の直管型の無電極ランプの放電容器12Aの両端部と同様に、球面形状、楕円球面状等の回転曲面状に形成されてよい。
本実施形態では、直管中央部122の軸線方向の寸法は、L2=27mm、拡径部121、121の軸線方向の寸法は、L1=42mm、直管端部123、123の軸線方向の寸法は、L3=14mmである。
図5Cを参照して、本実施形態による無電極ランプの第2の例の軸線方向の寸法を説明する。本実施形態の無電極ランプの放電容器は、直管中央部122、その両側の拡径部121、121、更にその外側の縮径端部124、124を有する。一点鎖線は、従来の直管型の無電極ランプの放電容器の外形を示す。本実施形態の放電容器は、従来の放電容器の外形と比較して、拡径部121、121と縮径端部124、124が形成されている点が異なる。縮径端部124、124の外形は、プラズマ領域13の形状に対応して形成されている。即ち、縮径端部124、124の外径は、端部に向かって縮小している。
本実施形態では、直管中央部122の軸線方向の寸法は、L2=27mm、拡径部121、121の軸線方向の寸法は、L1=42mm、縮径端部124、124の軸線方向の寸法は、L3=14mmである。
図5Dを参照して、本実施形態による無電極ランプの第3の例の軸線方向の寸法を説明する。本実施形態の無電極ランプの放電容器は、縮径中央部125、その両側の拡径部121、121、更にその外側の縮径端部124、124を有する。一点鎖線は、従来の直管型の無電極ランプの放電容器の外形を示す。本実施形態の放電容器は、従来の放電容器の外形と比較して、直管形状ではなく、外径が軸線方向に沿って緩やかに変化している点が異なる。本実施形態では、2つの拡径部121、121の間に縮径中央部125が形成されている。縮径中央部125の外形は、プラズマ領域13の形状に対応して形成されている。即ち、縮径中央部125の外径は、拡径部121、121から中央に向かって減少している。従って、縮径中央部125の中央の最低温位置Cにて、外径が最小となる。
本実施形態では、縮径中央部125の軸線方向の寸法は、L2=27mm、拡径部121、121の軸線方向の寸法は、L1=42mm、縮径端部124、124の軸線方向の寸法は、L3=14mmである。
これらの実施形態では、放電容器12Aの軸線方向の寸法はL=138mmであり、拡径部121の軸線方向の寸法はL1=42mmである。放電容器12Aの軸線方向の寸法Lに対する拡径部121の軸線方向の寸法L1の比は、L1/L=42/138=0.30(30%)である。しかしながら、これは単なる例示であって、本実施形態では、放電容器12Aの軸線方向の寸法に対する拡径部121の軸線方向の寸法の比は0.25〜0.35(25〜35%)であってよい。
図6A及び図6Bを参照して、本願の発明者が実験から得た知見を説明する。本願の発明者は、従来の直管型の無電極ランプを水平姿勢にて保持し、通常よりも高いエネルギーを供給して点灯させ、その放電容器が破裂する瞬間を注意深く観察し、その撮影に成功した。
図6Aは、従来の放電容器の高温領域12aにて局所的な膨らみが発生する状態を模式的に示したものである。点灯前の放電容器12A(1)は直管状である。ランプは水平姿勢で点灯しているものとする。通常よりも高いエネルギーを供給して点灯させた。点灯によって放電容器12A(2)の温度が上昇すると熱膨張により、放電容器12A(2)の高温領域12aでは、軸線方向の寸法及び径は全体的に増加する。石英ガラスの熱膨張係数は、通常の金属の熱膨張係数より十分に小さい。従ってこの熱膨張量は小さい。図6Aでは、この熱膨張量は誇張して描かれている。破裂の直前に、放電容器12A(2)の上側面にて、局所的な膨らみが生成されることが観測された。放電容器12A(1)の下側面では、局所的な膨らみは観測されなかった。高温領域12a以外の部分でも、局所的な膨らみは観測されなかった。
高温領域12aでは、熱膨張により熱応力が生じ、放電容器12A(2)の上側面における熱応力σが所定の値より大きくなると破裂するものと思われる。尚、応力σは軸線方向のσzと円周方向のσθと径方向のσrの3つを含むが、これについては後に説明する。 また、高温領域12aにて局所的な膨らみが発生した要因は、壁面負荷(単位内表面積当たりのランプ電力)が高くなることで、円周方向の応力σθにより放電容器を構成する石英ガラスが変形した可能性がある。
図6Bは、本実施形態の放電容器の高温領域12aにて局所的な膨らみが発生しない状態を模式的に示したものである。尚、ランプは水平姿勢で点灯しているものとする。本実施形態による放電容器12A(1)では高温領域12aにて予め拡径部121が形成されている。
通常よりも高いエネルギーを供給して点灯させた。高温領域12aにおいて、放電容器12A(2)の上側面において局所的な膨らみは観測されなかった。高温領域12a以外の部分でも、局所的な膨らみは観測されなかった。放電容器12A(2)の破裂は起きなかった。
本実施形態では、高温領域12aにおける円周方向の応力σθが所定の大きさを超えないため、結果的に周方向の歪が緩和され変形せず破裂が起きないものと思われる。
また、高温領域12aに拡径部121を設けることにより壁面負荷が下がるため局所的な膨らみは起こらないと考えられる。
図7A、図7Bを参照して、本願発明者が行った放電容器の熱膨張による破裂の解析を説明する。従来の無電極ランプの放電容器は、外径が11mm、肉厚は1mmであり、材料力学における「薄肉円筒」と見なすことができる。
図7Aは薄肉円筒に働く応力を示す。図示のように軸線方向の応力σzと、円周方向の応力σθを考察する。薄肉円筒の内部の圧力をPとする。両端が閉じた薄肉円筒の円筒状側壁の軸線方向の応力σzと円周方向の応力σθは次の式によって求められる。
尚、径方向の応力σrについては、内面で内部の圧力Pに等しく外面で0になるため、σzとσθに比べきわめて小さいことから、実用上無視できるためここでは考慮しない。
σθ=(E×εθ)(2/(2−ν)) 式1
σz=(E×εz)(1/(1−2ν)) 式2
εθは円周方向の歪、εzは軸線方向の歪である。Eはヤング率、νはポアソン比である。石英ガラスのヤング率は7.2GPa、ポアソン比は0.14〜0.17である。薄肉円筒の半径をr、熱膨張により膨らんだ状態の薄肉円筒の半径をr+Δrとする。円周方向の歪εθは次の式によって与えられる。
εθ=[2π(r+Δr)−2πr]/2πr=Δr/r 式3
従って、円周方向の歪εθは半径方向の歪εr=Δr/rに等しい。薄肉円筒の軸線方向の寸法をL、歪をΔLとすると、薄肉円筒の軸線方向の歪εzはεz=ΔL/Lである。
図7Bは、従来の放電容器及び本実施形態による放電容器を、仮想的に、軸線方向に直交する面で切断して、複数の小さなリング状セグメントに分割して得られたリング状セグメントの1つを示す。リング状セグメントの軸線方向の寸法をL0とする。寸法L0は充分に小さいものとする。リング状セグメントに、軸線方向の応力σzと円周方向の応力σθが生じるが、円周方向の応力σθが所定の値より大きくなると変形または破裂するものと思われる。
次に、本実施形態による放電容器のリング状セグメントについて考察する。軸線方向の応力σzと円周方向の応力σθが生じるが、外径を大きくすることで円周方向の応力σθが所定の大きさを超えることがなく、周方向の歪が緩和されるため変形せず破裂が起きないものと思われる。
また、ランプ点灯において放電容器を構成する石英ガラスに歪が蓄積され、特に高温領域の歪が顕著となり、そこが起点となりランプ点灯中に破裂する場合があるが、外径を大きくすることで壁面負荷を下げることができる。結果として、高温領域の歪の蓄積を遅らせることにより破裂を抑制できる。
本実施形態によると、放電容器の高温領域の拡径部の外形は、従来の放電容器の高温領域にて生じる膨らみの形状に対応して形成される。本実施形態によると、放電容器の高温領域の拡径部の外形は、従来の直管型の無電極ランプの放電容器が破裂する瞬間を注意深く観察し、その撮影した像に基づいて決める。従って本実施形態によると、放電容器の高温領域に、拡径部が設けられるが、それ以外の部分は、従来の直管型の放電ランプの形状と同一であってよい。即ち、放電容器の高温領域の拡径部以外の部分は、図4Bの例のように直管状であってもよく、又は、図4C又は図4Dの例のように定在波の外形に対応した形状であってよい。
以上、本発明の実施の形態を説明したが、本発明の範囲はこれらの実施の形態によって制限されるものではなく、特許請求の範囲に記載された発明の範囲にて様々な変更が可能であることは当業者であれば容易に理解されよう。
1…マイクロ波、2…光出射口、3…マイクロ波発振器、4…筐体、5…マイクロ波空洞、6…冷却用送風ダクト、8…アンテナ、10…光照射装置、12…無電極ランプ、12A…放電容器、12B…突起部、12a、12b…高温領域(ホットゾーン)、12c…低温領域(クールゾーン)、13…プラズマ領域、14…反射鏡、14A…孔、16…導電性メッシュ、17…冷却用空気、18…照射光、121…拡径部、122…直管中央部、123…直管端部、124…縮径端部、125…縮径中央部、131…腹、132…節

Claims (5)

  1. マイクロ波発振器と、該マイクロ波発振器に付属するアンテナと、該アンテナからのマイクロ波エネルギーを受けて発光する無電極ランプと、該無電極ランプから放射される光を制御する反射鏡と、を有する光照射装置において、
    前記無電極ランプは不活性ガスと発光物質が封入された放電容器を有し、
    前記放電容器は、直管状の中央部と、該中央部の両側の拡径部と、前記2つの拡径部の外側の端部からなり、
    前記放電容器は、マイクロ波エネルギーによって生成される定在波の腹に対応して形成される2つの高温領域と、該定在波の節に対応して形成される3つの低温領域とを有し、
    前記放電容器の中央部は前記3つの低温領域のうちの中央の低温領域に対応して配置され、前記放電容器の2つの拡径部は前記2つの高温領域に対応して配置され、前記放電容器の2つの端部は前記3つの低温領域のうちの両側の低温領域に対応して配置され、
    前記拡径部は、前記高温領域の最高温位置にて最大外径を有し、該最高温位置から両側に遠ざかるにしたがって外径が減少するように構成されており、
    前記拡径部の最高温位置における外径をD1とし、前記拡径部の内端における外径をDとするとき、前記最高温位置における拡径率はΔD/D=(D1−D)/D=0.16〜0.20であることを特徴とする光照射装置。
  2. 請求項1に記載の光照射装置において、
    前記放電容器の軸線方向の寸法Lに対する前記拡径部の軸線方向の寸法L1の比は、L1/L=0.25〜0.35であることを特徴とする光照射装置。
  3. 請求項1又は2記載の光照射装置において、
    前記放電容器の端部は、前記2つの定在波の両端の節の形状に対応して、外端に向かって外径が徐々に小さくなる縮径端部として構成されていることを特徴とする光照射装置。
  4. マイクロ波エネルギーを受けて発光するマイクロ波無電極ランプにおいて、
    前記無電極ランプは不活性ガスと発光物質が封入された放電容器を有し、
    前記放電容器は、直管状の中央部と、該中央部の両側の拡径部と、前記2つの拡径部の外側の端部からなり、
    前記放電容器は、マイクロ波エネルギーによって生成される定在波の腹に対応して形成される2つの高温領域と、該定在波の節に対応して形成される3つの低温領域とを有し、
    前記放電容器の中央部は前記3つの低温領域のうちの中央の低温領域に対応して配置され、前記放電容器の2つの拡径部は前記2つの高温領域に対応して配置され、前記放電容器の2つの端部は前記3つの低温領域のうちの両側の低温領域に対応して配置され、
    前記拡径部は、前記高温領域の最高温位置にて最大外径を有し、該最高温位置から両側に遠ざかるにしたがって外径が減少するように構成されており、
    前記拡径部の最高温位置における外径をD1とし、前記拡径部の内端における外径をDとするとき、前記最高温位置における拡径率はΔD/D=(D1−D)/D=0.16〜0.20であることを特徴とするマイクロ波無電極ランプ。
  5. 請求項4に記載のマイクロ波無電極ランプにおいて、
    前記放電容器の軸線方向の寸法Lに対する前記拡径部の軸線方向の寸法L1の比は、L1/L=0.25〜0.35であることを特徴とするマイクロ波無電極ランプ。
JP2013097909A 2013-05-07 2013-05-07 マイクロ波無電極ランプ及びこれを使用した光照射装置 Expired - Fee Related JP6206703B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013097909A JP6206703B2 (ja) 2013-05-07 2013-05-07 マイクロ波無電極ランプ及びこれを使用した光照射装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013097909A JP6206703B2 (ja) 2013-05-07 2013-05-07 マイクロ波無電極ランプ及びこれを使用した光照射装置

Publications (2)

Publication Number Publication Date
JP2014220081A JP2014220081A (ja) 2014-11-20
JP6206703B2 true JP6206703B2 (ja) 2017-10-04

Family

ID=51938359

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013097909A Expired - Fee Related JP6206703B2 (ja) 2013-05-07 2013-05-07 マイクロ波無電極ランプ及びこれを使用した光照射装置

Country Status (1)

Country Link
JP (1) JP6206703B2 (ja)

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3163145B2 (ja) * 1992-02-28 2001-05-08 フュージョン ユーブイ システムズ, インコーポレイテッド 改善した温度分布を有する無電極ランプ
AU7489500A (en) * 1999-09-20 2001-04-24 Nordson Corporation Apparatus and method for generating ultraviolet radiation
JP2011091007A (ja) * 2009-10-26 2011-05-06 Harison Toshiba Lighting Corp 無電極ランプおよび紫外線照射装置

Also Published As

Publication number Publication date
JP2014220081A (ja) 2014-11-20

Similar Documents

Publication Publication Date Title
RU2278482C1 (ru) Безэлектродная осветительная система
JP6206703B2 (ja) マイクロ波無電極ランプ及びこれを使用した光照射装置
JP6379962B2 (ja) マイクロ波無電極ランプ及びこれを使用した光照射装置
JP6112360B2 (ja) マイクロ波無電極ランプ及びこれを使用した光照射装置
JP6263788B2 (ja) マイクロ波無電極ランプ及びこれを使用した光照射装置
JP2002203523A (ja) 無電極放電ランプ装置
JP5841595B2 (ja) プラズマ光源
JP3159809B2 (ja) 無電極放電光源装置
JP2004146338A (ja) 無電極照明システム及びそのバルブ
JP6252217B2 (ja) マイクロ波無電極ランプ及びこれを使用した光照射装置
JP6319660B2 (ja) マイクロ波無電極ランプ及びこれを使用した光照射装置
JP6460576B2 (ja) マイクロ波無電極ランプ及びこれを使用した光照射装置
JP6217024B2 (ja) マイクロ波無電極ランプ及びこれを使用した光照射装置
JP5987685B2 (ja) マイクロ波無電極ランプ及びこれを使用した光照射装置
JP6245427B2 (ja) 光照射装置
JP2003197156A (ja) 無電極放電灯および灯具
JP6590296B2 (ja) マイクロ波無電極ランプ及びこれを使用した光照射装置
JP4259274B2 (ja) マイクロ波無電極放電灯装置
JP6507465B2 (ja) マイクロ波無電極ランプ及びこれを使用した光照射装置
WO2022224703A1 (ja) 定在波励起型電磁波放電灯
JP3178368B2 (ja) 高周波無電極放電ランプ光反射器と高周波無電極放電ランプ装置
JP2008288025A (ja) マイクロ波放電ランプ装置
EP1770756A1 (en) Electrodeless lighting system comprising a metalllic mesh resonator
JP2019053897A (ja) マイクロ波無電極ランプ及びこれを使用した光照射装置
JP5904411B2 (ja) マイクロ波無電極ランプ及びこれを使用した照射装置

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20160407

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20170208

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20170216

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20170407

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20170810

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20170823

R150 Certificate of patent or registration of utility model

Ref document number: 6206703

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees