JP6204967B2 - 蒸気タービン - Google Patents

蒸気タービン Download PDF

Info

Publication number
JP6204967B2
JP6204967B2 JP2015252490A JP2015252490A JP6204967B2 JP 6204967 B2 JP6204967 B2 JP 6204967B2 JP 2015252490 A JP2015252490 A JP 2015252490A JP 2015252490 A JP2015252490 A JP 2015252490A JP 6204967 B2 JP6204967 B2 JP 6204967B2
Authority
JP
Japan
Prior art keywords
steam
intermediate pressure
rotor
steam turbine
cooling
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2015252490A
Other languages
English (en)
Other versions
JP2017115715A (ja
Inventor
豊治 西川
豊治 西川
雄久 ▲濱▼田
雄久 ▲濱▼田
卓美 松村
卓美 松村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Power Ltd
Original Assignee
Mitsubishi Hitachi Power Systems Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Hitachi Power Systems Ltd filed Critical Mitsubishi Hitachi Power Systems Ltd
Priority to JP2015252490A priority Critical patent/JP6204967B2/ja
Priority to US16/062,957 priority patent/US10876408B2/en
Priority to DE112016006048.3T priority patent/DE112016006048T5/de
Priority to CN201680074402.3A priority patent/CN108431369B/zh
Priority to PCT/JP2016/088148 priority patent/WO2017110894A1/ja
Priority to KR1020187017254A priority patent/KR102040423B1/ko
Publication of JP2017115715A publication Critical patent/JP2017115715A/ja
Application granted granted Critical
Publication of JP6204967B2 publication Critical patent/JP6204967B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E20/00Combustion technologies with mitigation potential
    • Y02E20/16Combined cycle power plant [CCPP], or combined cycle gas turbine [CCGT]

Landscapes

  • Turbine Rotor Nozzle Sealing (AREA)

Description

本発明は、コンバインドサイクルプラントに適用される蒸気タービンに関する。
従来、例えば、特許文献1に記載の蒸気タービンは、複数の早期段を有するロータと、ロータの一部分を囲み、該ロータとの間に漏洩領域が存在するように構成され、かつその1つの部分から漏洩領域に冷却蒸気を流す冷却蒸気チャネルを有するステータ部分と、ロータの周りで軸方向にずらして配置され、漏洩領域から冷却蒸気を受け、かつ該冷却蒸気を早期段の少なくとも一部分に供給する少なくとも1つの冷却蒸気送達チャネルと、を含んでいる。また、特許文献1では、ガスタービンと、ガスタービンのアウトプットに結合されてガスタービンの排気ガスを使用して蒸気/水を高い温度に加熱するボイラ(熱回収蒸気発生器)と、を含み、ボイラで発生する高温蒸気を蒸気タービンに供給する複合サイクル発電プラントについて記載されている。
また、従来、例えば、特許文献2に記載の蒸気タービンは、内側ケーシングを有しており、この内側ケーシング内において、軸線を中心として回転可能なロータが配設されており、ロータと内側ケーシングとの間に、蒸気通路が形成されており、この蒸気通路内において、この内側ケーシングに固定された案内ベーン、およびロータに固定されたロータブレードの多段の配設が設けられており、この配設内において、流入口から高温の蒸気が、作業出力のもとで解放される。そして、特許文献2では、このような蒸気タービンの場合、ロータや内側ケーシングの熱的な負荷は、少なくとも、蒸気通路内において、ロータの表面に対して平行にかつ近傍に、および/または、内側ケーシングの内側の表面に対して平行にかつ近傍に、このロータもしくは内側ケーシングのそれらの下に位置する表面を、蒸気通路を通って流動する高温の蒸気の直接的な作用から保護する板形状の保護シールドが配設されていることが記載されている。
特開2011−085135号公報 特許第5008735号公報
このように、蒸気タービンのロータなどを蒸気の熱から保護するにあたり、特許文献1に記載のように冷却蒸気を供給したり、特許文献2に記載のように保護シールドを配設したりすることが知られている。
ここで、特許文献1に記載される蒸気タービンにおいては、ケーシング蒸気チャネルに高圧低温蒸気を供給する蒸気源を含むことが示され、この蒸気源について具体的な記載はない。ロータなどを冷却する場合、蒸気タービンの駆動に供給される蒸気よりも低温の蒸気を供給する必要があり、かつ蒸気タービンの駆動に供給される蒸気よりも高圧の蒸気を供給する必要があるが、蒸気タービンのロータの最高温度部は、蒸気タービンの内部において最も圧力が高く、この圧力よりも高圧であって温度の低い冷却蒸気を供給することは容易ではない。これは、蒸気タービン内の蒸気が温度の低下と圧力の低下を同時に伴うためである。このため、蒸気タービンの外部の流体を用いる場合では、流体を低温化したり高圧化したりする別の動力源を必要としたり、蒸気タービンの内部の流体を用いる場合では、蒸気タービンの稼働効率が低下し、特許文献1に示される複合サイクル発電プラントなどのコンバインドサイクルプラントにおけるサイクル効率を低下させたりする問題がある。
本発明は上述した課題を解決するものであり、別の動力源を必要とせず、かつコンバインドサイクルプラントにおけるサイクル効率の低下を防ぐことのできる蒸気タービンを提供することを目的とする。
上述の目的を達成するために、第1の発明の蒸気タービンは、ガスタービンと、前記ガスタービンから排出される排ガスを加熱源とするボイラと、前記ボイラで発生した高圧蒸気により駆動する高圧蒸気タービンと、前記ボイラで発生した中圧蒸気により駆動する中圧蒸気タービンと、前記ボイラで発生した低圧蒸気および前記中圧蒸気タービンを経た蒸気により駆動する低圧蒸気タービンと、前記低圧蒸気タービンを経た蒸気を復水にする復水器と、前記復水器からの前記復水を前記ボイラに供給する復水ポンプと、を備えるコンバインドサイクルプラントに係り、前記ボイラは、前記復水器からの前記復水から蒸気を発生する中圧蒸発器と、前記中圧蒸発器で発生した蒸気を過熱する中圧過熱器と、前記中圧過熱器で過熱された蒸気を再過熱する一次再熱器と、前記一次再熱器で過熱された蒸気をさらに再過熱する二次再熱器と、を含み、前記二次再熱器で過熱された蒸気が前記中圧蒸気タービンの駆動に供給され、前記中圧蒸発器の出口から前記中圧過熱器および前記一次再熱器を経て前記二次再熱器内までの間と、前記中圧蒸気タービンの内部とを連通する接続ラインを含む冷却蒸気供給部を備えることを特徴とする。
この蒸気タービンによれば、中圧蒸発器の出口から中圧過熱器および一次再熱器を経て二次再熱器の内部までの間と、中圧蒸気タービンの内部とを連通する接続ラインを含む冷却蒸気供給部を備えることで、コンバインドサイクルプラント内において、中圧蒸気タービンに供給される過熱蒸気よりも高圧で、かつ低温の冷却蒸気を、中圧蒸気タービンの内部に供給することができる。この結果、別の動力源を必要とせず、中圧蒸気タービンの内部のロータなどの高温部を冷却することができる。また、コンバインドサイクルプラント内の発生蒸気を用い、中圧蒸気タービンの内部の流体を用いて冷却しないため、中圧蒸気タービンの稼働効率の低下を防ぎ、その結果サイクル効率の低下を防ぐことができる。
また、第2の発明の蒸気タービンでは、第1の発明において、前記接続ラインは、前記中圧過熱器の出口から前記一次再熱器の入口までの間と、前記中圧蒸気タービンの内部とを連通することを特徴とする。
中圧過熱器の出口から一次再熱器の入口までの間から、中圧蒸気タービンの内部に冷却蒸気を供給すると、一次再熱器および二次再熱器へ供給する蒸気が減るため、一次再熱器および二次再熱器での過熱効率が向上し中圧蒸気タービンに供給する過熱蒸気の温度が上昇する。この結果、中圧蒸気タービンの稼働効率を向上することができ、サイクル効率を向上することができる。
また、中圧過熱器の出口から一次再熱器の入口までの間から、中圧蒸気タービンの内部に冷却蒸気を供給すると、中圧蒸気タービンに供給する過熱蒸気の温度を一定とする場合に、中圧蒸発器から得る蒸気量を増すことができるため、中圧蒸気タービンへの過熱蒸気の供給量を増加できる。この結果、中圧蒸気タービンの稼働効率を向上することができ、サイクル効率を向上することができる。
また、第3の発明の蒸気タービンでは、第1の発明において、前記接続ラインは、前記一次再熱器の出口から前記二次再熱器の入口までの間と、前記中圧蒸気タービンの内部とを連通することを特徴とする。
一次再熱器の出口から二次再熱器の入口までの間から、中圧蒸気タービンの内部に冷却蒸気を供給すると、二次再熱器へ供給する蒸気が減るため、二次再熱器での過熱効率が向上し中圧蒸気タービンに供給する過熱蒸気の温度が上昇する。この結果、中圧蒸気タービンの稼働効率を向上することができ、サイクル効率を向上することができる。
また、一次再熱器の出口から二次再熱器の入口までの間から、中圧蒸気タービンの内部に冷却蒸気を供給すると、中圧蒸気タービンに供給する過熱蒸気の温度を一定とする場合に、中圧蒸発器から得る蒸気量を増すことができるため、中圧蒸気タービンへの過熱蒸気の供給量を増加できる。この結果、中圧蒸気タービンの稼働効率を向上することができ、サイクル効率を向上することができる。
また、第4の発明の蒸気タービンでは、第1〜3のいずれか1つの発明において、前記中圧蒸気タービンは、自身の回転の軸心に沿って延在するロータと、前記ロータを格納する車室と、前記ロータの延在方向に沿って前記ロータと前記車室との間に設けられた蒸気通路と、前記車室の外部から前記車室を貫通して前記蒸気通路に至り連通して設けられ前記二次再熱器で過熱された蒸気が供給される中圧蒸気供給部と、を含み、前記冷却蒸気供給部は、前記接続ラインに接続されて前記中圧蒸気供給部とは別に前記車室の外部から前記車室を貫通して前記蒸気通路に至り連通する連通流路を含むことを特徴とする。
この蒸気タービンによれば、中圧蒸気タービンに供給される過熱蒸気よりも高圧で、かつ低温の冷却蒸気を、中圧蒸気タービンの内部に好適に供給することができる。
また、第5の発明の蒸気タービンでは、第4の発明において、前記中圧蒸気供給部は、前記ロータの外周を囲む環状に形成されてその外面と前記ロータの外周面との間に前記蒸気通路に連通する隙間を有して前記車室に取り付けられ、その内部に環状に沿って形成された中圧蒸気ノズル室と、前記中圧蒸気ノズル室から前記ロータの延在方向に向いて前記蒸気通路に連通する開口とを有し、前記中圧蒸気ノズル室に前記二次再熱器で過熱された蒸気が供給される中圧蒸気ノズル部を含み、前記連通流路は、前記中圧蒸気ノズル部における前記中圧蒸気ノズル室の前記開口と反対側で前記隙間に連通して設けられることを特徴とする。
この蒸気タービンによれば、中圧蒸気タービンに供給される過熱蒸気よりも高圧で、かつ低温の冷却蒸気が連通流路を介して中圧蒸気供給部とロータの外周面との隙間に吐出されるため、ロータを冷却することができる。しかも、中圧蒸気タービンに供給される過熱蒸気よりも高圧で、かつ低温の冷却蒸気が連通流路を介して中圧蒸気供給部とロータの外周面との隙間に吐出されることで、過熱蒸気が隙間を介して蒸気通路から漏れ出る事態を防ぐ。この結果、過熱蒸気の損失が防止されるため、中圧蒸気タービンの稼働効率を向上することができ、サイクル効率を向上することができる。
また、第6の発明の蒸気タービンでは、第5の発明において、前記連通流路は、前記隙間に連通する開口に設けられる冷却蒸気ノズルを含むことを特徴とする。
この蒸気タービンによれば、冷却蒸気ノズルにより連通流路から隙間に吐出される冷却蒸気の流速が上昇する。この結果、冷却蒸気の温度を下げることができ、冷却効率を向上することができる。
また、第7の発明の蒸気タービンでは、第6の発明において、前記冷却蒸気ノズルは、前記ロータの回転方向に先端を向けて設けられることを特徴とする。
この蒸気タービンによれば、冷却蒸気ノズルにより冷却蒸気がロータの回転方向に沿って連通流路から隙間に吐出される。この結果、ロータの回転速度と冷却蒸気の速度の差によって生じる摩擦損失を低減することができる。
また、第8の発明の蒸気タービンでは、第〜第7のいずれか1つの発明において、前記中圧蒸気タービンは、前記中圧蒸気ノズル部における前記中圧蒸気ノズル室の前記開口にノズル部静翼が取り付けられ、かつ前記ロータの外周に前記ノズル部静翼に隣接して動翼が取り付けられており、前記冷却蒸気供給部は、前記動翼の前記ノズル部静翼側の基端部、前記ノズル部静翼の前記動翼側の先端部、の少なくとも一方に設けられる突起部を含むことを特徴とする。
この蒸気タービンによれば、突起部によりノズル部静翼の先端部と動翼の基端部との間において、蒸気通路に向かう冷却蒸気に渦を生じさせる。この結果、蒸気通路の過熱蒸気と、蒸気通路に向かう冷却蒸気とが複雑に混ざって冷却蒸気の温度が上昇することを防止し、冷却効率を高めることができる。
また、第9の発明の蒸気タービンでは、第4の発明において、前記中圧蒸気供給部は、前記ロータの外周を囲む環状に形成されてその外面と前記ロータの外周面との間に前記蒸気通路に連通する隙間を有して前記車室に取り付けられ、その内部に環状に沿って形成された中圧蒸気ノズル室と、前記中圧蒸気ノズル室から前記ロータの延在方向に向いて前記蒸気通路に連通する開口とを有し、前記中圧蒸気ノズル室に前記二次再熱器で過熱された蒸気が供給される中圧蒸気ノズル部を含み、前記中圧蒸気ノズル部は、前記中圧蒸気ノズル室の前記開口にノズル部静翼が取り付けられており、前記連通流路は、前記ノズル部静翼を貫通して前記隙間に連通して設けられることを特徴とする。
この蒸気タービンによれば、中圧蒸気タービンに供給される過熱蒸気よりも高圧で、かつ低温の冷却蒸気が連通流路を介して中圧蒸気供給部とロータの外周面との隙間に吐出されるため、ロータを冷却することができる。しかも、中圧蒸気タービンに供給される過熱蒸気よりも高圧で、かつ低温の冷却蒸気が連通流路を介して中圧蒸気供給部とロータの外周面との隙間に吐出されることで、過熱蒸気が隙間を介して蒸気通路から漏れ出る事態を防ぐ。この結果、過熱蒸気の損失が防止されるため、中圧蒸気タービンの稼働効率を向上することができ、サイクル効率を向上することができる。しかも、連通流路がノズル部静翼を貫通して設けられるため、ノズル部静翼を冷却することができ、中圧蒸気タービンの高温化に対してノズル部静翼の耐久性を向上することができる。
また、第10の発明の蒸気タービンでは、第9の発明において、前記連通流路は、前記ノズル部静翼を貫通して前記蒸気通路に開口する冷却孔を含むことを特徴とする。
この蒸気タービンによれば、冷却蒸気がノズル部静翼を貫通する冷却孔を通じて蒸気通路に吐出される。この結果、ノズル部静翼を冷却することができ、中圧蒸気タービンのさらなる高温化に対してノズル部静翼の耐久性を向上することができる。
また、第11の発明の蒸気タービンでは、第9または第10の発明において、前記連通流路は、前記隙間に連通する開口に設けられる冷却蒸気ノズルを含むことを特徴とする。
この蒸気タービンによれば、冷却蒸気ノズルにより連通流路から隙間に吐出される冷却蒸気の流速が上昇する。この結果、冷却蒸気の温度を下げることができ、冷却効率を向上することができる。
また、第12の発明の蒸気タービンでは、第11の発明において、前記冷却蒸気ノズルは、前記ロータの回転方向に先端を向けて設けられることを特徴とする。
この蒸気タービンによれば、冷却蒸気ノズルにより冷却蒸気がロータの回転方向に沿って連通流路から隙間に吐出される。この結果、ロータの回転速度と冷却蒸気の速度の差によって生じる摩擦損失を低減することができる。
また、第13の発明の蒸気タービンでは、第4の発明において、前記中圧蒸気タービンは、前記蒸気通路をなす前記車室に、前記ロータの外周面との間に前記蒸気通路に連通する隙間を有して蒸気通路静翼が取り付けられており、前記連通流路は、前記蒸気通路静翼を貫通して前記隙間に連通して設けられることを特徴とする。
この蒸気タービンによれば、中圧蒸気タービンに供給される過熱蒸気よりも高圧で、かつ低温の冷却蒸気が連通流路を介して蒸気通路静翼とロータの外周面との隙間に吐出されるため、ロータを冷却することができる。しかも、連通流路が蒸気通路静翼を貫通して設けられるため、蒸気通路静翼を冷却することができ、中圧蒸気タービンの高温化に対して蒸気通路静翼の耐久性を向上することができる。
また、第14の発明の蒸気タービンでは、第13の発明において、前記連通流路は、前記蒸気通路静翼を貫通して前記蒸気通路に開口する冷却孔を含むことを特徴とする。
この蒸気タービンによれば、冷却蒸気が蒸気通路静翼を貫通する冷却孔を通じて蒸気通路に吐出される。この結果、ノズル部静翼を冷却することができ、中圧蒸気タービンのさらなる高温化に対して蒸気通路静翼の耐久性を向上することができる。
また、第15の発明の蒸気タービンでは、第13または第14の発明において、前記連通流路は、前記隙間に連通する開口に設けられる冷却蒸気ノズルを含むことを特徴とする。
この蒸気タービンによれば、冷却蒸気ノズルにより連通流路から隙間に吐出される冷却蒸気の流速が上昇する。この結果、冷却蒸気の温度を下げることができ、冷却効率を向上することができる。
また、第16の発明の蒸気タービンでは、第15の発明において、前記冷却蒸気ノズルは、前記ロータの回転方向に先端を向けて設けられることを特徴とする。
この蒸気タービンによれば、冷却蒸気ノズルにより冷却蒸気がロータの回転方向に沿って連通流路から隙間に吐出される。この結果、ロータの回転速度と冷却蒸気の速度の差によって生じる摩擦損失を低減することができる。
また、第17の発明の蒸気タービンでは、第9〜第12のいずれか1つの発明において、前記中圧蒸気タービンは、前記ロータの外周に前記ノズル部静翼に隣接して動翼が取り付けられており、前記冷却蒸気供給部は、前記連通流路が貫通する前記ノズル部静翼に隣接する前記動翼の前記ノズル部静翼側の基端部、前記連通流路が貫通する前記ノズル部静翼の前記動翼側の先端部、の少なくとも一方に設けられる突起部を含むことを特徴とする。
また、第18の発明の蒸気タービンでは、第13〜第16のいずれか1つの発明において、前記中圧蒸気タービンは、前記ロータの外周に前記蒸気通路静翼に隣接して動翼が取り付けられており、前記冷却蒸気供給部は、前記連通流路が貫通する前記蒸気通路静翼に隣接する前記動翼の前記蒸気通路静翼側の基端部、前記連通流路が貫通する前記蒸気通路静翼の前記動翼側の先端部、の少なくとも一方に設けられる突起部を含むことを特徴とする。
この蒸気タービンによれば、突起部により静翼の先端部と動翼の基端部との間において、蒸気通路に向かう冷却蒸気に渦を生じさせる。この結果、蒸気通路の過熱蒸気と、蒸気通路に向かう冷却蒸気とが複雑に混ざって冷却蒸気の温度が上昇することを防止し、冷却効率を高めることができる。
本発明によれば、別の動力源を必要とせず、かつコンバインドサイクルプラントにおけるサイクル効率の低下を防ぐことができる。
図1は、本発明の実施形態に係るコンバインドサイクルプラントの一例を示す概略構成図である。 図2は、本発明の実施形態に係るコンバインドサイクルプラントの他の例を示す概略構成図である。 図3は、本発明の実施形態に係る冷却蒸気供給部の一例を示す概略構成図である。 図4は、本発明の実施形態に係る冷却蒸気供給部の一例を示す概略構成図である。 図5は、本発明の実施形態に係る冷却蒸気供給部の一例を示す概略構成図である。 図6は、本発明の実施形態に係る冷却蒸気供給部の一例を示す概略構成図である。 図7は、本発明の実施形態に係る冷却蒸気供給部の一例を示す概略構成図である。 図8は、本発明の実施形態に係る冷却蒸気供給部の一例を示す概略構成図である。 図9は、本発明の実施形態に係る冷却蒸気供給部の一例を示す概略構成図である。 図10は、本発明の実施形態に係る冷却蒸気供給部の一例を示す概略構成図である。 図11は、本発明の実施形態に係る冷却蒸気供給部の一例を示す概略構成図である。 図12は、本発明の実施形態に係る冷却蒸気供給部の一例を示す概略構成図である。 図13は、本発明の実施形態に係る冷却蒸気供給部の一例を示す概略構成図である。 図14は、本発明の実施形態に係る冷却蒸気供給部の一例を示す概略構成図である。 図15は、本発明の実施形態に係る冷却蒸気供給部の一例を示す概略構成図である。 図16は、本発明の実施形態に係る冷却蒸気供給部の一例を示す概略構成図である。
以下に、本発明に係る実施形態を図面に基づいて詳細に説明する。なお、この実施形態によりこの発明が限定されるものではない。また、下記実施形態における構成要素には、当業者が置換可能かつ容易なもの、あるいは実質的に同一のものが含まれる。
図1は、本実施形態に係るコンバインドサイクルプラントの一例を示す概略構成図である。図2は、本実施形態に係るコンバインドサイクルプラントの他の例を示す概略構成図である。図1および図2に示すコンバインドサイクルプラント100は、ガスタービン110、高圧蒸気タービン120、中圧蒸気タービン130、低圧蒸気タービン140で構成され、これらガスタービン110、高圧蒸気タービン120、中圧蒸気タービン130、低圧蒸気タービン140は、発電機150と同軸上に配置されている。
ガスタービン110は、圧縮機111、燃焼器112、タービン113で構成されている。圧縮機111において、圧縮機入口空気114が昇圧され燃焼器112に供給される。燃焼器112において、供給された空気と燃料115により高温の燃焼ガスが生成されタービン113に供給される。タービン113を通過する燃焼ガスはタービン113を回転駆動した後に排ガスとなって排出される。
コンバインドサイクルプラント100は、ガスタービン110におけるタービン113から排出される排ガスを加熱源として水から過熱蒸気を生成するボイラ(排熱回収ボイラ)1を備える。このボイラ1により生成される過熱蒸気により高圧蒸気タービン120、中圧蒸気タービン130、低圧蒸気タービン140が駆動される。そして、これらガスタービン110、高圧蒸気タービン120、中圧蒸気タービン130、低圧蒸気タービン140の駆動により発電機150で発電される。また、低圧蒸気タービン140に利用された蒸気は、当該低圧蒸気タービン140に接続された復水器160により復水とされ、過熱蒸気を生成するための水としてボイラ1に送られる。
ボイラ1は、ガスタービン110におけるタービン113の排気側に設けられた煙道113aに接続される。ボイラ1は、排ガスの流れの下流側から、低圧節炭器10、低圧ドラム11、低圧蒸発器12、中圧節炭器13、高圧一次節炭器14、中圧ドラム15、中圧蒸発器16、低圧過熱器17、高圧二次節炭器18、中圧過熱器19、高圧ドラム20、高圧蒸発器21、高圧一次過熱器22、一次再熱器23、二次再熱器24、高圧二次過熱器25が設けられ、かつ復水ポンプ26、中圧給水ポンプ27、高圧給水ポンプ28が設けられている。
このボイラ1は、低圧蒸気タービン140を駆動するための低圧の過熱蒸気を生成する低圧系と、中圧蒸気タービン130を駆動するための中圧の過熱蒸気を生成する中圧系と、高圧蒸気タービン120を駆動するための高圧の過熱蒸気を生成する高圧系と、を有している。低圧系は、低圧節炭器10、低圧ドラム11、低圧蒸発器12、低圧過熱器17、復水ポンプ26で構成される。中圧系は、中圧節炭器13、中圧ドラム15、中圧蒸発器16、中圧過熱器19、一次再熱器23、二次再熱器24、中圧給水ポンプ27で構成される。高圧系は、高圧一次節炭器14、高圧二次節炭器18、高圧ドラム20、高圧蒸発器21、高圧一次過熱器22、高圧二次過熱器25、高圧給水ポンプ28で構成される。
低圧系において、低圧節炭器10は、接続ライン30で復水器160と接続されている。この接続ライン30に復水ポンプ26が設けられる。また、低圧節炭器10は、3つに分岐する接続ライン31のうちの低圧分岐ライン31aで低圧ドラム11と接続される。低圧ドラム11は、低圧蒸発器12に接続される。さらに、低圧ドラム11は、接続ライン32で低圧過熱器17に接続される。低圧過熱器17は、接続ライン33で低圧蒸気タービン140の入口側に接続される。低圧蒸気タービン140の出口側は、接続ライン34で復水器160に接続される。
すなわち、低圧系は、復水器160の水(復水)が復水ポンプ26により接続ライン30を経て低圧節炭器10に流入して加熱され、接続ライン31の低圧分岐ライン31aを経て低圧ドラム11に流れ込む。低圧ドラム11に供給された水は、低圧蒸発器12で蒸発して飽和蒸気となって低圧ドラム11に戻され、接続ライン32を経て低圧過熱器17に送出される。低圧過熱器17にて飽和蒸気が過熱され、この過熱蒸気は、接続ライン33を経て低圧蒸気タービン140に供給される。低圧蒸気タービン140を駆動して排出された蒸気は、接続ライン34を経て復水器160に導かれて水(復水)となり、復水ポンプ26により接続ライン30を経て低圧節炭器10に送り出される。
中圧系において、中圧節炭器13は、低圧節炭器10に対して3つに分岐する接続ライン31のうちの中圧分岐ライン31bで接続される。この中圧分岐ライン31bに中圧給水ポンプ27が設けられる。また、中圧節炭器13は、接続ライン35で中圧ドラム15に接続される。この接続ライン35は、途中に流量調整弁36が設けられる。中圧ドラム15は、中圧蒸発器16に接続される。また、中圧ドラム15は、接続ライン37で中圧過熱器19に接続される。中圧過熱器19は、接続ライン38で一次再熱器23の入口側に接続される。また、中圧系において、一次再熱器23は、接続ライン40で高圧蒸気タービン120の出口側に接続される。また、一次再熱器23は、接続ライン41で二次再熱器24に接続される。そして、二次再熱器24は、接続ライン42で中圧蒸気タービン130の入口側に接続される。中圧蒸気タービン130の出口側は、接続ライン39で低圧蒸気タービン140の入口側に接続される。
すなわち、中圧系は、低圧節炭器10で加熱された水が中圧給水ポンプ27により接続ライン31の中圧分岐ライン31bを経て中圧節炭器13に流入してさらに加熱され、接続ライン35を経て中圧ドラム15に流れ込む。中圧ドラム15に供給された水は、中圧蒸発器16で蒸発して飽和蒸気となって中圧ドラム15に戻され、接続ライン37を経て中圧過熱器19に送出される。中圧過熱器19にて飽和蒸気が過熱され、この過熱蒸気は、接続ライン38を経て一次再熱器23に供給される。また、中圧系では、高圧蒸気タービン120を駆動して排出された蒸気は、接続ライン40を経て一次再熱器23に送出される。一次再熱器23にて蒸気が過熱され、この過熱蒸気は、接続ライン41を経て二次再熱器24に送出される。二次再熱器24にて蒸気がさらに過熱され、この過熱蒸気は、接続ライン42を経て中圧蒸気タービン130に供給される。なお、中圧蒸気タービン130を駆動して排出された蒸気は、接続ライン39を経て低圧蒸気タービン140に供給される。
なお、一次再熱器23および二次再熱器24は、蒸気を過熱するものであることから、過熱器と同様の機能を有し、本実施形態において過熱器に含まれる。つまり、一次再熱器23を第一過熱器ともいい、二次再熱器24を第二過熱器ともいう。
高圧系において、高圧一次節炭器14は、低圧節炭器10に対して3つに分岐する接続ライン31のうちの高圧分岐ライン31cで接続される。この高圧分岐ライン31cに高圧給水ポンプ28が設けられる。また、高圧一次節炭器14は、接続ライン43で高圧二次節炭器18に接続される。高圧二次節炭器18は、接続ライン44で高圧ドラム20に接続される。この接続ライン44は、途中に流量調整弁45が設けられる。高圧ドラム20は、高圧蒸発器21に接続される。また、高圧ドラム20は、接続ライン46で高圧一次過熱器22に接続される。高圧一次過熱器22は、接続ライン47で高圧二次過熱器25に接続される。高圧二次過熱器25は、接続ライン48で高圧蒸気タービン120の入口側に接続される。高圧蒸気タービン120の出口側は、上述したように接続ライン40で中圧系の一次再熱器23に接続される。
すなわち、高圧系は、低圧節炭器10で加熱された水が高圧給水ポンプ28により接続ライン31の高圧分岐ライン31cを経て高圧一次節炭器14に流入してさらに加熱され、さらに接続ライン43を経て高圧二次節炭器18に流入してさらに加熱されて接続ライン44を経て高圧ドラム20に流れ込む。高圧ドラム20に供給された水は、高圧蒸発器21で蒸発して飽和蒸気となって高圧ドラム20に戻され、接続ライン46を経て高圧一次過熱器22に送出される。高圧一次過熱器22にて飽和蒸気が過熱され、この過熱蒸気は、接続ライン47を経て高圧二次過熱器25に送出される。高圧二次過熱器25にて過熱蒸気がさらに過熱され、この過熱蒸気は、接続ライン48を経て高圧蒸気タービン120に供給される。
このようなコンバインドサイクルプラント100において、本実施形態の蒸気タービンは、中圧蒸気タービン130の内部を冷却する冷却蒸気供給部51を備える。冷却蒸気供給部51は、図1および図2に示すように、中圧蒸発器16の出口から中圧過熱器19および一次再熱器23を経て二次再熱器24の内部までの間と、中圧蒸気タービン130の内部とを連通する接続ライン51Aを含む。具体的に、接続ライン51Aは、中圧ドラム15と中圧過熱器19とを接続する接続ライン37、中圧過熱器19の内部、中圧過熱器19と一次再熱器23とを接続する接続ライン38(および接続ライン40の一部)、一次再熱器23の内部、一次再熱器23と二次再熱器24とを接続する接続ライン41、二次再熱器24の内部、の少なくとも一部と、中圧蒸気タービン130の内部と、を連通する。
上述したように、中圧蒸気タービン130に供給される過熱蒸気は、二次再熱器24から接続ライン42を経るが、接続ライン42を経る過程で圧力が低下する。従って、中圧蒸発器16の出口から中圧過熱器19および一次再熱器23を経て二次再熱器24の内部までの間の蒸気は、中圧蒸気タービン130に供給される過熱蒸気よりも高圧で、かつ低温である。従って、中圧蒸気タービン130に供給される過熱蒸気よりも高圧で、かつ低温の冷却蒸気を中圧蒸気タービン130の内部に供給することが可能である。
このように、本実施形態の蒸気タービンによれば、中圧蒸発器16の出口から中圧過熱器19および一次再熱器23を経て二次再熱器24の内部までの間と、中圧蒸気タービン130の内部とを連通する接続ライン51Aを含む冷却蒸気供給部51を備えることで、コンバインドサイクルプラント100内において、中圧蒸気タービン130に供給される過熱蒸気よりも高圧で、かつ低温の冷却蒸気を、中圧蒸気タービン130の内部に供給することができる。この結果、別の動力源を必要とせず、中圧蒸気タービン130の内部のロータなどの高温部を冷却することができる。また、コンバインドサイクルプラント100内の発生蒸気を用い、中圧蒸気タービン130の内部の流体を用いて冷却しないため、中圧蒸気タービン130の稼働効率の低下を防ぎ、その結果サイクル効率の低下を防ぐことができる。
また、本実施形態の蒸気タービンでは、図1に示すように、接続ライン51Aは、中圧過熱器19の出口から一次再熱器23の入口までの間の接続ライン38(および接続ライン40の一部)と、中圧蒸気タービン130の内部と、を連通することが好ましい。
中圧過熱器19の出口から一次再熱器23の入口までの間の接続ライン38(および接続ライン40の一部)から、中圧蒸気タービン130の内部に冷却蒸気を供給すると、一次再熱器23および二次再熱器24へ供給する蒸気が減るため、一次再熱器23および二次再熱器24での過熱効率が向上し中圧蒸気タービン130に供給する過熱蒸気の温度が上昇する。この結果、中圧蒸気タービン130の稼働効率を向上することができ、サイクル効率を向上することができる。
また、中圧過熱器19の出口から一次再熱器23の入口までの間の接続ライン38(および接続ライン40の一部)から、中圧蒸気タービン130の内部に冷却蒸気を供給すると、中圧蒸気タービン130に供給する過熱蒸気の温度を一定とする場合に、中圧蒸発器16から得る蒸気量を増すことができるため、中圧蒸気タービン130への過熱蒸気の供給量を増加できる。この結果、中圧蒸気タービン130の稼働効率を向上することができ、サイクル効率を向上することができる。
また、本実施形態の蒸気タービンでは、図2に示すように、接続ライン51Aは、一次再熱器23の出口から二次再熱器24の入口までの間の接続ライン41と、中圧蒸気タービン130の内部と、を連通することが好ましい。
一次再熱器23の出口から二次再熱器24の入口までの間の接続ライン41から、中圧蒸気タービン130の内部に冷却蒸気を供給すると、二次再熱器24へ供給する蒸気が減るため、二次再熱器24での過熱効率が向上し中圧蒸気タービン130に供給する過熱蒸気の温度が上昇する。この結果、中圧蒸気タービン130の稼働効率を向上することができ、サイクル効率を向上することができる。
また、一次再熱器23の出口から二次再熱器24の入口までの間の接続ライン41から、中圧蒸気タービン130の内部に冷却蒸気を供給すると、中圧蒸気タービン130に供給する過熱蒸気の温度を一定とする場合に、中圧蒸発器16から得る蒸気量を増すことができるため、中圧蒸気タービン130への過熱蒸気の供給量を増加できる。この結果、中圧蒸気タービン130の稼働効率を向上することができ、サイクル効率を向上することができる。
図3〜図16は、本実施形態に係る冷却蒸気供給部の一例を示す概略構成図である。
中圧蒸気タービン130は、ロータ131と、車室132と、蒸気通路133と、中圧蒸気供給部134と、を含む。ロータ131は、自身の回転の軸心Sに沿って延在して設けられている。車室132は、ロータ131を格納し、かつロータ131を軸心S廻りに回転可能に支持する。蒸気通路133は、ロータ131の延在方向に沿ってロータ131と車室132との間に設けられた環状の空間である。中圧蒸気供給部134は、車室132の外部から車室132を貫通して蒸気通路133に至り連通して設けられ、接続ライン42が接続されて二次再熱器24で過熱された蒸気が供給されることで、当該蒸気を蒸気通路133に供給する。
中圧蒸気供給部134は、中圧蒸気ノズル部134Aを含む。中圧蒸気ノズル部134Aは、ロータ131の外周を囲んで環状に形成されてその外面とロータ131の外周面との間に蒸気通路133に連通する隙間135Aを有して車室132に取り付けられている。そして、中圧蒸気ノズル部134Aは、その内部に環状に沿って形成された中圧蒸気ノズル室134Aaと、中圧蒸気ノズル室134Aaからロータ131の延在方向に向いて蒸気通路133に通じる開口134Abとを有する。中圧蒸気ノズル部134Aは、接続ライン42が接続され、中圧蒸気ノズル室134Aaに二次再熱器24で過熱された蒸気が供給され、開口134Abから蒸気通路133に吐出される。
また、中圧蒸気供給部134は、中圧蒸気ノズル部134Aにおける中圧蒸気ノズル室134Aaの開口134Abにノズル部静翼136Aが環状に沿って複数取り付けられている。ノズル部静翼136Aは、ロータ131側が先端部であり車室132側が基端部となる。また、蒸気通路133内において、車室132に蒸気通路静翼136Bが環状に沿って複数取り付けられている。蒸気通路静翼136Bは、ロータ131の延在方向に沿って複数段設けられている。蒸気通路静翼136Bは、ロータ131側が先端部であって環状部材136Baが取り付けられており、環状部材136Baとロータ131の外周面との間に隙間135Bを有し、車室132に取り付けられた側が基端部となる。また、蒸気通路133内において、ロータ131の外周に静翼136A,136Bに隣接して動翼137が環状に沿って複数取り付けられている。動翼137は、ロータ131の延在方向に沿って複数段設けられている。動翼137は、ロータ131に取り付けられた側が基端部であってロータ131との間に環状部材137aが取り付けられており、車室132に向く側が先端部となる。
従って、中圧蒸気タービン130は、中圧蒸気ノズル室134Aaに二次再熱器24で過熱された蒸気が供給され、開口134Abから蒸気通路133に吐出され、静翼136A,136Bおよび動翼137によりロータ131が回転する。
このような構成の中圧蒸気タービン130に対し、本実施形態の蒸気タービンでは、図3〜図16に示すように、冷却蒸気供給部51は、接続ライン51Aに接続されて、中圧蒸気供給部134とは別に車室132の外部から車室132を貫通して蒸気通路133に至り連通する連通流路51Bを含む。
図3に示す冷却蒸気供給部51では、連通流路51Bは、中圧蒸気ノズル部134Aにおける中圧蒸気ノズル室134Aaの開口134Abと反対側で、車室132を貫通し、隙間135Aに連通してロータ131の外周面に向けて開口して設けられる。連通流路51Bは、中圧蒸気ノズル部134Aの周方向(ロータ131の回転方向)に沿って複数設けられていてもよく、単一で設けられていてもよい。連通流路51Bが複数の場合は、接続ライン51Aが複数に分岐して各連通流路51Bに接続される。
従って、図3に示すように、接続ライン51Aを介して供給される冷却蒸気Cは、連通流路51Bを介して中圧蒸気供給部134とロータ131の外周面との隙間135Aであってロータ131の外周面に向けて吐出され、隙間135Aを介してロータ131の延在方向に沿って流動して蒸気通路133に至り、ノズル部静翼136Aと動翼137との間にて中圧蒸気供給部134を介して蒸気通路133に供給される過熱蒸気Gと合流する。
この図3に示す冷却蒸気供給部51によれば、中圧蒸気タービン130に供給される過熱蒸気Gよりも高圧で、かつ低温の冷却蒸気Cが連通流路51Bを介して中圧蒸気供給部134とロータ131の外周面との隙間135Aに吐出されるため、ロータ131を冷却することができる。しかも、図3に示す冷却蒸気供給部51によれば、中圧蒸気タービン130に供給される過熱蒸気Gよりも高圧で、かつ低温の冷却蒸気Cが連通流路51Bを介して中圧蒸気供給部134とロータ131の外周面との隙間135Aに吐出されることで、過熱蒸気Gが隙間135Aを介して蒸気通路133から漏れ出る事態を防ぐ。この結果、過熱蒸気Gの損失が防止されるため、中圧蒸気タービン130の稼働効率を向上することができ、サイクル効率を向上することができる。
図4に示す冷却蒸気供給部51では、図3に示す連通流路51Bは、隙間135Aに連通する開口に設けられる冷却蒸気ノズル51Cを含むことが好ましい。冷却蒸気ノズル51Cは、図5に示すように、連通流路51Bにおける隙間135Aに連通する開口を狭めるもので、これにより連通流路51Bから隙間135Aに吐出される冷却蒸気Cの流速が上昇する。この結果、冷却蒸気Cの温度を下げることができ、冷却効率を向上することができる。
また、図5に示すように、冷却蒸気ノズル51Cは、ロータ131の回転方向Rに先端51Caを向けて設けられていることが好ましい。これにより冷却蒸気Cがロータ131の回転方向Rに沿って連通流路51Bから隙間135Aに吐出される。この結果、ロータ131の回転速度と冷却蒸気Cの速度の差によって生じる摩擦損失を低減することができる。
なお、冷却蒸気ノズル51Cは、図4および図5に示すように連通流路51Bと別部材の板材である構成に限らず、連通流路51Bの開口自体が窄まって形成されていてもよい。
図6に示す冷却蒸気供給部51では、図3に示す連通流路51Bが貫通する隙間135Aが蒸気通路133に至る部分であって、ノズル部静翼136Aに隣接する動翼137のノズル部静翼136A側の基端部の環状部材137aに設けられる突起部51Eaを含むことが好ましい。また、図6に示す冷却蒸気供給部51では、図3に示す連通流路51Bが貫通する隙間135Aが蒸気通路133に至る部分であって、ノズル部静翼136Aの先端部であり動翼137の基端部の環状部材137aに対向する中圧蒸気ノズル部134Aの一部に設けられる突起部51Ebを含むことが好ましい。
突起部51Ea,51Ebは、中圧蒸気タービン130の周方向(ロータ131の回転方向)に沿って連続して設けられていることが好ましい。
これにより突起部51Ea,51Ebは、ノズル部静翼136Aが設けられた中圧蒸気ノズル部134Aにおける中圧蒸気ノズル室134Aaの開口134Abと、動翼137の基端部の環状部材137aとの間において、蒸気通路133に向かう冷却蒸気Cに渦を生じさせる。この結果、蒸気通路133の過熱蒸気Gと、蒸気通路133に向かう冷却蒸気Cとが複雑に混ざって冷却蒸気Cの温度が上昇することを防止し、冷却効率を高めることができる。
なお、突起部51Ea,51Ebは、いずれか一方を設ける構成であってもよいが、突起部51Ea,51Ebの双方を設けることが好ましい。突起部51Ea,51Ebの双方を設ける場合、突起部51Eaをロータ131に近い位置に設け、突起部51Ebをロータ131から遠い位置に設けることが好ましい。これによりノズル部静翼136Aに貫通する連通流路51Bからロータ131の外周面に向けて吐出された冷却蒸気Cに対し最初に突起部51Eaにより渦を生じさせ、次に突起部51Ebにより渦を生じさせる。この結果、蒸気通路133の過熱蒸気Gと、蒸気通路133に向かう冷却蒸気Cとが複雑に混ざることを防止する効果を顕著に得ることができる。また、突起部51Ea,51Ebは、冷却蒸気ノズル51Cと共に設けられてもよい。
図7に示す冷却蒸気供給部51では、連通流路51Bは、車室132、中圧蒸気ノズル部134Aにおける中圧蒸気ノズル室134Aaの開口134Ab、およびノズル部静翼136Aを貫通し、隙間135Aに連通してロータ131の外周面に向けて開口して設けられる。連通流路51Bは、中圧蒸気ノズル部134Aの周方向(ロータ131の回転方向)に沿って複数設けられていてもよく、単一で設けられていてもよい。連通流路51Bが複数の場合は、接続ライン51Aが複数に分岐して各連通流路51Bに接続される。
従って、図7に示すように、接続ライン51Aを介して供給される冷却蒸気Cは、連通流路51Bを介して中圧蒸気供給部134とロータ131の外周面との隙間135Aであってロータ131の外周面に向けて吐出され、隙間135Aを介してロータ131の延在方向に沿って流動して蒸気通路133に至り、ノズル部静翼136Aと動翼137との間にて蒸気通路133に供給される過熱蒸気Gと合流する。
この図7に示す冷却蒸気供給部51によれば、中圧蒸気タービン130に供給される過熱蒸気Gよりも高圧で、かつ低温の冷却蒸気Cが連通流路51Bを介して中圧蒸気供給部134とロータ131の外周面との隙間135Aに吐出されるため、ロータ131を冷却することができる。しかも、図7に示す冷却蒸気供給部51によれば、中圧蒸気タービン130に供給される過熱蒸気Gよりも高圧で、かつ低温の冷却蒸気Cが連通流路51Bを介して中圧蒸気供給部134とロータ131の外周面との隙間135Aに吐出されることで、過熱蒸気Gが隙間135Aを介して蒸気通路133から漏れ出る事態を防ぐ。この結果、過熱蒸気Gの損失が防止されるため、中圧蒸気タービン130の稼働効率を向上することができ、サイクル効率を向上することができる。しかも、図7に示す冷却蒸気供給部51によれば、連通流路51Bがノズル部静翼136Aを貫通して設けられるため、ノズル部静翼136Aを冷却することができ、中圧蒸気タービン130の高温化に対してノズル部静翼136Aの耐久性を向上することができる。
図8に示す冷却蒸気供給部51では、図7に示す連通流路51Bは、ノズル部静翼136Aを貫通して蒸気通路133に開口する冷却孔51Dを含む。これにより冷却蒸気Cがノズル部静翼136Aを貫通する冷却孔51Dを通じて蒸気通路133に吐出される。この結果、ノズル部静翼136Aを冷却することができ、中圧蒸気タービン130のさらなる高温化に対してノズル部静翼136Aの耐久性を向上することができる。
図9に示す冷却蒸気供給部51では、図7に示す連通流路51Bは、隙間135Aに連通する開口に設けられる冷却蒸気ノズル51Cを含むことが好ましい。冷却蒸気ノズル51Cは、図10に示すように、連通流路51Bにおける隙間135Aに連通する開口を狭めるもので、これにより連通流路51Bから隙間135Aに吐出される冷却蒸気Cの流速が上昇する。この結果、冷却蒸気Cの温度を下げることができ、冷却効率を向上することができる。
また、図10に示すように、冷却蒸気ノズル51Cは、ロータ131の回転方向Rに先端51Caを向けて設けられていることが好ましい。これにより冷却蒸気Cがロータ131の回転方向Rに沿って連通流路51Bから隙間135Aに吐出される。この結果、ロータ131の回転速度と冷却蒸気Cの速度の差によって生じる摩擦損失を低減することができる。
なお、冷却蒸気ノズル51Cは、図9および図10に示すように連通流路51Bと別部材の板材である構成に限らず、連通流路51Bの開口自体が窄まって形成されていてもよい。また、冷却蒸気ノズル51Cは、冷却孔51Dと共に設けられてもよい。
図11に示す冷却蒸気供給部51では、図7に示す連通流路51Bが貫通するノズル部静翼136Aに隣接する動翼137のノズル部静翼136A側の基端部の環状部材137aに設けられる突起部51Eaを含むことが好ましい。また、図11に示す冷却蒸気供給部51では、図7に示す連通流路51Bが貫通するノズル部静翼136Aの先端部であり動翼137の基端部の環状部材137aに対向する中圧蒸気ノズル部134Aの一部に設けられる突起部51Ebを含むことが好ましい。
突起部51Ea,51Ebは、中圧蒸気タービン130の周方向(ロータ131の回転方向)に沿って連続して設けられていることが好ましい。
これにより突起部51Ea,51Ebは、ノズル部静翼136Aが設けられた中圧蒸気ノズル部134Aにおける中圧蒸気ノズル室134Aaの開口134Abと、動翼137の基端部の環状部材137aとの間において、蒸気通路133に向かう冷却蒸気Cに渦を生じさせる。この結果、蒸気通路133の過熱蒸気Gと、蒸気通路133に向かう冷却蒸気Cとが複雑に混ざって冷却蒸気Cの温度が上昇することを防止し、冷却効率を高めることができる。
なお、突起部51Ea,51Ebは、いずれか一方を設ける構成であってもよいが、突起部51Ea,51Ebの双方を設けることが好ましい。突起部51Ea,51Ebの双方を設ける場合、突起部51Eaをロータ131に近い位置に設け、突起部51Ebをロータ131から遠い位置に設けることが好ましい。これによりノズル部静翼136Aに貫通する連通流路51Bからロータ131の外周面に向けて吐出された冷却蒸気Cに対し最初に突起部51Eaにより渦を生じさせ、次に突起部51Ebにより渦を生じさせる。この結果、蒸気通路133の過熱蒸気Gと、蒸気通路133に向かう冷却蒸気Cとが複雑に混ざることを防止する効果を顕著に得ることができる。また、突起部51Ea,51Ebは、冷却蒸気ノズル51Cや冷却孔51Dと共に設けられてもよい。
図12に示す冷却蒸気供給部51では、連通流路51Bは、車室132、蒸気通路静翼136Bおよび蒸気通路静翼136Bの先端部の環状部材136Baを貫通し、隙間135Bに連通してロータ131の外周面に向けて開口して設けられる。連通流路51Bは、中圧蒸気ノズル部134Aの周方向(ロータ131の回転方向)に沿って複数設けられていてもよく、単一で設けられていてもよい。連通流路51Bが複数の場合は、接続ライン51Aが複数に分岐して各連通流路51Bに接続される。
従って、図12に示すように、接続ライン51Aを介して供給される冷却蒸気Cは、連通流路51Bを介して蒸気通路静翼136Bの環状部材136Baとロータ131の外周面との隙間135Bであってロータ131の外周面に向けて吐出され、隙間135Bを介してロータ131の延在方向に沿って流動して蒸気通路133に至り、蒸気通路静翼136Bと動翼137との間にて蒸気通路133に供給される過熱蒸気Gと合流する。
この図12に示す冷却蒸気供給部51によれば、中圧蒸気タービン130に供給される過熱蒸気Gよりも高圧で、かつ低温の冷却蒸気Cが連通流路51Bを介して蒸気通路静翼136Bの環状部材136Baとロータ131の外周面との隙間135Bに吐出されるため、ロータ131を冷却することができる。しかも、図12に示す冷却蒸気供給部51によれば、連通流路51Bが蒸気通路静翼136Bを貫通して設けられるため、蒸気通路静翼136Bを冷却することができ、中圧蒸気タービン130の高温化に対して蒸気通路静翼136Bの耐久性を向上することができる。
図13に示す冷却蒸気供給部51では、図12に示す連通流路51Bは、蒸気通路静翼136Bを貫通して蒸気通路133に開口する冷却孔51Dを含む。これにより冷却蒸気Cが蒸気通路静翼136Bを貫通する冷却孔51Dを通じて蒸気通路133に吐出される。この結果、ノズル部静翼136Aを冷却することができ、中圧蒸気タービン130のさらなる高温化に対して蒸気通路静翼136Bの耐久性を向上することができる。
図14に示す冷却蒸気供給部51では、図12に示す連通流路51Bは、隙間135Bに連通する開口に設けられる冷却蒸気ノズル51Cを含むことが好ましい。冷却蒸気ノズル51Cは、図15に示すように、連通流路51Bにおける隙間135Bに連通する開口を狭めるもので、これにより連通流路51Bから隙間135Bに吐出される冷却蒸気Cの流速が上昇する。この結果、冷却蒸気Cの温度を下げることができ、冷却効率を向上することができる。
また、図15に示すように、冷却蒸気ノズル51Cは、ロータ131の回転方向Rに先端51Caを向けて設けられていることが好ましい。これにより冷却蒸気Cがロータ131の回転方向Rに沿って連通流路51Bから隙間135Bに吐出される。この結果、ロータ131の回転速度と冷却蒸気Cの速度の差によって生じる摩擦損失を低減することができる。
なお、冷却蒸気ノズル51Cは、図14および図15に示すように連通流路51Bと別部材の板材である構成に限らず、連通流路51Bの開口自体が窄まって形成されていてもよい。また、冷却蒸気ノズル51Cは、冷却孔51Dと共に設けられてもよい。
図16に示す冷却蒸気供給部51では、図12に示す連通流路51Bが貫通する蒸気通路静翼136Bに隣接する動翼137の蒸気通路静翼136B側の基端部の環状部材137aに設けられる突起部51Eaを含むことが好ましい。また、図16に示す冷却蒸気供給部51では、図12に示す連通流路51Bが貫通する蒸気通路静翼136Bの先端部であり動翼137の基端部の環状部材137aに対向する環状部材136Baに設けられる突起部51Ebを含むことが好ましい。
突起部51Ea,51Ebは、中圧蒸気タービン130の周方向(ロータ131の回転方向)に沿って連続して設けられていることが好ましい。
これにより突起部51Ea,51Ebは、蒸気通路静翼136Bの先端部の環状部材136Baと、動翼137の基端部の環状部材137aとの間において、蒸気通路133に向かう冷却蒸気Cに渦を生じさせる。この結果、蒸気通路133の過熱蒸気Gと、蒸気通路133に向かう冷却蒸気Cとが複雑に混ざって冷却蒸気Cの温度が上昇することを防止し、冷却効率を高めることができる。
なお、突起部51Ea,51Ebは、いずれか一方を設ける構成であってもよいが、突起部51Ea,51Ebの双方を設けることが好ましい。突起部51Ea,51Ebの双方を設ける場合、突起部51Eaをロータ131に近い位置に設け、突起部51Ebをロータ131から遠い位置に設けることが好ましい。これにより蒸気通路静翼136Bに貫通する連通流路51Bからロータ131の外周面に向けて吐出された冷却蒸気Cに対し最初に突起部51Eaにより渦を生じさせ、次に突起部51Ebにより渦を生じさせる。この結果、蒸気通路133の過熱蒸気Gと、蒸気通路133に向かう冷却蒸気Cとが複雑に混ざることを防止する効果を顕著に得ることができる。また、突起部51Ea,51Ebは、冷却蒸気ノズル51Cや冷却孔51Dと共に設けられてもよい。なお、図16に示す突起部51Ea,51Ebは、蒸気通路静翼136Bの先端部の環状部材136Baと、動翼137の基端部の環状部材137aとの間において、過熱蒸気Gの流れの下流側に設けられているが、過熱蒸気Gの流れの上流側に設けてもよい。
なお、図12〜図16に示す中圧蒸気タービン130は、高圧蒸気タービン120と一体とされる構成を含む。この場合、隙間135Aに、高圧蒸気タービン120の駆動に用いられて過熱蒸気Gよりも高圧で、かつ低温の蒸気が供給される。このため、隙間135Aにおいてロータ131が冷却され、しかも当該隙間135Aから過熱蒸気Gが漏れ出ることが防止される。そして、この構成においては、蒸気通路静翼136Bに貫通する連通流路51Bからロータ131の外周面に向けて隙間135Bに冷却蒸気Cを吐出させ、隙間135B周辺でロータ131を冷却する。
1 ボイラ
10 低圧節炭器
11 低圧ドラム
12 低圧蒸発器
13 中圧節炭器
14 高圧一次節炭器
15 中圧ドラム
16 中圧蒸発器
17 低圧過熱器
18 高圧二次節炭器
19 中圧過熱器
20 高圧ドラム
21 高圧蒸発器
22 高圧一次過熱器
23 一次再熱器
24 二次再熱器
25 高圧二次過熱器
26 復水ポンプ
27 中圧給水ポンプ
28 高圧給水ポンプ
30 接続ライン
31 接続ライン
31a 低圧分岐ライン
31b 中圧分岐ライン
31c 高圧分岐ライン
32 接続ライン
33 接続ライン
34 接続ライン
35 接続ライン
36 流量調整弁
37 接続ライン
38 接続ライン
39 接続ライン
40 接続ライン
41 接続ライン
42 接続ライン
43 接続ライン
44 接続ライン
45 流量調整弁
46 接続ライン
47 接続ライン
48 接続ライン
49 接続ライン
51 冷却蒸気供給部
51A 接続ライン
51B 連通流路
51C 冷却蒸気ノズル
51Ca 先端
51D 冷却孔
51Ea 突起部
51Eb 突起部
100 コンバインドサイクルプラント
110 ガスタービン
111 圧縮機
112 燃焼器
113 タービン
113a 煙道
114 圧縮機入口空気
115 燃料
120 高圧蒸気タービン
130 中圧蒸気タービン
131 ロータ
132 車室
133 蒸気通路
134 中圧蒸気供給部
134A 中圧蒸気ノズル部
134Aa 中圧蒸気ノズル室
134Ab 開口
135A 隙間
135B 隙間
136A ノズル部静翼
136B 蒸気通路静翼
136Ba 環状部材
137 動翼
137a 環状部材
140 低圧蒸気タービン
150 発電機
160 復水器
C 冷却蒸気
G 過熱蒸気
R 回転方向
S 軸心

Claims (18)

  1. ガスタービンと、
    前記ガスタービンから排出される排ガスを加熱源とするボイラと、
    前記ボイラで発生した高圧蒸気により駆動する高圧蒸気タービンと、
    前記ボイラで発生した中圧蒸気により駆動する中圧蒸気タービンと、
    前記ボイラで発生した低圧蒸気および前記中圧蒸気タービンを経た蒸気により駆動する低圧蒸気タービンと、
    前記低圧蒸気タービンを経た蒸気を復水にする復水器と、
    前記復水器からの前記復水を前記ボイラに供給する復水ポンプと、
    を備えるコンバインドサイクルプラントに係り、
    前記ボイラは、前記復水器からの前記復水から蒸気を発生する中圧蒸発器と、前記中圧蒸発器で発生した蒸気を過熱する中圧過熱器と、前記中圧過熱器で過熱された蒸気を再過熱する一次再熱器と、前記一次再熱器で過熱された蒸気をさらに再過熱する二次再熱器と、を含み、前記二次再熱器で過熱された蒸気が前記中圧蒸気タービンの駆動に供給され、
    前記中圧蒸発器の出口から前記中圧過熱器および前記一次再熱器を経て前記二次再熱器内までの間と、前記中圧蒸気タービンの内部とを連通する接続ラインを含む冷却蒸気供給部を備えることを特徴とする蒸気タービン。
  2. 前記接続ラインは、前記中圧過熱器の出口から前記一次再熱器の入口までの間と、前記中圧蒸気タービンの内部とを連通することを特徴とする請求項1に記載の蒸気タービン。
  3. 前記接続ラインは、前記一次再熱器の出口から前記二次再熱器の入口までの間と、前記中圧蒸気タービンの内部とを連通することを特徴とする請求項1に記載の蒸気タービン。
  4. 前記中圧蒸気タービンは、
    自身の回転の軸心に沿って延在するロータと、
    前記ロータを格納する車室と、
    前記ロータの延在方向に沿って前記ロータと前記車室との間に設けられた蒸気通路と、
    前記車室の外部から前記車室を貫通して前記蒸気通路に至り連通して設けられ前記二次再熱器で過熱された蒸気が供給される中圧蒸気供給部と、
    を含み、
    前記冷却蒸気供給部は、
    前記接続ラインに接続されて前記中圧蒸気供給部とは別に前記車室の外部から前記車室を貫通して前記蒸気通路に至り連通する連通流路を含むことを特徴とする請求項1〜3のいずれか1つに記載の蒸気タービン。
  5. 前記中圧蒸気供給部は、
    前記ロータの外周を囲む環状に形成されてその外面と前記ロータの外周面との間に前記蒸気通路に連通する隙間を有して前記車室に取り付けられ、その内部に環状に沿って形成された中圧蒸気ノズル室と、前記中圧蒸気ノズル室から前記ロータの延在方向に向いて前記蒸気通路に連通する開口とを有し、前記中圧蒸気ノズル室に前記二次再熱器で過熱された蒸気が供給される中圧蒸気ノズル部を含み、
    前記連通流路は、
    前記中圧蒸気ノズル部における前記中圧蒸気ノズル室の前記開口と反対側で前記隙間に連通して設けられることを特徴とする請求項4に記載の蒸気タービン。
  6. 前記連通流路は、前記隙間に連通する開口に設けられる冷却蒸気ノズルを含むことを特徴とする請求項5に記載の蒸気タービン。
  7. 前記冷却蒸気ノズルは、前記ロータの回転方向に先端を向けて設けられることを特徴とする請求項6に記載の蒸気タービン。
  8. 前記中圧蒸気タービンは、
    前記中圧蒸気ノズル部における前記中圧蒸気ノズル室の前記開口にノズル部静翼が取り付けられ、かつ前記ロータの外周に前記ノズル部静翼に隣接して動翼が取り付けられており、
    前記冷却蒸気供給部は、
    前記動翼の前記ノズル部静翼側の基端部、前記ノズル部静翼の前記動翼側の先端部、の少なくとも一方に設けられる突起部を含むことを特徴とする請求項〜7のいずれか1つに記載の蒸気タービン。
  9. 前記中圧蒸気供給部は、
    前記ロータの外周を囲む環状に形成されてその外面と前記ロータの外周面との間に前記蒸気通路に連通する隙間を有して前記車室に取り付けられ、その内部に環状に沿って形成された中圧蒸気ノズル室と、前記中圧蒸気ノズル室から前記ロータの延在方向に向いて前記蒸気通路に連通する開口とを有し、前記中圧蒸気ノズル室に前記二次再熱器で過熱された蒸気が供給される中圧蒸気ノズル部を含み、
    前記中圧蒸気ノズル部は、前記中圧蒸気ノズル室の前記開口にノズル部静翼が取り付けられており、
    前記連通流路は、
    前記ノズル部静翼を貫通して前記隙間に連通して設けられることを特徴とする請求項4に記載の蒸気タービン。
  10. 前記連通流路は、前記ノズル部静翼を貫通して前記蒸気通路に開口する冷却孔を含むことを特徴とする請求項9に記載の蒸気タービン。
  11. 前記連通流路は、前記隙間に連通する開口に設けられる冷却蒸気ノズルを含むことを特徴とする請求項9または10に記載の蒸気タービン。
  12. 前記冷却蒸気ノズルは、前記ロータの回転方向に先端を向けて設けられることを特徴とする請求項11に記載の蒸気タービン。
  13. 前記中圧蒸気タービンは、
    前記蒸気通路をなす前記車室に、前記ロータの外周面との間に前記蒸気通路に連通する隙間を有して蒸気通路静翼が取り付けられており、
    前記連通流路は、
    前記蒸気通路静翼を貫通して前記隙間に連通して設けられることを特徴とする請求項4に記載の蒸気タービン。
  14. 前記連通流路は、前記蒸気通路静翼を貫通して前記蒸気通路に開口する冷却孔を含むことを特徴とする請求項13に記載の蒸気タービン。
  15. 前記連通流路は、前記隙間に連通する開口に設けられる冷却蒸気ノズルを含むことを特徴とする請求項13または14に記載の蒸気タービン。
  16. 前記冷却蒸気ノズルは、前記ロータの回転方向に先端を向けて設けられることを特徴とする請求項15に記載の蒸気タービン。
  17. 前記中圧蒸気タービンは、
    前記ロータの外周に前記ノズル部静翼に隣接して動翼が取り付けられており、
    前記冷却蒸気供給部は、
    前記連通流路が貫通する前記ノズル部静翼に隣接する前記動翼の前記ノズル部静翼側の基端部、前記連通流路が貫通する前記ノズル部静翼の前記動翼側の先端部、の少なくとも一方に設けられる突起部を含むことを特徴とする請求項9〜12のいずれか1つに記載の蒸気タービン。
  18. 前記中圧蒸気タービンは、
    前記ロータの外周に前記蒸気通路静翼に隣接して動翼が取り付けられており、
    前記冷却蒸気供給部は、
    前記連通流路が貫通する前記蒸気通路静翼に隣接する前記動翼の前記蒸気通路静翼側の基端部、前記連通流路が貫通する前記蒸気通路静翼の前記動翼側の先端部、の少なくとも一方に設けられる突起部を含むことを特徴とする請求項13〜16のいずれか1つに記載の蒸気タービン。
JP2015252490A 2015-12-24 2015-12-24 蒸気タービン Active JP6204967B2 (ja)

Priority Applications (6)

Application Number Priority Date Filing Date Title
JP2015252490A JP6204967B2 (ja) 2015-12-24 2015-12-24 蒸気タービン
US16/062,957 US10876408B2 (en) 2015-12-24 2016-12-21 Steam turbine
DE112016006048.3T DE112016006048T5 (de) 2015-12-24 2016-12-21 Dampfturbine
CN201680074402.3A CN108431369B (zh) 2015-12-24 2016-12-21 蒸汽涡轮
PCT/JP2016/088148 WO2017110894A1 (ja) 2015-12-24 2016-12-21 蒸気タービン
KR1020187017254A KR102040423B1 (ko) 2015-12-24 2016-12-21 증기 터빈

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2015252490A JP6204967B2 (ja) 2015-12-24 2015-12-24 蒸気タービン

Publications (2)

Publication Number Publication Date
JP2017115715A JP2017115715A (ja) 2017-06-29
JP6204967B2 true JP6204967B2 (ja) 2017-09-27

Family

ID=59231931

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015252490A Active JP6204967B2 (ja) 2015-12-24 2015-12-24 蒸気タービン

Country Status (1)

Country Link
JP (1) JP6204967B2 (ja)

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3209506A1 (de) * 1982-03-16 1983-09-22 Kraftwerk Union AG, 4330 Mülheim Axial beaufschlagte dampfturbine, insbesondere in zweiflutiger ausfuehrung
JPH06200704A (ja) * 1992-12-28 1994-07-19 Mitsubishi Heavy Ind Ltd 蒸気タービンノズル室
JP3362645B2 (ja) * 1997-10-29 2003-01-07 株式会社日立製作所 ガスタービン設備
JP4395254B2 (ja) * 2000-11-13 2010-01-06 三菱重工業株式会社 コンバインドサイクルガスタービン
EP1452688A1 (de) * 2003-02-05 2004-09-01 Siemens Aktiengesellschaft Dampfturbinenrotor sowie Verfahren und Verwendung einer aktiven Kühlung eines Dampfturbinenrotors
CN102325964B (zh) * 2009-02-25 2015-07-15 三菱日立电力系统株式会社 蒸汽涡轮发电设备的冷却方法及装置

Also Published As

Publication number Publication date
JP2017115715A (ja) 2017-06-29

Similar Documents

Publication Publication Date Title
US7003956B2 (en) Steam turbine, steam turbine plant and method of operating a steam turbine in a steam turbine plant
JP5524248B2 (ja) ガスタービン
JP3239128B2 (ja) ガスタービン発電プラント及びガスタービン発電プラントにおける冷却方法
US8424281B2 (en) Method and apparatus for facilitating cooling of a steam turbine component
JPS6340244B2 (ja)
US6463729B2 (en) Combined cycle plant with gas turbine rotor clearance control
JP2005226653A (ja) ケーシング装置
JP3702266B2 (ja) デュアル燃料型一軸コンバインドプラントにおける蒸気タービン出力推定装置
JP2014185550A (ja) 高温部品の冷却装置、ガスタービンコンバインドプラント、及び高温部品の冷却方法
KR20190097287A (ko) 증기 터빈 플랜트
WO2017110894A1 (ja) 蒸気タービン
JP6204967B2 (ja) 蒸気タービン
WO2017110224A1 (ja) シール装置
JP6204966B2 (ja) 蒸気タービン
JP6578203B2 (ja) 蒸気タービン冷却装置
JPS58126404A (ja) 超高圧高温蒸気タ−ビンケ−シング

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20170606

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20170727

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20170808

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20170901

R150 Certificate of patent or registration of utility model

Ref document number: 6204967

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350