JP3702266B2 - デュアル燃料型一軸コンバインドプラントにおける蒸気タービン出力推定装置 - Google Patents

デュアル燃料型一軸コンバインドプラントにおける蒸気タービン出力推定装置 Download PDF

Info

Publication number
JP3702266B2
JP3702266B2 JP2002329078A JP2002329078A JP3702266B2 JP 3702266 B2 JP3702266 B2 JP 3702266B2 JP 2002329078 A JP2002329078 A JP 2002329078A JP 2002329078 A JP2002329078 A JP 2002329078A JP 3702266 B2 JP3702266 B2 JP 3702266B2
Authority
JP
Japan
Prior art keywords
steam turbine
output
steam
pressure
combined plant
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2002329078A
Other languages
English (en)
Other versions
JP2004162601A (ja
Inventor
聡史 田中
享治 田中
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Heavy Industries Ltd
Original Assignee
Mitsubishi Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Heavy Industries Ltd filed Critical Mitsubishi Heavy Industries Ltd
Priority to JP2002329078A priority Critical patent/JP3702266B2/ja
Priority to US10/704,983 priority patent/US7036317B2/en
Priority to DE10353039A priority patent/DE10353039B4/de
Priority to CN200310114946.2A priority patent/CN1284923C/zh
Publication of JP2004162601A publication Critical patent/JP2004162601A/ja
Application granted granted Critical
Publication of JP3702266B2 publication Critical patent/JP3702266B2/ja
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01KSTEAM ENGINE PLANTS; STEAM ACCUMULATORS; ENGINE PLANTS NOT OTHERWISE PROVIDED FOR; ENGINES USING SPECIAL WORKING FLUIDS OR CYCLES
    • F01K23/00Plants characterised by more than one engine delivering power external to the plant, the engines being driven by different fluids
    • F01K23/02Plants characterised by more than one engine delivering power external to the plant, the engines being driven by different fluids the engine cycles being thermally coupled
    • F01K23/06Plants characterised by more than one engine delivering power external to the plant, the engines being driven by different fluids the engine cycles being thermally coupled combustion heat from one cycle heating the fluid in another cycle
    • F01K23/10Plants characterised by more than one engine delivering power external to the plant, the engines being driven by different fluids the engine cycles being thermally coupled combustion heat from one cycle heating the fluid in another cycle with exhaust fluid of one cycle heating the fluid in another cycle
    • F01K23/106Plants characterised by more than one engine delivering power external to the plant, the engines being driven by different fluids the engine cycles being thermally coupled combustion heat from one cycle heating the fluid in another cycle with exhaust fluid of one cycle heating the fluid in another cycle with water evaporated or preheated at different pressures in exhaust boiler
    • F01K23/108Regulating means specially adapted therefor
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02CGAS-TURBINE PLANTS; AIR INTAKES FOR JET-PROPULSION PLANTS; CONTROLLING FUEL SUPPLY IN AIR-BREATHING JET-PROPULSION PLANTS
    • F02C6/00Plural gas-turbine plants; Combinations of gas-turbine plants with other apparatus; Adaptations of gas-turbine plants for special use
    • F02C6/18Plural gas-turbine plants; Combinations of gas-turbine plants with other apparatus; Adaptations of gas-turbine plants for special use using the waste heat of gas-turbine plants outside the plants themselves, e.g. gas-turbine power heat plants
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02CGAS-TURBINE PLANTS; AIR INTAKES FOR JET-PROPULSION PLANTS; CONTROLLING FUEL SUPPLY IN AIR-BREATHING JET-PROPULSION PLANTS
    • F02C9/00Controlling gas-turbine plants; Controlling fuel supply in air- breathing jet-propulsion plants
    • F02C9/26Control of fuel supply
    • F02C9/40Control of fuel supply specially adapted to the use of a special fuel or a plurality of fuels
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E20/00Combustion technologies with mitigation potential
    • Y02E20/16Combined cycle power plant [CCPP], or combined cycle gas turbine [CCGT]

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Engine Equipment That Uses Special Cycles (AREA)
  • Control Of Turbines (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、デュアル燃料型一軸コンバインドプラントにおける蒸気タービン出力推定装置及び方法、ガスタービン出力算出装置、デュアル燃料型一軸コンバインドプラントの制御装置に関する。
【0002】
【従来の技術】
図4を参照して、一軸コンバインドプラントにおいて必要とされる制御について説明する。同図に示すように、一軸コンバインドプラントとは、ガスタービン1と蒸気タービン2とを1本の軸で繋いだプラントである。
【0003】
一軸コンバインドプラントにおいて、パイロット比(メイン燃料流量とパイロット燃料流量との比)の制御は、測定した発電機Gの軸出力(MWベース)11と目標発電機出力11aとの差に基づいて行われる。即ち、パイロット比の制御に際しては、蒸気タービン2の出力とガスタービン1の出力(ガスタービン出力13)との合計である発電機Gの軸出力11が分かればよく、蒸気タービン2の出力とガスタービン出力13のそれぞれが分かる必要は無い。
【0004】
これに対し、圧縮器Cに対する空気の導入量及び燃焼器14に対する空気の導入量は、ガスタービン出力13(MW換算)によって制御される。ところが、ガスタービン出力13を直接測ることはできない。そこで、演算部10において、蒸気タービン2から出力されると推定される蒸気タービンの推定出力12(MW換算)を計算により求め、減算器3において、測定した発電機Gの軸出力(MWベース)11から蒸気タービンの推定出力12を引いてガスタービンの出力13を算出していた。
【0005】
この算出したガスタービンの出力13に基づいて、ガスタービン燃焼器14において安定した燃焼状態が得られるように、燃焼器バイパス弁開度指令16、IGV開度指令17を計算により求め、燃焼器バイパス弁20、IGV21を動かして、圧縮器C、燃焼器14への空気の導入量を制御する。即ち、第1関数発生器4は、ガスタービンの出力13を示す信号を入力し、最適な燃焼器バイパス弁開度を示す信号16を出力する。第2関数発生器5は、ガスタービンの出力13を示す信号を入力し、最適なIGV開度を示す信号17を出力する。
【0006】
高効率でかつ有害物質(NOx等)の排出量を少なくするため、ガスタービン燃焼器14に予混燃焼器を採用し、燃料に天然ガスのみが使用可能である、従来から存在する一軸コンバインドプラント(天然ガス専焼型)においては、図5に示すように、蒸気タービン出力12は、中圧タービン入口蒸気圧力31のみに基づいて、蒸気温度32、33、復水器真空度(蒸気タービン排圧)34の各補正を掛けて算出されていた。以後、図5の方法で求められた蒸気タービン出力12を蒸気タービン出力30という。
【0007】
図4において、蒸気タービン出力12を算出する演算部10は、従来は、図5の符号Aで示す部分が対応していた。即ち、従来は、蒸気タービン出力12として、図5に示す蒸気タービン出力30が減算器3に出力されていた。
【0008】
ここで、図5に示すように、中圧タービン入口蒸気圧力31のみに基づいて蒸気タービン出力30を算出できる理由について図6を参照して説明する。
図6は、天然ガス専焼型のコンバインドプラントにおける水と蒸気の流れを示す図である。図6に示される水と蒸気の流れは、一軸コンバインドプラントでも多軸コンバインドプラントでも基本的に同じである。
【0009】
蒸気タービンの出力30は、蒸気タービン2に入る蒸気の持つ熱エネルギーに蒸気タービン2の効率を掛けた形で表される。蒸気の持つ熱エネルギーは、蒸気流量と蒸気エンタルピーを掛けた形で表される。従って、蒸気タービン2に入る蒸気の持つ全熱エネルギーは、下記に示す計算式で表される。
(高圧蒸気51の流量)×(高圧蒸気51のエンタルピー)+(中圧蒸気58の流量)×(中圧蒸気58のエンタルピー)+(低圧蒸気61の流量)×(低圧蒸気61のエンタルピー).
【0010】
(中圧蒸気58の流量)は、中圧タービン入口蒸気圧力31と復水器真空度34の差の関数として表される。また、(中圧蒸気58のエンタルピー)も中圧タービン入口蒸気圧力31の関数で、中圧蒸気温度33の補正を掛けた形で表される。
【0011】
コンバインドプラントにおいて、図6に示すように、高圧ドラム50から発生した高圧蒸気51は、高圧蒸気タービン52で仕事をした後、低温再熱蒸気管53を通って再熱器54の前で中圧ドラム55から発生した蒸気56と合流して中圧蒸気58として中圧蒸気タービン57に入る。
即ち、
(高圧蒸気51の流量)=(中圧蒸気58の流量)−(中圧ドラム55で発生する蒸気56の量).
となる。
【0012】
また、中圧ドラム55で発生する蒸気56の量も、中圧ドラム55の圧力の関数で表され、かつ、中圧ドラム55の圧力は、中圧蒸気タービン57の入口蒸気圧力31に配管圧損を加えたものである。従って、高圧蒸気51の流量も中圧蒸気タービン57の入口蒸気圧力31の関数として表される。
【0013】
また、低圧蒸気61は、蒸気タービン2の内部で、仕事をした中圧蒸気58と混合されるので、低圧蒸気61の流量の関数となる低圧蒸気タービン62の入口蒸気圧力は、中圧蒸気タービン57の入口蒸気圧力31の関数となる。
【0014】
このように、ヒートバランスを考慮すると、中圧蒸気タービン57の入口蒸気圧力31は、全てに渡って絡んでいるので、蒸気タービンの出力30は、中圧蒸気タービン57の入口蒸気圧力31の関数として計算していても、凡その蒸気タービンの出力30を計算することができていた。
【0015】
【特許文献1】
特開平9−32508号公報(図3)
【0016】
【発明が解決しようとする課題】
最近、一軸コンバインドプラントにおいて、ガスタービン燃焼器に予混燃焼器を採用してかつ通常使用する天然ガスが供給されない(ガス会社のトラブル等)場合でも運転が可能なように、燃料に天然ガスと油(軽油など)の両方を使用可能なデュアル燃料タイプの一軸コンバインドプラントの製作が求められている。
【0017】
デュアル燃料タイプの一軸コンバインドプラントにおいて、蒸気タービンの出力を算出できることが望まれている。
デュアル燃料タイプの一軸コンバインドプラントにおいて、ガスタービンの出力を算出できることが望まれている。
デュアル燃料タイプの一軸コンバインドプラントにおいて、算出されたガスタービンの出力に基づいて、空気流量を制御して適切な燃空比が得られることが望まれている。
【0018】
デュアル燃料タイプの一軸コンバインドプラントにおいて、適切な燃空比が得られるように、算出されたガスタービンの出力に基づいて、圧縮機及び燃焼器に導入される空気流量を制御することが望まれている。
デュアル燃料タイプの一軸コンバインドプラントにおいて、適切な燃空比が得られるように、算出されたガスタービンの出力に基づいて、圧縮機に導入される空気流量及び燃焼器バイパス弁を通過する空気流量を制御することが望まれている。
【0019】
これらの蒸気タービン又はガスタービンの出力の算出が簡易な方法で行えることが望まれている。
これらの蒸気タービン又はガスタービンの出力の算出が従来から大きく変更の無い方法で行えることが望まれている。
【0020】
本発明の目的は、デュアル燃料タイプの一軸コンバインドプラントにおいて、蒸気タービンの出力を推定できるデュアル燃料型一軸コンバインドプラントにおける蒸気タービン出力推定装置を提供することである。
本発明の他の目的は、デュアル燃料タイプの一軸コンバインドプラントにおいて、ガスタービンの出力を算出できるデュアル燃料型一軸コンバインドプラントにおけるガスタービン出力算出装置を提供することである。
本発明の更に他の目的は、デュアル燃料タイプの一軸コンバインドプラントにおいて、算出されたガスタービンの出力に基づいて、空気流量を制御して適切な燃空比が得られるデュアル燃料型一軸コンバインドプラントの制御装置を提供することである。
【0021】
本発明の更に他の目的は、デュアル燃料タイプの一軸コンバインドプラントにおいて、適切な燃空比が得られるように、算出されたガスタービンの出力に基づいて、圧縮機及び燃焼器に導入される空気流量を制御するデュアル燃料型一軸コンバインドプラントの制御装置を提供することである。
本発明の更に他の目的は、デュアル燃料タイプの一軸コンバインドプラントにおいて、適切な燃空比が得られるように、算出されたガスタービンの出力に基づいて、圧縮機に導入される空気流量及び燃焼器バイパス弁を通過する空気流量を制御するデュアル燃料型一軸コンバインドプラントの制御装置を提供することである。
【0022】
本発明の更に他の目的は、蒸気タービンの算出が簡易に行えるデュアル燃料型一軸コンバインドプラントにおける蒸気タービン出力推定装置を提供することである。
本発明の更に他の目的は、ガスタービンの出力が簡易に行えるデュアル燃料型一軸コンバインドプラントにおけるガスタービン出力算出装置を提供することである。
本発明の更に他の目的は、蒸気タービンの算出が従来から大きく変更の無い方法で行えるデュアル燃料型一軸コンバインドプラントにおける蒸気タービン出力推定装置を提供することである。
本発明の更に他の目的は、ガスタービンの算出が従来から大きく変更の無い方法で行えるデュアル燃料型一軸コンバインドプラントにおけるガスタービン出力算出装置を提供することである。
【0023】
【課題を解決するための手段】
以下に、[発明の実施の形態]で使用する番号・符号を用いて、[課題を解決するための手段]を説明する。これらの番号・符号は、[特許請求の範囲]の記載と[発明の実施の形態]の記載との対応関係を明らかにするために付加されたものであるが、[特許請求の範囲]に記載されている発明の技術的範囲の解釈に用いてはならない。
【0024】
本発明のデュアル燃料型一軸コンバインドプラントにおける蒸気タービン出力推定装置は、燃料としてガスと油の両方が使用可能なデュアル燃料型であり高圧蒸気タービン(52)と中圧蒸気タービン(57)と低圧蒸気タービン(62)とを有する蒸気タービン(2)とガスタービン(1)と発電機(G)が同軸で接続されてなる一軸コンバインドプラントにおける前記蒸気タービン(2)の出力の推定を行う蒸気タービン出力推定装置であって、前記中圧蒸気タービン(57)の入口側での蒸気圧力(31)と、前記低圧蒸気タービン(62)による出力に関する補正値(88)とに基づいて、前記蒸気タービン(2)の出力の推定を行う。
【0025】
本発明のデュアル燃料型一軸コンバインドプラントにおける蒸気タービン出力推定装置において、前記低圧蒸気タービン(62)による出力に関する補正値(88)は、前記低圧蒸気タービン(62)に流入する蒸気流量(79)に基づいて、求められる。
【0026】
本発明のデュアル燃料型一軸コンバインドプラントにおける蒸気タービン出力推定装置において、前記燃料として前記ガスが使用された場合と前記油が使用された場合とでは、前記中圧蒸気タービン(57)の入口側での蒸気圧力(31)が同じでも前記低圧蒸気タービン(62)に流入する蒸気流量(79)が異なる。
【0027】
本発明のデュアル燃料型一軸コンバインドプラントにおける蒸気タービン出力推定装置において、前記燃料として前記油が使用された場合に、前記ガスが使用された場合には必要とされない加熱のための加熱蒸気(74)が必要とされる結果、前記中圧蒸気タービン(57)の入口側での蒸気圧力(31)が同じでも前記低圧蒸気タービン(62)に流入する蒸気流量(79)が異なる。
【0028】
本発明のデュアル燃料型一軸コンバインドプラントにおける蒸気タービン出力推定装置において、前記加熱蒸気(74)は、前記油が使用された場合に予熱器(72)をバイパスした水が脱気器(73)で加熱されるために使用される。
【0029】
本発明のデュアル燃料型一軸コンバインドプラントにおける蒸気タービン出力推定装置において、前記低圧蒸気タービン(62)に流入する蒸気流量(79)は、前記低圧蒸気タービン(62)に流入する蒸気の流路に設けられた低圧蒸気加減弁(80)を流れる蒸気流量(79)であり、前記低圧蒸気加減弁(80)の開度(A)と、前記低圧蒸気加減弁(80)の入口側の圧力(P)と、前記低圧蒸気加減弁(80)の出口側の圧力(82)とに基づいて、前記蒸気タービン(2)の出力の推定が行われる。
【0030】
本発明のデュアル燃料型一軸コンバインドプラントにおける蒸気タービン出力推定装置において、更に、前記高圧蒸気タービン(52)の入口側での蒸気温度(32)に基づく補正値(30b)、前記中圧蒸気タービン(57)の入口側での蒸気温度(33)に基づく補正値(30c)及び前記蒸気タービン(2)からの蒸気が入る復水器(70)の真空度に基づく補正値(30d)に基づいて、前記蒸気タービン(2)の出力の推定を行う。
【0031】
本発明のデュアル燃料型一軸コンバインドプラントにおける蒸気タービン出力推定装置において、前記ガスタービン(1)の燃焼器(14)として、予混燃焼器が使用されている。
【0032】
本発明のデュアル燃料型一軸コンバインドプラントにおけるガスタービン出力算出装置は、本発明のデュアル燃料型一軸コンバインドプラントにおける蒸気タービン出力推定装置により推定された前記蒸気タービン(2)の出力(12、90)を、前記発電機(G)の出力(11)から減算することにより前記ガスタービン(1)の出力(13)を算出する。
【0033】
本発明のデュアル燃料型一軸コンバインドプラントの制御装置は、本発明のデュアル燃料型一軸コンバインドプラントにおけるガスタービン出力算出装置により算出された前記ガスタービン(1)の出力(13)に基づいて、導入される空気流量を制御する。
【0034】
本発明のデュアル燃料型一軸コンバインドプラントの制御装置において、前記空気流量は、前記ガスタービン(1)の燃焼器(14)に圧縮空気を供給する圧縮器(C)に導入される空気流量である。
【0035】
本発明のデュアル燃料型一軸コンバインドプラントの制御装置において、前記空気流量は、前記ガスタービン(1)の燃焼器(14)に導入される空気流量である。
【0036】
本発明のデュアル燃料型一軸コンバインドプラントの制御装置において、前記空気流量は、圧縮器(C)からの圧縮空気のうち前記燃焼器(14)をバイパスする空気の流量を調節するバイパス弁(20)の開度により制御される。
【0037】
本発明のデュアル燃料型一軸コンバインドプラントにおける蒸気タービン出力推定方法は、燃料としてガスと油の両方が使用可能なデュアル燃料型であり高圧蒸気タービン(52)と中圧蒸気タービン(57)と低圧蒸気タービン(62)とを有する蒸気タービン(2)とガスタービン(1)と発電機(G)が同軸で接続されてなる一軸コンバインドプラントにおける前記蒸気タービン(2)の出力の推定を行う蒸気タービン出力推定方法であって、前記中圧蒸気タービン(57)の入口側での蒸気圧力(31)に基づいて算出された出力(30)と、前記低圧蒸気タービン(62)による出力に関する補正値(88)とを加算することにより、前記蒸気タービン(2)の出力の推定を行う。
【0038】
【発明の実施の形態】
以下、図面を参照して、本発明のデュアル燃料一軸コンバインドプラントの一実施形態を説明する。
【0039】
まず、図1〜図4を参照して、本実施形態について説明する。
なお、上記において説明した同じ構成要素については、同じ符号を付してその詳細な説明を省略する。
【0040】
本実施形態は、ガスタービン燃焼器14に予混燃焼器を採用してかつ燃料に天然ガスと油(軽油など)の両方を使用可能なデュアル燃料タイプの一軸コンバインドプラントの制御方法に関する。なお、予混燃焼器の技術は公知であり、例えば特開平4−313608号公報に開示されている。
【0041】
図2は、デュアル燃料タイプの一軸コンバインドプラントの構成を示した図である。図2では、デュアル燃料タイプにしたことに伴い、図6の構成に、バイパス弁71aと、低圧蒸気78を分岐して脱気器73に加熱蒸気74を供給するための配管74aが追加されている。
【0042】
デュアル燃料タイプの一軸コンバインドプラントにおいては、燃料に天然ガスを使用したガス焚きの場合と、油を使用した油焚きの場合とでは、次に示すように水と蒸気の流れが異なる。図2を参照して、▲1▼ガス焚きの場合と、▲2▼油焚きの場合に分けて説明する。
【0043】
▲1▼ガス焚きの場合、復水器70を出た後の給水71は、予熱器72を通過するときに、ガスタービン1の排気ガス1aによって加熱される。予熱器72を通過した後の給水は、例えば130℃にまで加熱されており、脱気器73に入るが脱気器73では加熱されず(素通り)給水ポンプ73a、73bに向かう。
【0044】
▲2▼油焚きの場合、復水器70を出た後の給水71が、予熱器72を通過したとすると、燃料油に含まれていた硫黄分がSOとなってガスタービン1の排気ガス1aに含まれているので、SOが予熱器72に付着して予熱器72内の水で冷やされて予熱器72が腐食する事象が発生する。このため、油焚きの場合は、復水器70を出た後の給水71は、バイパス弁71aで予熱器72をバイパスさせて脱気器73に直接送る。その場合、給水71は、予熱器72を通過しておらず、予熱器72で加熱されていないので、脱気器73で加熱を行う必要がある。脱気器73で加熱を行うには、加熱蒸気74が必要である。この加熱蒸気74は、低圧ドラム77から発生した低圧蒸気78を分岐して使用される。
【0045】
上記に示すように、▲1▼ガス焚きの場合は、低圧ドラム77から発生した蒸気78は、全て蒸気タービン2へ行くが、▲2▼油焚きの場合は、低圧ドラム77から発生した蒸気78の大部分は、脱気器73の加熱蒸気74に使用され、蒸気タービン2へ行く蒸気79は少ない。
【0046】
このように、▲1▼ガス焚きの場合と▲2▼油焚きの場合とでは、中圧蒸気タービン57の入口蒸気圧力31が同じでも、低圧蒸気タービン62に流入する蒸気流量79が異なってくるので、蒸気タービン出力12に相違が出てくる、という発明者の知見に基づいて、本実施形態がなされている。
【0047】
以上の知見によれば、デュアル燃料タイプの一軸コンバインドプラントでは、天然ガス専焼の一軸コンバインドプラントに従来から適用してきた制御方法(図5に示すように中圧蒸気タービン57の入口蒸気圧力31に基づいて蒸気タービン出力30を算出し、その蒸気タービン出力30に基づいて、燃焼器バイパス弁開度指令16、IGV開度指令17を算出する)をそのまま用いて、燃焼器バイパス弁20、IGV21を動かすと、安定した燃焼状態を得ることができず問題となる。
【0048】
まず、本実施形態が適用される一軸コンバインドプラントの基本的動作について説明する。
【0049】
図2に示すように、圧縮機Cによって圧縮された空気は、燃焼器14で燃料と混合されて燃焼する。高温の燃焼空気がガスタービン1で膨張させられることによりガスタービン出力を得る。また、ガスタービン1からの排ガス1aを、排熱回収ボイラ118に導き、熱交換により、予熱器72に供給された水から蒸気を発生させ、発生した蒸気を高圧蒸気タービン52、中圧蒸気タービン57、低圧蒸気タービン62に供給し、更に高圧蒸気タービン52に送った蒸気を再熱器54で再加熱させた後、中圧蒸気タービン57に供給することにより出力を得る。これらにより得られた出力は発電機Gにより回収する。一軸コンバインドプラントでは、ガスタービン1と、3種の蒸気タービン52、57、62がカップリングにより同一軸で構成されており、圧縮機Cの駆動力もこれらのタービンから供給される。排熱回収ボイラ118により熱を回収された排ガスは、大気に放出される。低圧蒸気タービン62によりエネルギ回収された蒸気は、復水器70で水になり、復水ポンプ70aにより再び排熱回収ボイラ118に供給される。
【0050】
蒸気タービン2は、高圧、中圧、低圧の3つのラインを有している。
水は、復水ポンプ70aを通り予熱器72に入った後(▲1▼ガス焚きの場合)、脱気器73に入る。脱気器73を経た後、低圧系統と、高中圧系統に分かれる。低圧系統では、低圧ポンプ73aを介して低圧節炭器73c、低圧ドラム77、低圧過熱器77aを経て発生した低圧蒸気61は、低圧蒸気タービン62に入る。高中圧系統では、高中圧ポンプ73bを介して、中圧節炭器73d及び中圧ドラム55を経て発生した蒸気56は、低温再熱蒸気管53を通ってきた蒸気(高圧蒸気51が高圧蒸気タービン52で仕事をした後に低温再熱蒸気管53に入る)と合流して再熱器54で加熱された後に、中圧蒸気58として中圧蒸気タービン57に入る。また、高中圧ポンプ73bを介して、高圧節炭器73e、高圧ドラム50、高圧過熱器50aを経て発生した高圧蒸気51が高圧蒸気タービン52に入る。なお、低圧ドラム77、中圧ドラム55及び高圧ドラム50には、それぞれ、低圧蒸発器77b、中圧蒸発器55a、高圧蒸発器50bが接続されている。
【0051】
本実施形態では、図4に示すように、算出したガスタービンの出力13に基づいて、ガスタービン燃焼器14において安定した燃焼状態が得られるように、燃焼器バイパス弁開度指令16、IGV開度指令17を計算により求め、燃焼器バイパス弁20、IGV21を動かすように制御する点は、上記の従来技術と同様である。
【0052】
ここで、図2及び図4に示されるガスタービン燃焼器14、燃焼器バイパス弁20及びIGV21を備えたガスタービン1について、図3を参照して説明する。
【0053】
図3は、ガスタービン1の構成を示す概略図である。ガスタービン1は、タービン本体部100と燃焼部110とを備える。
【0054】
燃焼部110は、複数(m基)の燃焼器を有している。ここでは、複数の燃焼器14−1〜mの全てに共通の説明の場合には、燃焼器14とし、個別の燃焼器についての説明の場合には、例えば、燃焼器14−1(1番目の燃焼器の意味)と記す。燃焼器14に付属の構成であるバイパス空気導入管117、バイパス弁20、バイパス空気混合管119、燃焼ガス導入管120、メイン燃料供給弁115及びパイロット燃料供給弁116についても、同様である。
【0055】
図3では、燃焼器14の内、1番目の燃焼器である燃焼器14−1のみを代表的に示している。説明も燃焼器14−1及びその関連の構成のみについて行なう。
【0056】
タービン本体部100は、IGV21を有する圧縮機C、回転軸103、タービン104を具備する。また、燃焼部110は、圧縮空気導入部112、バイパス空気導入管117−1、バイパス弁20−1、バイパス空気混合管119−1、燃焼ガス導入管120−1、燃焼器14−1、メイン燃料流量制御弁113、パイロット燃料流量制御弁114、メイン燃料供給弁115−1、パイロット燃料供給弁116−1とを具備する。ガスタービン1には、発電機G及び蒸気タービン2が接続している。
【0057】
外部から導入された空気は、圧縮機Cで圧縮され、各燃焼器14へ供給される。一方、燃料の一部は、パイロット燃料流量制御弁114経由で、各燃焼器14のパイロット燃料供給弁116に達し、そこから各燃焼器14へ導入される。また、残りの燃料は、メイン燃料流量制御弁113経由で、各燃焼器14のメイン燃料供給弁115に達し、そこから各燃焼器14へ導入される。導入された空気及び燃料は、各燃焼器14において燃焼する。燃焼により発生した燃焼ガスは、タービン104に導入され、タービン104を回転させる。その回転エネルギーにより、発電機Gが発電する。
【0058】
次に、図3の各部について説明する。
最初に、タービン本体部100について説明する。
【0059】
タービン104は、燃焼ガス導入管120と燃焼ガスを外部に排出する配管とに接続している。タービン104は、回転軸103を介して圧縮機C、発電機G及び蒸気タービン2に結合している。タービン104は、燃焼ガス導入管120経由で、燃焼器14から燃焼ガスの供給を受ける。タービン104は、その燃焼ガスの有するエネルギーを回転エネルギーに変換して回転する。その回転により、発電機Gや圧縮機Cや蒸気タービン2を回転する。発電に使用した燃焼ガス(排気ガス1a)は、排熱回収ボイラ118に供給される。
【0060】
圧縮機Cは、外部から空気を導入する配管と圧縮空気導入部112とに接続している。圧縮機Cは、回転軸103を介してタービン104、発電機G及び蒸気タービン2に結合している。圧縮機Cは、タービン104の回転が伝達され回転する。圧縮機Cは、その回転により、外部から空気を導入する。そして、圧縮機Cは、導入した空気を圧縮して燃焼器14へ送出する。
【0061】
IGV(インレットガイドベーン、入口案内翼)21は、圧縮機Cの空気導入側の回転翼である。IGV21の開度(角度)を制御することにより、回転数一定でも、圧縮機Cへ導入する空気の流量を調整することが可能である。IGV21の開度の制御は、IGV開度指令17により行なわれる。IGV21は、高負荷の場合には、多量に制御された燃料に対して適切な燃空比を維持するために、IGV21を開いて圧縮器Cに多量の空気を導入する。低負荷の場合には、少量に制御された燃料に対して適切な燃空比を維持するために、IGV21を閉じて圧縮器Cに少量の空気を導入する。
【0062】
回転軸103は、圧縮機C、タービン104、発電機G、蒸気タービン2を接続している。タービン104の回転力を圧縮機C、発電機G及び蒸気タービン2に伝達する軸である。
【0063】
発電機Gは、回転軸103によりタービン104と接続している。タービン104の回転エネルギーを、電力エネルギーに変換する発電装置である。
【0064】
次に、燃焼部110について説明する。
【0065】
圧縮空気導入部112は、圧縮機Cに接続された導入管や燃焼部110のケーシング(車室)内の空気を導く空間などである。圧縮機Cで圧縮された圧縮機吐出空気を燃焼器14−1へ導く。
【0066】
バイパス空気導入管117−1は、圧縮空気導入部112内に一端部が開放されて接続され、他端部はバイパス弁20−1に接続している。圧縮機吐出空気の内、燃焼器14−1に供給しない分を、タービン104へバイパスする管である。
【0067】
バイパス弁(燃焼器バイパス弁)20−1は、一方をバイパス空気導入管117−1に接続し、他方をバイパス空気混合管119−1に接続している。バイパス空気導入管117−1を通過する空気の流量を制御する弁である。その空気流量の制御は、燃焼器バイパス弁開度指令16により行なわれる。高負荷の場合には、多量に制御された燃料に対して適切な燃空比を維持するために、燃焼器バイパス弁20を閉じて燃焼器14に多量の空気を供給する。低負荷の場合には、少量に設定された燃料に対して適切な燃空比を維持するために、燃焼器バイパス弁20を開いて燃焼器14に少量の空気を供給する。
【0068】
バイパス空気混合管119−1は、一端部をバイパス弁20−1に、他端部を燃焼ガス導入管120−1に接続している。バイパス弁20−1を通過した空気を、燃焼器14−1で生成した燃焼ガスと混合するために燃焼ガス導入管120−1に供給する。
【0069】
メイン燃料流量制御弁113は、一方を外部から燃料を供給する配管に、他方を複数のメイン燃料供給弁115(−1〜m)に接続した配管に接続している。メイン燃料流量制御弁113は、外部から供給される燃料の燃焼器14への流量を制御する。メイン燃料流量制御弁113を経由する燃料は、燃焼器14のメインバーナーで使用される。
【0070】
メイン燃料供給弁115−1は、一方をメイン燃料流量制御弁113につながる配管に、他方を燃焼器14−1のメインバーナーにつながる配管に接続している。メイン燃料供給弁115−1は、燃焼器14−1のメインバーナーに供給する燃料を制御する弁である。
【0071】
パイロット燃料流量制御弁114は、一方を外部から燃料を供給する配管に、他方を複数のパイロット燃料供給弁116(−1〜m)に接続した配管に接続している。パイロット燃料流量制御弁114は、外部から供給される燃料の燃焼器14への流量を制御する。パイロット燃料流量制御弁114を経由する燃料は、燃焼器14のパイロットバーナーで使用される。
【0072】
パイロット燃料供給弁116−1は、一方をパイロット燃料流量制御弁114につながる配管に、他方を燃焼器14−1のパイロットバーナーにつながる配管に接続している。パイロット燃料供給弁116−1は、燃焼器14−1のパイロットバーナーに供給する燃料を制御する弁である。
【0073】
燃焼器14−1は、空気を供給する圧縮空気導入部112と、燃料を供給するメイン燃料供給弁115−1につながる配管と、燃料を供給するパイロット燃料供給弁116−1とにつながる配管と、燃焼ガスを送出する燃焼ガス導入管120−1に接続している。そして、空気と燃料との供給を受け、それらを燃焼し、高温高圧の燃焼ガスを生成する。生成された燃焼ガスは、タービン104に向けて送出する。
【0074】
燃焼ガス導入管120−1は、一端部を燃焼器14−1に、他端部をタービン104に接続している。また、途中にバイパス空気混合管119−1が接合している。燃焼ガス及びバイパス空気をタービン104に供給する配管である。
【0075】
本実施形態では、図4において、ガスタービンの出力13を算出するに際して減算器3に入力される、蒸気タービンの推定出力12の算出方法が従来と異なっている。即ち、演算部10の構成が従来と異なっている。
【0076】
上記のように、従来は、図5に示すように、中圧蒸気タービン57の入口蒸気圧力31のみに基づいて、蒸気タービンの出力30を計算していたが、本実施形態では、これに低圧蒸気タービン62に流入する蒸気流量79も加味して蒸気タービンの出力90を計算する。ここでは、図5の方法で求めた蒸気タービンの出力12を蒸気タービンの出力30と示し、図1の方法で求めた蒸気タービンの出力12を蒸気タービンの出力90と示す。
【0077】
低圧蒸気加減弁80(図2参照)を流れる蒸気流量79は、下記に示す式によって表すことができる。
W=C・P・A・K・Φcr
W:弁通過流量(Kg/h)
C:弁流量係数(固定値)
:弁入口圧力(Kg/cmabs)
A:弁ストロークエリア(cm
K:Critical Flow係数(1/hr)(固定値)
Φcr:限界流量係数
【0078】
弁通過流量Wは、低圧蒸気加減弁80を流れる蒸気流量79である。
弁入口圧力Pは、低圧蒸気加減弁80の入口側(符号81参照)の圧力である。
弁ストロークエリアAは、低圧蒸気加減弁80の開度である。
【0079】
ここで、限界流量係数Φcrは、低圧蒸気加減弁80の前圧力81即ち弁入口圧力Pと、低圧蒸気加減弁80の後圧力82即ち低圧蒸気タービン62の入口蒸気圧力82によって求めることができる。
【0080】
低圧蒸気タービン62の入口蒸気圧力82、低圧蒸気加減弁80の開度85即ち弁ストロークエリアA、低圧蒸気加減弁80の前蒸気圧力81即ち弁入口圧力Pが分かっていれば、上記式を基に、低圧蒸気タービン62に流入する蒸気流量79(W)を計算することができる。
【0081】
低圧蒸気タービン62に流入する蒸気流量79が求まれば、その蒸気が低圧蒸気タービン62で実行する仕事量と低圧蒸気タービン62のタービン効率から、低圧蒸気タービン62に流入する蒸気による蒸気タービン出力相当(低圧タービン出力補正量88)をMWベースで求めることができる。
【0082】
このようにして求めた低圧蒸気タービン62に流入する蒸気79による蒸気タービン出力相当88を、中圧蒸気タービン57の入口蒸気圧力31を基に求めた蒸気タービン出力相当30に加算することによって、正確な蒸気タービンの出力相当90を求めることができる。流れを図1に示す。図1では、低圧蒸気加減弁前圧力81(P)は、低圧蒸気加減弁80により略一定値に圧力制御されていることを前提としている。
【0083】
低圧蒸気加減弁開度85(A)及び低圧タービン入口蒸気圧力82は、第7関数発生器91に入力され、その第7関数発生器91から出力される信号91aが基準値となる。この基準値91aは、低圧蒸気加減弁前圧力81(P)が上記の制御された一定値通りであるときのW(=C・P・A・K・Φcr)に相当する。
【0084】
第7関数発生器91では、本来、Wを算出する上で必要な低圧蒸気加減弁前圧力81(P)は、制御された一定値(あたかも固定値)であるとして入力されない。同様に、第7関数発生器91では、本来、低圧蒸気加減弁前圧力81(P)と低圧蒸気加減弁後圧力82により定められるΦcrを求めるに際しても、低圧蒸気加減弁前圧力81(P)は一定値であり、Φcrに影響しないとして入力されない。第7関数発生器91の入出力関係は、低圧蒸気加減弁開度85(A)又は低圧タービン入口蒸気圧力82が増加すると、信号91aは漸次増加傾向にある。
【0085】
低圧蒸気加減弁前蒸気圧力81(P)は、第8関数発生器92に入力され、その第8関数発生器92から補正値の信号92aが出力される。第8関数発生器92においては、低圧蒸気加減弁前蒸気圧力81(P)が上記制御された一定値と同じであれば、出力値92aが1.0となり、上記制御された一定値を超えていれば出力値92aが1.0を上回り、上記制御された一定値未満であれば出力値92aが1.0を下回る。これにより、低圧蒸気加減弁前蒸気圧力81(P)が上記制御された一定値であるとして第7関数発生器91に入力されずに生成された基準値91aに対して、低圧蒸気加減弁前蒸気圧力81(P)の実際の値(上記制御された一定値との偏差)の影響をもたらすことができる。
【0086】
乗算器93は、信号91aと、補正値の信号92aとを乗算して、低圧タービン流入蒸気流量79(W)の信号を出力する。
低圧タービン流入蒸気流量79の信号は、第9関数発生器94に入力され、その第9関数発生器94から低圧タービン出力補正量88が出力される。第9関数発生器94は、低圧タービン流入蒸気流量79が低圧タービンで実行する仕事量と低圧タービン効率から、低圧タービン流入蒸気流量79による蒸気タービン出力相当(低圧タービン出力補正量88)をMWベースで出力する。第9関数発生器94の入出力関係は、低圧タービン流入蒸気流量79が増加すると、低圧タービン出力補正量88は漸次増加傾向にある。
【0087】
加算器95は、蒸気タービン出力相当30と、低圧タービン出力補正量88とを加算して、蒸気タービンの出力90を出力する。
【0088】
図4において、蒸気タービンの出力12を算出する演算部10は、本実施形態では、図1の符号Bで示す部分が対応する。即ち、本実施形態では、蒸気タービン出力12として、図1に示す蒸気タービン出力90が減算器3に出力される。
【0089】
なお、図1において、蒸気タービン出力相当30を求める方法は、図5に示した符号Aで示す構成と基本的に同じである。即ち、中圧タービン57の入口蒸気圧力31を示す信号は、第3関数発生器6に入力され、その第3関数発生器6から出力される蒸気タービン出力(MW)の信号30aが基準値となる。第3関数発生器6の入出力関係は、中圧タービン入口蒸気圧力31が増加すると、蒸気タービン出力の信号30aは、漸次増加傾向にある。
【0090】
高圧タービン52の入口蒸気温度32を示す信号は、第4関数発生器7に入力され、その第4関数発生器7から第1補正値の信号30bが出力される。第4関数発生器7においては、ある温度を基準として、高圧タービン52の入口蒸気温度32がその温度と同じであれば出力値30bが1.0となり、その温度よりも高ければその分、熱エンタルピーを有しているとして出力値30bは1.0を上回る値(例えば1.01)となり、その温度よりも低ければ出力値30bは1.0を下回る値となる。
【0091】
中圧タービン57の入口蒸気温度33を示す信号は、第5関数発生器8に入力され、その第5関数発生器8から第2補正値の信号30cが出力される。第5関数発生器8においては、ある温度を基準として、中圧タービン57の入口蒸気温度33がその温度と同じであれば出力値30cが1.0となり、その温度よりも高ければその分、熱エンタルピーを有しているとして出力値30cは1.0を上回る値(例えば1.01)となり、その温度よりも低ければ出力値30cは1.0を下回る値となる。
【0092】
復水器70の真空度(蒸気タービン2の排圧)34を示す信号は、第6関数発生器9に入力され、その第6関数発生器9から第3補正値の信号30dが出力される。第6関数発生器9においては、ある圧力を基準として、復水器70の真空度(蒸気タービン2の排圧)34がその圧力と同じであれば出力値30dが1.0となり、その圧力よりも高ければ出力値30dは1.0を上回る値(例えば1.01)となり、その温度よりも低ければ出力値30dは1.0を下回る値となる。
【0093】
乗算器7aは、蒸気タービン出力の信号30aと、第1補正値の信号30bとを乗算して、蒸気タービン出力の信号30eを出力する。
乗算器8aは、蒸気タービン出力の信号30eと、第2補正値の信号30cとを乗算して、蒸気タービン出力の信号30fを出力する。
乗算器9aは、蒸気タービン出力の信号30fと、第3補正値の信号30dとを乗算して、蒸気タービン出力(相当)の信号30を出力する。
【0094】
▲1▼ガス焚きの場合は、低圧ドラム77で発生する蒸気78の殆どは、蒸気タービン2に流れる(低圧タービン流入蒸気流量79が大きな値となる)ので、低圧タービン出力補正量88は高くなる。
▲2▼油焚きの場合は、低圧ドラム77で発生する蒸気78の殆どは、脱気器73の加熱蒸気74に使用され、蒸気タービン2には少ししか流入しない(低圧タービン流入蒸気流量79が小さな値となる)ので、低圧タービン出力補正量88は低くなる。
【0095】
図1に示すロジックによって求めた蒸気タービン出力相当90を図4に示す制御ロジックの蒸気タービンの出力12に適用することによって、▲1▼ガス焚きの場合も▲2▼油焚きの場合も、蒸気タービンの推定出力12が正確に求められ、その結果、ガスタービンの出力13が正確に求まるので、ガスタービン燃焼器14において、常に安定した燃焼状態が得られるように、燃焼器バイパス弁開度指令16、IGV開度指令17を計算により求め、燃焼器バイパス弁20、IGV21を動かして圧縮器C、燃焼器14への空気の導入量を制御することが可能となる。
【0096】
本実施形態によれば、燃料に天然ガスと油の両方を使用可能なデュアル燃料タイプの一軸コンバインドプラントにおいて、▲1▼ガス焚きの場合でも▲2▼油焚きの場合でも正確に蒸気タービン出力12を計算することができ、ガスタービン燃焼器14において、▲1▼ガス焚きと▲2▼油焚きのどちらのときも安定した燃焼が得られる。
【0097】
本実施形態によれば、蒸気タービン12又はガスタービン13の出力の算出を簡易な方法で行うことができる。また、蒸気タービン12又はガスタービン13の出力の算出を従来から大きく変更の無い方法で行うことができる。
【0098】
【発明の効果】
本発明によれば、デュアル燃料タイプの一軸コンバインドプラントにおいて、蒸気タービンの出力を算出することができる。
【図面の簡単な説明】
【図1】図1は、本発明の一実施形態のデュアル燃料タイプの一軸コンバインドプラントにおける蒸気タービン出力の計算方法を説明するための図である。
【図2】図2は、本発明の一実施形態のデュアル燃料タイプの一軸コンバインドプラントにおける水と蒸気の流れを示す図である。
【図3】図3は、一軸コンバインドプラントのガスタービンの構成を示すブロック図である。
【図4】図4は、一軸コンバインドプラントの制御方法を説明するための図である。
【図5】図5は、従来の天然ガス専焼型の一軸コンバインドプラントにおける蒸気タービン出力の計算方法を説明するための図である。
【図6】図6は、従来の天然ガス専焼型の一軸コンバインドプラントにおける水と蒸気の流れを示す図である。
【符号の説明】
1 ガスタービン
2 蒸気タービン
10 制御部
11 発電機出力
12 蒸気タービン出力
13 ガスタービン出力
20 燃焼器バイパス弁
21 IGV
30 蒸気タービン出力
31 中圧タービン入口蒸気圧力
52 高圧蒸気タービン
57 中圧蒸気タービン
62 低圧蒸気タービン
79 低圧タービン流入蒸気流量
81 低圧蒸気加減弁前圧力
82 低圧タービン入口蒸気圧力
85 低圧蒸気加減弁開度
88 低圧タービン出力補正値
90 蒸気タービン出力
C 圧縮器
G 発電機

Claims (14)

  1. 燃料としてガスと油の両方が使用可能なデュアル燃料型であり高圧蒸気タービンと中圧蒸気タービンと低圧蒸気タービンとを有する蒸気タービンとガスタービンと発電機が同軸で接続されてなる一軸コンバインドプラントにおける前記蒸気タービンの出力の推定を行う蒸気タービン出力推定装置であって、
    前記中圧蒸気タービンの入口側での蒸気圧力と、前記低圧蒸気タービンによる出力に関する補正値とに基づいて、前記蒸気タービンの出力の推定を行う
    デュアル燃料型一軸コンバインドプラントにおける蒸気タービン出力推定装置。
  2. 請求項1記載のデュアル燃料型一軸コンバインドプラントにおける蒸気タービン出力推定装置において、
    前記低圧蒸気タービンによる出力に関する補正値は、前記低圧蒸気タービンに流入する蒸気流量に基づいて、求められる
    デュアル燃料型一軸コンバインドプラントにおける蒸気タービン出力推定装置。
  3. 請求項1または2に記載のデュアル燃料型一軸コンバインドプラントにおける蒸気タービン出力推定装置において、
    前記燃料として前記ガスが使用された場合と前記油が使用された場合とでは、前記中圧蒸気タービンの入口側での蒸気圧力が同じでも前記低圧蒸気タービンに流入する蒸気流量が異なる
    デュアル燃料型一軸コンバインドプラントにおける蒸気タービン出力推定装置。
  4. 請求項1から3のいずれか1項に記載のデュアル燃料型一軸コンバインドプラントにおける蒸気タービン出力推定装置において、
    前記燃料として前記油が使用された場合に、前記ガスが使用された場合には必要とされない加熱のための加熱蒸気が必要とされる結果、前記中圧蒸気タービンの入口側での蒸気圧力が同じでも前記低圧蒸気タービンに流入する蒸気流量が異なる
    デュアル燃料型一軸コンバインドプラントにおける蒸気タービン出力推定装置。
  5. 請求項4記載のデュアル燃料型一軸コンバインドプラントにおける蒸気タービン出力推定装置において、
    前記加熱蒸気は、前記油が使用された場合に予熱器をバイパスした水が脱気器で加熱されるために使用される
    デュアル燃料型一軸コンバインドプラントにおける蒸気タービン出力推定装置。
  6. 請求項1から5のいずれか1項に記載のデュアル燃料型一軸コンバインドプラントにおける蒸気タービン出力推定装置において、
    前記低圧蒸気タービンに流入する蒸気流量は、前記低圧蒸気タービンに流入する蒸気の流路に設けられた低圧蒸気加減弁を流れる蒸気流量であり、前記低圧蒸気加減弁の開度と、前記低圧蒸気加減弁の入口側の圧力と、前記低圧蒸気加減弁の出口側の圧力とに基づいて、前記蒸気タービンの出力の推定が行われる
    デュアル燃料型一軸コンバインドプラントにおける蒸気タービン出力推定装置。
  7. 請求項1から6のいずれか1項に記載のデュアル燃料型一軸コンバインドプラントにおける蒸気タービン出力推定装置において、
    更に、前記高圧蒸気タービンの入口側での蒸気温度に基づく補正値、前記中圧蒸気タービンの入口側での蒸気温度に基づく補正値及び前記蒸気タービンからの蒸気が入る復水器の真空度に基づく補正値に基づいて、前記蒸気タービンの出力の推定を行う
    デュアル燃料型一軸コンバインドプラントにおける蒸気タービン出力推定装置。
  8. 請求項1から7のいずれか1項に記載のデュアル燃料型一軸コンバインドプラントにおける蒸気タービン出力推定装置において、
    前記ガスタービンの燃焼器として、予混燃焼器が使用されている
    デュアル燃料型一軸コンバインドプラントにおける蒸気タービン出力推定装置。
  9. 請求項1から8のいずれか1項に記載のデュアル燃料型一軸コンバインドプラントにおける蒸気タービン出力推定装置により推定された前記蒸気タービンの出力を、前記発電機の出力から減算することにより前記ガスタービンの出力を算出する
    デュアル燃料型一軸コンバインドプラントにおけるガスタービン出力算出装置。
  10. 請求項9記載のデュアル燃料型一軸コンバインドプラントにおけるガスタービン出力算出装置により算出された前記ガスタービンの出力に基づいて、導入される空気流量を制御する
    デュアル燃料型一軸コンバインドプラントの制御装置。
  11. 請求項10記載のデュアル燃料型一軸コンバインドプラントの制御装置において、
    前記空気流量は、前記ガスタービンの燃焼器に圧縮空気を供給する圧縮器に導入される空気流量である
    デュアル燃料型一軸コンバインドプラントの制御装置。
  12. 請求項10または11に記載のデュアル燃料型一軸コンバインドプラントの制御装置において、
    前記空気流量は、前記ガスタービンの燃焼器に導入される空気流量である
    デュアル燃料型一軸コンバインドプラントの制御装置。
  13. 請求項12記載のデュアル燃料型一軸コンバインドプラントの制御装置において、
    前記空気流量は、圧縮器からの圧縮空気のうち前記燃焼器をバイパスする空気の流量を調節するバイパス弁の開度により制御される
    デュアル燃料型一軸コンバインドプラントの制御装置。
  14. デュアル燃料型であり高圧蒸気タービンと中圧蒸気タービンと低圧蒸気タービンとを有する蒸気タービンとガスタービンと発電機が同軸で接続されてなる一軸コンバインドプラントにおける前記蒸気タービンの出力の推定を行う蒸気タービン出力推定方法であって、
    前記中圧蒸気タービンの入口側での蒸気圧力に基づいて算出された出力と、前記低圧蒸気タービンによる出力に関する補正値とを加算することにより、前記蒸気タービンの出力の推定を行う
    デュアル燃料型一軸コンバインドプラントにおける蒸気タービン出力推定方法。
JP2002329078A 2002-11-13 2002-11-13 デュアル燃料型一軸コンバインドプラントにおける蒸気タービン出力推定装置 Expired - Fee Related JP3702266B2 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2002329078A JP3702266B2 (ja) 2002-11-13 2002-11-13 デュアル燃料型一軸コンバインドプラントにおける蒸気タービン出力推定装置
US10/704,983 US7036317B2 (en) 2002-11-13 2003-11-12 Dual fuel type combined turbine plant and method for operating the same
DE10353039A DE10353039B4 (de) 2002-11-13 2003-11-13 Dual-Brennstoff-Kombi-Turbinenkraftwerk und Betriebsverfahren dafür
CN200310114946.2A CN1284923C (zh) 2002-11-13 2003-11-13 双燃料复合轮机设备及其操作方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002329078A JP3702266B2 (ja) 2002-11-13 2002-11-13 デュアル燃料型一軸コンバインドプラントにおける蒸気タービン出力推定装置

Publications (2)

Publication Number Publication Date
JP2004162601A JP2004162601A (ja) 2004-06-10
JP3702266B2 true JP3702266B2 (ja) 2005-10-05

Family

ID=32212015

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002329078A Expired - Fee Related JP3702266B2 (ja) 2002-11-13 2002-11-13 デュアル燃料型一軸コンバインドプラントにおける蒸気タービン出力推定装置

Country Status (4)

Country Link
US (1) US7036317B2 (ja)
JP (1) JP3702266B2 (ja)
CN (1) CN1284923C (ja)
DE (1) DE10353039B4 (ja)

Families Citing this family (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1485592A4 (en) * 2002-03-20 2005-10-12 Ebara Corp GAS TURBINE DEVICE
JP3930462B2 (ja) * 2003-08-01 2007-06-13 株式会社日立製作所 一軸コンバインドサイクル発電設備及びその運転方法
JP4509742B2 (ja) * 2004-11-04 2010-07-21 株式会社日立製作所 ガスタービン発電設備
US7640724B2 (en) * 2006-01-25 2010-01-05 Siemens Energy, Inc. System and method for improving the heat rate of a turbine
US8381506B2 (en) * 2009-03-10 2013-02-26 General Electric Company Low heating value fuel gas blending control
DE102011102720B4 (de) * 2010-05-26 2021-10-28 Ansaldo Energia Switzerland AG Kraftwerk mit kombiniertem Zyklus und mit Abgasrückführung
CH703218A1 (de) 2010-05-26 2011-11-30 Alstom Technology Ltd Verfahren zum Betreiben eines Gas-und-Dampf-Kombikraftwerk mit Rauchgasrezirkulation sowie Kraftwerk.
CN202032740U (zh) * 2011-03-16 2011-11-09 上海伏波环保设备有限公司 用锅炉烟气余热加热导热油的系统
JP2012197750A (ja) * 2011-03-22 2012-10-18 Toshiba Corp 発電プラントおよび発電プラント運転方法
ITMI20112010A1 (it) * 2011-11-04 2013-05-05 Ansaldo Energia Spa Metodo per il controllo di un impianto a ciclo combinato per la produzione di energia elettrica e impianto a ciclo combinato per la produzione di energia elettrica
WO2013105406A1 (ja) * 2012-01-13 2013-07-18 三菱重工業株式会社 燃料供給装置、燃料流量制御装置、およびガスタービン発電プラント
US20130255267A1 (en) * 2012-03-30 2013-10-03 General Electric Company System and method of improving emission performance of a gas turbine
US9458734B2 (en) * 2012-06-08 2016-10-04 General Electric Company Model and simulation based control of turbines
US20140182298A1 (en) * 2012-12-28 2014-07-03 Exxonmobil Upstream Research Company Stoichiometric combustion control for gas turbine system with exhaust gas recirculation
JP6236727B2 (ja) * 2014-03-28 2017-11-29 三菱日立パワーシステムズ株式会社 一軸型コンバインドサイクルプラントのタービン出力推定方法
CN107075977B (zh) 2014-10-27 2020-03-13 西门子公司 用于联合循环发电设备的低负载调降
CN106121744B (zh) * 2016-06-24 2017-06-13 清华大学 一种基于数据协调的汽轮机湿蒸汽参数的估计方法
US20190063332A1 (en) * 2017-08-22 2019-02-28 General Electric Company Systems and methods for nox prediction in a power plant
CN114458399B (zh) * 2022-03-01 2023-10-13 国家能源集团科学技术研究院有限公司 一种汽轮机低压缸小流量运行的监测控制系统及其方法

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3879616A (en) * 1973-09-17 1975-04-22 Gen Electric Combined steam turbine and gas turbine power plant control system
US4550565A (en) * 1984-01-16 1985-11-05 Tokyo Shibaura Denki Kabushiki Kaisha Gas turbine control systems
US5042246A (en) * 1989-11-06 1991-08-27 General Electric Company Control system for single shaft combined cycle gas and steam turbine unit
JPH0932508A (ja) 1995-07-24 1997-02-04 Hitachi Ltd コンバインドサイクルプラント
JP4346213B2 (ja) * 2000-06-06 2009-10-21 株式会社東芝 コンバインドサイクル発電プラント
CA2364125C (en) * 2000-11-28 2005-05-24 Mitsubishi Heavy Industries, Ltd. Steam cooling apparatus for gas turbine

Also Published As

Publication number Publication date
US20040112038A1 (en) 2004-06-17
DE10353039A1 (de) 2004-05-27
CN1284923C (zh) 2006-11-15
US7036317B2 (en) 2006-05-02
DE10353039B4 (de) 2010-12-16
CN1500979A (zh) 2004-06-02
JP2004162601A (ja) 2004-06-10

Similar Documents

Publication Publication Date Title
JP3702266B2 (ja) デュアル燃料型一軸コンバインドプラントにおける蒸気タービン出力推定装置
EP2535542B1 (en) Systems and methods for improving the efficiency of a combined cycle power plant
US5442908A (en) Combined combustion and steam turbine power plant
JP4337960B2 (ja) コンバインドサイクルシステムにおいて補助蒸気を供給するための装置及び方法
US9903276B2 (en) Preheating device for gas turbine fuel, gas turbine plant provided therewith, and preheating method for gas turbine fuel
US20010023577A1 (en) Cooling steam supply method of a combined cycle power generation plant
US10900418B2 (en) Fuel preheating system for a combustion turbine engine
EP4080019B1 (en) Gas turbine heat recovery system and method
KR20180016494A (ko) 급수 방법, 이 방법을 실행하는 급수 계통, 급수 계통을 구비하는 증기 발생 설비
EP0980495A1 (en) An improved heat exchanger for operating with a combustion turbine in either a simple cycle or a combined cycle
US10287922B2 (en) Steam turbine plant, combined cycle plant provided with same, and method of operating steam turbine plant
JP2023160930A (ja) ガスタービンおよびその制御方法並びにコンバインドサイクルプラント
JP6557491B2 (ja) ガスタービン及びその運転方法、並びにコンバインドサイクルプラント
JP2022161839A (ja) 直列熱交換器を有する複合サイクル発電プラント
JP3782565B2 (ja) コンバインドサイクル発電プラント
JP5812873B2 (ja) コンバインドサイクル発電プラント
WO2024042917A1 (ja) 酸素水素燃焼を用いた蒸気タービン発電設備
KR102420600B1 (ko) 하이브리드 발전설비 및 그 제어방법
WO2024038724A1 (ja) コンバインドサイクル発電設備
JP3664922B2 (ja) コンバインドサイクルプラント
KR102481490B1 (ko) 복합 발전 시스템 및 복합 발전 시스템의 구동 방법
JPH10331608A (ja) クローズド蒸気冷却ガスタービンコンバインドプラント
JP2012082971A (ja) ボイラ、ガスタービンコンバインドサイクルプラント、及び温度制御方法
JP2001289009A (ja) 一軸式コンバインドタービン設備
JP5475315B2 (ja) コンバインドサイクル発電システム

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20050315

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20050701

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20050715

R151 Written notification of patent or utility model registration

Ref document number: 3702266

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090722

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100722

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110722

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120722

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130722

Year of fee payment: 8

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees