JP6203585B2 - 溶媒可溶性の正極活物質を含む電池 - Google Patents

溶媒可溶性の正極活物質を含む電池 Download PDF

Info

Publication number
JP6203585B2
JP6203585B2 JP2013198597A JP2013198597A JP6203585B2 JP 6203585 B2 JP6203585 B2 JP 6203585B2 JP 2013198597 A JP2013198597 A JP 2013198597A JP 2013198597 A JP2013198597 A JP 2013198597A JP 6203585 B2 JP6203585 B2 JP 6203585B2
Authority
JP
Japan
Prior art keywords
group
substituted
electrolytic solution
substituent
nli
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2013198597A
Other languages
English (en)
Other versions
JP2015065053A (ja
Inventor
山田 淳夫
淳夫 山田
裕貴 山田
裕貴 山田
淳一 丹羽
淳一 丹羽
智之 河合
智之 河合
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
University of Tokyo NUC
Original Assignee
University of Tokyo NUC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by University of Tokyo NUC filed Critical University of Tokyo NUC
Priority to JP2013198597A priority Critical patent/JP6203585B2/ja
Publication of JP2015065053A publication Critical patent/JP2015065053A/ja
Application granted granted Critical
Publication of JP6203585B2 publication Critical patent/JP6203585B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Battery Electrode And Active Subsutance (AREA)
  • Secondary Cells (AREA)

Description

本発明は、溶媒可溶性の正極活物質を含む電池に関する。
一般に、電池は、主な構成要素として、正極、負極及び電解液を備える。電池の1種である二次電池の正極及び負極は、酸化還元反応を行うとともに金属イオンを吸蔵及び放出し得る活物質を具備するのが一般的である。二次電池のうちリチウムイオン二次電池は小型で大容量であるため汎用されている。
リチウムイオン二次電池の正極は、集電体と、正極活物質を含む正極活物質層とを具備する。ここで、リチウムイオン二次電池の正極活物質としては、コバルト、ニッケルなどの希少であって高価な金属を含む遷移金属酸化物が用いられるのが一般的である。
しかし、コバルト、ニッケルなどの金属は希少であって高価であるため、リチウムイオン二次電池に用いる材料として必ずしも最適とはいえなかった。そのため、正極活物質となり得る他の材料を探索する研究が盛んに行われている。
例えば、特許文献1及び特許文献2には、正極活物質として大きな理論容量を有する硫黄単体を採用した電池が開示されている。
しかしながら、正極活物質として硫黄単体を採用したリチウムイオン二次電池においては、放電時に硫黄及びリチウムが反応して硫化リチウム誘導体が生成する。ここで、硫化リチウム誘導体は電解液に可溶である。そうすると、正極活物質として硫黄単体を採用したリチウムイオン二次電池においては、充放電を繰り返すことにより、正極活物質としての硫黄が徐々に電解液に溶出し、電池容量が減少するとの問題があった。
特許文献3に記載されるように、有機材料には、小さい分子内で多電子反応が可能となるものがある。また、現在、急速に発展している計算科学を利用して、今後、正極活物質として硫黄単体に匹敵する有機材料が開発される可能性がある。しかし、正極活物質として用いられるこれらの材料は、1分子内で複数のイオンと反応し得る。そして、多数のイオンと反応した正極活物質は分極する。分極した正極活物質に対して、電解液に含まれる極性溶媒が配位するため、正極活物質は電解液に溶解しやすい状態になる。1分子内で複数のイオンと反応し得る高容量の正極活物質は総じてこのような問題を持っており、この問題のために、イオンと反応した正極活物質は電解液に溶解し、電池性能の低下が懸念される。この問題は、材料の性質に由来するため、電池性能を低下させる事なく解決する事は困難であると思われていた。
その問題を改善する手段として、活物質自体を他の材料で固定化し、電解液への溶解を抑える手段がある。特許文献4〜7には、ポリアクリロニトリルなどを使用し、正極活物質としての硫黄が電解液へ溶出するのを抑制させる技術が開示されている。
また、多くのイオンと反応し得る官能基を導入したポリマーを正極活物質とした高容量かつサイクル安定な電池が提案されている。特許文献8〜15には、上記ポリマー以外にも、正極活物質として比較的分子量の小さい不飽和環状化合物を採用した電池が開示されている。
特開2005−243518号公報 特開2004−342575号公報 特開2008−147015号公報 特開2012−150948号公報 特開2013−54957号公報 特開2013−37960号公報 特開2013−161653号公報 特開2002−190302号公報 特開2010−44882号公報 特開2010−55923号公報 特開2010−80343号公報 特開2011−113839号公報 特開2011−187231号公報 特開2011−228050号公報 特開2012−79479号公報
上述したように、正極活物質として硫黄単体を採用したリチウムイオン二次電池においては、充放電を繰り返すことにより、正極活物質が徐々に電解液に溶出し、電池容量が減少する問題があり、そして、当該問題に対処するために、特許文献4〜7に記載されるような特殊な技術手段を採用していた。
また、正極活物質として、遷移金属酸化物以外の材料である低分子(分子量が2000未満)の不飽和環状化合物を採用した電池においては、その材料が高容量であるほど金属イオンと数多く反応し多くの金属カチオンを自身内に取り込む為、材料自身が分極する。そして、一般的な電解液に存在するフリー状態の溶媒が分極した材料に配位し、材料が徐々に電解液に溶解する可能性があるため、電池容量が減少する問題を内在していた。このため高容量を示す活物質を用いた電池においては、活物質の電解液溶解防止の目的で、活物質をポリマーなどに導入して自身の反応部位割合を低下させることや、電解液の固体化又は擬固体化が行われている。しかし、活物質自身の反応部位割合を低下させることは、低容量化につながり、もともとの高容量との特長を十分生かすことができない。また、活物質が電解液に溶解してもその溶解物が移動できないようにするために、電解液の固体化又は擬固体化をすると、電池全体の抵抗が高くなり、電池特性を悪くする可能性がある。
本発明は、かかる事情に鑑みてなされたものであり、硫黄単体又は分子量2000未満の不飽和環状化合物の電解液への溶出を抑制した電池を提供することを目的とする。
本発明者は数多くの試行錯誤を重ねながら鋭意検討を行った。ここで、本発明者は、電解質としてのリチウム塩を通常以上添加した電解液が技術常識に反して溶液状態を維持することを発見した。そして、本発明者は、そのような電解液を具備する電池においては、硫黄単体又は分子量2000未満の不飽和環状化合物の当該電解液への溶出が抑制され、当該電池の容量が好適に維持されることを知見した。さらに、本発明者が上記電解液の分析を行ったところ、IRスペクトル又はラマンスペクトルで観察されるピークにおいて特定の関係を示す電解液が、電池の電解液として特に有利であることを見出し、本発明を完成するに至った。
本発明の電池は、アルカリ金属、アルカリ土類金属又はアルミニウムをカチオンとする塩と、ヘテロ元素を有する有機溶媒とを含む電解液と、硫黄単体又は分子量2000未満の不飽和環状化合物を含む正極活物質と、を具備する電池であって、前記電解液の振動分光スペクトルにおける前記有機溶媒由来のピーク強度につき、前記有機溶媒本来のピークの強度をIoとし、前記ピークがシフトしたピークの強度をIsとした場合、Is>Ioであることを特徴とする。
本発明の新規な電池は、硫黄単体又は分子量2000未満の不飽和環状化合物を含む溶媒可溶性正極活物質を具備する電池の電池特性を向上できる。
実施例3の電解液のIRスペクトルである。 実施例4の電解液のIRスペクトルである。 実施例7の電解液のIRスペクトルである。 実施例8の電解液のIRスペクトルである。 実施例9の電解液のIRスペクトルである。 比較例2の電解液のIRスペクトルである。 比較例4の電解液のIRスペクトルである。 アセトニトリルのIRスペクトルである。 (CFSONLiのIRスペクトルである。 (FSONLiのIRスペクトルである。
以下に、本発明を実施するための形態を説明する。なお、特に断らない限り、本明細書に記載された数値範囲「a〜b」は、下限aおよび上限bをその範囲に含む。そして、これらの上限値および下限値、ならびに実施例中に列記した数値も含めてそれらを任意に組み合わせることで数値範囲を構成し得る。さらに数値範囲内から任意に選択した数値を上限、下限の数値とすることができる。
本発明の電池は、アルカリ金属、アルカリ土類金属又はアルミニウムをカチオンとする塩(以下、「金属塩」又は単に「塩」ということがある。)と、ヘテロ元素を有する有機溶媒とを含む電解液と、硫黄単体又は分子量2000未満の不飽和環状化合物を含む正極活物質と、を具備する電池であって、前記電解液の振動分光スペクトルにおける前記有機溶媒由来のピーク強度につき、前記有機溶媒本来のピークの強度をIoとし、前記ピークがシフトしたピークの強度をIsとした場合、Is>Ioであることを特徴とする。
以下、アルカリ金属、アルカリ土類金属又はアルミニウムをカチオンとする塩と、ヘテロ元素を有する有機溶媒とを含む電解液であって、前記電解液の振動分光スペクトルにおける前記有機溶媒由来のピーク強度につき、前記有機溶媒本来のピークの強度をIoとし、前記ピークがシフトしたピークの強度をIsとした場合、Is>Ioである電解液のことを、「本発明の電解液」ということがある。
なお、従来の電解液は、IsとIoとの関係がIs<Ioである。
本発明の電解液は、金属塩と有機溶媒との存在環境が従来の電解液と異なるものであり、そして、本発明の電解液においては、従来の電解液と比較して、金属塩と相互作用していない有機溶媒の量が少ない。つまり、本発明の電解液には、硫黄単体又は分子量2000未満の不飽和環状化合物と溶媒和できる有機溶媒が少ない。そのため、硫黄単体又は分子量2000未満の不飽和環状化合物の、本発明の電解液に対する溶解度は低い。その結果として、本発明の電池においては、正極活物質から電解液への、硫黄単体又は分子量2000未満の不飽和環状化合物の溶出が抑制される。
本発明の電解液について説明する。
金属塩は、通常、電池の電解液に含まれるLiClO、LiAsF、LiPF、LiBF、LiAlClなどの電解質として用いられる化合物であれば良い。金属塩のカチオンとしては、リチウム、ナトリウム、カリウムなどのアルカリ金属、ベリリウム、マグネシウム、カルシウム、ストロンチウム、バリウムなどのアルカリ土類金属、及びアルミニウムを挙げることができる。金属塩のカチオンは、電解液を使用する電池の電荷担体と同一の金属イオンであるのが好ましい。例えば、本発明の電解液をリチウムイオン二次電池用の電解液として使用するのであれば、金属塩のカチオンはリチウムが好ましい。
塩のアニオンの化学構造は、ハロゲン、ホウ素、窒素、酸素、硫黄又は炭素から選択される少なくとも1つの元素を含むと良い。ハロゲン又はホウ素を含むアニオンの化学構造を具体的に例示すると、ClO、PF、AsF、SbF、TaF、BF、SiF、B(C、B(oxalate)、Cl、Br、Iを挙げることができる。
窒素、酸素、硫黄又は炭素を含むアニオンの化学構造について、以下、具体的に説明する。
塩のアニオンの化学構造は、下記一般式(1)、一般式(2)又は一般式(3)で表される化学構造が好ましい。
Figure 0006203585
(Rは、水素、ハロゲン、置換基で置換されていても良いアルキル基、置換基で置換されていても良いシクロアルキル基、置換基で置換されていても良い不飽和アルキル基、置換基で置換されていても良い不飽和シクロアルキル基、置換基で置換されていても良い芳香族基、置換基で置換されていても良い複素環基、置換基で置換されていても良いアルコキシ基、置換基で置換されていても良い不飽和アルコキシ基、置換基で置換されていても良いチオアルコキシ基、置換基で置換されていても良い不飽和チオアルコキシ基、CN、SCN、OCNから選択される。
は、水素、ハロゲン、置換基で置換されていても良いアルキル基、置換基で置換されていても良いシクロアルキル基、置換基で置換されていても良い不飽和アルキル基、置換基で置換されていても良い不飽和シクロアルキル基、置換基で置換されていても良い芳香族基、置換基で置換されていても良い複素環基、置換基で置換されていても良いアルコキシ基、置換基で置換されていても良い不飽和アルコキシ基、置換基で置換されていても良いチオアルコキシ基、置換基で置換されていても良い不飽和チオアルコキシ基、CN、SCN、OCNから選択される。
また、RとRは、互いに結合して環を形成しても良い。
は、SO、C=O、C=S、RP=O、RP=S、S=O、Si=Oから選択される。
は、SO、C=O、C=S、RP=O、RP=S、S=O、Si=Oから選択される。
、R、R、Rは、それぞれ独立に、水素、ハロゲン、置換基で置換されていても良いアルキル基、置換基で置換されていても良いシクロアルキル基、置換基で置換されていても良い不飽和アルキル基、置換基で置換されていても良い不飽和シクロアルキル基、置換基で置換されていても良い芳香族基、置換基で置換されていても良い複素環基、置換基で置換されていても良いアルコキシ基、置換基で置換されていても良い不飽和アルコキシ基、置換基で置換されていても良いチオアルコキシ基、置換基で置換されていても良い不飽和チオアルコキシ基、OH、SH、CN、SCN、OCNから選択される。
また、R、R、R、Rは、R又はRと結合して環を形成しても良い。)
Figure 0006203585
(Rは、水素、ハロゲン、置換基で置換されていても良いアルキル基、置換基で置換されていても良いシクロアルキル基、置換基で置換されていても良い不飽和アルキル基、置換基で置換されていても良い不飽和シクロアルキル基、置換基で置換されていても良い芳香族基、置換基で置換されていても良い複素環基、置換基で置換されていても良いアルコキシ基、置換基で置換されていても良い不飽和アルコキシ基、置換基で置換されていても良いチオアルコキシ基、置換基で置換されていても良い不飽和チオアルコキシ基、CN、SCN、OCNから選択される。
は、SO、C=O、C=S、RP=O、RP=S、S=O、Si=Oから選択される。
、Rは、それぞれ独立に、水素、ハロゲン、置換基で置換されていても良いアルキル基、置換基で置換されていても良いシクロアルキル基、置換基で置換されていても良い不飽和アルキル基、置換基で置換されていても良い不飽和シクロアルキル基、置換基で置換されていても良い芳香族基、置換基で置換されていても良い複素環基、置換基で置換されていても良いアルコキシ基、置換基で置換されていても良い不飽和アルコキシ基、置換基で置換されていても良いチオアルコキシ基、置換基で置換されていても良い不飽和チオアルコキシ基、OH、SH、CN、SCN、OCNから選択される。
また、R、Rは、Rと結合して環を形成しても良い。
Yは、O、Sから選択される。)
Figure 0006203585
(Rは、水素、ハロゲン、置換基で置換されていても良いアルキル基、置換基で置換されていても良いシクロアルキル基、置換基で置換されていても良い不飽和アルキル基、置換基で置換されていても良い不飽和シクロアルキル基、置換基で置換されていても良い芳香族基、置換基で置換されていても良い複素環基、置換基で置換されていても良いアルコキシ基、置換基で置換されていても良い不飽和アルコキシ基、置換基で置換されていても良いチオアルコキシ基、置換基で置換されていても良い不飽和チオアルコキシ基、CN、SCN、OCNから選択される。
は、水素、ハロゲン、置換基で置換されていても良いアルキル基、置換基で置換されていても良いシクロアルキル基、置換基で置換されていても良い不飽和アルキル基、置換基で置換されていても良い不飽和シクロアルキル基、置換基で置換されていても良い芳香族基、置換基で置換されていても良い複素環基、置換基で置換されていても良いアルコキシ基、置換基で置換されていても良い不飽和アルコキシ基、置換基で置換されていても良いチオアルコキシ基、置換基で置換されていても良い不飽和チオアルコキシ基、CN、SCN、OCNから選択される。
は、水素、ハロゲン、置換基で置換されていても良いアルキル基、置換基で置換されていても良いシクロアルキル基、置換基で置換されていても良い不飽和アルキル基、置換基で置換されていても良い不飽和シクロアルキル基、置換基で置換されていても良い芳香族基、置換基で置換されていても良い複素環基、置換基で置換されていても良いアルコキシ基、置換基で置換されていても良い不飽和アルコキシ基、置換基で置換されていても良いチオアルコキシ基、置換基で置換されていても良い不飽和チオアルコキシ基、CN、SCN、OCNから選択される。
また、R、R、Rのうち、いずれか2つ又は3つが結合して環を形成しても良い。
は、SO、C=O、C=S、RP=O、RP=S、S=O、Si=Oから選択される。
は、SO、C=O、C=S、RP=O、RP=S、S=O、Si=Oから選択される。
は、SO、C=O、C=S、RP=O、RP=S、S=O、Si=Oから選択される。
、R、R、R、R、Rは、それぞれ独立に、水素、ハロゲン、置換基で置換されていても良いアルキル基、置換基で置換されていても良いシクロアルキル基、置換基で置換されていても良い不飽和アルキル基、置換基で置換されていても良い不飽和シクロアルキル基、置換基で置換されていても良い芳香族基、置換基で置換されていても良い複素環基、置換基で置換されていても良いアルコキシ基、置換基で置換されていても良い不飽和アルコキシ基、置換基で置換されていても良いチオアルコキシ基、置換基で置換されていても良い不飽和チオアルコキシ基、OH、SH、CN、SCN、OCNから選択される。
また、R、R、R、R、R、Rは、R、R又はRと結合して環を形成しても良い。)
上記一般式(1)〜(3)で表される化学構造における、「置換基で置換されていても良い」との文言について説明する。例えば「置換基で置換されていても良いアルキル基」であれば、アルキル基の水素の一つ若しくは複数が置換基で置換されているアルキル基、又は、特段の置換基を有さないアルキル基を意味する。
「置換基で置換されていても良い」との文言における置換基としては、アルキル基、アルケニル基、アルキニル基、シクロアルキル基、不飽和シクロアルキル基、芳香族基、複素環基、ハロゲン、OH、SH、CN、SCN、OCN、ニトロ基、アルコキシ基、不飽和アルコキシ基、アミノ基、アルキルアミノ基、ジアルキルアミノ基、アリールオキシ基、アシル基、アルコキシカルボニル基、アシルオキシ基、アリールオキシカルボニル基、アシルアミノ基、アルコキシカルボニルアミノ基、アリールオキシカルボニルアミノ基、スルホニルアミノ基、スルファモイル基、カルバモイル基、アルキルチオ基、アリールチオ基、スルホニル基、スルフィニル基、ウレイド基、リン酸アミド基、スルホ基、カルボキシル基、ヒドロキサム酸基、スルフィノ基、ヒドラジノ基、イミノ基、シリル基等が挙げられる。これらの置換基はさらに置換されてもよい。また置換基が2つ以上ある場合、置換基は同一でも異なっていてもよい。
塩のアニオンの化学構造は、下記一般式(4)、一般式(5)又は一般式(6)で表される化学構造がより好ましい。
Figure 0006203585
(R、Rは、それぞれ独立に、CClBr(CN)(SCN)(OCN)である。
n、a、b、c、d、e、f、g、hはそれぞれ独立に0以上の整数であり、2n+1=a+b+c+d+e+f+g+hを満たす。
また、RとRは、互いに結合して環を形成しても良く、その場合は、2n=a+b+c+d+e+f+g+hを満たす。
は、SO、C=O、C=S、RP=O、RP=S、S=O、Si=Oから選択される。
は、SO、C=O、C=S、RP=O、RP=S、S=O、Si=Oから選択される。
、R、R、Rは、それぞれ独立に、水素、ハロゲン、置換基で置換されていても良いアルキル基、置換基で置換されていても良いシクロアルキル基、置換基で置換されていても良い不飽和アルキル基、置換基で置換されていても良い不飽和シクロアルキル基、置換基で置換されていても良い芳香族基、置換基で置換されていても良い複素環基、置換基で置換されていても良いアルコキシ基、置換基で置換されていても良い不飽和アルコキシ基、置換基で置換されていても良いチオアルコキシ基、置換基で置換されていても良い不飽和チオアルコキシ基、OH、SH、CN、SCN、OCNから選択される。
また、R、R、R、Rは、R又はRと結合して環を形成しても良い。)
Figure 0006203585
(Rは、CClBr(CN)(SCN)(OCN)である。
n、a、b、c、d、e、f、g、hはそれぞれ独立に0以上の整数であり、2n+1=a+b+c+d+e+f+g+hを満たす。
は、SO、C=O、C=S、RP=O、RP=S、S=O、Si=Oから選択される。
、Rは、それぞれ独立に、水素、ハロゲン、置換基で置換されていても良いアルキル基、置換基で置換されていても良いシクロアルキル基、置換基で置換されていても良い不飽和アルキル基、置換基で置換されていても良い不飽和シクロアルキル基、置換基で置換されていても良い芳香族基、置換基で置換されていても良い複素環基、置換基で置換されていても良いアルコキシ基、置換基で置換されていても良い不飽和アルコキシ基、置換基で置換されていても良いチオアルコキシ基、置換基で置換されていても良い不飽和チオアルコキシ基、OH、SH、CN、SCN、OCNから選択される。
また、R、Rは、Rと結合して環を形成しても良い。
Yは、O、Sから選択される。)
Figure 0006203585
(R10、R11、R12は、それぞれ独立に、CClBr(CN)(SCN)(OCN)である。
n、a、b、c、d、e、f、g、hはそれぞれ独立に0以上の整数であり、2n+1=a+b+c+d+e+f+g+hを満たす。
10、R11、R12のうちいずれか2つが結合して環を形成しても良く、その場合、環を形成する基は2n=a+b+c+d+e+f+g+hを満たす。また、R10、R11、R12の3つが結合して環を形成しても良く、その場合、3つのうち2つの基が2n=a+b+c+d+e+f+g+hを満たし、1つの基が2n−1=a+b+c+d+e+f+g+hを満たす。
10は、SO、C=O、C=S、RP=O、RP=S、S=O、Si=Oから選択される。
11は、SO、C=O、C=S、RP=O、RP=S、S=O、Si=Oから選択される。
12は、SO、C=O、C=S、RP=O、RP=S、S=O、Si=Oから選択される。
、R、R、R、R、Rは、それぞれ独立に、水素、ハロゲン、置換基で置換されていても良いアルキル基、置換基で置換されていても良いシクロアルキル基、置換基で置換されていても良い不飽和アルキル基、置換基で置換されていても良い不飽和シクロアルキル基、置換基で置換されていても良い芳香族基、置換基で置換されていても良い複素環基、置換基で置換されていても良いアルコキシ基、置換基で置換されていても良い不飽和アルコキシ基、置換基で置換されていても良いチオアルコキシ基、置換基で置換されていても良い不飽和チオアルコキシ基、OH、SH、CN、SCN、OCNから選択される。
また、R、R、R、R、R、Rは、R10、R11又はR12と結合して環を形成しても良い。)
上記一般式(4)〜(6)で表される化学構造における、「置換基で置換されていても良い」との文言の意味は、上記一般式(1)〜(3)で説明したのと同義である。
上記一般式(4)〜(6)で表される化学構造において、nは0〜6の整数が好ましく、0〜4の整数がより好ましく、0〜2の整数が特に好ましい。なお、上記一般式(4)〜(6)で表される化学構造の、RとRが結合、又は、R10、R11、R12が結合して環を形成している場合には、nは1〜8の整数が好ましく、1〜7の整数がより好ましく、1〜3の整数が特に好ましい。
塩のアニオンの化学構造は、下記一般式(7)、一般式(8)又は一般式(9)で表されるものがさらに好ましい。
Figure 0006203585
(R13、R14は、それぞれ独立に、CClBrである。
n、a、b、c、d、eはそれぞれ独立に0以上の整数であり、2n+1=a+b+c+d+eを満たす。
また、R13とR14は、互いに結合して環を形成しても良く、その場合は、2n=a+b+c+d+eを満たす。)
Figure 0006203585
(R15は、CClBrである。
n、a、b、c、d、eはそれぞれ独立に0以上の整数であり、2n+1=a+b+c+d+eを満たす。)
Figure 0006203585
(R16、R17、R18は、それぞれ独立に、CClBrである。
n、a、b、c、d、eはそれぞれ独立に0以上の整数であり、2n+1=a+b+c+d+eを満たす。
16、R17、R18のうちいずれか2つが結合して環を形成しても良く、その場合、環を形成する基は2n=a+b+c+d+eを満たす。また、R16、R17、R18の3つが結合して環を形成しても良く、その場合、3つのうち2つの基が2n=a+b+c+d+eを満たし、1つの基が2n−1=a+b+c+d+eを満たす。)
上記一般式(7)〜(9)で表される化学構造において、nは0〜6の整数が好ましく、0〜4の整数がより好ましく、0〜2の整数が特に好ましい。なお、上記一般式(7)〜(9)で表される化学構造の、R13とR14が結合、又は、R16、R17、R18が結合して環を形成している場合には、nは1〜8の整数が好ましく、1〜7の整数がより好ましく、1〜3の整数が特に好ましい。
また、上記一般式(7)〜(9)で表される化学構造において、a、c、d、eが0のものが好ましい。
金属塩は、(CFSONLi(以下、「LiTFSA」ということがある。)、(FSONLi(以下、「LiFSA」ということがある。)、(CSONLi、FSO(CFSO)NLi、(SOCFCFSO)NLi、又は(SOCFCFCFSO)NLiが特に好ましい。
本発明の金属塩は、以上で説明したカチオンとアニオンをそれぞれ適切な数で組み合わせたものを採用すれば良い。本発明の電解液における金属塩は1種類を採用しても良いし、複数種を併用しても良い。
ヘテロ元素を有する有機溶媒としては、ヘテロ元素が窒素、酸素、硫黄、ハロゲンから選択される少なくとも1つである有機溶媒が好ましく、ヘテロ元素が窒素又は酸素から選択される少なくとも1つである有機溶媒がより好ましい。また、ヘテロ元素を有する有機溶媒としては、NH基、NH基、OH基、SH基などのプロトン供与基を有さない、非プロトン性溶媒が好ましい。
ヘテロ元素を有する有機溶媒(以下、単に「有機溶媒」ということがある。)を具体的に例示すると、アセトニトリル、プロピオニトリル、アクリロニトリル、マロノニトリル等のニトリル類、1,2−ジメトキシエタン、1,2−ジエトキシエタン、テトラヒドロフラン、1,2−ジオキサン、1,3−ジオキサン、1,4−ジオキサン、2,2−ジメチル−1,3−ジオキソラン、2−メチルテトラヒドロピラン、2−メチルテトラヒドロフラン、クラウンエーテル等のエーテル類、エチレンカーボネート、プロピレンカーボネート、ジメチルカーボネート、ジエチルカーボネート、エチルメチルカーボネート等のカーボネート類、ホルムアミド、N,N−ジメチルホルムアミド、N,N−ジメチルアセトアミド、N−メチルピロリドン等のアミド類、イソプロピルイソシアネート、n−プロピルイソシアネート、クロロメチルイソシアネート等のイソシアネート類、酢酸メチル、酢酸エチル、酢酸プロピル、プロピオン酸メチル、蟻酸メチル、蟻酸エチル、酢酸ビニル、メチルアクリレート、メチルメタクリレート等のエステル類、グリシジルメチルエーテル、エポキシブタン、2−エチルオキシラン等のエポキシ類、オキサゾール、2−エチルオキサゾール、オキサゾリン、2−メチル−2−オキサゾリン等のオキサゾール類、アセトン、メチルエチルケトン、メチルイソブチルケトン等のケトン類、無水酢酸、無水プロピオン酸等の酸無水物、ジメチルスルホン、スルホラン等のスルホン類、ジメチルスルホキシド等のスルホキシド類、1−ニトロプロパン、2−ニトロプロパン等のニトロ類、フラン、フルフラール等のフラン類、γ―ブチロラクトン、γ―バレロラクトン、δ―バレロラクトン等の環状エステル類、チオフェン、ピリジン等の芳香族複素環類、テトラヒドロ−4−ピロン、1−メチルピロリジン、N−メチルモルフォリン等の複素環類、リン酸トリメチル、リン酸トリエチル等のリン酸エステル類を挙げることができる。
これらの有機溶媒は単独で電解液に用いても良いし、複数を併用しても良い。
ヘテロ元素を有する有機溶媒としては、比誘電率が20以上又はドナー性のエーテル酸素を有する溶媒が好ましく、そのような有機溶媒として、アセトニトリル、プロピオニトリル、アクリロニトリル、マロノニトリル等のニトリル類、1,2−ジメトキシエタン、1,2−ジエトキシエタン、テトラヒドロフラン、1,2−ジオキサン、1,3−ジオキサン、1,4−ジオキサン、2,2−ジメチル−1,3−ジオキソラン、2−メチルテトラヒドロピラン、2−メチルテトラヒドロフラン、クラウンエーテル等のエーテル類、N,N−ジメチルホルムアミド、アセトン、ジメチルスルホキシド、スルホランを挙げることができ、特に、アセトニトリル(以下、「AN」ということがある。)、1,2−ジメトキシエタン(以下、「DME」ということがある。)が好ましい。
本発明の電解液は、その振動分光スペクトルにおいて、電解液に含まれる有機溶媒由来のピーク強度につき、有機溶媒本来のピークの強度をIoとし、有機溶媒本来のピークがシフトしたピーク(以下、「シフトピーク」ということがある。)の強度をIsとした場合、Is>Ioであることを特徴とする。すなわち、本発明の電解液を振動分光測定に供し得られる振動分光スペクトルチャートにおいて、上記2つのピーク強度の関係はIs>Ioとなる。
ここで、「有機溶媒本来のピーク」とは、有機溶媒のみを振動分光測定した場合のピーク位置(波数)に、観察されるピークを意味する。有機溶媒本来のピークの強度Ioの値と、シフトピークの強度Isの値は、振動分光スペクトルにおける各ピークのベースラインからの高さ又は面積である。
本発明の電解液の振動分光スペクトルにおいて、有機溶媒本来のピークがシフトしたピークが複数存在する場合には、最もIsとIoの関係を判断しやすいピークに基づいて当該関係を判断すればよい。また、本発明の電解液にヘテロ元素を有する有機溶媒を複数種用いた場合には、最もIsとIoの関係を判断しやすい(最もIsとIoの差が顕著な)有機溶媒を選択し、そのピーク強度に基づいてIsとIoの関係を判断すればよい。また、ピークのシフト量が小さく、シフト前後のピークが重なってなだらかな山のように見える場合は、既知の手段を用いてピーク分離を行い、IsとIoの関係を判断してもよい。
なお、ヘテロ元素を有する有機溶媒を複数種用いた電解液の振動分光スペクトルにおいては、カチオンと最も配位し易い有機溶媒(以下、「優先配位溶媒」ということがある。)のピークが他に優先してシフトする。ヘテロ元素を有する有機溶媒を複数種用いた電解液において、ヘテロ元素を有する有機溶媒全体に対する優先配位溶媒の質量%は、40%以上が好ましく、50%以上がより好ましく、60%以上がさらに好ましく、80%以上が特に好ましい。また、ヘテロ元素を有する有機溶媒を複数種用いた電解液において、ヘテロ元素を有する有機溶媒全体に対する優先配位溶媒の体積%は、40%以上が好ましく、50%以上がより好ましく、60%以上がさらに好ましく、80%以上が特に好ましい。
本発明の電解液の振動分光スペクトルにおける上記2つのピーク強度の関係は、Is>2×Ioの条件を満たすことが好ましく、Is>3×Ioの条件を満たすことがより好ましく、Is>5×Ioの条件を満たすことがさらに好ましく、Is>7×Ioの条件を満たすことが特に好ましい。最も好ましいのは、本発明の電解液の振動分光スペクトルにおいて、有機溶媒本来のピークの強度Ioが観察されず、シフトピークの強度Isが観察される電解液である。当該電解液においては、電解液に含まれる有機溶媒の分子すべてが金属塩と完全に溶媒和していることを意味する。本発明の電解液は、電解液に含まれる有機溶媒の分子すべてが金属塩と完全に溶媒和している状態(Io=0の状態)が最も好ましい。
本発明の電解液においては、金属塩と、ヘテロ元素を有する有機溶媒(又は優先配位溶媒)が、相互作用を及ぼしていると推定される。具体的には、金属塩のカチオンと、ヘテロ元素を有する有機溶媒(又は優先配位溶媒)のヘテロ元素とが、配位結合を形成し、金属塩とヘテロ元素を有する有機溶媒(又は優先配位溶媒)からなる安定なクラスターを形成していると推定される。このクラスターは、後述する実施例の結果からみて、概ね、金属塩1分子に対し、ヘテロ元素を有する有機溶媒(又は優先配位溶媒)2分子が配位することにより形成されていると推定される。また、本発明で用いる正極活物質は、電解液の塩濃度が高いほうが電解液に対する溶解を抑制されると考えられる。これらの点を考慮すると、本発明の電解液における、金属塩1モルに対するヘテロ元素を有する有機溶媒(又は優先配位溶媒)のモル範囲は、3.5モル未満が好ましく、3.1モル以下がより好ましく、3モル以下がさらに好ましい。 本発明の電解液は塩濃度が高いほうが好ましいことは上述したとおりだが、本発明の電解液における、金属塩1モルに対するヘテロ元素を有する有機溶媒(又は優先配位溶媒)のモル範囲の下限を敢えて述べると、例えば1.1モル以上、1.4モル以上、1.5モル以上、1.6モル以上を挙げることができる。
本発明の電解液における密度d(g/cm)は、好ましくはd≧1.2又はd≦2.2であり、1.2≦d≦2.2の範囲内がより好ましく、1.25≦d≦2.0の範囲内がより好ましく、1.3≦d≦1.8の範囲内がさらに好ましく、1.3≦d≦1.6の範囲内が特に好ましい。なお、本発明の電解液における密度d(g/cm)は、20℃での密度を意味する。
本発明の電解液においては、概ね、金属塩1分子に対し、ヘテロ元素を有する有機溶媒(又は優先配位溶媒)2分子が配位することによりクラスター形成されていると推定されるため、本発明の電解液の濃度(mol/L)は、金属塩及び有機溶媒それぞれの分子量と、溶液にした場合の密度に依存する。そのため、本発明の電解液の濃度を一概に規定することは適当でない。
本発明の電解液の濃度(mol/L)を表1に個別に例示する。
Figure 0006203585
クラスターを形成している有機溶媒と、クラスターの形成に関与していない有機溶媒とは、それぞれの存在環境が異なる。そのため、振動分光測定において、クラスターを形成している有機溶媒由来のピークは、クラスターの形成に関与していない有機溶媒由来のピーク(有機溶媒本来のピーク)の観察される波数から、高波数側又は低波数側にシフトして観察される。すなわち、シフトピークは、クラスターを形成している有機溶媒のピークに相当する。
振動分光スペクトルとしては、IRスペクトル又はラマンスペクトルを挙げることができる。IR測定の測定方法としては、ヌジョール法、液膜法などの透過測定方法、ATR法などの反射測定方法を挙げることができる。IRスペクトル又はラマンスペクトルのいずれを選択するかについては、本発明の電解液の振動分光スペクトルにおいて、IsとIoの関係を判断しやすいスペクトルの方を選択すれば良い。なお、振動分光測定は、大気中の水分の影響を軽減又は無視できる条件で行うのがよい。例えば、ドライルーム、グローブボックスなどの低湿度又は無湿度条件下でIR測定を行うこと、又は、電解液を密閉容器に入れたままの状態でラマン測定を行うのがよい。
ここで、金属塩としてLiTFSA、有機溶媒としてアセトニトリルを含む本発明の電解液におけるピークにつき、具体的に説明する。
アセトニトリルのみをIR測定した場合、C及びN間の三重結合の伸縮振動に由来するピークが通常2100〜2400cm−1付近に観察される。
ここで、従来の技術常識に従い、アセトニトリル溶媒に対しLiTFSAを1mol/Lの濃度で溶解して電解液とした場合を想定する。アセトニトリル1Lは約19molに該当するので、従来の電解液1Lには、1molのLiTFSAと19molのアセトニトリルが存在する。そうすると、従来の電解液においては、LiTFSAと溶媒和している(Liに配位している)アセトニトリルと同時に、LiTFSAと溶媒和していない(Liに配位していない)アセトニトリルが多数存在する。さて、LiTFSAと溶媒和しているアセトニトリル分子と、LiTFSAと溶媒和していないアセトニトリル分子とは、アセトニトリル分子の置かれている環境が異なるので、IRスペクトルにおいては、両者のアセトニトリルピークが区別して観察される。より具体的には、LiTFSAと溶媒和していないアセトニトリルのピークは、アセトニトリルのみをIR測定した場合と同様の位置(波数)に観察されるが、他方、LiTFSAと溶媒和しているアセトニトリルのピークは、ピーク位置(波数)が高波数側にシフトして観察される。
そして、従来の電解液の濃度においては、LiTFSAと溶媒和していないアセトニトリルが多数存在するのであるから、従来の電解液の振動分光スペクトルにおいて、アセトニトリル本来のピークの強度Ioと、アセトニトリル本来のピークがシフトしたピークの強度Isとの関係は、Is<Ioとなる。
他方、本発明の電解液は従来の電解液と比較してLiTFSAの濃度が高く、かつ、電解液においてLiTFSAと溶媒和している(クラスターを形成している)アセトニトリル分子の数が、LiTFSAと溶媒和していないアセトニトリル分子の数よりも多い。そうすると、本発明の電解液の振動分光スペクトルにおける、アセトニトリル本来のピークの強度Ioと、アセトニトリル本来のピークがシフトしたピークの強度Isとの関係は、Is>Ioとなる。
表2に、本発明の電解液の振動分光スペクトルにおいて、Io及びIsの算出に有用と考えられる有機溶媒の波数と、その帰属を例示する。なお、振動分光スペクトルの測定装置、測定環境、測定条件に因って、観察されるピークの波数が以下の波数と異なる場合があることを付け加えておく。
Figure 0006203585
有機溶媒の波数とその帰属につき、公知のデータを参考としてもよい。参考文献として、日本分光学会測定法シリーズ17 ラマン分光法、濱口宏夫、平川暁子、学会出版センター、231〜249頁を挙げる。また、コンピュータを用いた計算でも、Io及びIsの算出に有用と考えられる有機溶媒の波数と、有機溶媒と金属塩が配位した場合の波数シフトを予測することができる。例えば、Gaussian09(登録商標、ガウシアン社)を用い、密度汎関数をB3LYP、基底関数を6−311G++(d,p)として計算すればよい。当業者は、表2の記載、公知のデータ、コンピュータでの計算結果を参考にして、有機溶媒のピークを選定し、Io及びIsを算出することができる。
本発明の電解液は、従来の電解液と比較して、金属塩と有機溶媒の存在環境が異なり、かつ、金属塩濃度が高いため、電解液中の金属イオン輸送速度の向上(特に、金属がリチウムの場合、リチウム輸率の向上)、電極と電解液界面の反応速度の向上、電池のハイレート充放電時に起こる電解液の塩濃度の偏在の緩和、電気二重層容量の増大などが期待できる。さらに、本発明の電解液においては、ヘテロ元素を有する有機溶媒の大半が金属塩とクラスターを形成していることから、電解液に含まれる有機溶媒の蒸気圧が低くなる。その結果として、本発明の電解液からの有機溶媒の揮発が低減できる。
本発明の電解液の製造方法を説明する。本発明の電解液は従来の電解液と比較して金属塩の含有量が多いため、固体(粉体)の金属塩に有機溶媒を加える製造方法では凝集体が得られてしまい、溶液状態の電解液を製造するのが困難である。よって、本発明の電解液の製造方法においては、有機溶媒に対し金属塩を徐々に加え、かつ、電解液の溶液状態を維持しながら製造することが好ましい。
金属塩と有機溶媒の種類に因り、本発明の電解液は、従来考えられてきた飽和溶解度を超えて金属塩が有機溶媒に溶解している液体を包含する。そのような本発明の電解液の製造方法は、ヘテロ元素を有する有機溶媒と金属塩とを混合し、金属塩を溶解して、第1電解液を調製する第1溶解工程と、撹拌及び/又は加温条件下、前記第1電解液に前記金属塩を加え、前記金属塩を溶解し、過飽和状態の第2電解液を調製する第2溶解工程と、撹拌及び/又は加温条件下、前記第2電解液に前記金属塩を加え、前記金属塩を溶解し、第3電解液を調製する第3溶解工程を含む。
ここで、上記「過飽和状態」とは、撹拌及び/又は加温条件を解除した場合、又は、振動等の結晶核生成エネルギーを与えた場合に、電解液から金属塩結晶が析出する状態のことを意味する。第2電解液は「過飽和状態」であり、第1電解液及び第3電解液は「過飽和状態」でない。
換言すると、本発明の電解液の上記製造方法は、熱力学的に安定な液体状態であり従来の金属塩濃度を包含する第1電解液を経て、熱力学的に不安定な液体状態の第2電解液を経由し、そして、熱力学的に安定な新たな液体状態の第3電解液、すなわち本発明の電解液となる。
安定な液体状態の第3電解液は通常の条件で液体状態を保つことから、第3電解液においては、例えば、リチウム塩1分子に対し有機溶媒2分子で構成されこれらの分子間の強い配位結合によって安定化されたクラスターがリチウム塩の結晶化を阻害していると推定される。
第1溶解工程は、ヘテロ原子を有する有機溶媒と金属塩とを混合し、金属塩を溶解して、第1電解液を調製する工程である。
ヘテロ原子を有する有機溶媒と金属塩とを混合するためには、ヘテロ原子を有する有機溶媒に対し金属塩を加えても良いし、金属塩に対しヘテロ原子を有する有機溶媒を加えても良い。
第1溶解工程は、撹拌及び/又は加温条件下で行われるのが好ましい。撹拌速度については適宜設定すればよい。加温条件については、ウォーターバス又はオイルバスなどの恒温槽で適宜制御するのが好ましい。金属塩の溶解時には溶解熱が発生するので、熱に不安定な金属塩を用いる場合には、温度条件を厳密に制御することが好ましい。また、あらかじめ、有機溶媒を冷却しておいても良いし、第1溶解工程を冷却条件下で行ってもよい。
第1溶解工程と第2溶解工程は連続して実施しても良いし、第1溶解工程で得た第1電解液を一旦保管(静置)しておき、一定時間経過した後に、第2溶解工程を実施しても良い。
第2溶解工程は、撹拌及び/又は加温条件下、第1電解液に金属塩を加え、金属塩を溶解し、過飽和状態の第2電解液を調製する工程である。
第2溶解工程は、熱力学的に不安定な過飽和状態の第2電解液を調製するため、撹拌及び/又は加温条件下で行うことが必須である。ミキサー等の撹拌器を伴った撹拌装置で第2溶解工程を行うことにより、撹拌条件下としても良いし、撹拌子と撹拌子を動作させる装置(スターラー)を用いて第2溶解工程を行うことにより、撹拌条件下としても良い。加温条件については、ウォーターバス又はオイルバスなどの恒温槽で適宜制御するのが好ましい。もちろん、撹拌機能と加温機能を併せ持つ装置又はシステムを用いて第2溶解工程を行うことが特に好ましい。
第2溶解工程において、加えた金属塩が十分に溶解しない場合には、撹拌速度の増加及び/又はさらなる加温を実施する。この場合には、第2溶解工程の電解液にヘテロ原子を有する有機溶媒を少量加えてもよい。
第2溶解工程で得た第2電解液を一旦静置すると金属塩の結晶が析出してしまうので、第2溶解工程と第3溶解工程は連続して実施するのが好ましい。
第3溶解工程は、撹拌及び/又は加温条件下、第2電解液に金属塩を加え、金属塩を溶解し、第3電解液を調製する工程である。第3溶解工程では、過飽和状態の第2電解液に金属塩を加え、溶解する必要があるので、第2溶解工程と同様に撹拌及び/又は加温条件下で行うことが必須である。具体的な撹拌及び/又は加温条件は、第2溶解工程の条件と同様である。
第1溶解工程、第2溶解工程及び第3溶解工程を通じて加えた有機溶媒と金属塩とのモル比が概ね2:1程度となれば、第3電解液(本発明の電解液)の製造が終了する。撹拌及び/又は加温条件を解除しても、本発明の電解液から金属塩結晶は析出しない。これらの事情からみて、本発明の電解液は、例えば、リチウム塩1分子に対し有機溶媒2分子からなり、これらの分子間の強い配位結合によって安定化されたクラスターを形成していると推定される。
なお、本発明の電解液を製造するにあたり、金属塩と有機溶媒の種類に因り、上記過飽和状態を経由しない場合であっても、上記第1〜3溶解工程で述べた具体的な溶解手段を用いて本発明の電解液を適宜製造することができる。
また、本発明の電解液の製造方法においては、製造途中の電解液を振動分光測定する振動分光測定工程を有するのが好ましい。具体的な振動分光測定工程としては、例えば、製造途中の各電解液を一部サンプリングして振動分光測定に供する方法でも良いし、各電解液をin situ(その場)で振動分光測定する方法でも良い。電解液をin situで振動分光測定する方法としては、透明なフローセルに製造途中の電解液を導入して振動分光測定する方法、又は、透明な製造容器を用いて該容器外からラマン測定する方法を挙げることができる。
本発明の電解液の製造方法に振動分光測定工程を含めることにより、電解液におけるIsとIoとの関係を製造途中で確認できるため、製造途中の電解液が本発明の電解液に達したのか否かを判断することができるし、また、製造途中の電解液が本発明の電解液に達していない場合にどの程度の量の金属塩を追加すれば本発明の電解液に達するのかを把握することができる。
本発明の電解液には、上記ヘテロ元素を有する有機溶媒以外に、低極性(低誘電率)または低ドナー数であって、金属塩と特段の相互作用を示さない溶媒、すなわち、本発明の電解液における上記クラスターの形成および維持に影響を与えない溶媒を加えることができる。このような溶媒を本発明の電解液に加えることにより、本発明の電解液の上記クラスターの形成を保持したままで、電解液の粘度を低くする効果が期待できる。
金属塩と特段の相互作用を示さない溶媒としては、具体的にベンゼン、トルエン、エチルベンゼン、o−キシレン、m−キシレン、p−キシレン、1−メチルナフタレン、ヘキサン、ヘプタン、シクロヘキサンを例示することができる。
また、本発明の電解液には、上記ヘテロ元素を有する有機溶媒以外に、難燃性の溶媒を加えることができる。難燃性の溶媒を本発明の電解液に加えることにより、本発明の電解液の安全度をさらに高めることができる。難燃性の溶媒としては、四塩化炭素、テトラクロロエタン、ハイドロフルオロエーテルなどのハロゲン系溶媒、リン酸トリメチル、リン酸トリエチルなどのリン酸誘導体を例示することができる。
次に、本発明の電池における正極活物質について説明する。
正極活物質は、酸化還元反応を行うとともに金属イオンを吸蔵及び放出し得る材料であって正極に用いられるものである。本発明における正極活物質は、硫黄単体又は分子量2000未満の不飽和環状化合物を含むものである。硫黄単体は、通常のリチウムイオン二次電池に用いられる形状及び純度のものであれば良い。分子量2000未満の不飽和環状化合物としては、特許文献7〜14に記載される正極活物質として機能する化合物及びこれらの化合物と同様の性質を有する化合物であれば良い。
分子量2000未満の不飽和環状化合物としては、下記一般式(10)〜一般式(22)で表される化合物を例示できる。
Figure 0006203585
(R、R、R、R、R、Rはそれぞれ独立に、水素、ハロゲン、ヒドロキシ基、ニトロ基、ニトロソ基、シアノ基、カルボキシル基、置換されていても良いアルキル基、置換されていても良い不飽和アルキル基、置換されていても良いシクロアルキル基、置換されていても良い不飽和シクロアルキル基、置換されていても良い芳香族基、置換されていても良いヘテロ芳香族基、置換されていても良い複素環基、アミノ基、置換されていても良いアルコキシ基、置換されていても良いアリールオキシ基、置換されていても良いアルコキシカルボニル基である。
とR、RとR、RとR、RとR、RとRは、それぞれ結合して置換されていても良い炭素環又は複素環を形成してもよい。)
Figure 0006203585
(R、R、R、R10、R11、R12はそれぞれ独立に、水素、ハロゲン、ヒドロキシ基、ニトロ基、ニトロソ基、シアノ基、カルボキシル基、置換されていても良いアルキル基、置換されていても良い不飽和アルキル基、置換されていても良いシクロアルキル基、置換されていても良い不飽和シクロアルキル基、置換されていても良い芳香族基、置換されていても良いヘテロ芳香族基、置換されていても良い複素環基、アミノ基、置換されていても良いアルコキシ基、置換されていても良いアリールオキシ基、置換されていても良いアルコキシカルボニル基である。
とR、RとR、RとR10、R10とR11、R11とR12は、それぞれ結合して置換されていても良い炭素環又は複素環を形成してもよい。)
Figure 0006203585
(R13、R14、R15、R16はそれぞれ独立に、水素、ハロゲン、ヒドロキシ基、ニトロ基、ニトロソ基、シアノ基、カルボキシル基、置換されていても良いアルキル基、置換されていても良い不飽和アルキル基、置換されていても良いシクロアルキル基、置換されていても良い不飽和シクロアルキル基、置換されていても良い芳香族基、置換されていても良いヘテロ芳香族基、置換されていても良い複素環基、アミノ基、置換されていても良いアルコキシ基、置換されていても良いアリールオキシ基、置換されていても良いアルコキシカルボニル基である。
13とR14、R15とR16は、それぞれ結合して置換されていても良い炭素環又は複素環を形成してもよい。
XはN又はCからそれぞれ独立に選択され、XがNの場合nは0であり、XがCの場合nは1である。)
Figure 0006203585
(R17、R18、R19、R20、R21、R22はそれぞれ独立に、水素、ハロゲン、ヒドロキシ基、ニトロ基、ニトロソ基、シアノ基、カルボキシル基、置換されていても良いアルキル基、置換されていても良い不飽和アルキル基、置換されていても良いシクロアルキル基、置換されていても良い不飽和シクロアルキル基、置換されていても良い芳香族基、置換されていても良いヘテロ芳香族基、置換されていても良い複素環基、アミノ基、置換されていても良いアルコキシ基、置換されていても良いアリールオキシ基、置換されていても良いアルコキシカルボニル基である。
17とR18、R18とR19、R20とR21、R21とR22は、それぞれ結合して置換されていても良い炭素環又は複素環を形成してもよい。
XはN又はCからそれぞれ独立に選択され、XがNの場合nは0であり、XがCの場合nは1である。)
Figure 0006203585
(R23、R24はそれぞれ独立に、水素、ハロゲン、ヒドロキシ基、ニトロ基、ニトロソ基、シアノ基、カルボキシル基、置換されていても良いアルキル基、置換されていても良い不飽和アルキル基、置換されていても良いシクロアルキル基、置換されていても良い不飽和シクロアルキル基、置換されていても良い芳香族基、置換されていても良いヘテロ芳香族基、置換されていても良い複素環基、アミノ基、置換されていても良いアルコキシ基、置換されていても良いアリールオキシ基、置換されていても良いアルコキシカルボニル基である。
23とR24は、結合して置換されていても良い炭素環又は複素環を形成してもよい。
XはO又はSからそれぞれ独立に選択される。
nは1〜30の整数である。)
Figure 0006203585
(R25、R26はそれぞれ独立に、水素、ハロゲン、ヒドロキシ基、ニトロ基、ニトロソ基、シアノ基、カルボキシル基、置換されていても良いアルキル基、置換されていても良い不飽和アルキル基、置換されていても良いシクロアルキル基、置換されていても良い不飽和シクロアルキル基、置換されていても良い芳香族基、置換されていても良いヘテロ芳香族基、置換されていても良い複素環基、アミノ基、置換されていても良いアルコキシ基、置換されていても良いアリールオキシ基、置換されていても良いアルコキシカルボニル基である。
XはO又はSからそれぞれ独立に選択される。)
Figure 0006203585
(R27、R28はそれぞれ独立に、水素、ハロゲン、ヒドロキシ基、ニトロ基、ニトロソ基、シアノ基、カルボキシル基、置換されていても良いアルキル基、置換されていても良い不飽和アルキル基、置換されていても良いシクロアルキル基、置換されていても良い不飽和シクロアルキル基、置換されていても良い芳香族基、置換されていても良いヘテロ芳香族基、置換されていても良い複素環基、アミノ基、置換されていても良いアルコキシ基、置換されていても良いアリールオキシ基、置換されていても良いアルコキシカルボニル基である。
XはO又はSからそれぞれ独立に選択される。)
Figure 0006203585
(R29、R30、R31、R32、R33、R34、R35、R36はそれぞれ独立に、水素、ハロゲン、ヒドロキシ基、ニトロ基、ニトロソ基、シアノ基、カルボキシル基、置換されていても良いアルキル基、置換されていても良い不飽和アルキル基、置換されていても良いシクロアルキル基、置換されていても良い不飽和シクロアルキル基、置換されていても良い芳香族基、置換されていても良いヘテロ芳香族基、置換されていても良い複素環基、アミノ基、置換されていても良いアルコキシ基、置換されていても良いアリールオキシ基、置換されていても良いアルコキシカルボニル基である。
29とR30、R30とR31、R31とR32、R33とR34、R34とR35、R35とR36は、それぞれ結合して置換されていても良い炭素環又は複素環を形成してもよい。)
Figure 0006203585
(R37、R42はそれぞれ独立に、カルボキシル基、置換されていても良いアルキル基、置換されていても良い不飽和アルキル基、置換されていても良いシクロアルキル基、置換されていても良い不飽和シクロアルキル基、置換されていても良い芳香族基、置換されていても良いヘテロ芳香族基、置換されていても良い複素環基、置換されていても良いアルコキシカルボニル基である。
38、R39、R40、R41、R43、R44、R45、R46はそれぞれ独立に、水素、ハロゲン、ヒドロキシ基、ニトロ基、ニトロソ基、シアノ基、カルボキシル基、置換されていても良いアルキル基、置換されていても良い不飽和アルキル基、置換されていても良いシクロアルキル基、置換されていても良い不飽和シクロアルキル基、置換されていても良い芳香族基、置換されていても良いヘテロ芳香族基、置換されていても良い複素環基、アミノ基、置換されていても良いアルコキシ基、置換されていても良いアリールオキシ基、置換されていても良いアルコキシカルボニル基である。
38とR39、R39とR40、R40とR41、R43とR44、R44とR45、R45とR46は、それぞれ結合して置換されていても良い炭素環又は複素環を形成してもよい。)
Figure 0006203585
(R47、R48、R49、R50はそれぞれ独立に、水素、ハロゲン、ヒドロキシ基、ニトロ基、ニトロソ基、シアノ基、カルボキシル基、置換されていても良いアルキル基、置換されていても良い不飽和アルキル基、置換されていても良いシクロアルキル基、置換されていても良い不飽和シクロアルキル基、置換されていても良い芳香族基、置換されていても良いヘテロ芳香族基、置換されていても良い複素環基、アミノ基、置換されていても良いアルコキシ基、置換されていても良いアリールオキシ基、置換されていても良いアルコキシカルボニル基である。
47とR48、R49とR50は、それぞれ結合して置換されていても良い炭素環又は複素環を形成してもよい。
ただし、R47〜R50のうち少なくとも1つの基の末端には、以下のN−O・基が存在する。
Figure 0006203585
nは0又は1から選択され、*は結合箇所である。)
Figure 0006203585
(R51、R52はそれぞれ独立に、水素、ハロゲン、ヒドロキシ基、ニトロ基、ニトロソ基、シアノ基、カルボキシル基、置換されていても良いアルキル基、置換されていても良い不飽和アルキル基、置換されていても良いシクロアルキル基、置換されていても良い不飽和シクロアルキル基、置換されていても良い芳香族基、置換されていても良いヘテロ芳香族基、置換されていても良い複素環基、アミノ基、置換されていても良いアルコキシ基、置換されていても良いアリールオキシ基、置換されていても良いアルコキシカルボニル基である。
51とR52は、結合して置換されていても良い炭素環又は複素環を形成してもよい。
XはO又はSからそれぞれ独立に選択される。
nは3〜7の整数である。)
Figure 0006203585
(R53、R54、R55、R56、R57、R58はそれぞれ独立に、水素、ハロゲン、ヒドロキシ基、ニトロ基、ニトロソ基、シアノ基、カルボキシル基、置換されていても良いアルキル基、置換されていても良い不飽和アルキル基、置換されていても良いシクロアルキル基、置換されていても良い不飽和シクロアルキル基、置換されていても良い芳香族基、置換されていても良いヘテロ芳香族基、置換されていても良い複素環基、アミノ基、置換されていても良いアルコキシ基、置換されていても良いアリールオキシ基、置換されていても良いアルコキシカルボニル基である。
53とR54、R55とR56、R56とR57、R57とR58は、それぞれ結合して置換されていても良い炭素環又は複素環を形成してもよい。)
Figure 0006203585
(R59、R60、R61、R62、R63、R64、R65、R66、R67、R68はそれぞれ独立に、水素、ハロゲン、ヒドロキシ基、ニトロ基、ニトロソ基、シアノ基、カルボキシル基、置換されていても良いアルキル基、置換されていても良い不飽和アルキル基、置換されていても良いシクロアルキル基、置換されていても良い不飽和シクロアルキル基、置換されていても良い芳香族基、置換されていても良いヘテロ芳香族基、置換されていても良い複素環基、アミノ基、置換されていても良いアルコキシ基、置換されていても良いアリールオキシ基、置換されていても良いアルコキシカルボニル基である。
59とR60、R60とR61、R61とR62、R63とR64、R64とR65、R65とR66、R66とR67、R67とR68は、それぞれ結合して置換されていても良い炭素環又は複素環を形成してもよい。)
上記一般式(10)〜(22)で表される化学構造における、「置換基で置換されていても良い」との文言について説明する。例えば「置換基で置換されていても良いアルキル基」であれば、アルキル基の水素の一つ若しくは複数が置換基で置換されているアルキル基、又は、特段の置換基を有さないアルキル基を意味する。
上記「置換基で置換されていても良い」との文言における置換基としては、アルキル基、アルケニル基、アルキニル基、シクロアルキル基、不飽和シクロアルキル基、芳香族基、複素環基、ハロゲン、OH、SH、CN、SCN、OCN、ニトロ基、アルコキシ基、不飽和アルコキシ基、アミノ基、アルキルアミノ基、ジアルキルアミノ基、アリールオキシ基、アシル基、アルコキシカルボニル基、アシルオキシ基、アリールオキシカルボニル基、アシルアミノ基、アルコキシカルボニルアミノ基、アリールオキシカルボニルアミノ基、スルホニルアミノ基、スルファモイル基、カルバモイル基、アルキルチオ基、アリールチオ基、スルホニル基、スルフィニル基、ウレイド基、リン酸アミド基、スルホ基、カルボキシル基、ヒドロキサム酸基、スルフィノ基、ヒドラジノ基、イミノ基、シリル基、オキソ基等が挙げられる。これらの置換基はさらに置換されてもよい。また置換基が2つ以上ある場合、置換基は同一でも異なっていてもよい。
一般式(14)のnは1〜20の整数であるのが好ましく、1〜10の整数であるのがより好ましく、1〜6の整数であるのが特に好ましい。
一般式(20)のnは4又は5であるのが特に好ましい。
以下、一般式(10)〜一般式(22)で表される化合物のうち、具体的な化合物の化学構造を列挙する。
Figure 0006203585
Figure 0006203585
Figure 0006203585
Figure 0006203585
Figure 0006203585
Figure 0006203585
Figure 0006203585
Figure 0006203585
Figure 0006203585
Figure 0006203585
Figure 0006203585
Figure 0006203585
その他、分子量2000未満の不飽和環状化合物としては、ルベアン酸、7,7,8,8−テトラシアノキノジメタン、テトラチオフルバレン、インジゴカルミン、ジリチウムテレフタレート、ジリチウムロジゾネート、2,5,8−トリ−tert−ブチル−6−オキソフェナレノキシル(6−OPO)、トリ−tert−ブチル−トリオキソトリアンギュレン((t−Bu)TOT)、トリブロモ−トリオキソトリアンギュレン(BrTOT)、5,12−ナフタセンキノン並びにこれらの誘導体を例示できる。
以上説明した本発明の電池は、優れた容量維持率を示すので、特に、二次電池として使用されるのが好ましく、中でもリチウムイオン二次電池として使用されるのが好ましい。
以下に、本発明のリチウムイオン二次電池を説明する。
本発明のリチウムイオン二次電池は、金属塩としてリチウム塩を採用した本発明の電解液と、硫黄単体又は分子量2000未満の不飽和環状化合物を含む正極活物質を具備する正極と、リチウムイオンを吸蔵及び放出し得る負極活物質を有する負極と、セパレータを備える。
正極は、正極集電体と、正極集電体の表面に結着させた正極活物質層を有する。
正極集電体は、使用する活物質に適した電圧に耐え得る金属であれば特に制限はなく、例えば、銀、銅、金、アルミニウム、タングステン、コバルト、亜鉛、ニッケル、鉄、白金、錫、インジウム、チタン、ルテニウム、タンタル、クロム、モリブデンから選ばれる少なくとも一種、並びにステンレス鋼などの金属材料を例示することができる。正極の電位をリチウム基準で4V以上とする場合には、集電体としてアルミニウムを採用するのが好ましい。正極集電体は公知の保護層で被覆されていても良い。集電体の表面を公知の方法で処理したものを正極集電体として用いても良い。
正極集電体は箔、シート、フィルム、線状、棒状、メッシュなどの形態をとることができる。そのため、正極集電体として、例えば、銅箔、ニッケル箔、アルミニウム箔、ステンレス箔などの金属箔を好適に用いることができる。正極集電体が箔、シート、フィルム形態の場合は、その厚みが1μm〜100μmの範囲内であることが好ましい。
正極活物質層は正極活物質、並びに必要に応じて結着剤及び/又は導電助剤を含む。
結着剤は活物質及び導電助剤を集電体の表面に繋ぎ止める役割を果たすものである。
結着剤としては、ポリフッ化ビニリデン、ポリテトラフルオロエチレン、フッ素ゴム等の含フッ素樹脂、ポリプロピレン、ポリエチレン等の熱可塑性樹脂、ポリイミド、ポリアミドイミド等のイミド系樹脂、スチレンーブタジエンラバー等の共重合系樹脂、カルボキシメチルセルロース等の多糖類、アルコキシシリル基含有樹脂を例示することができる。
また、結着剤として、親水基を有するポリマーを採用してもよい。親水基を有するポリマーの親水基としては、カルボキシル基、スルホ基、シラノール基、アミノ基、水酸基、リン酸基などリン酸系の基などが例示される。中でも、ポリアクリル酸(PAA)、カルボキシメチルセルロース(CMC)、ポリメタクリル酸など、分子中にカルボキシル基を含むポリマー、又は、ポリ(p−スチレンスルホン酸)などのスルホ基を含むポリマーが好ましい。
ポリアクリル酸、あるいはアクリル酸とビニルスルホン酸との共重合体など、カルボキシル基及び/又はスルホ基を多く含むポリマーは水溶性となる。したがって親水基を有するポリマーは、水溶性ポリマーであることが好ましく、一分子中に複数のカルボキシル基及び/又はスルホ基を含むポリマーが好ましい。
分子中にカルボキシル基を含むポリマーは、例えば、酸モノマーを重合する、あるいはポリマーにカルボキシル基を付与する、などの方法で製造することができる。酸モノマーとしては、アクリル酸、メタクリル酸、ビニル安息香酸、クロトン酸、ペンテン酸、アンジェリカ酸、チグリン酸など分子中に一つのカルボキシル基をもつ酸モノマー、イタコン酸、メサコン酸、シトラコン酸、フマル酸、マレイン酸、2−ペンテン二酸、メチレンコハク酸、アリルマロン酸、イソプロピリデンコハク酸、2,4−ヘキサジエン二酸、アセチレンジカルボン酸など分子内に二つ以上のカルボキシル基をもつ酸モノマーなどが例示される。これらから選ばれる二種以上のモノマーを重合してなる共重合ポリマーを用いてもよい。
例えば特開2013-065493号公報に記載されたような、アクリル酸とイタコン酸との共重合体からなり、カルボキシル基どうしが縮合して形成された酸無水物基を分子中に含んでいるポリマーを結着剤として用いることも好ましい。一分子中にカルボキシル基を二つ以上有する酸性度の高いモノマー由来の構造があることにより、充電時に電解液分解反応が起こる前にリチウムイオンなどをトラップし易くなると考えられている。さらに、ポリアクリル酸やポリメタクリル酸に比べてカルボキシル基が多く酸性度が高まると共に、所定量のカルボキシル基が酸無水物基に変化しているため、酸性度が高まりすぎることもない。
正極活物質層中の結着剤の配合割合は、質量比で、正極活物質:結着剤=1:0.005〜1:1.5であるのが好ましい。結着剤が少なすぎると電極の成形性が低下し、また、結着剤が多すぎると電極のエネルギー密度が低くなるためである。
導電助剤は、電極の導電性を高めるために添加される。そのため、導電助剤は、電極の導電性が不足する場合に任意に加えればよく、電極の導電性が十分に優れている場合には加えなくても良い。導電助剤としては、炭素質微粒子であるカーボンブラック、黒鉛、アセチレンブラック、ケッチェンブラック(登録商標)、気相法炭素繊維(Vapor Grown Carbon Fiber:VGCF)が例示される。これらの導電助剤を単独または二種以上組み合わせて活物質層に添加することができる。正極活物質層中の導電助剤の配合割合は、質量比で、正極活物質:導電助剤=1:0.01〜1:5であるのが好ましい。導電助剤が少なすぎると効率のよい導電パスを形成できず、また、導電助剤が多すぎると正極活物質層の成形性が悪くなるとともに電極のエネルギー密度が低くなるためである。
正極活物質層には、上述した以外に、公知の添加剤を加えても良い。
負極は、負極集電体と、集電体の表面に結着させた負極活物質層を有する。
負極集電体は、リチウムイオン二次電池の放電又は充電の間、電極に電流を流し続けるための化学的に不活性な電子高伝導体をいう。負極集電体としては、銀、銅、金、アルミニウム、タングステン、コバルト、亜鉛、ニッケル、鉄、白金、錫、インジウム、チタン、ルテニウム、タンタル、クロム、モリブデンから選ばれる少なくとも一種、並びにステンレス鋼などの金属材料を例示することができる。負極集電体は公知の保護層で被覆されていても良い。集電体の表面を公知の方法で処理したものを負極集電体として用いても良い。
負極集電体は箔、シート、フィルム、線状、棒状、メッシュなどの形態をとることができる。そのため、負極集電体として、例えば、銅箔、ニッケル箔、アルミニウム箔、ステンレス箔などの金属箔を好適に用いることができる。負極集電体が箔、シート、フィルム形態の場合は、その厚みが1μm〜100μmの範囲内であることが好ましい。
負極活物質層は負極活物質、並びに必要に応じて結着剤及び/又は導電助剤を含む。
負極活物質としては、リチウムイオンを吸蔵及び放出し得る材料が使用可能である。したがって、リチウムイオンを吸蔵及び放出可能である単体、合金または化合物であれば特に限定はない。たとえば、負極活物質としてLiや、炭素、ケイ素、ゲルマニウム、錫などの14族元素、アルミニウム、インジウムなどの13族元素、亜鉛、カドミウムなどの12族元素、アンチモン、ビスマスなどの15族元素、マグネシウム、カルシウムなどのアルカリ土類金属、銀、金などの11族元素をそれぞれ単体で採用すればよい。ケイ素などを負極活物質に採用すると、ケイ素1原子が複数のリチウムと反応するため、高容量の活物質となるが、リチウムの吸蔵及び放出に伴う体積の膨張及び収縮が顕著となるとの問題が生じる恐れがあるため、当該恐れの軽減のために、ケイ素などの単体に遷移金属などの他の元素を組み合わせた合金又は化合物を負極活物質として採用するのも好適である。合金又は化合物の具体例としては、Ag−Sn合金、Cu−Sn合金、Co−Sn合金等の錫系材料、各種黒鉛などの炭素系材料、ケイ素単体と二酸化ケイ素に不均化するSiO(0.3≦x≦1.6)などのケイ素系材料、ケイ素単体若しくはケイ素系材料と炭素系材料を組み合わせた複合体が挙げられる。また、負極活物質して、Nb、TiO、LiTi12、WO、MoO、Fe等の酸化物、又は、Li3−xN(M=Co、Ni、Cu)で表される窒化物を採用しても良い。負極活物質として、これらのものの一種以上を使用することができる。負極活物質として、金属リチウムなどの可動イオンとなり得るものを含んでいない材料同士を組合わせる場合は、負極側にリチウムを導入する過程を導入するとよい。リチウムを導入する方法としては、電極に金属リチウムを貼り付け電解液につける事でリチウムをドープする方法のほか、特許第4732072号に開示されるように、開口した集電体を使い、両側に金属リチウムを配置して充電作業を行う事でドープしても良い。またJ. Electrochem. Soc. 2012, Volume 159, Issue 8, Pages A1329-A1334.に開示されるように、過剰のリチウムを含む遷移金属酸化物を正極中にあらかじめ添加し、充電を行う事でリチウムのドープを行っても良い。
結着剤としては、ポリフッ化ビニリデン、ポリテトラフルオロエチレン、フッ素ゴム等の含フッ素樹脂、ポリプロピレン、ポリエチレン等の熱可塑性樹脂、ポリイミド、ポリアミドイミド等のイミド系樹脂、スチレンーブタジエンラバー等の共重合系樹脂、カルボキシメチルセルロース等の多糖類、アルコキシシリル基含有樹脂を例示することができる。
また、結着剤として、親水基を有するポリマーを採用してもよい。親水基を有するポリマーの親水基としては、カルボキシル基、スルホ基、シラノール基、アミノ基、水酸基、リン酸基などリン酸系の基などが例示される。中でも、ポリアクリル酸(PAA)、カルボキシメチルセルロース(CMC)、ポリメタクリル酸など、分子中にカルボキシル基を含むポリマー、又は、ポリ(p−スチレンスルホン酸)などのスルホ基を含むポリマーが好ましい。
ポリアクリル酸、あるいはアクリル酸とビニルスルホン酸との共重合体など、カルボキシル基及び/又はスルホ基を多く含むポリマーは水溶性となる。したがって親水基を有するポリマーは、水溶性ポリマーであることが好ましく、一分子中に複数のカルボキシル基及び/又はスルホ基を含むポリマーが好ましい。
分子中にカルボキシル基を含むポリマーは、例えば、酸モノマーを重合する、あるいはポリマーにカルボキシル基を付与する、などの方法で製造することができる。酸モノマーとしては、アクリル酸、メタクリル酸、ビニル安息香酸、クロトン酸、ペンテン酸、アンジェリカ酸、チグリン酸など分子中に一つのカルボキシル基をもつ酸モノマー、イタコン酸、メサコン酸、シトラコン酸、フマル酸、マレイン酸、2−ペンテン二酸、メチレンコハク酸、アリルマロン酸、イソプロピリデンコハク酸、2,4−ヘキサジエン二酸、アセチレンジカルボン酸など分子内に二つ以上のカルボキシル基をもつ酸モノマーなどが例示される。これらから選ばれる二種以上のモノマーを重合してなる共重合ポリマーを用いてもよい。
例えば特開2013-065493号公報に記載されたような、アクリル酸とイタコン酸との共重合体からなり、カルボキシル基どうしが縮合して形成された酸無水物基を分子中に含んでいるポリマーを結着剤として用いることも好ましい。一分子中にカルボキシル基を二つ以上有する酸性度の高いモノマー由来の構造があることにより、充電時に電解液分解反応が起こる前にリチウムイオンなどをトラップし易くなると考えられている。さらに、ポリアクリル酸やポリメタクリル酸に比べてカルボキシル基が多く酸性度が高まると共に、所定量のカルボキシル基が酸無水物基に変化しているため、酸性度が高まりすぎることもない。そのため、この結着剤を用いて形成された負極をもつ二次電池は、初期効率が向上し、入出力特性が向上する。
負極活物質層中の結着剤の配合割合は、質量比で、負極活物質:結着剤=1:0.005〜1:0.3であるのが好ましい。結着剤が少なすぎると電極の成形性が低下し、また、結着剤が多すぎると電極のエネルギー密度が低くなるためである。
導電助剤は、電極の導電性を高めるために添加される。そのため、導電助剤は、電極の導電性が不足する場合に任意に加えればよく、電極の導電性が十分に優れている場合には加えなくても良い。導電助剤としては化学的に不活性な電子高伝導体であれば良く、炭素質微粒子であるカーボンブラック、黒鉛、アセチレンブラック、ケッチェンブラック(登録商標)、気相法炭素繊維(Vapor Grown Carbon Fiber:VGCF)、および各種金属粒子などが例示される。これらの導電助剤を単独または二種以上組み合わせて活物質層に添加することができる。負極活物質層中の導電助剤の配合割合は、質量比で、負極活物質:導電助剤=1:0.01〜1:0.5であるのが好ましい。導電助剤が少なすぎると効率のよい導電パスを形成できず、また、導電助剤が多すぎると負極活物質層の成形性が悪くなるとともに電極のエネルギー密度が低くなるためである。
各集電体の表面に各活物質層を形成させるには、ロールコート法、ダイコート法、ディップコート法、ドクターブレード法、スプレーコート法、カーテンコート法などの従来から公知の方法を用いて、各集電体の表面に各活物質を塗布すればよい。具体的には、活物質、並びに必要に応じて結着剤及び導電助剤を含む活物質層形成用組成物を調製し、この組成物に適当な溶剤を加えてペースト状にしてから、集電体の表面に塗布後、乾燥する。ここで、有機活物質は有機溶媒に溶け易いものがあるが、溶剤として活物質を溶解しないものを採用する事で、通常のリチウムイオン電池用電極と同様に作製できる。具体的な溶剤としては、N−メチル−2−ピロリドン、メタノール、メチルイソブチルケトン、水を例示できる。導電性の悪い活物質を採用する場合には、活物質が溶解し得る溶剤をあえて使用し、導電助剤とともに攪拌することで、活物質を導電助剤表面に均一に付着させることができる。これにより、導電性の悪い活物質を用いて、ハイレートに適した電極を作製する事ができる。電極密度を高めるべく、乾燥後のものを圧縮しても良い。また、活物質層形成用組成物を加圧成形してシート状の活物質層とし、これを集電体上に配置することでも良い。
セパレータは、正極と負極とを隔離し、両極の接触による電流の短絡を防止しつつ、リチウムイオンを通過させるものである。セパレータとしては、ポリテトラフルオロエチレン、ポリプロピレン、ポリエチレン、ポリイミド、ポリアミド、ポリアラミド(Aromatic polyamide)、ポリエステル、ポリアクリロニトリル等の合成樹脂、セルロース、アミロース等の多糖類、フィブロイン、ケラチン、リグニン、スベリン等の天然高分子、セラミックスなどの電気絶縁性材料を1種若しくは複数用いた多孔体、不織布、織布などを挙げることができる。また、セパレータは多層構造としてもよい。本発明の電解液は粘度がやや高く極性が高いため、水などの極性溶媒が浸み込みやすい膜が好ましい。具体的には、存在する空隙の90%以上に水などの極性溶媒が浸み込む膜がさらに好ましい。
正極および負極に必要に応じてセパレータを挟装させ電極体とする。電極体は、正極、セパレータ及び負極を重ねた積層型、又は、正極、セパレータ及び負極を捲いた捲回型のいずれの型にしても良い。正極の集電体および負極の集電体から外部に通ずる正極端子および負極端子までの間を、集電用リード等を用いて接続した後に、電極体に本発明の電解液を加えてリチウムイオン二次電池とするとよい。また、本発明のリチウムイオン二次電池は、電極に含まれる活物質の種類に適した電圧範囲で充放電を実行されればよい。
本発明のリチウムイオン二次電池の形状は特に限定されるものでなく、円筒型、角型、コイン型、ラミネート型等、種々の形状を採用することができる。
本発明のリチウムイオン二次電池は、車両に搭載してもよい。車両は、その動力源の全部あるいは一部にリチウムイオン二次電池による電気エネルギーを使用している車両であればよく、たとえば、電気車両、ハイブリッド車両などであるとよい。車両にリチウムイオン二次電池を搭載する場合には、リチウムイオン二次電池を複数直列に接続して組電池とするとよい。リチウムイオン二次電池を搭載する機器としては、車両以外にも、パーソナルコンピュータ、携帯通信機器など、電池で駆動される各種の家電製品、オフィス機器、産業機器などが挙げられる。さらに、本発明のリチウムイオン二次電池は、風量発電、太陽光発電、水力発電その他電力系統の蓄電装置及び電力平滑化装置、船舶等の動力及び/又は補機類の電力供給源、航空機、宇宙船等の動力及び/又は補機類の電力供給源、電気を動力源に用いない車両の補助用電源、移動式の家庭用ロボットの電源、システムバックアップ用電源、無停電電源装置の電源、電動車両用充電ステーションなどにおいて充電に必要な電力を一時蓄える蓄電装置に用いてもよい。
以上、本発明の電池の実施形態を説明したが、本発明は、上記実施形態に限定されるものではない。本発明の要旨を逸脱しない範囲において、当業者が行い得る変更、改良等を施した種々の形態にて実施することができる。
以下に、実施例及び比較例を示し、本発明を具体的に説明する。なお、本発明は、これらの実施例によって限定されるものではない。以下において、特に断らない限り、「部」とは質量部を意味し、「%」とは質量%を意味する。
(実施例1)
本発明の電解液を以下のとおり製造した。
有機溶媒である1,2−ジメトキシエタン約5mLを、撹拌子及び温度計を備えたフラスコに入れた。撹拌条件下にて、上記フラスコ中の1,2−ジメトキシエタンに対し、リチウム塩である(CFSONLiを溶液温度が40℃以下を保つように徐々に加え、溶解させた。約13gの(CFSONLiを加えた時点で(CFSONLiの溶解が一時停滞したので、上記フラスコを恒温槽に投入し、フラスコ内の溶液温度が50℃となるよう加温し、(CFSONLiを溶解させた。約15gの(CFSONLiを加えた時点で(CFSONLiの溶解が再び停滞したので、1,2−ジメトキシエタンをピペットで1滴加えたところ、(CFSONLiは溶解した。さらに(CFSONLiを徐々に加え、所定の(CFSONLiを全量加えた。得られた電解液を20mLメスフラスコに移し、容積が20mLとなるまで1,2−ジメトキシエタンを加えた。これを実施例1の電解液とした。得られた電解液は容積20mLであり、この電解液に含まれる(CFSONLiは18.38gであった。実施例1の電解液における(CFSONLiの濃度は3.2mol/Lであった。実施例1の電解液においては、(CFSONLi1分子に対し1,2−ジメトキシエタン1.6分子が含まれている。
なお、上記製造は不活性ガス雰囲気下のグローブボックス内で行った。
(実施例2)
16.08gの(CFSONLiを用い、実施例1と同様の方法で、(CFSONLiの濃度が2.8mol/Lである実施例2の電解液を製造した。実施例2の電解液においては、(CFSONLi1分子に対し1,2−ジメトキシエタン2.1分子が含まれている。
(実施例3)
有機溶媒であるアセトニトリル約5mLを、撹拌子を備えたフラスコに入れた。撹拌条件下にて、上記フラスコ中のアセトニトリルに対し、リチウム塩である(CFSONLiを徐々に加え、溶解させた。(CFSONLiを全量で19.52g加えたところで一晩撹拌した。得られた電解液を20mLメスフラスコに移し、容積が20mLとなるまでアセトニトリルを加えた。これを実施例3の電解液とした。なお、上記製造は不活性ガス雰囲気下のグローブボックス内で行った。
実施例3の電解液における(CFSONLiの濃度は3.4mol/Lであった。実施例3の電解液においては、(CFSONLi1分子に対しアセトニトリル3分子が含まれている。
(実施例4)
24.11gの(CFSONLiを用い、実施例3と同様の方法で、(CFSONLiの濃度が4.2mol/Lである実施例4の電解液を製造した。実施例4の電解液においては、(CFSONLi1分子に対しアセトニトリル1.9分子が含まれている。
(実施例5)
リチウム塩として13.47gの(FSONLiを用い、有機溶媒として1,2−ジメトキシエタンを用いた以外は、実施例3と同様の方法で、(FSONLiの濃度が3.6mol/Lである実施例5の電解液を製造した。実施例5の電解液においては、(FSONLi1分子に対し1,2−ジメトキシエタン1.9分子が含まれている。
(実施例6)
14.97gの(FSONLiを用い、実施例5と同様の方法で、(FSONLiの濃度が4.0mol/Lである実施例6の電解液を製造した。実施例6の電解液においては、(FSONLi1分子に対し1,2−ジメトキシエタン1.5分子が含まれている。
(実施例7)
リチウム塩として15.72gの(FSONLiを用いた以外は、実施例3と同様の方法で、(FSONLiの濃度が4.2mol/Lである実施例7の電解液を製造した。実施例7の電解液においては、(FSONLi1分子に対しアセトニトリル3分子が含まれている。
(実施例8)
16.83gの(FSONLiを用い、実施例7と同様の方法で、(FSONLiの濃度が4.5mol/Lである実施例8の電解液を製造した。実施例8の電解液においては、(FSONLi1分子に対しアセトニトリル2.4分子が含まれている。
(実施例9)
20.21gの(FSONLiを用い、実施例7と同様の方法で、(FSONLiの濃度が5.4mol/Lである実施例9の電解液を製造した。実施例9の電解液においては、(FSONLi1分子に対しアセトニトリル2分子が含まれている。
(比較例1)
5.74gの(CFSONLiを用い、有機溶媒として1,2−ジメトキシエタンを用いた以外は、実施例3と同様の方法で、(CFSONLiの濃度が1.0mol/Lである比較例1の電解液を製造した。比較例1の電解液においては、(CFSONLi1分子に対し1,2−ジメトキシエタン8.3分子が含まれている。
(比較例2)
5.74gの(CFSONLiを用い、実施例3と同様の方法で、(CFSONLiの濃度が1.0mol/Lである比較例2の電解液を製造した。比較例2の電解液においては、(CFSONLi1分子に対しアセトニトリル16分子が含まれている。
(比較例3)
3.74gの(FSONLiを用い、実施例5と同様の方法で、(FSONLiの濃度が1.0mol/Lである比較例3の電解液を製造した。比較例3の電解液においては、(FSONLi1分子に対し1,2−ジメトキシエタン8.8分子が含まれている。
(比較例4)
3.74gの(FSONLiを用い、実施例7と同様の方法で、(FSONLiの濃度が1.0mol/Lである比較例4の電解液を製造した。比較例4の電解液においては、(FSONLi1分子に対しアセトニトリル17分子が含まれている。
(比較例5)
有機溶媒としてエチレンカーボネート及びジエチルカーボネートの混合溶媒(体積比3:7、以下、「EC/DEC」ということがある。)を用い、リチウム塩として3.04gのLiPFを用いた以外は、実施例3と同様の方法で、LiPFの濃度が1.0mol/Lである比較例5の電解液を製造した。
表3に実施例及び比較例の電解液の一覧を示す。
Figure 0006203585
LiTFSA:(CFSONLi、LiFSA:(FSONLi
AN:アセトニトリル、DME:1,2−ジメトキシエタン
EC/DEC:エチレンカーボネート及びジエチルカーボネートの混合溶媒(体積比3:7)
(評価例1:IR測定)
実施例3、実施例4、実施例7、実施例8、実施例9、比較例2、比較例4の電解液、並びに、アセトニトリル、(CFSONLi、(FSONLiにつき、以下の条件でIR測定を行った。2100〜2400cm−1の範囲のIRスペクトルをそれぞれ図1〜図10に示す。図の横軸は波数(cm−1)であり、縦軸は吸光度(反射吸光度)である。
IR測定条件
装置:FT−IR(ブルカーオプティクス社製)
測定条件:ATR法(ダイヤモンド使用)
測定雰囲気:不活性ガス雰囲気下
図8で示されるアセトニトリルのIRスペクトルの2250cm−1付近には、アセトニトリルのC及びN間の三重結合の伸縮振動に由来する特徴的なピークが観察された。なお、図9で示される(CFSONLiのIRスペクトル及び図10で示される(FSONLiのIRスペクトルの2250cm−1付近には、特段のピークが観察されなかった。
図1で示される実施例3の電解液のIRスペクトルには、2250cm−1付近にアセトニトリルのC及びN間の三重結合の伸縮振動に由来する特徴的なピークがわずかに(Io=0.00699)観察された。さらに図1のIRスペクトルには、2250cm−1付近から高波数側にシフトした2280cm−1付近にアセトニトリルのC及びN間の三重結合の伸縮振動に由来する特徴的なピークがピーク強度Is=0.05828で観察された。IsとIoのピーク強度の関係はIs>Ioであり、Is=8×Ioであった。
図2で示される実施例4の電解液のIRスペクトルには、2250cm−1付近にアセトニトリル由来のピークが観察されず、2250cm−1付近から高波数側にシフトした2280cm−1付近にアセトニトリルのC及びN間の三重結合の伸縮振動に由来する特徴的なピークがピーク強度Is=0.05234で観察された。IsとIoのピーク強度の関係はIs>Ioであった。
図3で示される実施例7の電解液のIRスペクトルには、2250cm−1付近にアセトニトリルのC及びN間の三重結合の伸縮振動に由来する特徴的なピークがわずかに(Io=0.00997)観察された。さらに図3のIRスペクトルには、2250cm−1付近から高波数側にシフトした2280cm−1付近にアセトニトリルのC及びN間の三重結合の伸縮振動に由来する特徴的なピークがピーク強度Is=0.08288で観察された。IsとIoのピーク強度の関係はIs>Ioであり、Is=8×Ioであった。図4で示される実施例8の電解液のIRスペクトルについても、図3のIRチャートと同様の強度のピークが同様の波数に観察された。IsとIoのピーク強度の関係はIs>Ioであり、Is=11×Ioであった。
図5で示される実施例9の電解液のIRスペクトルには、2250cm−1付近にアセトニトリル由来のピークが観察されず、2250cm−1付近から高波数側にシフトした2280cm−1付近にアセトニトリルのC及びN間の三重結合の伸縮振動に由来する特徴的なピークがピーク強度Is=0.07350で観察された。IsとIoのピーク強度の関係はIs>Ioであった。
図6で示される比較例2の電解液のIRスペクトルには、図8と同じく、2250cm−1付近にアセトニトリルのC及びN間の三重結合の伸縮振動に由来する特徴的なピークがピーク強度Io=0.04441で観察された。さらに図6のIRスペクトルには、2250cm−1付近から高波数側にシフトした2280cm−1付近にアセトニトリルのC及びN間の三重結合の伸縮振動に由来する特徴的なピークがピーク強度Is=0.03018で観察された。IsとIoのピーク強度の関係はIs<Ioであった。
図7で示される比較例4の電解液のIRスペクトルには、図8と同じく、2250cm−1付近にアセトニトリルのC及びN間の三重結合の伸縮振動に由来する特徴的なピークがピーク強度Io=0.04975で観察された。さらに図7のIRスペクトルには、2250cm−1付近から高波数側にシフトした2280cm−1付近にアセトニトリルのC及びN間の三重結合の伸縮振動に由来する特徴的なピークがピーク強度Is=0.03804で観察された。IsとIoのピーク強度の関係はIs<Ioであった。
(評価例2:イオン伝導度)
実施例1、4〜6、8の電解液のイオン伝導度を以下の条件で測定した。結果を表4に示す。
イオン伝導度測定条件
Ar雰囲気下、白金極を備えたセル定数既知のガラス製セルに、電解液を封入し、30℃、1kHzでのインピーダンスを測定した。インピーダンスの測定結果から、イオン伝導度を算出した。測定機器はSolartron 147055BEC(ソーラトロン社)を使用した。
Figure 0006203585
実施例1、4〜6、8の電解液は、いずれもイオン伝導性を示した。よって、本発明の電解液は、いずれも各種の電池の電解液として機能し得ると理解できる。
(評価例3:粘度)
実施例1、4〜6、8、並びに比較例1〜4の電解液の粘度を以下の条件で測定した。結果を表5に示す。
粘度測定条件
落球式粘度計(AntonPaar GmbH(アントンパール社)製 Lovis 2000 M)を用い、Ar雰囲気下、試験セルに電解液を封入し、30℃の条件下で粘度を測定した。
Figure 0006203585
実施例1、4〜6、8の電解液の粘度は、比較例1〜4の電解液の粘度と比較して、著しく高かった。よって、本発明の電解液を用いた電池であれば、仮に電池が破損したとしても、電解液漏れが抑制される。
(評価例4:揮発性)
実施例2、4、8、比較例1、2、4の電解液の揮発性を以下の方法で測定した。
約10mgの電解液をアルミニウム製のパンに入れ、熱重量測定装置(TAインスツルメント社製、SDT600)に配置し、室温での電解液の重量変化を測定した。重量変化(質量%)を時間で微分することで揮発速度を算出した。揮発速度のうち最大のものを選択し、表6に示した。
Figure 0006203585
実施例2、4、8の電解液の最大揮発速度は、比較例1、2、4の最大揮発速度と比較して、著しく小さかった。よって、本発明の電解液を用いた電池は、仮に損傷したとしても、電解液の揮発速度が小さいため、電池外への有機溶媒の急速な揮発が抑制される。
(評価例5:燃焼性)
実施例4、比較例2の電解液の燃焼性を以下の方法で試験した。
電解液をガラスフィルターにピペットで3滴滴下し、電解液をガラスフィルターに保持させた。当該ガラスフィルターをピンセットで把持し、そして、当該ガラスフィルターに接炎させた。
実施例4の電解液は15秒間接炎させても引火しなかった。他方、比較例2の電解液は5秒余りで燃え尽きた。
本発明の電解液は燃焼しにくいことが裏付けられた。
(評価例6:Li輸率)
実施例8及び比較例4の電解液のLi輸率を以下の条件で測定した。結果を表7に示す。
Li輸率測定条件
実施例8又は比較例4の電解液を入れたNMR管をPFG−NMR装置(ECA−500、日本電子)に供し、Li、19Fを対象として、スピンエコー法を用い、磁場パルス幅を変化させながら、各電解液中のLiイオン及びアニオンの拡散係数を測定した。Li輸率は以下の式で算出した。
Li輸率=(Liイオン拡散係数)/(Liイオン拡散係数+アニオン拡散係数)
Figure 0006203585
実施例8の電解液のLi輸率は、比較例4の電解液のLi輸率と比較して、著しく高かった。ここで、電解液のLiイオン伝導度は、電解液に含まれるイオン伝導度(全イオン電導度)にLi輸率を乗じて算出することができる。そうすると、本発明の電解液は、同程度のイオン伝導度を示す従来の電解液と比較して、リチウムイオン(カチオン)の輸送速度が高いといえる。
(実施例10)
本発明の電池は以下のとおり製造できる。
正極活物質として5,12−ナフタセンキノン(分子量258.27)(東京化成工業株式会社製)、導電助剤としてのアセチレンブラック(電気化学工業株式会社製)を準備する。別に、導電助剤としてのアセチレンブラックと結着剤としてのポリテトラフルオロエチレンが質量比2:1で混合されたTAB(宝泉株式会社製)を準備する。
5,12−ナフタセンキノン4質量部とアセチレンブラック3質量部を混合し、これらの混合が十分に進行した後に、TAB3質量部を加え、さらに混合する。ここで、正極活物質、導電助剤及び結着剤の質量比は、正極活物質:導電助剤:結着剤=4:5:1である。得られた混合粉末をシート状にし、正極活物質層とする。径14mmのアルミメッシュ上に当該正極活物質層を圧着し、80℃、15時間真空乾燥させ、正極とする。
負極は、厚さ500μmの金属リチウムを用いる。
実施例9の電解液を染み込ませたガラスフィルターを準備し、これと、上記正極、上記負極を用いて電池を作成する。この電池を実施例10の電池とする。
(実施例11)
正極活物質として硫黄(株式会社高純度科学研究所)、電解液として実施例6の電解液を用いる以外は、実施例10と同様の方法で、実施例11の電池を作成する。
(比較例6) 電解液として比較例5の電解液を用いる以外は、実施例10の電池と同様に、比較例6の電池を作成する。
(比較例7、比較例8)
有機溶媒であるテトラエチレングリコールジメチルエーテルとリチウム塩である(CFSONLiを用意する。5mLのメスフラスコに(CFSONLiを濃度が1.0mol/Lとなるよう秤量し、テトラエチレングリコールジメチルエーテルを加え、全量5mLの電解液を得る。これを比較例7の電解液とする。
電解液として比較例7の電解液を用いる以外は、実施例11の電池と同様に、比較例8の電池を作成する。
(評価例7)
実施例10、11、比較例6、8の電池につき、以下の試験を行う。
各電池に対し、電流値0.05mA、Cut-off電圧1.5〜3Vにて、充放電を行い、各電池のサイクル特性を観察する。
本発明の電解液として、以下の電解液を具体的に挙げる。なお、以下の電解液には、既述のものも含まれている。
(電解液A)
本発明の電解液を以下のとおり製造した。
有機溶媒である1,2−ジメトキシエタン約5mLを、撹拌子及び温度計を備えたフラスコに入れた。撹拌条件下にて、上記フラスコ中の1,2−ジメトキシエタンに対し、リチウム塩である(CFSONLiを溶液温度が40℃以下を保つように徐々に加え、溶解させた。約13gの(CFSONLiを加えた時点で(CFSONLiの溶解が一時停滞したので、上記フラスコを恒温槽に投入し、フラスコ内の溶液温度が50℃となるよう加温し、(CFSONLiを溶解させた。約15gの(CFSONLiを加えた時点で(CFSONLiの溶解が再び停滞したので、1,2−ジメトキシエタンをピペットで1滴加えたところ、(CFSONLiは溶解した。さらに(CFSONLiを徐々に加え、所定の(CFSONLiを全量加えた。得られた電解液を20mLメスフラスコに移し、容積が20mLとなるまで1,2−ジメトキシエタンを加えた。得られた電解液は容積20mLであり、この電解液に含まれる(CFSONLiは18.38gであった。これを電解液Aとした。電解液Aにおける(CFSONLiの濃度は3.2mol/Lであり、密度は1.39g/cmであった。密度は20℃で測定した。
なお、上記製造は不活性ガス雰囲気下のグローブボックス内で行った。
(電解液B)
電解液Aと同様の方法で、(CFSONLiの濃度が2.8mol/Lであり、密度が1.36g/cmである、電解液Bを製造した。
(電解液C)
有機溶媒であるアセトニトリル約5mLを、撹拌子を備えたフラスコに入れた。撹拌条件下にて、上記フラスコ中のアセトニトリルに対し、リチウム塩である(CFSONLiを徐々に加え、溶解させた。所定の(CFSONLiを加えたところで一晩撹拌した。得られた電解液を20mLメスフラスコに移し、容積が20mLとなるまでアセトニトリルを加えた。これを電解液Cとした。なお、上記製造は不活性ガス雰囲気下のグローブボックス内で行った。
電解液Cは、(CFSONLiの濃度が4.2mol/Lであり、密度が1.52g/cmであった。
(電解液D)
電解液Cと同様の方法で、(CFSONLiの濃度が3.0mol/Lであり、密度が1.31g/cmである、電解液Dを製造した。
(電解液E)
有機溶媒としてスルホランを用いた以外は、電解液Cと同様の方法で、(CFSONLiの濃度が3.0mol/Lであり、密度が1.57g/cmである、電解液Eを製造した。
(電解液F)
有機溶媒としてジメチルスルホキシドを用いた以外は、電解液Cと同様の方法で、(CFSONLiの濃度が3.2mol/Lであり、密度が1.49g/cmである、電解液Fを製造した。
(電解液G)
リチウム塩として(FSONLiを用い、有機溶媒として1,2−ジメトキシエタンを用いた以外は、電解液Cと同様の方法で、(FSONLiの濃度が4.0mol/Lであり、密度が1.33g/cmである、電解液Gを製造した。
(電解液H)
電解液Gと同様の方法で、(FSONLiの濃度が3.6mol/Lであり、密度が1.29g/cmである、電解液Hを製造した。
(電解液I)
電解液Gと同様の方法で、(FSONLiの濃度が2.4mol/Lであり、密度が1.18g/cmである、電解液Iを製造した。
(電解液J)
有機溶媒としてアセトニトリルを用いた以外は、電解液Gと同様の方法で、(FSONLiの濃度が4.5mol/Lであり、密度が1.34g/cmである、電解液Jを製造した。
表8に上記電解液の一覧を示す。
Figure 0006203585
LiTFSA:(CFSONLi、LiFSA:(FSONLi
AN:アセトニトリル、DME:1,2−ジメトキシエタン
DMSO:ジメチルスルホキシド、SL:スルホラン

Claims (2)

  1. (CF SO NLiとアセトニトリルを含む電解液、(FSO NLiと1,2−ジメトキシエタンを含む電解液、又は(FSO NLiとアセトニトリルを含む電解液と、
    硫黄単体又は分子量2000未満の不飽和環状化合物を含む正極活物質と、
    を具備するリチウムイオン二次電池であって、
    前記電解液の振動分光スペクトルにおける前記アセトニトリル又は1,2−ジメトキシエタン由来のピーク強度につき、前記アセトニトリル又は1,2−ジメトキシエタン本来のピークの強度をIoとし、前記ピークがシフトしたピークの強度をIsとした場合、Is>Ioであることを特徴とするリチウムイオン二次電池。
  2. 前記正極活物質が硫黄単体を含む請求項1に記載のリチウムイオン二次電池。
JP2013198597A 2013-09-25 2013-09-25 溶媒可溶性の正極活物質を含む電池 Active JP6203585B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013198597A JP6203585B2 (ja) 2013-09-25 2013-09-25 溶媒可溶性の正極活物質を含む電池

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013198597A JP6203585B2 (ja) 2013-09-25 2013-09-25 溶媒可溶性の正極活物質を含む電池

Publications (2)

Publication Number Publication Date
JP2015065053A JP2015065053A (ja) 2015-04-09
JP6203585B2 true JP6203585B2 (ja) 2017-09-27

Family

ID=52832780

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013198597A Active JP6203585B2 (ja) 2013-09-25 2013-09-25 溶媒可溶性の正極活物質を含む電池

Country Status (1)

Country Link
JP (1) JP6203585B2 (ja)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5828493B2 (ja) * 2013-09-25 2015-12-09 国立大学法人 東京大学 アルカリ金属、アルカリ土類金属又はアルミニウムをカチオンとする塩と、ヘテロ元素を有する有機溶媒とを含む電解液を具備するキャパシタ
JP2015115270A (ja) * 2013-12-13 2015-06-22 株式会社アルバック リチウム硫黄二次電池
JP6586696B2 (ja) * 2015-09-17 2019-10-09 株式会社日立製作所 擬似固体電解質およびそれを用いた全固体リチウム二次電池
JP6587929B2 (ja) * 2015-12-24 2019-10-09 セイコーインスツル株式会社 非水電解質二次電池
JP6709547B2 (ja) * 2016-02-18 2020-06-17 株式会社カネカ 有機ラジカル化合物を含む非水電解液二次電池
JP2017188284A (ja) * 2016-04-05 2017-10-12 東洋インキScホールディングス株式会社 蓄電デバイス電極形成用組成物、蓄電デバイス電極、及び蓄電デバイス
JP2017188283A (ja) * 2016-04-05 2017-10-12 東洋インキScホールディングス株式会社 蓄電デバイス電極形成用組成物、蓄電デバイス電極、及び蓄電デバイス
WO2019049826A1 (ja) * 2017-09-07 2019-03-14 国立大学法人 横浜国立大学 リチウム硫黄電池

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100463181B1 (ko) * 2002-07-12 2004-12-23 삼성에스디아이 주식회사 리튬-설퍼 전지용 전해액 및 이를 포함하는 리튬-설퍼 전지
JP5565814B2 (ja) * 2011-01-24 2014-08-06 独立行政法人産業技術総合研究所 非水系二次電池用正極活物質

Also Published As

Publication number Publication date
JP2015065053A (ja) 2015-04-09

Similar Documents

Publication Publication Date Title
JP6203585B2 (ja) 溶媒可溶性の正極活物質を含む電池
KR101940151B1 (ko) 알칼리 금속, 알칼리 토금속 또는 알루미늄을 양이온으로 하는 염과, 헤테로 원소를 갖는 유기 용매를 포함하는, 전지, 커패시터 등의 축전 장치용 전해액 및, 그의 제조 방법, 그리고 당해 전해액을 구비하는 커패시터
JP5965445B2 (ja) 非水電解質二次電池
JP6203584B2 (ja) 蓄電装置
JP6575023B2 (ja) アルカリ金属、アルカリ土類金属又はアルミニウムをカチオンとする塩と、ヘテロ元素を有する有機溶媒とを含む電解液を具備するキャパシタ
JP5816997B2 (ja) アルカリ金属、アルカリ土類金属又はアルミニウムをカチオンとする塩と、ヘテロ元素を有する有機溶媒とを含む高粘度電解液
JP5817009B1 (ja) 非水系二次電池
WO2015045389A1 (ja) アルカリ金属、アルカリ土類金属又はアルミニウムをカチオンとする塩と、ヘテロ元素を有する有機溶媒とを含む、電池、キャパシタ等の蓄電装置用電解液、及びその製造方法、並びに当該電解液を具備するキャパシタ
JP6575022B2 (ja) アルカリ金属、アルカリ土類金属又はアルミニウムをカチオンとする塩と、ヘテロ元素を有する有機溶媒とを含む電解液
JP5965444B2 (ja) 非水系二次電池
WO2015045386A1 (ja) 非水系二次電池
JP5816999B2 (ja) アルカリ金属、アルカリ土類金属又はアルミニウムをカチオンとする塩と、ヘテロ元素を有する有機溶媒とを含む電解液の製造方法
JP5817004B2 (ja) リチウムイオン二次電池
JP5817002B2 (ja) 非水系二次電池
JP5817001B2 (ja) 非水系二次電池
JP2016006790A (ja) 非水系二次電池
JP5965446B2 (ja) 蓄電装置
JP5817003B2 (ja) 非水電解質二次電池
JP2016189340A (ja) 非水電解質二次電池
JP5817007B1 (ja) 非水系二次電池
JP5817008B1 (ja) 非水系二次電池

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20151002

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20160615

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20170306

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20170406

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20170530

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20170822

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20170830

R150 Certificate of patent or registration of utility model

Ref document number: 6203585

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313114

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250