JP6190528B2 - Conductive adhesive film, printed circuit board, and electronic device - Google Patents

Conductive adhesive film, printed circuit board, and electronic device Download PDF

Info

Publication number
JP6190528B2
JP6190528B2 JP2016525140A JP2016525140A JP6190528B2 JP 6190528 B2 JP6190528 B2 JP 6190528B2 JP 2016525140 A JP2016525140 A JP 2016525140A JP 2016525140 A JP2016525140 A JP 2016525140A JP 6190528 B2 JP6190528 B2 JP 6190528B2
Authority
JP
Japan
Prior art keywords
adhesive layer
conductive adhesive
conductive
adhesive film
film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2016525140A
Other languages
Japanese (ja)
Other versions
JPWO2015186624A1 (en
Inventor
章郎 高橋
章郎 高橋
岩井 靖
靖 岩井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tatsuta Electric Wire and Cable Co Ltd
Original Assignee
Tatsuta Electric Wire and Cable Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tatsuta Electric Wire and Cable Co Ltd filed Critical Tatsuta Electric Wire and Cable Co Ltd
Publication of JPWO2015186624A1 publication Critical patent/JPWO2015186624A1/en
Application granted granted Critical
Publication of JP6190528B2 publication Critical patent/JP6190528B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/28Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/28Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection
    • H01L23/29Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection characterised by the material, e.g. carbon
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/552Protection against radiation, e.g. light or electromagnetic waves
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K9/00Screening of apparatus or components against electric or magnetic fields
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/10Bump connectors; Manufacturing methods related thereto
    • H01L2224/15Structure, shape, material or disposition of the bump connectors after the connecting process
    • H01L2224/16Structure, shape, material or disposition of the bump connectors after the connecting process of an individual bump connector
    • H01L2224/161Disposition
    • H01L2224/16151Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/16221Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/16225Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/0001Technical content checked by a classifier
    • H01L2924/0002Not covered by any one of groups H01L24/00, H01L24/00 and H01L2224/00
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/15Details of package parts other than the semiconductor or other solid state devices to be connected
    • H01L2924/181Encapsulation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/19Details of hybrid assemblies other than the semiconductor or other solid state devices to be connected
    • H01L2924/191Disposition
    • H01L2924/19101Disposition of discrete passive components
    • H01L2924/19105Disposition of discrete passive components in a side-by-side arrangement on a common die mounting substrate

Description

本発明は、導電性接着フィルム、プリント回路基板、及び、電子機器に関する。   The present invention relates to a conductive adhesive film, a printed circuit board, and an electronic device.

従来、プリント回路基板上に設けられた電子部品を、外部から侵入する電磁波から遮蔽すると共に、電子回路から放射される電磁波を外部に放出することを防ぐためのシールドキャップがある(例えば、特許文献1)。このようなシールドキャップは、SUS等の金属層によって蓋状に形成されて、保護対象となる電子部品を覆うように配置される。また、シールドキャップは、金属層がプリント回路基板におけるグランド用配線パターンに接続されてシールド効果を高めることが行われている。   Conventionally, there is a shield cap for shielding an electronic component provided on a printed circuit board from an electromagnetic wave entering from the outside and preventing the electromagnetic wave radiated from the electronic circuit from being emitted to the outside (for example, Patent Documents). 1). Such a shield cap is formed in a lid shape by a metal layer such as SUS, and is disposed so as to cover the electronic component to be protected. In addition, the shield cap is improved in that the metal layer is connected to the ground wiring pattern on the printed circuit board to enhance the shielding effect.

ところで、シールドキャップは、内壁面がプリント回路基板上の電子部品に接触しないように電子部品と内壁面との空隙を設ける必要があることから、プリント回路基板の薄型化が困難であった。そこで、特許文献2及び3のように、導電性ペーストをプリント回路基板に印刷するものがある。また、特許文献4には、基板形状に合せた熱軟化性の電磁シールド素材により実装品を含めて基板全体を被覆し、少なくとも上記シールド素材を加熱した後冷却して基板に密着させることが開示されている。   By the way, since it is necessary for the shield cap to provide a gap between the electronic component and the inner wall surface so that the inner wall surface does not contact the electronic component on the printed circuit board, it is difficult to make the printed circuit board thinner. Thus, as disclosed in Patent Documents 2 and 3, there is one that prints a conductive paste on a printed circuit board. Patent Document 4 discloses that the entire substrate including a mounted product is covered with a heat-softening electromagnetic shield material that matches the shape of the substrate, and at least the shield material is heated and then cooled to adhere to the substrate. Has been.

特開2001−345592号公報JP 2001-345592 A 特開2009−016715号公報JP 2009-016715 A 特開2010−245139号公報JP 2010-245139 A 特開平5−327270号公報JP-A-5-327270

しかしながら、特許文献2〜4では、製造工程が複雑もしくは負荷のかかるものであった。従って、近年においても特許文献1のようなシールドキャップが主流となっている。また、特許文献4のように、電磁シールド素材を電子部品の形状に追従させる場合、電磁シールド素材が変形することによる抵抗の上昇が、シールド効果を低下させてしまうことが問題であった。   However, in Patent Documents 2 to 4, the manufacturing process is complicated or burdensome. Therefore, in recent years, the shield cap as in Patent Document 1 has become mainstream. Moreover, when making an electromagnetic shielding material follow the shape of an electronic component like patent document 4, the raise of resistance by an electromagnetic shielding material deform | transforming was a problem that the shielding effect will be reduced.

そこで、本発明は、上記の問題を鑑みてなされたものであり、プレス加工という簡易な方法を用いて電子部品を覆っても電気抵抗の増加によるシールド性能の低下という不具合の発生を起こり難くすることができる導電性接着フィルム、プリント回路基板、及び、電子機器を提供することを目的とする。   Therefore, the present invention has been made in view of the above-described problems, and even if an electronic component is covered using a simple method such as press working, it is difficult to cause a problem that a shield performance is deteriorated due to an increase in electrical resistance. It is an object to provide a conductive adhesive film, a printed circuit board, and an electronic device that can be used.

本発明は、プレス加工によりプリント配線板の切断用凹部に対応する部位をフィルム面方向に伸展させて電子部品を覆うことにより電磁波シールドする導電性接着フィルムであって、第1の導電性粒子を含む等方性導電材料により形成される導電性接着剤層と、前記プレス加工時に前記導電性接着剤層よりも前記電子部品側に位置され、第2の導電性粒子を含む異方性導電材料により形成される下地接着剤層とを有する。   The present invention is a conductive adhesive film that shields an electromagnetic wave by extending a portion corresponding to a cutting concave portion of a printed wiring board in a film surface direction by pressing to cover an electronic component, and the first conductive particles A conductive adhesive layer formed of an isotropic conductive material, and an anisotropic conductive material that is positioned closer to the electronic component than the conductive adhesive layer during the pressing and includes second conductive particles And a base adhesive layer formed by

プレス加工により導電性接着フィルムで電子部品を覆うときに、導電性接着フィルムはプリント配線板の切断用凹部形状に応じて伸展される。このとき、導電性接着フィルムは電子部品から外側方向へ離れていくに従って大きく伸展されることになる。上記の構成によれば、電子部品から最も外側に位置する導電性接着剤層が第1の導電性粒子を含む等方性導電材料で形成され、電子部品側に位置する下地接着剤層が第2の導電性粒子を含む異方性導電材料により形成されている。等方性導電材料は、異方性導電材料よりも導電性粒子を含む割合が多いため、導電性接着剤層が下地接着剤層よりも大きく伸展されたとしても、第1の導電性粒子同士が離間することによる導電性低下を抑えることが可能となる。この結果、電気抵抗の増加によるシールド性能の低下という不具合の発生を起こり難くすることができる。   When the electronic component is covered with the conductive adhesive film by press working, the conductive adhesive film is stretched according to the concave shape for cutting of the printed wiring board. At this time, the conductive adhesive film is greatly extended as it moves away from the electronic component. According to the above configuration, the conductive adhesive layer located on the outermost side from the electronic component is formed of the isotropic conductive material including the first conductive particles, and the base adhesive layer located on the electronic component side is the first adhesive layer. It is formed of an anisotropic conductive material including two conductive particles. Since the isotropic conductive material has a higher proportion of conductive particles than the anisotropic conductive material, even if the conductive adhesive layer extends larger than the base adhesive layer, the first conductive particles It is possible to suppress a decrease in conductivity due to the separation. As a result, it is possible to make it difficult to cause a problem that the shielding performance is deteriorated due to an increase in electrical resistance.

また、本発明の導電性接着フィルムにおいて、前記第1の導電性粒子は、伸展後の前記導電性接着剤層において少なくとも一部が互いに接触する密度で分散されていてもよい。   In the conductive adhesive film of the present invention, the first conductive particles may be dispersed at a density such that at least some of the first conductive particles are in contact with each other in the conductive adhesive layer after extension.

上記の構成によれば、導電性粒子同士が最も離間し易い部位である導電性接着剤層における最大に伸展した部位の導電性の低下を効果的に防止することができる。   According to said structure, the fall of the electroconductivity of the site | part extended to the maximum in the electroconductive adhesive layer which is a site | part in which electroconductive particle is the most easily separated can be prevented effectively.

また、本発明の導電性接着フィルムにおいて、前記導電性接着剤層に含まれる前記第1の導電性粒子は、前記導電性接着剤層の伸展前の層厚の15%〜25%である平均長径を有したフレーク状粒子であり、前記導電性接着剤層の総重量に対して40重量%〜80重量%含有されていてもよい。   In the conductive adhesive film of the present invention, the first conductive particles contained in the conductive adhesive layer are an average of 15% to 25% of the layer thickness before the conductive adhesive layer is extended. It is a flaky particle having a long diameter, and may be contained in an amount of 40 to 80% by weight based on the total weight of the conductive adhesive layer.

上記の構成によれば、導電性粒子同士が最も離間し易い部位である導電性接着剤層において、第1の導電性粒子の長径方向が導電性接着剤層のフィルム面方向に揃うため、プレス加工を行った際に第1の導電性粒子同士が接触し易くなることから、最大に伸展した部位の導電性の低下を効果的に防止することができる。   According to the above configuration, in the conductive adhesive layer where the conductive particles are most likely to be separated from each other, the major axis direction of the first conductive particles is aligned with the film surface direction of the conductive adhesive layer. Since it becomes easy for the first conductive particles to come into contact with each other when processing is performed, it is possible to effectively prevent a decrease in the conductivity of the portion that has been extended to the maximum.

また、本発明の導電性接着フィルムにおいて、前記第2の導電性粒子は、前記下地接着剤層の伸展前の層厚の10%〜50%の範囲である平均粒径を有しており、前記下地接着剤層の総重量に対して40重量%〜80重量%含有されていてもよい。   Further, in the conductive adhesive film of the present invention, the second conductive particles have an average particle size that is in the range of 10% to 50% of the layer thickness before the extension of the base adhesive layer, It may be contained in an amount of 40 to 80% by weight based on the total weight of the base adhesive layer.

上記構成によれば、第2の導電性粒子同士の離間による下地接着剤層全体における導電性の低下を防止し、電気抵抗の増加によるシールド性能の低下をより発生し難くすることができる。   According to the said structure, the fall of the electroconductivity in the whole foundation | substrate adhesive bond layer by space | interval of 2nd electroconductive particle can be prevented, and the fall of the shield performance by the increase in electrical resistance can be made hard to generate | occur | produce.

また、本発明の導電性接着フィルムにおいて、前記第2の導電性粒子は、デンドライト状粒子であってもよい。   In the conductive adhesive film of the present invention, the second conductive particles may be dendritic particles.

上記構成によれば、第2の導電性粒子がデンドライト状粒子であるため、デンドライト状とは異なる形状の粒子を同じ重量%使用した場合と比較して、第2の導電性粒子同士の接触率を高めることができる。これにより、下地接着剤層の接着剤の量を減らすことを防止することができ、導電性接着剤層と下地接着剤層との接着性を低下させることなく導電性を高めることができる。   According to the said structure, since the 2nd electroconductive particle is a dendrite-like particle | grain, compared with the case where the particle | grains different from a dendrite form are used for the same weight%, the contact rate of 2nd electroconductive particle | grains Can be increased. Thereby, it can prevent reducing the quantity of the adhesive agent of a base adhesive layer, and can improve electroconductivity, without reducing the adhesiveness of a conductive adhesive layer and a base adhesive layer.

また、本発明の導電性接着フィルムにおいて、前記導電性接着剤層の伸展前の層厚は、前記凹部の溝深さに対して1%〜3%であり、前記下地接着剤層の伸展前の層厚は、前記凹部の溝深さに対して、4%〜8%であり、両方の伸展前の総厚は、前記凹部の溝深さに対して、5%〜11%であってもよい。   In the conductive adhesive film of the present invention, the layer thickness of the conductive adhesive layer before extension is 1% to 3% with respect to the groove depth of the recess, and the base adhesive layer is not extended. The layer thickness is 4% to 8% with respect to the groove depth of the recess, and the total thickness of both before extension is 5% to 11% with respect to the groove depth of the recess. Also good.

また、本発明の導電性接着フィルムにおいて、前記導電性接着剤層は、10μm〜30μmの層厚を有し、前記下地接着剤層は、40μm〜80μmの層厚を有していてもよい。   In the conductive adhesive film of the present invention, the conductive adhesive layer may have a layer thickness of 10 μm to 30 μm, and the base adhesive layer may have a layer thickness of 40 μm to 80 μm.

また、本発明の導電性接着フィルムにおいて、前記導電性接着剤層に対して、下地接着剤層とは反対の面に転写フィルムが積層されており、前記転写フィルムは、150℃以上の温度条件下における貯蔵弾性率が20MPa以下であってもよい。   Further, in the conductive adhesive film of the present invention, a transfer film is laminated on the surface opposite to the base adhesive layer with respect to the conductive adhesive layer, and the transfer film has a temperature condition of 150 ° C. or higher. The storage elastic modulus below may be 20 MPa or less.

上記構成によれば、転写フィルムが熱プレス加工時において延伸されやすく、電子部品及びプリント配線板の切断用凹部に対する導電性接着フィルムの埋め込み性を良好にすることができる。   According to the said structure, a transfer film is easy to be extended | stretched at the time of a hot press process, and the embedding property of the electroconductive adhesive film with respect to the recessed part for a cutting | disconnection of an electronic component and a printed wiring board can be made favorable.

本発明のシールドプリント配線板は、上記記載の導電性接着フィルムを備えたことを特徴とする。   A shield printed wiring board according to the present invention includes the above-described conductive adhesive film.

本発明の電子機器は、上記記載のシールドプリント配線板を備えたことを特徴とする。   An electronic apparatus according to the present invention includes the shield printed wiring board described above.

プレス加工という簡易な方法を用いて電子部品を導電性接着フィルムで覆っても電気抵抗の増加によるシールド性能の低下という不具合の発生を起こり難くすることができる。   Even if the electronic component is covered with a conductive adhesive film using a simple method of press working, it is possible to make it difficult to cause a problem of a decrease in shielding performance due to an increase in electrical resistance.

導電性接着フィルムの断面図である。It is sectional drawing of a conductive adhesive film. 導電性接着フィルムの詳細を示す説明図である。It is explanatory drawing which shows the detail of a conductive adhesive film. 導電性接着フィルムのプレス加工を示す説明図である。It is explanatory drawing which shows the press work of an electroconductive adhesive film. 実施例におけるガラスエポキシ基板上に積層された導電性接着フィルムの態様を示す説明図である。It is explanatory drawing which shows the aspect of the electroconductive adhesive film laminated | stacked on the glass epoxy board | substrate in an Example. 実施例における導電性接着フィルムの表面抵抗値の測定方法を示す説明図である。It is explanatory drawing which shows the measuring method of the surface resistance value of the electroconductive adhesive film in an Example.

以下、本発明の好適な実施の形態について、図面を参照しつつ説明する。   Hereinafter, preferred embodiments of the present invention will be described with reference to the drawings.

図1に示すように、本実施形態の導電性接着フィルム1は、シールドプリント配線板100に設けられ、プレス加工により凹部に対応する部位をフィルム面方向に伸展させて電子部品2を覆うことにより電磁波シールドするものである。   As shown in FIG. 1, the conductive adhesive film 1 of the present embodiment is provided on the shield printed wiring board 100 and covers the electronic component 2 by extending a portion corresponding to the recess in the film surface direction by pressing. Shields electromagnetic waves.

具体的に、プリント配線板100には、基板4上に信号パターンやグランドパターンなどの配線を含む回路パターン、コンデンサやインダクタンスなどの受動部品、及び、集積回路チップ等の電子部品2が設けられている。これら電子部品2が樹脂モールド等の封止材3によって一体的に封止されている。基板4上には、一体的に封止された電子部品2からなる単位モジュールが多数形成され、それぞれが凹状の溝(凹部)により区画されている。基板4は単位モジュールごとに凹部で切断され、プリント配線板100としてノートパソコン及びタブレット端末等の各種の電子機器300に設けられる。尚、本発明におけるプリント配線板の切断用凹部とは、前記凹部のことをいう。   Specifically, the printed wiring board 100 is provided with a circuit pattern including wiring such as a signal pattern and a ground pattern, a passive component such as a capacitor and an inductance, and an electronic component 2 such as an integrated circuit chip on the substrate 4. Yes. These electronic components 2 are integrally sealed by a sealing material 3 such as a resin mold. On the substrate 4, a large number of unit modules composed of the electronic components 2 that are integrally sealed are formed, each of which is defined by a concave groove (concave portion). The substrate 4 is cut by a concave portion for each unit module, and provided as a printed wiring board 100 in various electronic devices 300 such as a notebook computer and a tablet terminal. In addition, the recessed part for cutting | disconnection of the printed wiring board in this invention means the said recessed part.

(導電性接着フィルム1)
導電性接着フィルム1は、基板4上に設けられる多数の単位モジュールを覆うように配置され、プレス加工される。これにより、導電性接着フィルム1は、凹部上に位置する部位が、凹部の溝に入り込むようにフィルム面方向に伸展されることになる。
(Conductive adhesive film 1)
The conductive adhesive film 1 is disposed so as to cover a large number of unit modules provided on the substrate 4 and is pressed. Thereby, the electroconductive adhesive film 1 is extended in the film surface direction so that the site | part located on a recessed part may enter into the groove | channel of a recessed part.

このような導電性接着フィルム1は、導電性接着剤層10と、導電性接着剤層10よりも電子部品2側に位置する下地接着剤層11とを有する。即ち、導電性接着フィルム1は、導電性接着剤層10と、下地接着剤層11とが積層されて形成されている。   Such a conductive adhesive film 1 has a conductive adhesive layer 10 and a base adhesive layer 11 located on the electronic component 2 side with respect to the conductive adhesive layer 10. That is, the conductive adhesive film 1 is formed by laminating a conductive adhesive layer 10 and a base adhesive layer 11.

導電性接着剤層10、及び、下地接着剤層11は、導電性粒子とバインダとの混合体である導電性接着剤により形成されている。導電性接着剤の電気的な接続は、バインダ内の導電性粒子が連続的に機械的に接触することにより実現され、バインダの接着力により保持される。   The conductive adhesive layer 10 and the base adhesive layer 11 are formed of a conductive adhesive that is a mixture of conductive particles and a binder. The electrical connection of the conductive adhesive is realized by continuous mechanical contact of the conductive particles in the binder and is maintained by the adhesive force of the binder.

導電性接着剤層10、及び、下地接着剤層11のバインダとしては、アクリル系樹脂、エポキシ系樹脂、シリコン系樹脂、熱可塑性エラストマ系樹脂、ゴム系樹脂、ポリエステル系樹脂、ウレタン系樹脂などが挙げられる。尚、接着剤は、上記樹脂の単体でも混合体でもよい。また、バインダは、粘着性付与剤をさらに含んでいてもよい。粘着性付与剤としては、脂肪酸炭化水素樹脂、C5/C9混合樹脂、ロジン、ロジン誘導体、テルペン樹脂、芳香族系炭化水素樹脂、熱反応性樹脂などが挙げられる。   Examples of the binder for the conductive adhesive layer 10 and the base adhesive layer 11 include acrylic resins, epoxy resins, silicon resins, thermoplastic elastomer resins, rubber resins, polyester resins, and urethane resins. Can be mentioned. The adhesive may be a single substance or a mixture of the above resins. The binder may further contain a tackifier. Examples of the tackifier include fatty acid hydrocarbon resins, C5 / C9 mixed resins, rosin, rosin derivatives, terpene resins, aromatic hydrocarbon resins, and thermally reactive resins.

導電性接着剤層10、及び、下地接着剤層11の導電性粒子としては、カーボン、銀、銅、ニッケル、ハンダ、アルミ、錫、ビスマス、及び、銅粉に銀メッキを施した銀コート銅等の金属フィラー、さらには樹脂ボールやガラスビーズ等に金属メッキを施したフィラー又はこれらのフィラーの混合体が用いられる。   As the conductive particles of the conductive adhesive layer 10 and the base adhesive layer 11, silver-coated copper obtained by silver-plating carbon, silver, copper, nickel, solder, aluminum, tin, bismuth, and copper powder. Further, a filler obtained by performing metal plating on a resin ball or glass bead or a mixture of these fillers is used.

導電性粒子10a・11aの形状は、球状、針状、繊維状、フレーク状、デンドライト状のいずれであってもよい。尚、図2に示すように、本実施形態では、導電性接着剤層10の導電性粒子10a(第1の導電性粒子)にはフレーク状の導電性粒子を用い、下地接着剤層11の導電性粒子11a(第2の導電性粒子)にはデンドライト状の導電性粒子を用いている。   The shape of the conductive particles 10a and 11a may be any of a spherical shape, a needle shape, a fiber shape, a flake shape, and a dendrite shape. As shown in FIG. 2, in this embodiment, flaky conductive particles are used for the conductive particles 10a (first conductive particles) of the conductive adhesive layer 10, and the base adhesive layer 11 Dendritic conductive particles are used as the conductive particles 11a (second conductive particles).

(導電性接着フィルム1:導電性接着剤層10)
導電性接着剤層10は、導電性粒子10aを含む等方性導電材料により形成される。尚、導電性接着剤層10は、2層以上の複層構造であってもよい。導電性接着剤層10の伸展前の層厚の下限は、凹部の溝深さに対して1.0%が好ましく、1.5%であることがより好ましい。また、導電性接着剤層10の伸展前の層厚の上限は、3.0%が好ましく、2.0%であることがより好ましい。より具体的には、導電性接着剤層10の層厚の下限は、10μmが好ましく、15μmであることがより好ましい。導電性接着剤層10の層厚の上限は、30μmが好ましく、20μmであることがより好ましい。導電性接着剤層の下限が上記の値未満であると、導電性接着フィルム1が伸展された際に、導電性粒子同士が接触しにくくなることから、最大に伸展した部位の導電性が損なわれることになる。また、導電性接着剤層の上限が上記の値を超えると、微細な凹部への埋め込み性が悪くなるとともに、経済合理性を欠く。
(Conductive adhesive film 1: conductive adhesive layer 10)
The conductive adhesive layer 10 is formed of an isotropic conductive material including conductive particles 10a. The conductive adhesive layer 10 may have a multilayer structure of two or more layers. The lower limit of the thickness of the conductive adhesive layer 10 before extension is preferably 1.0% and more preferably 1.5% with respect to the groove depth of the recess. Moreover, 3.0% is preferable and, as for the upper limit of the layer thickness before extending | stretching of the conductive adhesive layer 10, it is more preferable that it is 2.0%. More specifically, the lower limit of the thickness of the conductive adhesive layer 10 is preferably 10 μm, and more preferably 15 μm. The upper limit of the layer thickness of the conductive adhesive layer 10 is preferably 30 μm, and more preferably 20 μm. If the lower limit of the conductive adhesive layer is less than the above value, when the conductive adhesive film 1 is stretched, it becomes difficult for the conductive particles to come into contact with each other. Will be. On the other hand, if the upper limit of the conductive adhesive layer exceeds the above value, the embedding property in the fine recesses is deteriorated and the economic rationality is lacking.

導電性接着剤層10は等方性導電材料で形成されるため、導電性接着剤層10は、厚み方向、幅方向、及び、長手方向からなる三次元の全方向に電気的な導通状態を確保可能となる。   Since the conductive adhesive layer 10 is formed of an isotropic conductive material, the conductive adhesive layer 10 has an electrically conductive state in all three dimensions including the thickness direction, the width direction, and the longitudinal direction. It can be secured.

導電性粒子10aは、伸展後の導電性接着剤層10において少なくとも一部が互いに接触する密度で分散されていることが好ましい。尚、「少なくとも一部が互いに接触する」とは、伸展後の導電性接着剤層10において、含まれる全ての導電性粒子10aが連続するように(電気的に接続されるように)接触することに限定されず、少なくとも厚み方向、幅方向、及び、長手方向が電気的に接続されるように接触する導電性粒子10aが存在していればよい。   The conductive particles 10a are preferably dispersed at a density such that at least a part of the conductive particles 10a is in contact with each other in the conductive adhesive layer 10 after extension. Note that “at least a part is in contact with each other” means that all the conductive particles 10 a included in the conductive adhesive layer 10 after the extension are in contact (so as to be electrically connected). The conductive particles 10a that are in contact with each other so that at least the thickness direction, the width direction, and the longitudinal direction are electrically connected are not limited thereto.

具体的に、導電性粒子10aの含有割合の下限は、導電性接着剤層10の総重量に対して40重量%が好ましく、50重量%がより好ましい。また、導電性粒子10aの含有割合の上限は、導電性接着剤層10の総重量に対して80重量%が好ましく、60重量%がより好ましい。導電性粒子の含有割合の下限が上記の値未満であると、導電性接着フィルム1が伸展された際に、導電性粒子同士が接触しにくくなることから、最大に伸展した部位の導電性が損なわれることになる。また、導電性粒子の含有割合の上限が上記の値を超えると、接着性が低下するとともに、経済合理性を欠く。   Specifically, the lower limit of the content ratio of the conductive particles 10a is preferably 40% by weight and more preferably 50% by weight with respect to the total weight of the conductive adhesive layer 10. Further, the upper limit of the content ratio of the conductive particles 10a is preferably 80% by weight and more preferably 60% by weight with respect to the total weight of the conductive adhesive layer 10. When the lower limit of the content ratio of the conductive particles is less than the above value, when the conductive adhesive film 1 is stretched, it becomes difficult for the conductive particles to come into contact with each other. It will be damaged. Moreover, when the upper limit of the content rate of electroconductive particle exceeds said value, while adhesiveness falls, economical rationality is missing.

本実施形態の導電性粒子10aのように、導電性接着剤層10に含まれる第1の導電性粒子としてはフレーク状粒子が好ましい。そして、導電性粒子10aの平均長径の下限は、導電性接着剤層10の伸展前の層厚の15%であることが好ましく、18%であることがより好ましい。また、導電性粒子10aの平均長径の上限は、導電性接着剤層10の伸展前の層厚の25%であることが好ましく、22%であることがより好ましい。第1の導電性粒子10aの形状が長径を有するフレーク状であることにより、後述する導電性接着フィルム1の製造方法における導電性接着剤層10の積層工程において、含まれる導電性粒子10aの長径方向が導電性接着剤層のフィルム面方向に揃う。これにより、切断用凹部を有するプリント配線板に対してプレス加工を行った際に、導電性粒子10a同士が接触し易くなることから、最大に伸展した部位の導電性の低下を効果的に防止することができる。尚、導電性粒子の平均長径及び平均粒径は、レーザ回折散乱法により測定することができる。また、導電性粒子10aの平均長径の下限が伸展前の層厚の15%より小さくなると、導電性接着剤層10が伸展された際に、導電性粒子同士が接触しにくくなることから、最大に伸展した部位の導電性が損なわれることになる。   Like the electroconductive particle 10a of this embodiment, as a 1st electroconductive particle contained in the electroconductive adhesive layer 10, flake shaped particle | grains are preferable. The lower limit of the average major axis of the conductive particles 10a is preferably 15% of the layer thickness of the conductive adhesive layer 10 before extension, and more preferably 18%. Further, the upper limit of the average major axis of the conductive particles 10a is preferably 25% of the layer thickness before the conductive adhesive layer 10 is stretched, and more preferably 22%. When the shape of the first conductive particles 10a is a flaky shape having a major axis, the major axis of the conductive particles 10a included in the laminating step of the conductive adhesive layer 10 in the method for producing the conductive adhesive film 1 to be described later. The direction is aligned with the film surface direction of the conductive adhesive layer. As a result, when press processing is performed on a printed wiring board having a recess for cutting, the conductive particles 10a can easily come into contact with each other, effectively preventing a decrease in conductivity at the maximum extended portion. can do. The average major axis and average particle diameter of the conductive particles can be measured by a laser diffraction scattering method. Moreover, when the lower limit of the average major axis of the conductive particles 10a is smaller than 15% of the layer thickness before extension, the conductive particles 10 are less likely to contact each other when the conductive adhesive layer 10 is extended. Therefore, the conductivity of the site extended to the surface is impaired.

尚、「等方性導電材料により導電性接着剤層10が形成される」とは、導電性接着剤層10が厚み方向、幅方向、長手方向が電気的に接続された状態であることを示す。即ち、導電性接着剤層10の導電性粒子の形状、バインダの種類、バインダに対する導電性粒子の混合割合、加圧プレス時の圧力、温度等を適宜調整することにより等方性導電材料となる。   Note that “the conductive adhesive layer 10 is formed of an isotropic conductive material” means that the conductive adhesive layer 10 is electrically connected in the thickness direction, the width direction, and the longitudinal direction. Show. That is, an isotropic conductive material is obtained by appropriately adjusting the shape of the conductive particles of the conductive adhesive layer 10, the type of binder, the mixing ratio of the conductive particles to the binder, the pressure at the time of pressure pressing, the temperature, and the like. .

(導電性接着フィルム1:下地接着剤層11)
下地接着剤層11は、導電性粒子11aを含む異方性導電材料により形成される。尚、下地接着剤層11は、2層以上の複層構造であってもよい。下地接着剤層11の伸展前の層厚の下限は、凹部の溝深さに対して4%が好ましく、5%であることがより好ましい。また、下地接着剤層11の伸展前の層厚の上限は、8%が好ましく、6%であることがより好ましい。より具体的には下地接着剤層11の伸展前の層厚の下限は、40μmが好ましく、50μmであることがより好ましい。下地接着剤層11の層厚の上限は、80μmが好ましく、60μmであることがより好ましい。下地接着剤層の下限が上記の値未満であると、導電性接着フィルム1が伸展された際に、導電性粒子同士が接触しにくくなることから、最大に伸展した部位の導電性が損なわれることになる。また、導電性接着剤層の上限が上記の値を超えると、微細な凹部への埋め込み性が悪くなるとともに、経済合理性を欠く。
(Conductive adhesive film 1: base adhesive layer 11)
The base adhesive layer 11 is formed of an anisotropic conductive material including conductive particles 11a. The base adhesive layer 11 may have a multilayer structure of two or more layers. 4% is preferable with respect to the groove depth of a recessed part, and, as for the minimum of the layer thickness before extension of the base adhesive layer 11, it is more preferable that it is 5%. Moreover, 8% is preferable and, as for the upper limit of the layer thickness before extension of the base adhesive bond layer 11, it is more preferable that it is 6%. More specifically, the lower limit of the layer thickness before the base adhesive layer 11 is extended is preferably 40 μm, and more preferably 50 μm. The upper limit of the layer thickness of the base adhesive layer 11 is preferably 80 μm, and more preferably 60 μm. When the lower limit of the base adhesive layer is less than the above value, when the conductive adhesive film 1 is stretched, it becomes difficult for the conductive particles to come into contact with each other. It will be. On the other hand, if the upper limit of the conductive adhesive layer exceeds the above value, the embedding property in the fine recesses is deteriorated and the economic rationality is lacking.

下地接着剤層11を形成する異方性導電材料は、加圧方向のみに導通する性質を有している。従って、異方導電性接着剤で形成される下地接着剤層11は、厚み方向にだけ電気的な導通状態を確保可能となる。   The anisotropic conductive material forming the base adhesive layer 11 has a property of conducting only in the pressing direction. Therefore, the base adhesive layer 11 formed of the anisotropic conductive adhesive can ensure an electrical conduction state only in the thickness direction.

導電性粒子11aの含有割合の下限は、下地接着剤層11の総重量に対して40重量%が好ましく、50重量%がより好ましい。また、導電性粒子11aの含有割合の上限は、下地接着剤層11の総重量に対して80重量%が好ましく、60重量%がより好ましい。導電性粒子の含有割合の下限が上記の値未満であると、導電性接着フィルム1が伸展された際に、導電性粒子同士が接触しにくくなることから、最大に伸展した部位の導電性が損なわれることになる。また、導電性粒子の含有割合の上限が上記の値を超えると、接着性が低下するとともに、経済合理性を欠く。   The lower limit of the content ratio of the conductive particles 11a is preferably 40% by weight and more preferably 50% by weight with respect to the total weight of the base adhesive layer 11. Further, the upper limit of the content ratio of the conductive particles 11a is preferably 80% by weight and more preferably 60% by weight with respect to the total weight of the base adhesive layer 11. When the lower limit of the content ratio of the conductive particles is less than the above value, when the conductive adhesive film 1 is stretched, it becomes difficult for the conductive particles to come into contact with each other. It will be damaged. Moreover, when the upper limit of the content rate of electroconductive particle exceeds said value, while adhesiveness falls, economical rationality is missing.

本実施形態の導電性粒子11aのように、下地接着剤層11に含まれる第1の導電性粒子としてはデンドライト状粒子が好ましい。そして、導電性粒子11aの平均粒径の下限は、下地接着剤層11の伸展前の層厚の10%であることが好ましく、20%であることがより好ましい。また、導電性粒子11aの平均粒径の上限は、下地接着剤層11の伸展前の層厚の50%であることが好ましく、40%であることがより好ましい。   Like the electroconductive particle 11a of this embodiment, as the 1st electroconductive particle contained in the base adhesive layer 11, a dendrite-like particle | grain is preferable. The lower limit of the average particle diameter of the conductive particles 11a is preferably 10% of the layer thickness before the base adhesive layer 11 is extended, and more preferably 20%. Further, the upper limit of the average particle diameter of the conductive particles 11a is preferably 50%, more preferably 40%, of the layer thickness of the base adhesive layer 11 before extension.

尚、「異方性導電材料により下地接着剤層11が形成される」とは、下地接着剤層11が一方向(厚み方向)にだけ導通が確保された状態であることを示す。即ち、下地接着剤層11の導電性粒子の形状、バインダの種類、バインダに対する導電性粒子の混合割合、加圧プレス時の圧力、温度等を適宜調整することにより異方性導電材料となる。   Note that “the base adhesive layer 11 is formed of an anisotropic conductive material” indicates that the base adhesive layer 11 is in a state where conduction is ensured only in one direction (thickness direction). That is, the anisotropic conductive material is obtained by appropriately adjusting the shape of the conductive particles of the base adhesive layer 11, the kind of binder, the mixing ratio of the conductive particles to the binder, the pressure at the time of pressure pressing, the temperature, and the like.

尚、導電性接着フィルム1自体の伸展前の層厚、即ち、導電性接着剤層10及び下地接着剤層11の伸展前の総厚(導電性接着剤層10の厚みと下地接着剤層11の厚みとの合計)の下限は、凹部の溝深さに対して5%であることが好ましく、7%であることがより好ましい。また、導電性接着フィルム1自体の伸展前の層厚、即ち、導電性接着剤層10及び下地接着剤層11の伸展前の総厚の上限は、11%であることが好ましく、9%であることがより好ましい。   In addition, the layer thickness before extension of the conductive adhesive film 1 itself, that is, the total thickness before extension of the conductive adhesive layer 10 and the base adhesive layer 11 (the thickness of the conductive adhesive layer 10 and the base adhesive layer 11). The lower limit of the sum of the thickness and the thickness of the recess is preferably 5%, more preferably 7% with respect to the groove depth of the recess. The upper limit of the thickness of the conductive adhesive film 1 itself before extension, that is, the total thickness before extension of the conductive adhesive layer 10 and the base adhesive layer 11 is preferably 11%, and 9%. More preferably.

(導電性接着フィルム1の製造方法)
図3に示すように、導電性接着フィルム1を、転写フィルム12が積層された状態で電子部品2の上に載置し、更にクッションフィルム13を載置した状態で上から加圧される。導電性接着フィルム1の製造方法としては、先ず、この転写フィルム12が、Tダイ法等により押出成形され、フィルム状に形成される。尚、転写フィルム12は、導電性接着剤層10に対して剥離性を有するものであれば、特に限定されるものではなく、例えば、シリコンや非シリコン系のメラミン離型剤やアクリル離型剤がコーティングされたPETフィルム等を使用することができる。尚、転写フィルム12は、150℃以上の温度条件下における貯蔵弾性率が20MPa以下であることが好ましい。これにより、プレス加工時における導電性接着フィルム1のプリント配線板の切断用凹部への埋め込み性が良好なものとなる。
(Method for producing conductive adhesive film 1)
As shown in FIG. 3, the conductive adhesive film 1 is placed on the electronic component 2 in a state where the transfer film 12 is laminated, and further pressed from above with the cushion film 13 placed. As a method for producing the conductive adhesive film 1, first, the transfer film 12 is extrusion-molded by a T-die method or the like to be formed into a film shape. The transfer film 12 is not particularly limited as long as it has releasability from the conductive adhesive layer 10. For example, a silicon or non-silicon melamine release agent or an acrylic release agent is used. Can be used. The transfer film 12 preferably has a storage elastic modulus of 20 MPa or less under a temperature condition of 150 ° C. or higher. Thereby, the embedding property to the recessed part for cutting | disconnection of the printed wiring board of the conductive adhesive film 1 at the time of press work becomes a favorable thing.

この転写フィルム12に導電性粒子10aを含有する等方性導電材料が塗布されることにより、転写フィルム12上に導電性接着剤層10が積層される。一方、これとは別に、押出成形により形成された図示しない剥離フィルムに導電性粒子11aを含有する異方性導電材料が塗布されることにより、下地接着剤層11が形成される。その後、これら2つの積層体をラミネートすることにより、転写フィルム12、導電性接着剤層10、下地接着剤層11、及び、図示しない剥離フィルムが順次積層された積層構造体が形成される。   By applying an isotropic conductive material containing conductive particles 10 a to the transfer film 12, the conductive adhesive layer 10 is laminated on the transfer film 12. On the other hand, the base adhesive layer 11 is formed by applying an anisotropic conductive material containing the conductive particles 11a to a release film (not shown) formed by extrusion, separately from this. Thereafter, by laminating these two laminates, a laminated structure in which the transfer film 12, the conductive adhesive layer 10, the base adhesive layer 11, and a release film (not shown) are sequentially laminated is formed.

このように、導電性接着フィルム1は、転写フィルム12と剥離フィルムとに挟まれた状態で形成されるようになっている。尚、この積層構造体は、上記の4層構造のまま巻回されて保管・移送等が行われてもよい。また、剥離フィルムのみ剥離した3層構造で巻回されて保管・移送等が行われてもよい。3層構造で巻回する場合、転写フィルム12の導電性接着剤層10が積層される反対側の面には離型処理が施されることが好ましい。   Thus, the conductive adhesive film 1 is formed in a state of being sandwiched between the transfer film 12 and the release film. In addition, this laminated structure may be wound, stored, transported, etc. with the above four-layer structure. Moreover, it may be wound in a three-layer structure in which only the release film is peeled off, and may be stored / transferred. In the case of winding with a three-layer structure, it is preferable that a release treatment is performed on the opposite surface of the transfer film 12 on which the conductive adhesive layer 10 is laminated.

また、上述のようにラミネートにより形成することに限定されず、転写フィルム12上に導電性接着剤層10が積層された積層体に対して、さらに導電性粒子11aを含有する異方性導電材料を塗布することで下地接着剤層11を形成してもよい。これにより、転写フィルム12上に導電性接着フィルム1が積層されることになる。   Moreover, it is not limited to forming by a laminate as mentioned above, The anisotropic conductive material which contains the electroconductive particle 11a further with respect to the laminated body by which the conductive adhesive layer 10 was laminated | stacked on the transfer film 12 You may form the base adhesive bond layer 11 by apply | coating. As a result, the conductive adhesive film 1 is laminated on the transfer film 12.

(プレス加工)
図3に示すように、基板4上の封止材3により一体的に封止された電子部品2に対して、転写フィルム12に積層された導電性接着フィルム1で覆い、転写フィルム12側にクッションフィルム13を載置した状態でプレス加工が行われる。本実施形態では、平板を用いてプレス加工を行っているが、これに限定されず凹部に押し込むための金型を用いてもよい。この場合、クッションフィルム13を用いなくてもよい。
(Press working)
As shown in FIG. 3, the electronic component 2 integrally sealed with the sealing material 3 on the substrate 4 is covered with the conductive adhesive film 1 laminated on the transfer film 12, and on the transfer film 12 side. The press work is performed with the cushion film 13 placed. In the present embodiment, pressing is performed using a flat plate, but the present invention is not limited to this, and a mold for pressing into a recess may be used. In this case, the cushion film 13 may not be used.

以上の詳細な説明では、本発明をより容易に理解できるように、特徴的部分を中心に説明したが、本発明は、以上の詳細な説明に記載する実施形態に限定されず、その他の実施形態にも適用することができ、その適用範囲は可能な限り広く解釈されるべきである。   In the above detailed description, the present invention has been described mainly with respect to characteristic parts so that the present invention can be more easily understood. However, the present invention is not limited to the embodiments described in the above detailed description, and other implementations are possible. It can also be applied to forms and its scope should be interpreted as widely as possible.

また、本明細書において用いた用語及び語法は、本発明を的確に説明するために用いたものであり、本発明の解釈を制限するために用いたものではない。また、当業者であれば、本明細書に記載された発明の概念から、本発明の概念に含まれる他の構成、システム、方法等を推考することは容易であると思われる。従って、請求の範囲の記載は、本発明の技術的思想を逸脱しない範囲で均等な構成を含むものであるとみなされるべきである。また、本発明の目的及び本発明の効果を充分に理解するために、すでに開示されている文献等を充分に参酌することが望まれる。   The terms and terminology used in the present specification are used to accurately describe the present invention, and are not used to limit the interpretation of the present invention. Moreover, it would be easy for those skilled in the art to infer other configurations, systems, methods, and the like included in the concept of the present invention from the concept of the invention described in this specification. Accordingly, the description of the claims should be regarded as including an equivalent configuration without departing from the technical idea of the present invention. In addition, in order to fully understand the object of the present invention and the effects of the present invention, it is desirable to fully consider the literatures already disclosed.

(実施例1〜4、比較例1〜3)
実施例としては、フレーク状の導電性粒子を含む等方性導電材料により形成される導電性接着剤層と、デンドライト状の導電性粒子を含む異方性導電材料により形成される下地接着剤層とを積層した導電性接着フィルムを用いた。実施例1〜4の導電性接着剤層のプレスによる伸展前の厚みは、それぞれ20μm、20μm、15μm、10μmとした。また、実施例1〜4の下地接着剤層のプレスによる伸展前の厚みは、それぞれ40μm、60μm、60μm、80μmとした。
(Examples 1-4, Comparative Examples 1-3)
As an example, a conductive adhesive layer formed of an isotropic conductive material containing flaky conductive particles, and a base adhesive layer formed of an anisotropic conductive material containing dendritic conductive particles The conductive adhesive film which laminated | stacked was used. The thicknesses of the conductive adhesive layers of Examples 1 to 4 before being stretched by pressing were 20 μm, 20 μm, 15 μm, and 10 μm, respectively. Moreover, the thickness before extension by the press of the base adhesive layer of Examples 1-4 was 40 micrometers, 60 micrometers, 60 micrometers, and 80 micrometers, respectively.

比較例1、2としては、デンドライト状の導電性粒子を含む異方性導電材料により形成される導電性接着剤層と、フレーク状の導電性粒子を含む等方性導電材料により形成される下地接着剤層とを積層した導電性接着フィルムを用いた。また、比較例3としては、デンドライト状の導電性粒子を含む異方性導電材料により形成される導電性接着剤層と、デンドライト状の導電性粒子を含む異方性導電材料により形成される下地接着剤層とを積層した導電性接着フィルムを用いた。比較例1〜3の導電性接着剤層のプレスによる伸展前の厚みは、60μm、80μm、60μmとした。また、比較例1〜3の下地接着剤層のプレスによる伸展前の厚みは、20μm、20μm、60μmとした。   As Comparative Examples 1 and 2, a conductive adhesive layer formed of an anisotropic conductive material including dendritic conductive particles and a base formed of an isotropic conductive material including flaky conductive particles A conductive adhesive film laminated with an adhesive layer was used. Further, as Comparative Example 3, a conductive adhesive layer formed of an anisotropic conductive material containing dendritic conductive particles and a base formed of an anisotropic conductive material containing dendritic conductive particles A conductive adhesive film laminated with an adhesive layer was used. The thickness of the conductive adhesive layers of Comparative Examples 1 to 3 before being stretched by pressing was 60 μm, 80 μm, and 60 μm. Moreover, the thickness before the extension by the press of the base adhesive layer of Comparative Examples 1-3 was 20 micrometers, 20 micrometers, and 60 micrometers.

尚、実施例1〜4、及び、比較例1〜3のそれぞれの導電性接着剤層及び下地接着剤層における導電性粒子の配合割合は、すべて導電性接着剤層及び下地接着剤層のそれぞれの総量に対して60wt%である。また、実施例1〜4の導電性接着剤層、及び、比較例1〜2の下地接着剤層に用いたフレーク状導電性粒子の平均長径と平均短径は、それぞれ5μm、1μmであり、実施例1〜4、及び、比較例3の下地接着剤層と比較例1〜3の導電性接着剤層に用いたデントライト状導電性粒子の平均粒径は13μmである。これらの導電性接着フィルム上に転写フィルムを積層し、さらにクッションフィルムを載置してプレス対象にプレス加工を行った。   In addition, the compounding ratios of the conductive particles in each of the conductive adhesive layers and the base adhesive layers in Examples 1 to 4 and Comparative Examples 1 to 3 are all in the conductive adhesive layer and the base adhesive layer, respectively. It is 60 wt% with respect to the total amount. Moreover, the average major axis and the average minor axis of the flaky conductive particles used in the conductive adhesive layers of Examples 1 to 4 and the base adhesive layers of Comparative Examples 1 and 2 are 5 μm and 1 μm, respectively. The average particle diameter of the dentrite-like conductive particles used in the base adhesive layers of Examples 1 to 4 and Comparative Example 3 and the conductive adhesive layers of Comparative Examples 1 to 3 is 13 μm. A transfer film was laminated on these conductive adhesive films, and a cushion film was further placed on the object to be pressed.

尚、転写フィルムとしては、150℃の貯蔵弾性率が10MPaのポリオレフィン樹脂(厚み50μm)のものを用いた。また、クッションフィルムとしては、三井化学東セロ株式会社製のCR1012MT4(厚み150μm)を用いた。また、プレス加工は、加熱温度170℃、プレス時間30分、圧力3MPaで行った。   As the transfer film, a polyolefin resin (thickness 50 μm) having a storage elastic modulus at 150 ° C. of 10 MPa was used. As the cushion film, CR1012MT4 (thickness 150 μm) manufactured by Mitsui Chemicals Tosero Co., Ltd. was used. The pressing was performed at a heating temperature of 170 ° C., a pressing time of 30 minutes, and a pressure of 3 MPa.

また、プレスの対象としては、電子部品搭載基板を模擬し、ガラスエポキシ基板に溝幅0.6mm、溝深さ1mmの格子状(8×8区画)の凹部を形成したものを使用した。   Further, as an object to be pressed, an electronic component mounting substrate was simulated, and a glass epoxy substrate having a grid-like (8 × 8 section) recess having a groove width of 0.6 mm and a groove depth of 1 mm was used.

上記のように、プレス加工により導電性接着フィルムをプレス対象に貼り付けた。次いで、クッションフィルム及び転写フィルムを剥離した実施例1〜4、及び、比較例1〜3の導電性接着フィルムに対し、図4、図5に示すようにして、すべての隣り合う区画間の表面抵抗値を測定した(合計112回)。具体的に、図4に示すように、ガラスエポキシ基板20は、上述のような溝状の凹部20bによって8×8に区切られた区画20aを有する。各凹部20bは、ガラスエポキシ基板20上に、10mm間隔に格子状に設けられている。ガラスエポキシ基板20は、全ての区画20aの少なくとも一部が覆われるように導電性接着フィルム1がプレス加工される。即ち、ガラスエポキシ基板20上の中央部の6×6の区画20aは、全面が導電性接着フィルム1によって覆われており、ガラスエポキシ基板20上の縁部に位置する区画20aは、一部が導電性接着フィルム1によって覆われている。このような態様でプレス加工されることにより、ガラスエポキシ基板20の凹部20bに導電性接着フィルム1が埋め込まれる。これによって、導電性接着フィルム1に凹部1bが形成されることになる。即ち、導電性接着フィルム1には、凹部1bによって区切られる区画1aが形成される。そして、図5に示すように、導電性接着フィルム1の凹部1bを挟む隣り合う区画1a間の表面抵抗値Rを測定した。このような表面抵抗値Rの測定を、実施例1〜4、及び、比較例1〜3における全ての区画1a間(112パターンを各1回)に対して行った。実施例1〜4、及び、比較例1〜3における表面抵抗値Rの最大値、最小値、平均値、及び、その評価を表1に示す。   As mentioned above, the electroconductive adhesive film was affixed on the press object by press work. Next, as shown in FIGS. 4 and 5 for the conductive adhesive films of Examples 1 to 4 and Comparative Examples 1 to 3 where the cushion film and transfer film were peeled off, the surface between all adjacent sections The resistance value was measured (total of 112 times). Specifically, as shown in FIG. 4, the glass epoxy substrate 20 has sections 20 a divided into 8 × 8 by the groove-like recesses 20 b as described above. The recesses 20b are provided on the glass epoxy substrate 20 in a grid pattern at intervals of 10 mm. As for the glass epoxy board | substrate 20, the electroconductive adhesive film 1 is press-processed so that at least one part of all the divisions 20a may be covered. That is, the 6 × 6 section 20a in the center on the glass epoxy substrate 20 is entirely covered with the conductive adhesive film 1, and a part of the section 20a located at the edge on the glass epoxy substrate 20 is partially covered. It is covered with a conductive adhesive film 1. By being pressed in such a manner, the conductive adhesive film 1 is embedded in the concave portion 20 b of the glass epoxy substrate 20. As a result, the concave portion 1 b is formed in the conductive adhesive film 1. That is, the conductive adhesive film 1 is formed with a section 1a delimited by the recess 1b. And as shown in FIG. 5, the surface resistance value R between the adjacent divisions 1a which pinch | interpose the recessed part 1b of the electroconductive adhesive film 1 was measured. Such measurement of the surface resistance value R was performed between all the sections 1a in Examples 1 to 4 and Comparative Examples 1 to 3 (112 patterns once). Table 1 shows the maximum value, the minimum value, the average value, and the evaluation of the surface resistance value R in Examples 1 to 4 and Comparative Examples 1 to 3.

尚、評価は以下のようにおこなった。具体的に、表面抵抗値の平均値、最大値、および最小値の全てで1Ω未満であった場合を“〇”とした。また、表面抵抗値の平均値が1Ω未満であるが最大値が1Ω以上あった場合を“△”とした。また、表面抵抗値の平均値および最大値が1Ω以上あった場合を“×”とした。   The evaluation was performed as follows. Specifically, the case where the average value, the maximum value, and the minimum value of the surface resistance values were all less than 1Ω was defined as “◯”. Further, the case where the average value of the surface resistance value was less than 1Ω but the maximum value was 1Ω or more was defined as “Δ”. Further, the case where the average value and the maximum value of the surface resistance value were 1Ω or more was defined as “x”.

表1によれば、導電性接着剤層がフレーク状の導電性粒子を含む等方性導電材料により形成され、下地接着剤層がデンドライト状の導電性粒子を含む異方性導電材料により形成された実施例の導電性フィルムである場合に、良好な結果が得られていることがわかる。例えば、実施例2と、比較例1とは、積層順を入れ替えた態様になっているが、実施例2の表面抵抗値の平均は、比較例1の表面抵抗値の平均の10分の1未満となっており、上記構成によって良好な結果が得られることを示している。   According to Table 1, the conductive adhesive layer is formed of an isotropic conductive material including flaky conductive particles, and the base adhesive layer is formed of an anisotropic conductive material including dendritic conductive particles. It can be seen that good results were obtained in the case of the conductive films of the examples. For example, Example 2 and Comparative Example 1 are in a mode in which the stacking order is changed, but the average surface resistance value of Example 2 is 1/10 of the average surface resistance value of Comparative Example 1. This indicates that good results can be obtained by the above configuration.

1 導電性接着フィルム
1a 区画
1b 凹部
2 電子部品
3 封止材
4 基板
10 導電性接着剤層
10a 導電性粒子
11 下地接着剤層
11a 導電性粒子
12 転写フィルム
13 クッションフィルム
20 ガラスエポキシ基板
20a 区画
20b 凹部
100 プリント配線板
300 電子機器
DESCRIPTION OF SYMBOLS 1 Conductive adhesive film 1a Section 1b Recess 2 Electronic component 3 Sealing material 4 Substrate 10 Conductive adhesive layer 10a Conductive particle 11 Base adhesive layer 11a Conductive particle 12 Transfer film 13 Cushion film 20 Glass epoxy substrate 20a Section 20b Recess 100 Printed wiring board 300 Electronic device

Claims (7)

プリント配線板の切断用凹部に対応する部位を、プレス加工によりフィルム面方向に伸展させて電子部品を覆うことにより電磁波をシールドする導電性接着フィルムであって、
第1の導電性粒子を含む等方性導電材料により形成される導電性接着剤層と、
前記プレス加工時に前記導電性接着剤層よりも前記電子部品側に位置され、第2の導電性粒子を含む異方性導電材料により形成される下地接着剤層と、を有し、
前記第1の導電性粒子は、
前記導電性接着剤層の伸展前の層厚の15%〜25%である平均長径を有したフレーク状粒子であり、
前記導電性接着剤層の総重量に対して40重量%〜80重量%含有されていることを特徴とする導電性接着フィルム。
A conductive adhesive film that shields electromagnetic waves by covering the electronic component by extending the portion corresponding to the concave portion for cutting of the printed wiring board in the film surface direction by pressing,
A conductive adhesive layer formed of an isotropic conductive material containing first conductive particles;
A base adhesive layer that is located on the electronic component side of the conductive adhesive layer during the press processing and is formed of an anisotropic conductive material containing second conductive particles ;
The first conductive particles are:
Flaky particles having an average major axis that is 15% to 25% of the layer thickness before extension of the conductive adhesive layer;
40% to 80% by weight of the conductive adhesive film based on the total weight of the conductive adhesive layer .
前記第2の導電性粒子は、
前記下地接着剤層の伸展前の層厚の10%〜50%の範囲である平均粒径を有しており、
前記下地接着剤層の総重量に対して40重量%〜80重量%含有されていることを特徴とする請求項に記載の導電性接着フィルム。
The second conductive particles are:
Having an average particle size in the range of 10% to 50% of the layer thickness before extension of the underlying adhesive layer;
2. The conductive adhesive film according to claim 1 , wherein the conductive adhesive film is contained in an amount of 40 wt% to 80 wt% with respect to the total weight of the base adhesive layer.
前記第2の導電性粒子は、デンドライト状粒子であることを特徴とする請求項に記載の導電性接着フィルム。 The conductive adhesive film according to claim 2 , wherein the second conductive particles are dendritic particles. 前記導電性接着剤層は、10μm〜30μmの層厚を有し、
前記下地接着剤層は、40μm〜80μmの層厚を有することを特徴とする請求項1乃至の何れか1項に記載の導電性接着フィルム。
The conductive adhesive layer has a layer thickness of 10 μm to 30 μm,
The underlying adhesive layer, the conductive adhesive film according to any one of claims 1 to 3, characterized in that it has a layer thickness of 40Myuemu~80myuemu.
前記導電性接着剤層に対して、下地接着剤層とは反対の面に転写フィルムが積層されており、
前記転写フィルムは、150℃以上の温度条件下における貯蔵弾性率が20MPa以下であることを特徴とする請求項1乃至の何れか1項に記載の導電性接着フィルム。
For the conductive adhesive layer, a transfer film is laminated on the surface opposite to the base adhesive layer,
The transfer film, the conductive adhesive film according to any one of claims 1 to 4, wherein the storage elastic modulus is less than 20MPa at a temperature of more than 0.99 ° C..
請求項1乃至の何れか1項に記載の導電性接着フィルムを備えたことを特徴とするシールドプリント配線板。 Shielded printed circuit board, characterized in that it comprises a conductive adhesive film according to any one of claims 1 to 5. 請求項に記載のシールドプリント配線板を備えたことを特徴とする電子機器。 An electronic apparatus comprising the shield printed wiring board according to claim 6 .
JP2016525140A 2014-06-02 2015-05-29 Conductive adhesive film, printed circuit board, and electronic device Active JP6190528B2 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2014113849 2014-06-02
JP2014113849 2014-06-02
PCT/JP2015/065549 WO2015186624A1 (en) 2014-06-02 2015-05-29 Electroconductive adhesive film, printed circuit board, and electronic device

Publications (2)

Publication Number Publication Date
JPWO2015186624A1 JPWO2015186624A1 (en) 2017-04-20
JP6190528B2 true JP6190528B2 (en) 2017-08-30

Family

ID=54766697

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016525140A Active JP6190528B2 (en) 2014-06-02 2015-05-29 Conductive adhesive film, printed circuit board, and electronic device

Country Status (5)

Country Link
JP (1) JP6190528B2 (en)
KR (1) KR101850809B1 (en)
CN (1) CN106465568B (en)
TW (1) TWI627256B (en)
WO (1) WO2015186624A1 (en)

Families Citing this family (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017143210A (en) * 2016-02-12 2017-08-17 住友ベークライト株式会社 Method for manufacturing electronic component sealing body and method for manufacturing electronic device
US9953929B2 (en) 2016-03-18 2018-04-24 Intel Corporation Systems and methods for electromagnetic interference shielding
TWI613943B (en) * 2016-07-12 2018-02-01 Method for manufacturing wafer fixed structure
TW201840767A (en) * 2017-02-17 2018-11-16 日商日立化成股份有限公司 Adhesive film
JP2019029549A (en) * 2017-08-01 2019-02-21 住友ベークライト株式会社 Film set
JP6711423B2 (en) * 2017-08-31 2020-06-17 住友ベークライト株式会社 Film for electromagnetic wave shielding
KR20190076250A (en) 2017-12-22 2019-07-02 삼성전자주식회사 Semiconductor package and semiconductor Module
JP6504302B1 (en) 2018-06-12 2019-04-24 東洋インキScホールディングス株式会社 Electromagnetic wave shield sheet, component mounting board, and electronic device
CN108601241B (en) 2018-06-14 2021-12-24 环旭电子股份有限公司 SiP module and manufacturing method thereof
KR102522663B1 (en) 2018-10-02 2023-04-18 삼성전자주식회사 Electronic device comprising structure connecting display and conductive supporting member with conductive adhesive member
JP6497477B1 (en) * 2018-10-03 2019-04-10 東洋インキScホールディングス株式会社 Electromagnetic wave shield sheet and electronic component mounting board
JP7385596B2 (en) 2018-11-21 2023-11-22 タツタ電線株式会社 shield package
KR102248813B1 (en) * 2019-12-02 2021-05-11 엘티메탈 주식회사 Method for manufacturing porous thermoelectric material and thermoelectric device comprising porous thermoelectric material
KR20230142333A (en) * 2022-03-30 2023-10-11 토요잉크Sc홀딩스주식회사 Bonding agent for metal plates, reinforcing members for printed wiring boards and their manufacturing methods, and wiring boards and their manufacturing methods

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05327270A (en) 1992-05-22 1993-12-10 Sharp Corp Electromagnetic shielding of circuit board
JP2001339016A (en) * 2000-05-30 2001-12-07 Alps Electric Co Ltd Surface mounting electronic circuit unit
JP2001345592A (en) 2000-05-31 2001-12-14 Kyocera Corp Electronic component and manufacturing method therefor
JP4575189B2 (en) * 2005-02-21 2010-11-04 タツタ電線株式会社 Shield film for shielded flexible printed circuit board and shielded flexible printed circuit board using the same
JP4914262B2 (en) * 2006-03-29 2012-04-11 タツタ電線株式会社 Shield film and shield printed wiring board
JP2008106121A (en) * 2006-10-25 2008-05-08 Toyo Ink Mfg Co Ltd Conductive ink, conductive circuit and noncontact medium
JP2009016715A (en) 2007-07-09 2009-01-22 Tatsuta System Electronics Kk High-frequency module having shielding and heat radiating performance and manufacturing method for high-frequency module
JP4974803B2 (en) * 2007-08-03 2012-07-11 タツタ電線株式会社 Shield film for printed wiring board and printed wiring board
JP5139156B2 (en) * 2008-05-30 2013-02-06 タツタ電線株式会社 Electromagnetic shielding material and printed wiring board
JP5416458B2 (en) 2009-04-02 2014-02-12 タツタ電線株式会社 Method of manufacturing high frequency module having shield and heat dissipation
JP5528857B2 (en) * 2010-03-11 2014-06-25 タツタ電線株式会社 Electromagnetic wave shielding film, flexible substrate using the same, and method for producing the same
CN103190209B (en) * 2010-10-26 2016-05-18 汉高知识产权控股有限责任公司 For the composite membrane of plate level EMI shielding
JP6263847B2 (en) * 2012-08-16 2018-01-24 住友ベークライト株式会社 Electromagnetic wave shielding film and method for coating electronic component
JP2014112576A (en) * 2012-11-28 2014-06-19 Tatsuta Electric Wire & Cable Co Ltd Shield film
JP6025532B2 (en) * 2012-11-30 2016-11-16 三井金属鉱業株式会社 Conductive film and electronic component package

Also Published As

Publication number Publication date
TW201606043A (en) 2016-02-16
TWI627256B (en) 2018-06-21
KR20170013202A (en) 2017-02-06
JPWO2015186624A1 (en) 2017-04-20
CN106465568B (en) 2019-01-01
WO2015186624A1 (en) 2015-12-10
KR101850809B1 (en) 2018-04-20
CN106465568A (en) 2017-02-22

Similar Documents

Publication Publication Date Title
JP6190528B2 (en) Conductive adhesive film, printed circuit board, and electronic device
JP6511473B2 (en) Electromagnetic shielding film
EP2633746B1 (en) Composite film for board level emi shielding
TWI732995B (en) Shielded printed wiring board and manufacturing method of shielded printed wiring board
TW201844077A (en) Shielding film for printed wiring board and printed wiring board
TW201448681A (en) Reinforcing member for flexible printed wiring board, flexible printed wiring board, and shield printed wiring board
KR20130004903A (en) Electromagnetic-shielding film, flexible substrate formed using same, and process for producing same
EP2787799A1 (en) Board with embedded component and method for manufacturing same, and package with board with embedded component
JP6237732B2 (en) Manufacturing method of electronic component module
TWI602478B (en) Shape retaining film and shape retaining flexible wiring board containing the shape retaining film
JP6449111B2 (en) Shielding material, electronic parts and adhesive sheet
JP2017028280A (en) High-performance electromagnetic wave shield and high heat-dissipation complex function sheet
JP2014135389A (en) Flexible printed wiring board using metal base material film and non-contact ic card using flexible printed wiring board
TWI732836B (en) Electromagnetic wave shielding film
JP6239884B2 (en) Electronic component and manufacturing method thereof
JP2015015322A (en) Adhesive sheet, electric component, and method for manufacturing the same
JP6568436B2 (en) Electronic component, adhesive sheet, and electronic component manufacturing method
US10905013B2 (en) Printed wiring board and method for manufacturing the same
US10869389B2 (en) Printed circuit board and method for producing the same
TW202007243A (en) Printed circuit board and method for manufacturing the same
CN211063852U (en) Laminated structure of flexible circuit board
TWI829973B (en) Electromagnetic wave shielding film
KR20230032949A (en) Method for manufacturing inductor-embedded substrate
JP6196132B2 (en) Metal foil for press bonding and electronic component package
JP2017201607A (en) Shielded flexible flat cable and manufacturing method of shielded flexible flat cable

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20170424

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20170424

A871 Explanation of circumstances concerning accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A871

Effective date: 20170424

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20170424

A975 Report on accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A971005

Effective date: 20170510

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20170725

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20170804

R150 Certificate of patent or registration of utility model

Ref document number: 6190528

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250