JP6187396B2 - マトリックスコンバータ - Google Patents

マトリックスコンバータ Download PDF

Info

Publication number
JP6187396B2
JP6187396B2 JP2014125804A JP2014125804A JP6187396B2 JP 6187396 B2 JP6187396 B2 JP 6187396B2 JP 2014125804 A JP2014125804 A JP 2014125804A JP 2014125804 A JP2014125804 A JP 2014125804A JP 6187396 B2 JP6187396 B2 JP 6187396B2
Authority
JP
Japan
Prior art keywords
phase
voltage
section
switching
carrier waveform
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2014125804A
Other languages
English (en)
Other versions
JP2014197980A (ja
Inventor
敏 一木
敏 一木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujitsu General Ltd
Original Assignee
Fujitsu General Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu General Ltd filed Critical Fujitsu General Ltd
Priority to JP2014125804A priority Critical patent/JP6187396B2/ja
Publication of JP2014197980A publication Critical patent/JP2014197980A/ja
Application granted granted Critical
Publication of JP6187396B2 publication Critical patent/JP6187396B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M5/00Conversion of ac power input into ac power output, e.g. for change of voltage, for change of frequency, for change of number of phases
    • H02M5/02Conversion of ac power input into ac power output, e.g. for change of voltage, for change of frequency, for change of number of phases without intermediate conversion into dc
    • H02M5/04Conversion of ac power input into ac power output, e.g. for change of voltage, for change of frequency, for change of number of phases without intermediate conversion into dc by static converters
    • H02M5/22Conversion of ac power input into ac power output, e.g. for change of voltage, for change of frequency, for change of number of phases without intermediate conversion into dc by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M5/275Conversion of ac power input into ac power output, e.g. for change of voltage, for change of frequency, for change of number of phases without intermediate conversion into dc by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal
    • H02M5/293Conversion of ac power input into ac power output, e.g. for change of voltage, for change of frequency, for change of number of phases without intermediate conversion into dc by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/02Conversion of ac power input into dc power output without possibility of reversal
    • H02M7/04Conversion of ac power input into dc power output without possibility of reversal by static converters
    • H02M7/12Conversion of ac power input into dc power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M7/21Conversion of ac power input into dc power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal
    • H02M7/217Conversion of ac power input into dc power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only
    • H02M7/219Conversion of ac power input into dc power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only in a bridge configuration
    • H02M7/2195Conversion of ac power input into dc power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only in a bridge configuration the switches being synchronously commutated at the same frequency of the AC input voltage
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M5/00Conversion of ac power input into ac power output, e.g. for change of voltage, for change of frequency, for change of number of phases
    • H02M5/02Conversion of ac power input into ac power output, e.g. for change of voltage, for change of frequency, for change of number of phases without intermediate conversion into dc
    • H02M5/04Conversion of ac power input into ac power output, e.g. for change of voltage, for change of frequency, for change of number of phases without intermediate conversion into dc by static converters
    • H02M5/22Conversion of ac power input into ac power output, e.g. for change of voltage, for change of frequency, for change of number of phases without intermediate conversion into dc by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M5/275Conversion of ac power input into ac power output, e.g. for change of voltage, for change of frequency, for change of number of phases without intermediate conversion into dc by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal
    • H02M5/293Conversion of ac power input into ac power output, e.g. for change of voltage, for change of frequency, for change of number of phases without intermediate conversion into dc by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only
    • H02M5/2932Conversion of ac power input into ac power output, e.g. for change of voltage, for change of frequency, for change of number of phases without intermediate conversion into dc by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only with automatic control of output voltage, current or power

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Ac-Ac Conversion (AREA)

Description

本発明は、マトリックスコンバータに関する。
交流電力を直流電力に変換せず直接に交流電力に変換する電力変換器は、一般的に、マトリックスコンバータとして知られている。マトリックスコンバータは、変換するスイッチング素子が1段である。これにより、コンバータ及びインバータを組み合わせた電力変換器に比べて、効率を高くすることができ、直流電圧を扱う回路が無いことから、平滑用のコンデンサも不要で装置寿命を長くでき、信頼性を高くすることができる。
非特許文献1には、マトリックスコンバータにおいて、仮想整流器と仮想インバータとを考え、それぞれのPWMパルスをマトリックス演算することで、マトリックスコンバータのパルスを発生させることが記載されている。これにより、非特許文献1によれば、入力された3相交流電圧をその3相交流電圧と異なる電圧及び周波数を有する3相交流電圧に変換できるとされている。
特開2011−30409号公報
伊藤淳一ほか4名 「キャリア比較方式を用いた仮想AC/DC/AC変換方式によるマトリックスコンバータの制御法」 電学論 D, 124, 5 (2004−5)
非特許文献1に記載の変換方法では、仮想整流器のPWMパルスを生成する際に電圧ベクトルを電流ベクトルにマトリックスで変換する処理等が必要であるため、演算量が多く複雑な処理が必要である。すなわち、非特許文献1に記載の変換方法では、マトリックス演算のような複雑な演算が必須になる。
また、非特許文献1に記載の変換方法では、仮想インバータのPWMパルスを生成する際に、仮想インバータの還流モードを仮想整流器に均等に分配するために、三角波キャリアを変調したり、直流のリップルを考慮してインバータの制御信号に補正をかける処理等が必要であるため、やはり演算量が多く複雑な処理が必要である。
さらに、非特許文献1に記載の変換方法では、入力電圧相の選択は、キャリア期間中、常に、最大−最小と最大−中間との2種の選択であると考えられる。最大−中間は、中間電圧相のゼロクロス近辺のパルス幅が狭くなるが、特に低負荷時にパルス幅が狭くなりやすく、パルス幅の時間がスイッチング素子のスイッチング時間より短くなる可能性がある。このため、非特許文献1に記載の変換方法では、変換性能として、入出力電流波形は、例えば低負荷時に電流・電圧の波形の歪率が大きくなりやすく、又、電力の変換効率が低下する傾向にある。
本発明は、上記に鑑みてなされたものであって、簡易な処理で交流電力を交流電力に直接変換できるマトリックスコンバータを得ることを目的とする。
上述した課題を解決し、目的を達成するために、本発明の第1の側面にかかるマトリッ
クスコンバータは、入力された3相交流電力を3相交流電力に直接変換して負荷に出力す
るマトリックスコンバータであって、前記入力された3相交流電力の前記負荷への供給を
ON/OFFする双方向スイッチ回路と、前記入力された3相交流電力に対して、前記入
力された3相交流電力における各相の電圧の大小関係に応じて区分された複数のモードに
応じて仮想AC/DC変換処理を行うと共に仮想DC/AC変換処理を行うように、前記
双方向スイッチ回路のスイッチングパターンを生成する制御部と、を備え、前記制御部は、前記仮想AC/DC変換処理を行って一つのスイッチング周期を3つの区間に分けると共に、前記各区間において前記仮想DC/AC変換処理を行うように、前記双方向スイッチ回路のスイッチングパターンを生成することを特徴とする。

本発明によれば、マトリックス演算のような複雑な演算を行うのではなく、入力された3相交流電力の各相の電圧の大小関係に応じて、仮想AC/DC変換処理及び仮想DC/AC変換処理を行うように双方向スイッチ回路のスイッチングパターンを生成するため、簡易な処理で交流電力を交流電力に直接変換できる。
図1は、実施の形態にかかるマトリックスコンバータの構成を示す図である。 図2は、実施の形態における双方向スイッチの構成を示す図である。 図3は、実施の形態における複数のモードを示す図である。 図4は、実施の形態における仮想AC/DC変換処理を示す図である。 図5は、実施の形態における電圧相の選択の考え方を示す図である。 図6は、実施の形態における仮想DC/AC変換処理を示す図である。 図7は、実施の形態におけるマトリックスコンバータの動作を示す波形図である。 図8は、実施の形態における制御信号発生部及び制御部の構成例を示す図である。 図9は、実施の形態における制御部の構成例を示す図である。 図10は、実施の形態における制御信号発生部及び制御部の他の構成例を示す図である。 図11は、実施の形態における制御信号発生部及び制御部の他の構成例を示す図である。
以下に、本発明にかかるマトリックスコンバータの実施の形態を図面に基づいて詳細に説明する。なお、この実施の形態によりこの発明が限定されるものではない。
(実施の形態)
実施の形態にかかるマトリックスコンバータ1について図1,2を用いて説明する。図1は、マトリックスコンバータ1の構成を示す図である。図2は、双方向スイッチSRU〜STWの構成を示す図である。
マトリックスコンバータ1は、3相交流電源PSから3相の電力線Lr,Ls,Ltを介して3相交流電力が入力され、入力された3相交流電力を、一旦直流電力に変換することなく、3相交流電力に直接変換して3相の電力線Lu,Lv,Lw経由で負荷LDに出力する。入力された3相交流電力と3相交流電力とは、電圧及び周波数が互いに異なる。入力された3相交流電力は、例えば、R相の交流電力、S相の交流電力、T相の交流電力を含む。3相交流電力は、例えば、U相の交流電力、V相の交流電力、W相の交流電力を含む。
具体的には、マトリックスコンバータ1は、3相リアクトル40、入力コンデンサ50、双方向スイッチ回路10、制御信号発生部30、及び制御部20を備える。
3相リアクトル40は、例えば、複数のリアクトル41〜43を有する。リアクトル41は、例えば、R相の電力線Lrに直列に挿入されている。リアクトル42は、例えば、S相の電力線Lsに直列に挿入されている。リアクトル43は、例えば、T相の電力線Ltに直列に挿入されている。3相リアクトル40は、例えば、3相の電力線Lr,Ls,Ltにおける電流・電圧のリップルを低減する。
入力コンデンサ50は、例えば、複数のコンデンサ51〜53を有する。コンデンサ51は、例えば、一端がR相の電力線Lrに接続され、他端がコンデンサ52,53に接続されている。コンデンサ52は、例えば、一端がS相の電力線Lsに接続され、他端がコンデンサ51,53に接続されている。コンデンサ53は、例えば、一端がT相の電力線Ltに接続され、他端がコンデンサ51,52に接続されている。入力コンデンサ50は、例えば、3相の電力線Lr,Ls,Ltにおける電流・電圧のリップルを低減する。
双方向スイッチ回路10は、入力された3相交流電力を3相交流電力へ変換するように、入力された3相交流電力の負荷への供給をON/OFFする。例えば、双方向スイッチ回路10は、9つの双方向スイッチSRU,SSU,STU,SRV,SSV,STV,SRW,SSW,STWを有する。双方向スイッチ回路10は、制御部20による制御のもと、9つの双方向スイッチSRU〜STWがそれぞれ所定のタイミングでON/OFFすることで、入力された3相交流電力を3相交流電力へ変換する。
双方向スイッチSRUは、例えば、R相の交流電力からU相の交流電力の成分を生成する。双方向スイッチSRUは、例えば、制御部20からスイッチング信号φSRUを受けて、スイッチング信号φSRUに応じて、R相の電力線LrとU相の電力線Luとの接続をON/OFFする。
双方向スイッチSSUは、例えば、S相の交流電力からU相の交流電力の成分を生成する。双方向スイッチSSUは、例えば、制御部20からスイッチング信号φSSUを受けて、スイッチング信号φSRUに応じて、S相の電力線LsとU相の電力線Luとの接続をON/OFFする。
双方向スイッチSTUは、例えば、T相の交流電力からU相の交流電力の成分を生成する。双方向スイッチSTUは、例えば、制御部20からスイッチング信号φSTUを受けて、スイッチング信号φSRUに応じて、T相の電力線LtとU相の電力線Luとの接続をON/OFFする。
双方向スイッチSRU,SSU,STUは、U相の電力線Luに共通に接続されており、双方向スイッチSRU,SSU,STUから供給されたU相の交流電力の成分は、U相の電力線Lu上で合成されU相の交流電力として負荷LDへ供給される。
双方向スイッチSRVは、例えば、R相の交流電力からV相の交流電力の成分を生成する。双方向スイッチSRVは、例えば、制御部20からスイッチング信号φSRVを受けて、スイッチング信号φSRVに応じて、R相の電力線LrとV相の電力線Lvとの接続をON/OFFする。
双方向スイッチSSVは、例えば、S相の交流電力からV相の交流電力の成分を生成する。双方向スイッチSSVは、例えば、制御部20からスイッチング信号φSSVを受けて、スイッチング信号φSRVに応じて、S相の電力線LsとV相の電力線Lvとの接続をON/OFFする。
双方向スイッチSTVは、例えば、T相の交流電力からV相の交流電力の成分を生成する。双方向スイッチSTVは、例えば、制御部20からスイッチング信号φSTVを受けて、スイッチング信号φSRVに応じて、T相の電力線LtとV相の電力線Lvとの接続をON/OFFする。
双方向スイッチSRV,SSV,STVは、V相の電力線Lvに共通に接続されており、双方向スイッチSRV,SSV,STVから供給されたV相の交流電力の成分は、V相の電力線Lv上で合成されV相の交流電力として負荷LDへ供給される。
双方向スイッチSRWは、例えば、R相の交流電力からW相の交流電力の成分を生成する。双方向スイッチSRWは、例えば、制御部20からスイッチング信号φSRWを受けて、スイッチング信号φSRWに応じて、R相の電力線LrとW相の電力線Lwとの接続をON/OFFする。
双方向スイッチSSWは、例えば、S相の交流電力からW相の交流電力の成分を生成する。双方向スイッチSSWは、例えば、制御部20からスイッチング信号φSSWを受けて、スイッチング信号φSRWに応じて、S相の電力線LsとW相の電力線Lwとの接続をON/OFFする。
双方向スイッチSTWは、例えば、T相の交流電力からW相の交流電力の成分を生成する。双方向スイッチSTWは、例えば、制御部20からスイッチング信号φSTWを受けて、スイッチング信号φSRWに応じて、T相の電力線LtとW相の電力線Lwとの接続をON/OFFする。
双方向スイッチSRW,SSW,STWは、W相の電力線Lwに共通に接続されており、双方向スイッチSRW,SSW,STWから供給されたW相の交流電力の成分は、W相の電力線Lw上で合成されW相の交流電力として負荷LDへ供給される。
各双方向スイッチSRU〜STWは、例えば、図2(a)に示すスイッチSと等価である。図2(a)に示すスイッチSは、制御部20から制御端子CT経由でスイッチング信号を受け、ONして端子T1と端子T2とを接続したり、OFFして端子T1と端子T2とを遮断したりする。スイッチSは、端子T1と端子T2との間で双方向に電流が流れ得る。
図2(a)に示すスイッチSは、理想的なスイッチである。実際にスイッチを構成する素子は、スイッチング時間が存在するため、転流する時の開放モード、短絡モードを考慮して、例えば、図2(b)、又は図2(c)に示すように接続されて構成されていてもよい。図2(b)に示す構成は、例えば、逆阻止機能を有する素子EL1,EL2を並列接続して実現された構成である。逆阻止機能を有する素子EL1,EL2は、例えば、絶縁ゲートバイポーラトランジスタ(IGBT)でもよい。端子T1’,T2’は、それぞれ、図2(a)に示す端子T1,T2に対応しており、制御端子CT1’,CT1’は、図2(a)に示す制御端子CTに対応している。
あるいは、図2(c)に示す構成は、例えば、逆阻止機能が無い素子EL11,EL12を直列接続して実現された構成である。逆阻止機能が無い素子EL11,EL12は、例えば、還流ダイオードが両端に接続された絶縁ゲートバイポーラトランジスタ(IGBT)でもよいし、又は、電界効果トランジスタ(FET)でもよい。端子T1”は、図2(a)に示す端子T1に対応している。端子T2”は、図2(a)に示す端子T2に対応している。制御端子CT1”,CT2”は、図2(a)に示す制御端子CTに対応している。
制御信号発生部30は、負荷側に出力する任意の3相交流電力に応じた制御信号(第2の制御信号)CSu,CSv,CSwを発生させて制御部20へ供給する。制御信号CSu,CSv,CSwは、本実施の形態では、正弦波である。制御信号CSuは、負荷LDに供給すべきU相の交流電圧に応じた交流波形(例えば、本実施の形態では正弦波)である。制御信号CSvは、負荷LDに供給すべきV相の交流電圧に応じた交流波形(例えば、本実施の形態では正弦波)である。例えば、制御信号CSwは、負荷LDに供給すべきW相の交流電圧に応じた交流波形(例えば、本実施の形態では正弦波)である。
制御部20は、双方向スイッチ回路10における各双方向スイッチSRU〜STWのスイッチングパターンを生成する。例えば、制御部20は、双方向スイッチ回路10が入力された3相交流電力に対して仮想AC/DC変換処理を行い、仮想AC/DC変換処理が行われた電力に対して仮想DC/AC変換処理を行うように、双方向スイッチ回路10のスイッチングパターン(すなわち、スイッチング信号のパターン)を生成する。以下において、「仮想AC/DC変換処理を行う」とは、仮想AC/DC変換処理を仮想的に行うことを意味し、「仮想DC/AC変換処理を行う」とは、仮想DC/AC変換処理を仮想的に行うことを意味しているものとする。
このとき、制御部20は、入力された3相交流電力に対して、入力された3相交流電力における各相の電圧の大小関係に応じて区分された複数のモード(例えば、図3に示すモードI〜VI)について互いに異なる仮想AC/DC変換処理を行うように、双方向スイッチ回路10のスイッチングパターンを生成する。
具体的には、制御部20は、入力交流電圧(例えば、R相の交流電圧)を検出し、検出された入力交流電圧から、入力交流電圧のゼロクロス点を検出する。制御部20は、検出されたゼロクロス点に基づいて(例えば、検出されたゼロクロス点を基準として入力側の各相の位相を推定することにより)、入力側の各相(R相、S相、T相)の交流電圧を第1の制御信号として推定するとともに、推定された各相の交流電圧の大小関係に応じてそのときのモードが複数のモードにおけるどのモードであるかを認識する。
このとき、制御部20は、入力された3相交流電力に対して、複数のモードに対し異なる第1のキャリア波形パターン(例えば、図4に示す第1のキャリア波形パターンCW11〜CW13)を用いて仮想AC/DC変換処理を行うように双方向スイッチ回路10を制御する。すなわち、制御部20は、認識されたモードに応じて、仮想AC/DC変換処理に用いるべき第1のキャリア波形パターンを決定し、決定された第1のキャリア波形パターンと入力側の相に対応した第1の制御信号とを比較して、比較結果に応じて仮想的に各双方向スイッチSRU〜STWが直流電力を発生させるような仮想的な複数のスイッチング信号(R相パルス、S相パルス、T相パルス)を発生させる。それとともに、制御部20は、仮想的な複数のスイッチング信号(R相パルス、S相パルス、T相パルス)のレベル(High、Low)の組み合わせに応じた複数の線間電圧発生区間(例えば、図4(a)に示す区間TS11,TS12,TS13)を求める。言い換えると、制御部20は、直流電力を発生させるような仮想的なスイッチング動作を各双方向スイッチSRU〜STWが行うように制御し、各双方向スイッチSRU〜STWに仮想的にAC/DC変換処理(仮想AC/DC変換処理)を行わせる。
なお、仮想的なスイッチング動作とは、実際に各双方向スイッチSRU〜STWが行うものとは異なるスイッチング動作であるが、仮想AC/DC変換→仮想DC/AC変換の途中段階における仮想的な直流電力を発生させることを考えるために各双方向スイッチSRU〜STWが仮想的に行っているものとみなすスイッチング動作である。途中段階における仮想的な直流電力を発生させる処理は、あくまで仮想的なものであって、実際にその処理自体が行われるわけではない。
また、制御部20は、仮想AC/DC変換処理が行われた電力に対して、複数のモード(例えば、図3に示すモードI〜VI)について互いに異なる仮想DC/AC変換処理を行うように、双方向スイッチ回路10のスイッチングパターン(すなわち、スイッチング信号のパターン)を制御する。
具体的には、制御部20は、複数のモードに応じて異なる第2のキャリア波形パターン(例えば、図6に示す第2のキャリア波形パターンCW21〜CW26)を用いて仮想DC/AC変換処理を行うように双方向スイッチ回路10を制御する。すなわち、制御部20は、認識されたモードに応じて、仮想DC/AC変換処理に用いる複数の線間電圧発生区間に対応した第2のキャリア波形パターンを生成する。このとき、複数の線間電圧発生区間は、仮想的な複数のスイッチング信号のレベルの組み合わせに応じたものとなっている。つまり、制御部20は、認識されたモードと、仮想的に各双方向スイッチSRU〜STWが直流電力を発生させるような複数のスイッチング信号のレベルの組み合わせとに応じて、第2のキャリア波形パターンを生成する。
また、制御部20は、制御信号CSu,CSv,CSwを出力側の相に対応した(例えば、U相、V相、W相の電圧波形に応じた正弦波の振幅に対応して大きさが変化する)第2の制御信号として制御信号発生部30から受ける。制御部20は、生成された第2のキャリア波形パターンと出力側の相に対応した第2の制御信号CSu,CSv,CSwとを比較して、双方向スイッチ回路10における各双方向スイッチSRU〜STWのスイッチング信号φSRU〜φSTWを生成する。このとき、各第2の制御信号CSu,CSv,CSwは、負荷LDに供給すべき交流電力に応じた3相交流波形である。これにより、双方向スイッチ回路10から負荷LDに、各第2の制御信号CSu,CSv,CSwに応じた3相交流の交流電力が出力されるように制御できる。言い換えると、制御部20は、各双方向スイッチSRU〜STWに仮想的にDC/AC変換処理(仮想DC/AC変換処理)を行わせる。
次に、制御部20により認識される複数のモードについて図3を用いて説明する。図3は、複数のモードI〜VIを示す図である。
制御部20は、推定された各相(R相、S相、T相)の交流電圧の大小関係に応じて、例えば図3に示すような6つのモードI〜VIを認識する。
モードIでは、R相が最大電圧相であり、T相が最小電圧相であり、S相が中間電圧相である。例えば、制御部20は、R相が最大電圧相であり、T相が最小電圧相であり、S相が中間電圧相であることを認識した場合、現在のモードがモードIであると認識する。
モードIIでは、S相が最大電圧相であり、T相が最小電圧相であり、R相が中間電圧相である。例えば、制御部20は、S相が最大電圧相であり、T相が最小電圧相であり、R相が中間電圧相であることを認識した場合、現在のモードがモードIIであると認識する。
モードIIIでは、S相が最大電圧相であり、R相が最小電圧相であり、T相が中間電圧相である。例えば、制御部20は、S相が最大電圧相であり、R相が最小電圧相であり、T相が中間電圧相であることを認識した場合、現在のモードがモードIIIであると認識する。
モードIVでは、T相が最大電圧相であり、R相が最小電圧相であり、S相が中間電圧相である。例えば、制御部20は、T相が最大電圧相であり、R相が最小電圧相であり、S相が中間電圧相であることを認識した場合、現在のモードがモードIVであると認識する。
モードVでは、T相が最大電圧相であり、S相が最小電圧相であり、R相が中間電圧相である。例えば、制御部20は、T相が最大電圧相であり、S相が最小電圧相であり、R相が中間電圧相であることを認識した場合、現在のモードがモードVであると認識する。
モードVIでは、R相が最大電圧相であり、S相が最小電圧相であり、T相が中間電圧相である。例えば、制御部20は、R相が最大電圧相であり、S相が最小電圧相であり、T相が中間電圧相であることを認識した場合、現在のモードがモードVIであると認識する。
次に、複数のモードI〜VIのそれぞれにおける仮想的なAC/DC変換処理(仮想AC/DC変換処理)について、図4を用いて説明する。図4(a)〜(f)は、それぞれ、複数のモードI〜VIにおける仮想AC/DC変換処理を示す。以下では、説明の簡略化のため、直流電圧設定値(変換目標となる仮想的な直流電圧)に応じて決定した直流電圧設定ゲインが1である場合について例示的に説明する。
モードIでは、制御部20が、図4(a)に示すように、仮想AC/DC変換処理に用いるべき第1のキャリア波形パターンとして、立ち下がりの鋸歯状波1と立ち上がりの鋸歯状波2とを有する第1のキャリア波形パターンCW11を決定する。以下では、「立ち下がりの鋸歯状波」とは、時間の経過に応じて振幅が直線的に減少していく負の傾きを持った鋸歯状波を指し、「立ち上がりの鋸歯状波」とは、時間の経過に応じて振幅が直線的に増加していく正の傾きを持った鋸歯状波を指すものとする。
そして、制御部20は、例えば、上記のように検出されたゼロクロス点に応じて、R相電圧a、S相電圧b、T相電圧cを推定する。例えば、制御部20は、検出されたゼロクロス点を基準として、あるタイミングでのR相、S相、T相の位相を推定し、推定されたR相、S相、T相の位相に応じて、R相電圧a、S相電圧b、T相電圧cを推定する。R相電圧a、S相電圧b、T相電圧cは、それぞれ、相電圧を「−1」と「1」の間に規格化したものである。このとき、図4(a)に示す区間(線間電圧発生区間)TS11,TS12,TS13の直流電圧は、それぞれ、ST間電圧=b−c、RT間電圧=a−c、RS間電圧=a−bとなる。
モードIにおける各相のパルスについて説明する。モードIでは、R相が最大電圧相、T相が最小電圧相、S相が中間電圧相となる。最大電圧相と最小電圧相では、パルスはそれぞれの電位に比例する時間ONとなる。したがって、R相のパルス幅x=T|a|、T相のパルス幅z=T|c|となる。ここで、R相パルスがONとなるタイミング(区間TS11が終わるタイミング)は、R相電圧|a|と鋸歯状波1との交点から求められる。これにより、R相パルスが得られる。T相パルスがOFFとなるタイミング(区間TS11+区間TS12が終わるタイミング)は、T相電圧|c|と鋸歯状波2との交点から求められる。これにより、T相パルスが得られる。中間相パルスは、最大電圧相又は最小電圧相のパルスのどちらかがOFFのときにONする。したがって、S相パルスは、R相電圧|a|と鋸歯状波1との交点、およびT相電圧|c|と鋸歯状波2との交点から求められる。
また、区間TS11、TS12、TS13の幅は、それぞれ、T×(1−|a|)、T×(|a|+|c|−1)、T×(1−|c|)となる。すなわち、仮想AC/DC変換処理により、仮想的な直流電圧を生成するための、区間TS11、TS12、TS13に対応した幅をそれぞれ有する仮想的な複数のスイッチング信号(R相パルス、S相パルス、T相パルス)が生成される。スイッチング周期Tの直流電圧の平均は、それぞれの区間ごとに直流電圧を積算しそれぞれを加算してスイッチング周期Tで除して、以下のように表すことができる。
スイッチング周期Tの直流電圧の平均={(b−c)×T×(1−a)+(a−c)×T×(a−c−1)+(a−b)×T×(1+c)}/T
=a2+c2−b(a+c)・・・数式1
ここで、a+b+c=0(3相条件)を考慮すると、数式1は次の数式2に変形できる。
スイッチング周期Tの直流電圧の平均=a2+b2+c2・・・数式2
さらに、交流理論から、a2+b2+c2=3/2より、数式2は次の数式3に変形できる。
スイッチング周期Tの直流電圧の平均=3/2・・・数式3
数式3に示されるように、スイッチング周期Tの仮想的な直流電圧の平均を、一定電圧とすることができる。
モードIにおける入力電流について説明する。R相の入力電流は、R相電圧aの時間に比例する正の電流が流れる。T相の入力電流は、T相の電圧の大きさ|c|に比例する負の電流が流れる。S相の入力電流は、区間TS11で正の電流が流れ、区間TS13で負の電流が流れる。したがって、流れる電流は、T×(1−a)−T×(1+c)−T(−a−c)=Tbとなり、スイッチング周期Tで除すると、S相電圧bとなる。したがって、R相、S相、T相には、それぞれ、R相電圧a、S相電圧b、T相電圧cに比例する電流が流れることになり、入力交流電流の各相を正弦波とすることができる。
モードIIでは、制御部20が、図4(b)に示すように、仮想AC/DC変換処理に用いるべき第1のキャリア波形パターンとして、立ち上がりの鋸歯状波2を有する第1のキャリア波形パターンCW12を決定する。そして、制御部20は、例えば、上記のように検出されたゼロクロス点に応じて、R相電圧a、S相電圧b、T相電圧cを推定する。R相電圧a、S相電圧b、T相電圧cは、それぞれ、相電圧を「−1」と「1」の間に規格化したものである。このとき、図4(b)に示す区間(線間電圧発生区間)TS21、TS22、TS23の直流電圧は、それぞれ、ST間電圧=b−c、RT間電圧=a−c、RS間電圧=b−aとなる。
モードIIにおける各相のパルスについて説明する。モードIIでは、S相が最大電圧相、T相が最小電圧相、R相が中間電圧相となる。R,S,T相のパルスのON,OFF順序を変えずに、最大電圧相と最小電圧相でそれぞれの電位に比例する時間をONとするため、モードIIでは、変調波形3、2Bと鋸歯状波2を用いて、図4(b)に示す各相パルスのON,OFFタイミングを得る。
また、区間TS21、TS22、TS23の幅は、それぞれ、T×(|b|+|c|−1)、T×(1−|b|)、T×(1−|c|)となる。すなわち、仮想AC/DC変換処理により、仮想的な直流電圧を生成するための、区間TS21、TS22、TS23に対応した幅をそれぞれ有する仮想的な複数のスイッチング信号(R相パルス、S相パルス、T相パルス)が生成される。スイッチング周期Tの直流電圧の平均は、以下のように表すことができる。
スイッチング周期Tの直流電圧の平均={(b−c)×T×(−c+b−1)+(a−c)×T×(−b+1)+(b−a)×T×(1+c)}/T
=b2+c2−a(b+c)・・・数式4
ここで、a+b+c=0(3相条件)を考慮すると、数式4は次の数式5に変形できる。
スイッチング周期Tの直流電圧の平均=a2+b2+c2・・・数式5
さらに、交流理論から、a2+b2+c2=3/2より、数式5は次の数式6に変形できる。
スイッチング周期Tの直流電圧の平均=3/2・・・数式6
数式6に示されるように、スイッチング周期Tの仮想的な直流電圧の平均を、一定電圧とすることができる。
モードIIにおける入力電流について説明する。モードIIでは、S相が最大電圧相で、T相が最小電圧相なので、S相はS相電圧bの時間に比例する正の電流が流れ、T相は、T相電圧cの時間に比例する負の電流が流れる。R相は区間TS22で負の電流が流れ、区間TS23で正の電流が流れる。このため、流れる電流は、T×(1−b)−T×(1+c)=Taとなり、スイッチング周期Tで除するとR相電圧aとなる。従って、電圧に比例する電流が各相に流れ、入力交流電流の各相を正弦波とすることができる。
モードIIIでは、制御部20が、図4(c)に示すように、仮想AC/DC変換処理に用いるべき第1のキャリア波形パターンとして、立ち下がりの鋸歯状波1を有する第1のキャリア波形パターンCW13を決定する。そして、制御部20は、例えば、上記のように検出されたゼロクロス点に応じて、R相電圧a、S相電圧b、T相電圧cを推定する。R相電圧a、S相電圧b、T相電圧cは、それぞれ、相電圧を「−1」と「1」の間に規格化したものである。このとき、図4(c)に示す区間(線間電圧発生区間)区間TS31、TS32、TS33の直流電圧は、それぞれ、ST間電圧=c−b、RT間電圧=a−c、RS間電圧=a−bとなる。
モードIIIにおける各相のパルスについて説明する。モードIIIでは、S相が最大電圧相、R相が最小電圧相、T相が中間電圧相となる。R,S,T相のパルスのON、OFF順序を変えずに、最大電圧相と最小電圧相でそれぞれの電位に比例する時間ONとするため、モードIIIでは、変調波形1,2Aと鋸波状波1を用いて、図4(c)に示す各パルスのON,OFFタイミングを得る。
また、区間TS31、TS32、TS33の幅は、それぞれ、T×(1−|a|)、T(1−|b|)、T×(|a|−|b|−1)となる。すなわち、仮想AC/DC変換処理により、仮想的な直流電圧を生成するための、区間TS31、TS32、TS33に対応した幅をそれぞれ有する仮想的な複数のスイッチング信号(R相パルス、S相パルス、T相パルス)が生成される。スイッチング周期Tの直流電圧の平均は、以下のように表すことができる。
スイッチング周期Tの直流電圧の平均={(c−b)×T×(1−a)+(a−c)×T×(b+1)+(a−b)×T×(a−b−1)}/T
=a2+b2−c(a+b)・・・数式7
ここで、a+b+c=0(3相条件)を考慮すると、数式7は次の数式8に変形できる。
スイッチング周期Tの直流電圧の平均=a2+b2+c2・・・数式8
さらに、交流理論から、a2+b2+c2=3/2より、数式8は次の数式9に変形できる。
スイッチング周期Tの直流電圧の平均=3/2・・・数式9
数式9に示されるように、スイッチング周期Tの仮想的な直流電圧の平均を、一定電圧とすることができる。
モードIIIにおける入力電流について説明する。最大電圧相のS相には、S相電圧bの時間に比例する正の電流が流れる。最小電圧相のR相には、R相電圧aの時間に比例する負の電流が流れる。T相は、区間TS31で負の電流が流れ、区間TS32で正の電流が流れる。このため、流れる電流は、T×(1−a)−T×(1+b)=Tcとなり、スイッチング周期Tで除するとT相電圧cとなる。従って、電圧に比例する電流が各相に流れ、入力交流電流の各相を正弦波とすることができる。
モードIVにおける仮想AC/DC変換処理は、図4(d)に示すように、モードIにおける仮想AC/DC変換処理(図4(a)参照)と同様である。区間(線間電圧発生区間)TS41、TS42、TS43も、モードIと同様にして求められる。
モードVにおける仮想AC/DC変換処理は、図4(e)に示すように、モードIIにおける仮想AC/DC変換処理(図4(b)参照)と同様である。区間(線間電圧発生区間)TS51、TS52、TS53も、モードIIと同様にして求められる。
モードVIにおける仮想AC/DC変換処理は、図4(f)に示すように、モードIIIにおける仮想AC/DC変換処理(図4(c)参照)と同様である。区間(線間電圧発生区間)TS61、TS62、TS63も、モードIIIと同様にして求められる。
次に、複数のモードI〜VIのそれぞれにおける仮想DC/AC変換処理について、図5,6を用いて説明する。図5は、仮想DC/AC変換処理における電圧相の選択の考え方を示す図である。図6(a)〜(f)は、それぞれ、複数のモードI〜VIにおける仮想DC/AC変換処理を示す。なお、図6における各区間TS11〜TS63は、図4における各区間TS11〜TS63に対応している(すなわち、区間の長さが等しい)が、図示の便宜上、各区間の長さを図4から変えてある。以下では、第2の制御信号がU相の制御信号CSuである場合について例示的に説明するが、第2の制御信号がV相の制御信号CSv又はW相の制御信号CSwである場合についても同様である。
まず、電圧相の選択の考え方を説明する。仮に、図5(a)〜(c)に示すように、「スイッチング周期Tの直流電圧=P相電圧−N相電圧」である場合を考える。このとき、線間電圧における2つの電圧相のうちレベルの大きい電圧相を+側相としレベルの小さい電圧相を−側相とすると、P相が+側相であり、N相が−側相である。
例えば、図5(a)に示すように、スイッチング周期Tにおけるキャリア波形パターンが下山形のキャリア波形パターンCW1であるとき、制御部20は、キャリア波形パターンCW1とU相の制御信号CSuとを比較する。制御部20は、U相の制御信号CSuがキャリア波形パターンCW1より上側にある場合(例えば、図5(a)に示す区間TS2の場合)、+側相すなわちP相を選択し、P相選択信号をONレベルにするとともにN相選択信号をOFFレベルにする。制御部20は、U相の制御信号CSuがキャリア波形パターンCW1より下側にある場合(例えば、図5(a)に示す区間TS1,TS3の場合)、−側相すなわちN相を選択し、N相選択信号をONレベルにするとともにP相選択信号をOFFレベルにする。
あるいは、例えば、図5(b)に示すように、スイッチング周期Tにおけるキャリア波形パターンが立ち下がりの鋸歯状のキャリア波形パターンCW2であるとき、制御部20は、キャリア波形パターンCW2とU相の制御信号CSuとを比較する。制御部20は、U相の制御信号CSuがキャリア波形パターンCW2より上側にある場合(例えば、図5(b)に示す区間TS5の場合)、+側相すなわちP相を選択し、P相選択信号をONレベルにするとともにN相選択信号をOFFレベルにする。制御部20は、U相の制御信号CSuがキャリア波形パターンCW2より下側にある場合(例えば、図5(b)に示す区間TS4の場合)、−側相すなわちN相を選択し、N相選択信号をONレベルにするとともにP相選択信号をOFFレベルにする。
あるいは、例えば、図5(c)に示すように、スイッチング周期Tにおけるキャリア波形パターンが立ち上がりの鋸歯状のキャリア波形パターンCW3であるとき、制御部20は、キャリア波形パターンCW3とU相の制御信号CSuとを比較する。制御部20は、U相の制御信号CSuがキャリア波形パターンCW3より上側にある場合(例えば、図5(c)に示す区間TS6の場合)、+側相すなわちP相を選択し、P相選択信号をONレベルにするとともにN相選択信号をOFFレベルにする。制御部20は、U相の制御信号CSuがキャリア波形パターンCW3より下側にある場合(例えば、図5(c)に示す区間TS7の場合)、−側相すなわちN相を選択し、N相選択信号をONレベルにするとともにP相選択信号をOFFレベルにする。
次に、各モードI〜VIについて説明する。後述するように、第2のキャリア波形パターンは、複数の線間電圧発生区間のうち連続する2つの区間に跨って山型にレベルが変化するパターンを有するように決定される。また、第2のキャリア波形パターンは、複数の線間電圧発生区間のそれぞれにおける2つの電圧相のうち電圧値の大きい電圧相を+側相とし電圧値の小さい電圧相を−側相とするとき、モードが切り換わる際に+側相及び−側相に共通する相がある場合、切り換わる2つのモードに跨って山型にレベルが連続するパターンを有し、モードが切り換わる際に+側相及び−側相で反転する相がある場合、切り換わる2つのモードの境界で鋸歯状にレベルが変化するパターンを有するように決定される。
図6(a)に示すように、モードIでは、制御部20が、仮想DC/AC変換処理に用いるべき第2のキャリア波形パターンとして、区間TS11,TS12,TS13に順に立ち上がりの鋸歯状波、立ち下がりの鋸歯状波、立ち上がりの鋸歯状波を有する第2のキャリア波形パターンCW21を決定する。そして、制御部20は、例えば、U相の制御信号CSuを制御信号発生部30から受ける。なお、図6(a)に示す区間TS11,TS12,TS13は、図4(a)に示す区間TS11,TS12,TS13に対応している(すなわち、区間の長さが等しい)が、図示の便宜上、各区間の長さを図4(a)から変えてある。
このとき、仮想AC/DC変換処理における区間(線間電圧発生区間)TS11,TS12,TS13の直流電圧は、それぞれ、ST間電圧=b−c、RT間電圧=a−c、RS間電圧=a−bとなる。線間電圧における2つの電圧相のうちレベルの大きい電圧相を+側相としレベルの小さい電圧相を−側相とすると、区間(線間電圧発生区間)TS11,TS12,TS13において、それぞれ、S相,R相,R相が+側相であり、T相,T相,S相が−側相である。
制御部20は、第2のキャリア波形パターンCW21とU相の制御信号CSuとを比較する。区間(線間電圧発生区間)TS11において、制御部20は、U相の制御信号CSuが第2のキャリア波形パターンCW21より上側にある場合(例えば、区間TS11の前半の場合)、+側相すなわちS相を選択し、S相選択信号としてスイッチング信号φSSUをONレベルにするとともに他のスイッチング信号φSRU,φSTUをOFFレベルにする。制御部20は、U相の制御信号CSuが第2のキャリア波形パターンCW21より下側にある場合(例えば、区間TS11の後半の場合)、−側相すなわちT相を選択し、T相選択信号としてスイッチング信号φSTUをONレベルにするとともに他のスイッチング信号φSRU,φSSUをOFFレベルにする。
区間(線間電圧発生区間)TS12において、制御部20は、U相の制御信号CSuが第2のキャリア波形パターンCW21より下側にある場合(例えば、区間TS12の前半の場合)、−側相すなわちT相を選択し、T相選択信号としてスイッチング信号φSTUをONレベルにするとともに他のスイッチング信号φSRU,φSSUをOFFレベルにする。制御部20は、U相の制御信号CSuが第2のキャリア波形パターンCW21より上側にある場合(例えば、区間TS12の後半の場合)、+側相すなわちR相を選択し、R相選択信号としてスイッチング信号φSRUをONレベルにするとともに他のスイッチング信号φSSU,φSTUをOFFレベルにする。
区間(線間電圧発生区間)TS13において、制御部20は、U相の制御信号CSuが第2のキャリア波形パターンCW21より上側にある場合(例えば、区間TS13の前半の場合)、+側相すなわちR相を選択し、R相選択信号としてスイッチング信号φSRUをONレベルにするとともに他のスイッチング信号φSSU,φSTUをOFFレベルにする。制御部20は、U相の制御信号CSuが第2のキャリア波形パターンCW21より下側にある場合(例えば、区間TS13の後半の場合)、−側相すなわちS相を選択し、S相選択信号としてスイッチング信号φSSUをONレベルにするとともに他のスイッチング信号φSRU,φSTUをOFFレベルにする。
モードIにおける各相の選択信号すなわちスイッチング信号について説明する。R相の選択信号としてのスイッチング信号φSRUのパルス幅は、R相パルスのパルス幅x(図4(a)参照)を、U相の制御信号(すなわち、U相電圧の振幅に対応して大きさが変化する信号)CSuの信号レベルhに比例して縮めたhxとなる。S相の選択信号としてのスイッチング信号φSSUのパルス幅は、S相パルスのパルス幅y(図4(a)参照)を、U相の制御信号CSuの信号レベルhに比例して縮めたhyとなる。T相の選択信号としてのスイッチング信号φSTUのパルス幅は、T相パルスのパルス幅z(図4(a)参照)を、U相の制御信号CSuの信号レベルhに比例して縮めたhzとなる。
また、各スイッチング信号φSRU,φSSU,φSTUは、択一的にONしているので、各スイッチング信号φSRU,φSSU,φSTUのパルス幅の期間では、それぞれ、R相電圧a、S相電圧b、T相電圧cが発生する。スイッチング周期Tの直流電圧の平均は、それぞれの期間ごとに電圧を積算しそれぞれを加算してスイッチング周期Tで除して、以下のように表すことができる。
スイッチング周期Tの出力電圧の平均
={a(hx)+b(hy)+c(hz)}/T
=h(ax+by+cz)/T・・・数式10
上記より、R相のパルス幅x=T|a|、S相のパルス幅y=T|b|、T相のパルス幅z=T|c|であるから、数式10は数式11に変形できる。
スイッチング周期Tの出力電圧の平均=h(a2+b2+c2)・・・数式11
さらに、交流理論から、a2+b2+c2=3/2より、数式11は次の数式12に変形できる。
スイッチング周期Tの出力電圧の平均=h×3/2・・・数式12
数式12に示されるように、スイッチング周期Tの出力電圧の平均を、U相の制御信号CSuの信号レベルhに比例したものとすることができる。すなわち、U相の制御信号CSuは、負荷LDに供給すべきU相の交流電圧に応じた交流波形(例えば、本実施の形態では正弦波)であり、所定のキャリア波形パターンでこの交流波形(例えば、正弦波)を変調して双方向スイッチ回路10のスイッチングパターンを生成することで、双方向スイッチ回路10から負荷LDに、U相の制御信号CSuに応じた(例えば、正弦波状の)交流電圧が出力されるように制御できる。
図6(b)に示すように、モードIIでは、制御部20が、仮想DC/AC変換処理に用いるべき第2のキャリア波形パターンとして、区間TS21,TS22,TS23に順に立ち上がりの鋸歯状波、立ち下がりの鋸歯状波、立ち下がりの鋸歯状波を有する第2のキャリア波形パターンCW22を決定する。そして、制御部20は、例えば、U相の制御信号CSuを制御信号発生部30から受ける。なお、図6(b)に示す区間TS21,TS22,TS23は、図4(b)に示す区間TS21,TS22,TS23に対応している(すなわち、区間の長さが等しい)が、図示の便宜上、各区間の長さを図4(b)から変えてある。
このとき、仮想AC/DC変換処理における区間(線間電圧発生区間)TS21,TS22,TS23の直流電圧は、それぞれ、ST間電圧=b−c、RT間電圧=a−c、SR間電圧=b−aとなる。線間電圧における2つの電圧相のうちレベルの大きい電圧相を+側相としレベルの小さい電圧相を−側相とすると、区間(線間電圧発生区間)TS21,TS22,TS23において、それぞれ、S相,R相,S相が+側相であり、T相,T相,R相が−側相である。
制御部20は、第2のキャリア波形パターンCW22とU相の制御信号CSuとを比較する。区間(線間電圧発生区間)TS21において、制御部20は、U相の制御信号CSuが第2のキャリア波形パターンCW22より上側にある場合(例えば、区間TS21の前半の場合)、+側相すなわちS相を選択し、S相選択信号としてスイッチング信号φSSUをONレベルにするとともに他のスイッチング信号φSRU,φSTUをOFFレベルにする。制御部20は、U相の制御信号CSuが第2のキャリア波形パターンCW22より下側にある場合(例えば、区間TS21の後半の場合)、−側相すなわちT相を選択し、T相選択信号としてスイッチング信号φSTUをONレベルにするとともに他のスイッチング信号φSRU,φSSUをOFFレベルにする。
区間(線間電圧発生区間)TS22において、制御部20は、U相の制御信号CSuが第2のキャリア波形パターンCW22より下側にある場合(例えば、区間TS22の前半の場合)、−側相すなわちT相を選択し、T相選択信号としてスイッチング信号φSTUをONレベルにするとともに他のスイッチング信号φSRU,φSSUをOFFレベルにする。制御部20は、U相の制御信号CSuが第2のキャリア波形パターンCW22より上側にある場合(例えば、区間TS22の後半の場合)、+側相すなわちR相を選択し、R相選択信号としてスイッチング信号φSRUをONレベルにするとともに他のスイッチング信号φSSU,φSTUをOFFレベルにする。
区間(線間電圧発生区間)TS23において、制御部20は、U相の制御信号CSuが第2のキャリア波形パターンCW22より下側にある場合(例えば、区間TS23の前半の場合)、−側相すなわちR相を選択し、R相選択信号としてスイッチング信号φSRUをONレベルにするとともに他のスイッチング信号φSSU,φSTUをOFFレベルにする。制御部20は、U相の制御信号CSuが第2のキャリア波形パターンCW22より上側にある場合(例えば、区間TS23の後半の場合)、+側相すなわちS相を選択し、S相選択信号としてスイッチング信号φSSUをONレベルにするとともに他のスイッチング信号φSRU,φSTUをOFFレベルにする。
モードIIにおける各相の選択信号すなわちスイッチング信号について説明する。R相の選択信号としてのスイッチング信号φSRUのパルス幅は、R相パルスのパルス幅x(図4(b)参照)を、U相の制御信号CSuの信号レベル(すなわち、U相電圧の振幅に対応して大きさが変化する信号)hに比例して縮めたhxとなる。S相の選択信号としてのスイッチング信号φSSUのパルス幅は、S相パルスのパルス幅y(図4(b)参照)を、U相の制御信号CSuの信号レベルhに比例して縮めたhyとなる。T相の選択信号としてのスイッチング信号φSTUのパルス幅は、T相パルスのパルス幅z(図4(b)参照)を、U相の制御信号CSuの信号レベルhに比例して縮めたhzとなる。
また、各スイッチング信号φSRU,φSSU,φSTUは、択一的にONしているので、各スイッチング信号φSRU,φSSU,φSTUのパルス幅の期間では、それぞれ、R相電圧a、S相電圧b、T相電圧cが発生する。スイッチング周期Tの直流電圧の平均は、それぞれの期間ごとに電圧を積算しそれぞれを加算してスイッチング周期Tで除して、以下のように表すことができる。
スイッチング周期Tの出力電圧の平均
={a(hx)+b(hy)+c(hz)}/T
=h(ax+by+cz)/T・・・数式13
上記より、R相のパルス幅x=T|a|、S相のパルス幅y=T|b|、T相のパルス幅z=T|c|であるから、数式13は数式14に変形できる。
スイッチング周期Tの出力電圧の平均=h(a2+b2+c2)・・・数式14
さらに、交流理論から、a2+b2+c2=3/2より、数式14は次の数式15に変形できる。
スイッチング周期Tの出力電圧の平均=h×3/2・・・数式15
数式15に示されるように、スイッチング周期Tの出力電圧の平均を、U相の制御信号CSuの信号レベルhに比例したものとすることができる。すなわち、U相の制御信号CSuは、負荷LDに供給すべきU相の交流電圧に応じた交流波形(例えば、本実施の形態では正弦波)であり、所定のキャリア波形パターンでこの交流波形(例えば、正弦波)を変調して双方向スイッチ回路10のスイッチングパターンを生成することで、双方向スイッチ回路10から負荷LDに、U相の制御信号CSuに応じた(例えば、正弦波状の)交流電圧が出力されるように制御できる。
図6(c)に示すように、モードIIIでは、制御部20が、仮想DC/AC変換処理に用いるべき第2のキャリア波形パターンとして、区間TS31,TS32,TS33に順に立ち上がりの鋸歯状波、立ち上がりの鋸歯状波、立ち下がりの鋸歯状波を有する第2のキャリア波形パターンCW23を決定する。そして、制御部20は、例えば、U相の制御信号CSuを制御信号発生部30から受ける。なお、図6(c)における各区間TS31,TS32,TS33は、図4(c)における各区間TS31,TS32,TS33に対応している(すなわち、区間の長さが等しい)が、図示の便宜上、各区間の長さを図4(c)から変えてある。
このとき、仮想AC/DC変換処理における区間(線間電圧発生区間)TS31,TS32,TS33の直流電圧は、それぞれ、ST間電圧=b−c、TR間電圧=c−a、SR間電圧=b−aとなる。線間電圧における2つの電圧相のうちレベルの大きい電圧相を+側相としレベルの小さい電圧相を−側相とすると、区間(線間電圧発生区間)TS31,TS32,TS33において、それぞれ、S相,T相,S相が+側相であり、T相,R相,R相が−側相である。
制御部20は、第2のキャリア波形パターンCW23とU相の制御信号CSuとを比較する。区間(線間電圧発生区間)TS31において、制御部20は、U相の制御信号CSuが第2のキャリア波形パターンCW23より上側にある場合(例えば、区間TS31の前半の場合)、+側相すなわちS相を選択し、S相選択信号としてスイッチング信号φSSUをONレベルにするとともに他のスイッチング信号φSRU,φSTUをOFFレベルにする。制御部20は、U相の制御信号CSuが第2のキャリア波形パターンCW23より下側にある場合(例えば、区間TS31の後半の場合)、−側相すなわちT相を選択し、T相選択信号としてスイッチング信号φSTUをONレベルにするとともに他のスイッチング信号φSRU,φSSUをOFFレベルにする。
区間(線間電圧発生区間)TS32において、制御部20は、U相の制御信号CSuが第2のキャリア波形パターンCW23より上側にある場合(例えば、区間TS32の前半の場合)、+側相すなわちT相を選択し、T相選択信号としてスイッチング信号φSTUをONレベルにするとともに他のスイッチング信号φSRU,φSSUをOFFレベルにする。制御部20は、U相の制御信号CSuが第2のキャリア波形パターンCW23より下側にある場合(例えば、区間TS32の後半の場合)、−側相すなわちR相を選択し、R相選択信号としてスイッチング信号φSRUをONレベルにするとともに他のスイッチング信号φSSU,φSTUをOFFレベルにする。
区間(線間電圧発生区間)TS33において、制御部20は、U相の制御信号CSuが第2のキャリア波形パターンCW23より下側にある場合(例えば、区間TS33の前半の場合)、−側相すなわちR相を選択し、R相選択信号としてスイッチング信号φSRUをONレベルにするとともに他のスイッチング信号φSSU,φSTUをOFFレベルにする。制御部20は、U相の制御信号CSuが第2のキャリア波形パターンCW23より上側にある場合(例えば、区間TS33の後半の場合)、+側相すなわちS相を選択し、S相選択信号としてスイッチング信号φSSUをONレベルにするとともに他のスイッチング信号φSRU,φSTUをOFFレベルにする。
モードIIIにおける各相の選択信号すなわちスイッチング信号について説明する。R相の選択信号としてのスイッチング信号φSRUのパルス幅は、R相パルスのパルス幅x(図4(c)参照)を、U相の制御信号CSuの信号レベル(すなわち、U相電圧の振幅に対応して大きさが変化する信号)hに比例して縮めたhxとなる。S相の選択信号としてのスイッチング信号φSSUのパルス幅は、S相パルスのパルス幅y(図4(c)参照)を、U相の制御信号CSuの信号レベルhに比例して縮めたhyとなる。T相の選択信号としてのスイッチング信号φSTUのパルス幅は、T相パルスのパルス幅z(図4(c)参照)を、U相の制御信号CSuの信号レベルhに比例して縮めたhzとなる。
また、各スイッチング信号φSRU,φSSU,φSTUは、択一的にONしているので、各スイッチング信号φSRU,φSSU,φSTUのパルス幅の期間では、それぞれ、R相電圧a、S相電圧b、T相電圧cが発生する。スイッチング周期Tの直流電圧の平均は、それぞれの期間ごとに電圧を積算しそれぞれを加算してスイッチング周期Tで除して、以下のように表すことができる。
スイッチング周期Tの出力電圧の平均
={a(hx)+b(hy)+c(hz)}/T
=h(ax+by+cz)/T・・・数式16
上記より、R相のパルス幅x=T|a|、S相のパルス幅y=T|b|、T相のパルス幅z=T|c|であるから、数式16は数式17に変形できる。
スイッチング周期Tの出力電圧の平均=h(a2+b2+c2)・・・数式17
さらに、交流理論から、a2+b2+c2=3/2より、数式17は次の数式18に変形できる。
スイッチング周期Tの出力電圧の平均=h×3/2・・・数式18
数式18に示されるように、スイッチング周期Tの出力電圧の平均を、U相の制御信号CSuの信号レベルhに比例したものとすることができる。すなわち、U相の制御信号CSuは、負荷LDに供給すべきU相の交流電圧に応じた交流波形(例えば、本実施の形態では正弦波)であり、所定のキャリア波形パターンでこの交流波形(例えば、正弦波)を変調して双方向スイッチ回路10のスイッチングパターンを生成することで、双方向スイッチ回路10から負荷LDに、U相の制御信号CSuに応じた(例えば、正弦波状の)交流電圧が出力されるように制御できる。
図6(d)に示すように、モードIVでは、制御部20が、仮想DC/AC変換処理に用いるべき第2のキャリア波形パターンとして、区間TS41,TS42,TS43に順に立ち下がりの鋸歯状波、立ち上がりの鋸歯状波、立ち下がりの鋸歯状波を有する第2のキャリア波形パターンCW24を決定する。そして、制御部20は、例えば、U相の制御信号CSuを制御信号発生部30から受ける。なお、図6(d)における各区間TS41,TS42,TS43は、図4(d)における各区間TS41,TS42,TS43に対応している(すなわち、区間の長さが等しい)が、図示の便宜上、各区間の長さを図4(d)から変えてある。
このとき、仮想AC/DC変換処理における区間(線間電圧発生区間)TS41,TS42,TS43の直流電圧は、それぞれ、TS間電圧=c−b、TR間電圧=c−a、SR間電圧=b−aとなる。線間電圧における2つの電圧相のうちレベルの大きい電圧相を+側相としレベルの小さい電圧相を−側相とすると、区間(線間電圧発生区間)TS41,TS42,TS43において、それぞれ、T相,T相,S相が+側相であり、S相,R相,R相が−側相である。
制御部20は、第2のキャリア波形パターンCW24とU相の制御信号CSuとを比較する。区間(線間電圧発生区間)TS41において、制御部20は、U相の制御信号CSuが第2のキャリア波形パターンCW24より下側にある場合(例えば、区間TS41の前半の場合)、−側相すなわちS相を選択し、S相選択信号としてスイッチング信号φSSUをONレベルにするとともに他のスイッチング信号φSRU,φSTUをOFFレベルにする。制御部20は、U相の制御信号CSuが第2のキャリア波形パターンCW24より上側にある場合(例えば、区間TS41の後半の場合)、+側相すなわちT相を選択し、T相選択信号としてスイッチング信号φSTUをONレベルにするとともに他のスイッチング信号φSRU,φSSUをOFFレベルにする。
区間(線間電圧発生区間)TS42において、制御部20は、U相の制御信号CSuが第2のキャリア波形パターンCW24より上側にある場合(例えば、区間TS42の前半の場合)、+側相すなわちT相を選択し、T相選択信号としてスイッチング信号φSTUをONレベルにするとともに他のスイッチング信号φSRU,φSSUをOFFレベルにする。制御部20は、U相の制御信号CSuが第2のキャリア波形パターンCW24より下側にある場合(例えば、区間TS42の後半の場合)、−側相すなわちR相を選択し、R相選択信号としてスイッチング信号φSRUをONレベルにするとともに他のスイッチング信号φSSU,φSTUをOFFレベルにする。
区間(線間電圧発生区間)TS43において、制御部20は、U相の制御信号CSuが第2のキャリア波形パターンCW24より下側にある場合(例えば、区間TS43の前半の場合)、−側相すなわちR相を選択し、R相選択信号としてスイッチング信号φSRUをONレベルにするとともに他のスイッチング信号φSSU,φSTUをOFFレベルにする。制御部20は、U相の制御信号CSuが第2のキャリア波形パターンCW24より上側にある場合(例えば、区間TS43の後半の場合)、+側相すなわちS相を選択し、S相選択信号としてスイッチング信号φSSUをONレベルにするとともに他のスイッチング信号φSRU,φSTUをOFFレベルにする。
モードIVにおける各相の選択信号すなわちスイッチング信号について説明する。R相の選択信号としてのスイッチング信号φSRUのパルス幅は、R相パルスのパルス幅x(図4(d)参照)を、U相の制御信号CSuの信号レベル(すなわち、U相電圧の振幅に対応して大きさが変化する信号)hに比例して縮めたhxとなる。S相の選択信号としてのスイッチング信号φSSUのパルス幅は、S相パルスのパルス幅y(図4(d)参照)を、U相の制御信号CSuの信号レベルhに比例して縮めたhyとなる。T相の選択信号としてのスイッチング信号φSTUのパルス幅は、T相パルスのパルス幅z(図4(d)参照)を、U相の制御信号CSuの信号レベルhに比例して縮めたhzとなる。
また、各スイッチング信号φSRU,φSSU,φSTUは、択一的にONしているので、各スイッチング信号φSRU,φSSU,φSTUのパルス幅の期間では、それぞれ、R相電圧a、S相電圧b、T相電圧cが発生する。スイッチング周期Tの直流電圧の平均は、それぞれの期間ごとに電圧を積算しそれぞれを加算してスイッチング周期Tで除して、以下のように表すことができる。
スイッチング周期Tの出力電圧の平均
={a(hx)+b(hy)+c(hz)}/T
=h(ax+by+cz)/T・・・数式19
上記より、R相のパルス幅x=T|a|、S相のパルス幅y=T|b|、T相のパルス幅z=T|c|であるから、数式19は数式20に変形できる。
スイッチング周期Tの出力電圧の平均=h(a2+b2+c2)・・・数式20
さらに、交流理論から、a2+b2+c2=3/2より、数式20は次の数式21に変形できる。
スイッチング周期Tの出力電圧の平均=h×3/2・・・数式21
数式21に示されるように、スイッチング周期Tの出力電圧の平均を、U相の制御信号CSuの信号レベルhに比例したものとすることができる。すなわち、U相の制御信号CSuは、負荷LDに供給すべきU相の交流電圧に応じた交流波形(例えば、本実施の形態では正弦波)であり、所定のキャリア波形パターンでこの交流波形(例えば、正弦波)を変調して双方向スイッチ回路10のスイッチングパターンを生成することで、双方向スイッチ回路10から負荷LDに、U相の制御信号CSuに応じた(例えば、正弦波状の)交流電圧が出力されるように制御できる。
図6(e)に示すように、モードVでは、制御部20が、仮想DC/AC変換処理に用いるべき第2のキャリア波形パターンとして、区間TS51,TS52,TS53に順に立ち下がりの鋸歯状波、立ち上がりの鋸歯状波、立ち上がりの鋸歯状波を有する第2のキャリア波形パターンCW25を決定する。そして、制御部20は、例えば、U相の制御信号CSuを制御信号発生部30から受ける。なお、図6(e)における各区間TS51,TS52,TS53は、図4(e)における各区間TS51,TS52,TS53に対応している(すなわち、区間の長さが等しい)が、図示の便宜上、各区間の長さを図4(e)から変えてある。
このとき、仮想AC/DC変換処理における区間(線間電圧発生区間)TS51,TS52,TS53の直流電圧は、それぞれ、TS間電圧=c−b、TR間電圧=c−a、RS間電圧=a−bとなる。線間電圧における2つの電圧相のうちレベルの大きい電圧相を+側相としレベルの小さい電圧相を−側相とすると、区間(線間電圧発生区間)TS51,TS52,TS53において、それぞれ、T相,T相,R相が+側相であり、S相,R相,S相が−側相である。
制御部20は、第2のキャリア波形パターンCW25とU相の制御信号CSuとを比較する。区間(線間電圧発生区間)TS51において、制御部20は、U相の制御信号CSuが第2のキャリア波形パターンCW25より下側にある場合(例えば、区間TS51の前半の場合)、−側相すなわちS相を選択し、S相選択信号としてスイッチング信号φSSUをONレベルにするとともに他のスイッチング信号φSRU,φSTUをOFFレベルにする。制御部20は、U相の制御信号CSuが第2のキャリア波形パターンCW25より上側にある場合(例えば、区間TS51の後半の場合)、+側相すなわちT相を選択し、T相選択信号としてスイッチング信号φSTUをONレベルにするとともに他のスイッチング信号φSRU,φSSUをOFFレベルにする。
区間(線間電圧発生区間)TS52において、制御部20は、U相の制御信号CSuが第2のキャリア波形パターンCW25より上側にある場合(例えば、区間TS52の前半の場合)、+側相すなわちT相を選択し、T相選択信号としてスイッチング信号φSTUをONレベルにするとともに他のスイッチング信号φSRU,φSSUをOFFレベルにする。制御部20は、U相の制御信号CSuが第2のキャリア波形パターンCW25より下側にある場合(例えば、区間TS52の後半の場合)、−側相すなわちR相を選択し、R相選択信号としてスイッチング信号φSRUをONレベルにするとともに他のスイッチング信号φSSU,φSTUをOFFレベルにする。
区間(線間電圧発生区間)TS53において、制御部20は、U相の制御信号CSuが第2のキャリア波形パターンCW25より上側にある場合(例えば、区間TS53の前半の場合)、+側相すなわちR相を選択し、R相選択信号としてスイッチング信号φSRUをONレベルにするとともに他のスイッチング信号φSSU,φSTUをOFFレベルにする。制御部20は、U相の制御信号CSuが第2のキャリア波形パターンCW25より下側にある場合(例えば、区間TS53の後半の場合)、−側相すなわちS相を選択し、S相選択信号としてスイッチング信号φSSUをONレベルにするとともに他のスイッチング信号φSRU,φSTUをOFFレベルにする。
モードVにおける各相の選択信号すなわちスイッチング信号について説明する。R相の選択信号としてのスイッチング信号φSRUのパルス幅は、R相パルスのパルス幅x(図4(e)参照)を、U相の制御信号CSuの信号レベル(すなわち、U相電圧の振幅に対応して大きさが変化する信号)hに比例して縮めたhxとなる。S相の選択信号としてのスイッチング信号φSSUのパルス幅は、S相パルスのパルス幅y(図4(e)参照)を、U相の制御信号CSuの信号レベルhに比例して縮めたhyとなる。T相の選択信号としてのスイッチング信号φSTUのパルス幅は、T相パルスのパルス幅z(図4(e)参照)を、U相の制御信号CSuの信号レベルhに比例して縮めたhzとなる。
また、各スイッチング信号φSRU,φSSU,φSTUは、択一的にONしているので、各スイッチング信号φSRU,φSSU,φSTUのパルス幅の期間では、それぞれ、R相電圧a、S相電圧b、T相電圧cが発生する。スイッチング周期Tの直流電圧の平均は、それぞれの期間ごとに電圧を積算しそれぞれを加算してスイッチング周期Tで除して、以下のように表すことができる。
スイッチング周期Tの出力電圧の平均
={a(hx)+b(hy)+c(hz)}/T
=h(ax+by+cz)/T・・・数式22
上記より、R相のパルス幅x=T|a|、S相のパルス幅y=T|b|、T相のパルス幅z=T|c|であるから、数式22は数式23に変形できる。
スイッチング周期Tの出力電圧の平均=h(a2+b2+c2)・・・数式23
さらに、交流理論から、a2+b2+c2=3/2より、数式23は次の数式24に変形できる。
スイッチング周期Tの出力電圧の平均=h×3/2・・・数式24
数式24に示されるように、スイッチング周期Tの出力電圧の平均を、U相の制御信号CSuの信号レベルhに比例したものとすることができる。すなわち、U相の制御信号CSuは、負荷LDに供給すべきU相の交流電圧に応じた交流波形(例えば、本実施の形態では正弦波)であり、所定のキャリア波形パターンでこの交流波形(例えば、正弦波)を変調して双方向スイッチ回路10のスイッチングパターンを生成することで、双方向スイッチ回路10から負荷LDに、U相の制御信号CSuに応じた(例えば、正弦波状の)交流電圧が出力されるように制御できる。
図6(f)に示すように、モードVIでは、制御部20が、仮想DC/AC変換処理に用いるべき第2のキャリア波形パターンとして、区間TS61,TS62,TS63に順に立ち下がりの鋸歯状波、立ち下がりの鋸歯状波、立ち上がりの鋸歯状波を有する第2のキャリア波形パターンCW26を決定する。そして、制御部20は、例えば、U相の制御信号CSuを制御信号発生部30から受ける。なお、図6(f)における各区間TS61,TS62,TS63は、図4(f)における各区間TS61,TS62,TS63に対応している(すなわち、区間の長さが等しい)が、図示の便宜上、各区間の長さを図4(f)から変えてある。
このとき、仮想AC/DC変換処理における区間(線間電圧発生区間)TS61,TS62,TS63の直流電圧は、それぞれ、TS間電圧=c−b、RT間電圧=a−c、RS間電圧=a−bとなる。線間電圧における2つの電圧相のうちレベルの大きい電圧相を+側相としレベルの小さい電圧相を−側相とすると、区間(線間電圧発生区間)TS61,TS62,TS63において、それぞれ、T相,R相,R相が+側相であり、S相,T相,S相が−側相である。
制御部20は、第2のキャリア波形パターンCW26とU相の制御信号CSuとを比較する。区間(線間電圧発生区間)TS61において、制御部20は、U相の制御信号CSuが第2のキャリア波形パターンCW26より下側にある場合(例えば、区間TS61の前半の場合)、−側相すなわちS相を選択し、S相選択信号としてスイッチング信号φSSUをONレベルにするとともに他のスイッチング信号φSRU,φSTUをOFFレベルにする。制御部20は、U相の制御信号CSuが第2のキャリア波形パターンCW26より上側にある場合(例えば、区間TS61の後半の場合)、+側相すなわちT相を選択し、T相選択信号としてスイッチング信号φSTUをONレベルにするとともに他のスイッチング信号φSRU,φSSUをOFFレベルにする。
区間(線間電圧発生区間)TS62において、制御部20は、U相の制御信号CSuが第2のキャリア波形パターンCW26より下側にある場合(例えば、区間TS62の前半の場合)、−側相すなわちT相を選択し、T相選択信号としてスイッチング信号φSTUをONレベルにするとともに他のスイッチング信号φSRU,φSSUをOFFレベルにする。制御部20は、U相の制御信号CSuが第2のキャリア波形パターンCW25より上側にある場合(例えば、区間TS62の後半の場合)、+側相すなわちR相を選択し、R相選択信号としてスイッチング信号φSRUをONレベルにするとともに他のスイッチング信号φSSU,φSTUをOFFレベルにする。
区間(線間電圧発生区間)TS63において、制御部20は、U相の制御信号CSuが第2のキャリア波形パターンCW26より上側にある場合(例えば、区間TS63の前半の場合)、+側相すなわちR相を選択し、R相選択信号としてスイッチング信号φSRUをONレベルにするとともに他のスイッチング信号φSSU,φSTUをOFFレベルにする。制御部20は、U相の制御信号CSuが第2のキャリア波形パターンCW25より下側にある場合(例えば、区間TS63の後半の場合)、−側相すなわちS相を選択し、S相選択信号としてスイッチング信号φSSUをONレベルにするとともに他のスイッチング信号φSRU,φSTUをOFFレベルにする。
モードVIにおける各相の選択信号すなわちスイッチング信号について説明する。R相の選択信号としてのスイッチング信号φSRUのパルス幅は、R相パルスのパルス幅x(図4(f)参照)を、U相の制御信号CSuの信号レベル(すなわち、U相電圧の振幅に対応して大きさが変化する信号)hに比例して縮めたhxとなる。S相の選択信号としてのスイッチング信号φSSUのパルス幅は、S相パルスのパルス幅y(図4(f)参照)を、U相の制御信号CSuの信号レベルhに比例して縮めたhyとなる。T相の選択信号としてのスイッチング信号φSTUのパルス幅は、T相パルスのパルス幅z(図4(f)参照)を、U相の制御信号CSuの信号レベルhに比例して縮めたhzとなる。
また、各スイッチング信号φSRU,φSSU,φSTUは、択一的にONしているので、各スイッチング信号φSRU,φSSU,φSTUのパルス幅の期間では、それぞれ、R相電圧a、S相電圧b、T相電圧cが発生する。スイッチング周期Tの直流電圧の平均は、それぞれの期間ごとに電圧を積算しそれぞれを加算してスイッチング周期Tで除して、以下のように表すことができる。
スイッチング周期Tの出力電圧の平均
={a(hx)+b(hy)+c(hz)}/T
=h(ax+by+cz)/T・・・数式25
上記より、R相のパルス幅x=T|a|、S相のパルス幅y=T|b|、T相のパルス幅z=T|c|であるから、数式25は数式26に変形できる。
スイッチング周期Tの出力電圧の平均=h(a2+b2+c2)・・・数式26
さらに、交流理論から、a2+b2+c2=3/2より、数式26は次の数式27に変形できる。
スイッチング周期Tの出力電圧の平均=h×3/2・・・数式27
数式27に示されるように、スイッチング周期Tの出力電圧の平均を、U相の制御信号CSuの信号レベルhに比例したものとすることができる。すなわち、U相の制御信号CSuは、負荷LDに供給すべきU相の交流電圧に応じた交流波形(例えば、本実施の形態では正弦波)であり、所定のキャリア波形パターンでこの交流波形(例えば、正弦波)を変調して双方向スイッチ回路10のスイッチングパターンを生成することで、双方向スイッチ回路10から負荷LDに、U相の制御信号CSuに応じた(例えば、正弦波状の)交流電圧が出力されるように制御できる。
このようにして、図6に示すように、双方向スイッチ回路10における各双方向スイッチSRU〜STUのスイッチング信号φSRU〜φSTUが生成される。図6に示されるように、各スイッチング信号φSRU〜φSTUが整然とつながるようにU相の制御信号CSuが所定のキャリア波形パターンで変調されるとともに、パルス幅がスイッチング素子のスイッチング時間より長く確保されているため、転流の失敗を抑制できる。なお、図6では、スイッチング信号φSRU〜φSTUについて説明しているが、他の双方向スイッチSRV〜STV,SRW〜STWの各スイッチング信号φSRV〜φSTV,φSRW〜φSTWについても同様である。
例えば、スイッチング素子(例えば、図2(b),(c)に示す素子EL1,LE2,EL11,EL12)のスイッチング時間に比べて十分大きなパルス幅のスイッチングパターンを有するスイッチング信号φSRU〜φSTWでスイッチングされる。
次に、入力電流及び出力電圧をそれぞれ3相交流波形(例えば、正弦波)にできる原理について説明する。
入力された交流電力に対して、図3に示す6個のモードI〜VIのそれぞれについて図4(a)〜(f)に示す仮想AC/DC変換処理を行う。図4(a)〜(f)に示す仮想AC/DC変換処理では、下記の1),2)が成り立つ。
1)各スイッチング周期の出力電圧の平均は常に一定である。
2)直流電流は、入力電圧の比で入力電流に分配される。また、出力電力が一定の時、この入力電流は、3相交流波形(例えば、正弦波)となる。
そして、仮想AC/DC変換処理が行われた電力に対して、図3に示す6個のモードI〜VIのそれぞれについて図6(a)〜(f)に示す仮想DC/AC変換処理を行う。図4の異なる3種のパルス(R相パルス、S相パルス、T相パルス)のそれぞれを出力電圧の変調信号(U相の制御信号、V相の制御信号、W相の制御信号)で変調することを考える。例えば、U相の制御信号の信号レベルをh(0〜1)とすると3種類の区間の選択幅は、それぞれhx、hy、hzとなるので、キャリア区間の平均電圧は、a(hx)+b(hy)+c(hz)=h(ax+by+cz)となり、上記で1)よりx=T|a|、y=T|b|、z=T|c|であり、ax+by+czは、一定であるので、hに比例した電圧となる。U相の制御信号の信号レベルhは、3相交流波形(例えば、正弦波)で変化するので、出力は、制御信号と同様な3相交流波形(例えば、正弦波)で出力できることになる。直流電流の分配について考える。x、y、zのパルス幅の時、直流電流は、入力電圧の比で入力電流に分配される事から、同じように、パルス幅は、hx、hy、hzの場合、直流電流は、入力電圧の比で入力電流に分配される。仮想DC/AC変換処理による交流電圧が一定の場合(例えば、正弦波電圧出力で負荷が線形負荷の時等)、3相交流波形(例えば、正弦波)となる。
まとめると、下記の(1),(2)が得られる。
(1)仮想AC/DC変換処理における入力電流は、仮想DC/AC変換処理による出力電圧が一定である時、3相交流波形(例えば、正弦波)とすることができる。通常、短時間(1秒程度)では、電力は一定である。
(2)仮想DC/AC変換処理による出力電圧は、変調信号(第2の制御信号)と同様な信号で得ることができる。
上記の(1),(2)は、例えば、図7(a)〜(d)に示すように高負荷の場合に成り立つだけでなく、図7(e)〜(h)に示すように低負荷の場合にも成り立つ。図7(a)、(b)、(c)、(d)は、それぞれ、高負荷時における双方向スイッチ回路10の入力電圧、入力電流、出力電圧、出力電流の波形を示す。例えば、図7(b)と図7(f)とを比較することで、高負荷時及び低負荷時のいずれにおいても、入力電流を正弦波にできることが分かる。また、例えば、図7(c)と図7(g)とを比較することで、高負荷時及び低負荷時のいずれにおいても、出力電圧を正弦波にできることが分かる。
次に、スイッチング回数を抑制できる原理について説明する。
上記のように、仮想DC/AC変換処理では、1つのキャリア波形パターンの間(スイッチング周期T)に入力側の3種類のパルス(R相パルス、S相パルス、T相パルス)を3種類の区間ごとに出力側の各相(U相、V相、W相)に変調することになる。
仮に、1つのキャリア波形パターンを3種類の区間ごとに同様の三角波で構成する場合、各双方向スイッチSRU〜STWについてスイッチング周期Tごとに3回のスイッチング回数が必要となる。
それに対して、本実施の形態では、図6に示すように、それぞれの入力電圧相の選択をみるとR、S、T相が、1つのキャリア波形パターンについて重なりを持ちながら現れる。すなわち、図6(a)〜(f)に示す複数の第2のキャリア波形パターンCW21〜CW26のそれぞれは、複数の線間電圧発生区間のうち連続する2つの区間に跨って山型にレベルが変化するパターンを有する。なお、各モードI〜VIは、複数のスイッチング周期Tを含む。
例えば、第2のキャリア波形パターンCW21は、区間TS11及び区間TS12に跨って上側に山型にレベルが変化するパターンを有し、区間TS12及び区間TS13に跨って下側に山型にレベルが変化するパターンを有する。
例えば、第2のキャリア波形パターンCW22は、区間TS21及び区間TS22に跨って上側に山型にレベルが変化するパターンを有し、区間TS23及び区間TS21に跨って下側に山型にレベルが変化するパターンを有する。
例えば、第2のキャリア波形パターンCW23は、区間TS32及び区間TS33に跨って上側に山型にレベルが変化するパターンを有し、区間TS33及び区間TS31に跨って下側に山型にレベルが変化するパターンを有する。
例えば、第2のキャリア波形パターンCW24は、区間TS42及び区間TS43に跨って上側に山型にレベルが変化するパターンを有し、区間TS41及び区間TS42に跨って下側に山型にレベルが変化するパターンを有する。
例えば、第2のキャリア波形パターンCW25は、区間TS53及び区間TS51に跨って上側に山型にレベルが変化するパターンを有し、区間TS51及び区間TS52に跨って下側に山型にレベルが変化するパターンを有する。
例えば、第2のキャリア波形パターンCW26は、区間TS63及び区間TS61に跨って上側に山型にレベルが変化するパターンを有し、区間TS62及び区間TS63に跨って下側に山型にレベルが変化するパターンを有する。
より具体的には、各第2のキャリア波形パターンCW21〜CW26は、複数の線間電圧発生区間のそれぞれにおける2つの電圧相のうち電圧値の大きい電圧相を+側相とし電圧値の小さい電圧相を−側相とするとき、区間が切り換わる際に+側相及び−側相に共通する相がある場合、切り換わる2つの区間に跨って山型にレベルが連続するパターンを有し、区間が切り換わる際に+側相及び−側相で反転する相がある場合、切り換わる2つの区間の境界で鋸歯状にレベルが変化するパターンを有する。
例えば、第2のキャリア波形パターンCW21は、区間TS11及び区間TS12について−側相に共通するT相があるので、区間TS11及び区間TS12に跨って上側に山型にレベルが変化するパターンを有する。第2のキャリア波形パターンCW21は、区間TS12及び区間TS13について+側相に共通するR相があるので、区間TS12及び区間TS13に跨って下側に山型にレベルが変化するパターンを有する。第2のキャリア波形パターンCW21は、区間TS13及び区間TS11について+側相及び−側相で反転するS相があるので、区間TS13及び区間TS11の境界で鋸歯状にレベルが変化するパターンを有する。
例えば、第2のキャリア波形パターンCW22は、区間TS21及び区間TS22について−側相に共通するT相があるので、区間TS21及び区間TS22に跨って上側に山型にレベルが変化するパターンを有する。第2のキャリア波形パターンCW22は、区間TS22及び区間TS23について+側相及び−側相で反転するR相があるので、区間TS22及び区間TS23の境界で鋸歯状にレベルが変化するパターンを有する。第2のキャリア波形パターンCW22は、区間TS23及び区間TS21について+側相に共通するS相があるので、区間TS23及び区間TS21に跨って下側に山型にレベルが変化するパターンを有する。
例えば、第2のキャリア波形パターンCW23は、区間TS31及び区間TS32について+側相及び−側相で反転するT相があるので、区間TS31及び区間TS32の境界で鋸歯状にレベルが変化するパターンを有する。第2のキャリア波形パターンCW23は、区間TS32及び区間TS33について−側相に共通するR相があるので、区間TS32及び区間TS33に跨って上側に山型にレベルが変化するパターンを有する。第2のキャリア波形パターンCW23は、区間TS33及び区間TS31について+側相に共通するS相があるので、区間TS33及び区間TS31に跨って下側に山型にレベルが変化するパターンを有する。
例えば、第2のキャリア波形パターンCW24は、区間TS41及び区間TS42について+側相に共通するT相があるので、区間TS41及び区間TS42に跨って下側に山型にレベルが変化するパターンを有する。第2のキャリア波形パターンCW24は、区間TS42及び区間TS43について−側相に共通するR相があるので、区間TS42及び区間TS43に跨って上側に山型にレベルが変化するパターンを有する。第2のキャリア波形パターンCW24は、区間TS43及び区間TS41について+側相及び−側相で反転するS相があるので、区間TS43及び区間TS41の境界で鋸歯状にレベルが変化するパターンを有する。
例えば、第2のキャリア波形パターンCW25は、区間TS51及び区間TS52について+側相に共通するT相があるので、区間TS51及び区間TS52に跨って下側に山型にレベルが変化するパターンを有する。第2のキャリア波形パターンCW25は、区間TS52及び区間TS53について+側相及び−側相で反転するR相があるので、区間TS52及び区間TS53の境界で鋸歯状にレベルが変化するパターンを有する。第2のキャリア波形パターンCW25は、区間TS53及び区間TS51について−側相に共通するS相があるので、区間TS53及び区間TS51に跨って上側に山型にレベルが変化するパターンを有する。
例えば、第2のキャリア波形パターンCW26は、区間TS61及び区間TS62について+側相及び−側相で反転するT相があるので、区間TS61及び区間TS62の境界で鋸歯状にレベルが変化するパターンを有する。第2のキャリア波形パターンCW26は、区間TS62及び区間TS63について+側相に共通するR相があるので、区間TS62及び区間TS63に跨って下側に山型にレベルが変化するパターンを有する。第2のキャリア波形パターンCW26は、区間TS63及び区間TS61について−側相に共通するS相があるので、区間TS63及び区間TS61に跨って上側に山型にレベルが変化するパターンを有する。
また、各第2のキャリア波形パターンCW21〜CW26は、複数の線間電圧発生区間のそれぞれにおける2つの電圧相のうちレベルの大きい電圧相を+側相としレベルの小さい電圧相を−側相とするとき、モードが切り換わる際に+側相及び−側相に共通する相がある場合、切り換わる2つのモードに跨って山型にレベルが連続するパターンを有し、モードが切り換わる際に+側相及び−側相で反転する相がある場合、切り換わる2つのモードの境界で鋸歯状にレベルが変化するパターンを有する。
例えば、モードIからモードIIに切り換わる際に、区間TS13及び区間TS21について+側相及び−側相で反転するS相があるので、区間TS13及び区間TS21の境界で鋸歯状にレベルが変化するパターンを有する。
例えば、モードIIからモードIIIに切り換わる際に、区間TS23及び区間TS31について+側相に共通するS相があるので、区間TS23及び区間TS31に跨って下側に山型にレベルが変化するパターンを有する。
例えば、モードIIIからモードIVに切り換わる際に、区間TS33及び区間TS41について+側相及び−側相で反転するS相があるので、区間TS33及び区間TS41の境界で鋸歯状にレベルが変化するパターンを有する。
例えば、モードIVからモードVに切り換わる際に、区間TS43及び区間TS51について+側相及び−側相で反転するS相があるので、区間TS43及び区間TS51の境界で鋸歯状にレベルが変化するパターンを有する。
例えば、モードVからモードVIに切り換わる際に、区間TS53及び区間TS61について−側相に共通するS相があるので、区間TS53及び区間TS61に跨って上側に山型にレベルが変化するパターンを有する。
このように、立ち上がりと立ち下がりの鋸歯状波を組み合わせて1つのキャリア波形パターン(第2のキャリア波形パターン)を構成することで、各スイッチング周期Tにおける各相の選択が1回になるようにすることができる。すなわち、最大電圧相は、必ず+側相であり、最小電圧相は、必ず−側相である。中間電圧相は、最大電圧相に対しては、−側相となり、最小電圧相に対しては、+側相になる。+側相は、第2の制御信号(例えば、U相の制御信号)が第2のキャリア波形パターンより上側になる期間を選択し、−側相は、第2の制御信号(例えば、U相の制御信号)が第2のキャリア波形パターンより下側になる期間を選択するようにする。この場合、下側に山型になるように立ち下がりの鋸歯状波と立ち上がりの鋸歯状波とを連続させると最大電圧相の選択は1回で済む。また、上側に山型になるように立ち上がりの鋸歯状波と立ち下がりの鋸歯状波とを連続させると最小電圧相の選択は1回で済む。これにより、各モード内において、各双方向スイッチSRU〜STWについてスイッチング周期Tごとに1回のスイッチング回数を実現できる。また、モードが切り換わる際においても、実質的に、各双方向スイッチSRU〜STWについてスイッチング周期Tごとに1回のスイッチング回数を実現できる。言い換えると、各モード内とモード間の切り換わりとで、同様の制御を実現できるので、切り替わりに伴う断続により発生する出力電圧の揺らぎ(デッドタイム等による揺らぎ)を低減でき、切り替わり目のショックも低減できる。
また、複数の線間電圧発生区間に跨って各双方向スイッチSRU〜STUのスイッチング信号φSRU〜φSTUをONレベルに維持できるので、図6に示すように、双方向スイッチSRU〜STUのスイッチング信号φSRU〜φSTUのパルス幅を広く確保できる(双方向スイッチSRV〜STV,SRW〜STWのスイッチング信号φSRV〜φSTV,φSRW〜φSTWについても同様)。すなわち、パルス幅を低負荷時でもデッドタイムに比べて大きく確保できるので、低負荷時における波形の歪率を高負荷時と同等程度に抑制できる。例えば、図7(c)、(d)(高負荷時)と図7(g)、(h)(低負荷時)とを比較することで、低負荷時における波形の歪率を高負荷時と同等程度に抑制できることが分かる。
次に、制御部20及び制御信号発生部30の内部構成例、すなわち仮想AC/DC変換処理及び仮想DC/AC変換処理を行うための内部構成例について説明する。以下では、第1の内部構成例〜第3の内部構成例について例示的に説明する。なお、仮想的な直流電圧を生成する処理はあくまで仮想的な処理であって実際にその処理自体が行われるわけではない。
第1の内部構成例を、図8、図9に示す。図8で第2のキャリア波形パターンを予め生成し、第2のキャリア波形パターンと第2の制御信号(U相制御信号CSu、V相制御信号CSv、W相制御信号CSw)とをコンパレートし、コンパレート結果φUH〜φWL及び現在どの区間であるかを示すデータφP1〜φP18を図9に示す回路へ出力し、図9に示す回路で各双方向スイッチSRU〜STWのスイッチング信号φSRU〜φSTWを生成する。
具体的には、制御部20において、入力電圧を11のゼロクロス検出器21により検出し、カウンタ23を初期化しスタートする。カウンタ23は、キャリア用クロック発生器22で発生されたキャリアクロックに同期して、ゼロクロス点をカウントする。ROM24は、入力電圧の1スイッチング周期Tの第2のキャリア波形パターンごとのデータを格納している。コンパレータ25〜27及び位相データ発生器28は、カウンタ23のデータ(第1のキャリア波形パターン)に応じて、キャリアクロック単位のROM24からキャリアデータを読み出すことによって図6(a)〜(f)の1スイッチング周期Tごとのキャリアデータ(第2のキャリア波形パターン)がコンパレータ25〜27及び位相データ発生器28へ出力される。
一方、制御信号発生部30において、電圧振幅・位相演算器31は、目的に応じて生成されるべき出力電圧、すなわち負荷LDに出力すべきU相、V相、W相の電圧を演算し、演算結果を3相波形発生器32へ出力する。3相波形発生器32は、演算結果に応じて、U相、V相、W相の制御信号(第2の制御信号)を発生させてコンパレータ25〜27へ出力する。
制御部20において、コンパレータ25〜27は、それぞれ、U相、V相、W相の制御信号と第2のキャリア波形パターンとをコンパレートし、コンパレート結果φUH,φVH,φWHを図9に示す回路へ出力する。コンパレート結果φUHは、例えば、U相制御信号CSuが第2のキャリア波形パターンより上側にあれば、アクティブレベル(例えば、「1」)であり、U相制御信号CSuが第2のキャリア波形パターンより下側にあれば、ノンアクティブレベル(例えば、「0」)である。コンパレート結果φVHは、例えば、V相制御信号CSvが第2のキャリア波形パターンより上側にあれば、アクティブレベル(例えば、「1」)であり、V相制御信号CSvが第2のキャリア波形パターンより下側にあれば、ノンアクティブレベル(例えば、「0」)である。コンパレート結果φWHは、例えば、W相制御信号CSwが第2のキャリア波形パターンより上側にあれば、アクティブレベル(例えば、「1」)であり、W相制御信号CSwが第2のキャリア波形パターンより下側にあれば、ノンアクティブレベル(例えば、「0」)である。
また、インバータINV1〜INV3は、それぞれ、コンパレート結果φUH,φVH,φWHを論理反転させたコンパレート結果φUL,φVL,φWLを生成し図9に示す回路へ出力する。
位相データ発生器28は、第2のキャリア波形パターンを受けて、第2のキャリア波形パターンに応じて現在の区間がどの区間であるのかを示すデータφP1〜φP18を発生させて図9に示す回路へ出力する。例えば、位相データ発生器28は、現在の区間が区間TS11であると認識した場合、区間TS11用データφP1をアクティブレベル(例えば、「1」)にし、他のデータφP2〜φP18をノンアクティブレベル(例えば、「0」)にして、図9に示す回路へ出力する。
図9に示す回路は、例えば、コンパレート結果φUH〜φWLと、現在どの区間であるかを示すデータφP1〜φP18とを用いて論理演算を行い、各双方向スイッチSRU〜STWのスイッチング信号φSRU〜φSTWを生成する。
例えば、双方向スイッチURPは、R相とU相とを接続する双方向スイッチである。図6(a)〜(f)の中で、R相を正側として選択するのは、区間TS12,TS13,TS22,TS62,TS63である。図9に示す回路では、この区間TS12,TS13,TS22,T53,TS62,TS63用のデータφP2,φP3,φP5,φP15,φP17,φP18をORゲートOR1〜OR3でOR演算し、そのOR演算の結果とコンパレート結果φUHとをANDゲートAND1でAND演算する。
また、図6(a)〜(f)の中で、R相を負側として選択するのは、区間TS23,TS32,TS33,TS42,TS43,TS52である。図9に示す回路では、この区間TS23,TS32,TS33,TS42,TS43,TS52用のデータφP6,φP8,φP9,φP11,φP12,φP14をORゲートOR4〜OR6でOR演算し、そのOR演算の結果とコンパレート結果φULとをANDゲートAND2でAND演算する。
そして、ANDゲートAND1の出力とANDゲートAND2の出力とをORゲートOR7でOR演算してその演算結果がスイッチング信号φURPとして双方向スイッチURPへ出力される。
このような演算について、OR演算を+で表し、AND演算を*で表すと、スイッチング信号φURPは、下記の数式28で表される。
φURP=φUH*(φP2+φP3+φP5+φP15+φP17+φP18)+φUL*(φP6+φP8+φP9+φP11+φP12+φP14)・・・数式28
同様にして、下記の数式29〜数式36が得られる。
φVRP=φVH*(φP2+φP3+φP5+φP15+φP17+φP18)+φVL*(φP6+φP8+φP9+φP11+φP12+φP14)・・・数式29
φWRP=φWH*(φP2+φP3+φP5+φP15+φP17+φP18)+φWL*(φP6+φP8+φP9+φP11+φP12+φP14)・・・数式30
φUSP=φUH*(φP1+φP4+φP6+φP7+φP9+φP12)+φUL*(φP3+φP10+φP13+φP15+φP16+φP18)・・・数式31
φVSP=φVH*(φP1+φP4+φP6+φP7+φP9+φP12)+φVL*(φP3+φP10+φP13+φP15+φP16+φP18)・・・数式32
φWSP=φWH*(φP1+φP4+φP6+φP7+φP9+φP12)+φWL*(φP3+φP10+φP13+φP15+φP16+φP18)・・・数式33
φUTP=φUH*(φP8+φP10+φP11+φP13+φP14+φP16)+φUL*(φP1+φP2+φP4+φP5+φP7+φP17)・・・数式34
φVTP=φVH*(φP8+φP10+φP11+φP13+φP14+φP16)+φVL*(φP1+φP2+φP4+φP5+φP7+φP17)・・・数式35
φWTP=φWH*(φP8+φP10+φP11+φP13+φP14+φP16)+φWL*(φP1+φP2+φP4+φP5+φP7+φP17)・・・数式36
数式28〜数式36は、図9に示す回路の構成を示す式であるとみなすこともできる。
第1の内部構成例では、図8によって、ゼロクロスを起点として1スイッチング周期の第2のキャリア波形パターンがROMから読み出され、コンパレート結果、及び、18個の区間信号が出力される。この信号が、図9に示す回路よって合成され、図1の双方向スイッチをON・OFFさせる。これにより、入力電流が正弦波となり、出力電圧が正弦波となる。
次に、第2の内部構成例について説明する。
第1の内部構成例では、第2の制御信号CSu〜CSwとコンパレートすべき第2のキャリア波形パターンをROMデータとして予め用意しているが、ROMデータは、キャリアクロック毎のデータとなる為、ROM容量は大きくなる。
そこで、第2の内部構成例では、第2の制御信号CSu〜CSwとコンパレートすべき第2のキャリア波形パターンのデータを回路で生成することで、ROM容量を低減する。
具体的には、図10に示す正弦波用ROM121は、正弦波のデータを格納している。コンパレータ122は、カウンタ23のデータ(第1のキャリア波形パターン)と正弦波用ROM121から読み出した正弦波のデータとをコンパレートすることで時間を計測する。キャリア波形生成器123は、コンパレータ122で計測された測定値より傾きを演算し、第2の制御信号CSu〜CSwとコンパレートすべきキャリア波形(第2のキャリア波形パターン)を生成する。
第2の内部構成例では、コンパレータ122により切換り目の時間計測を行い、第2のキャリア波形パターンが生成され、第2の制御信号と第2のキャリア波形パターンとがコンパレートされ、コンパレート結果、及び、18個の区間信号が出力される。この信号が、図9に示す回路よって合成され、図1の双方向スイッチをON・OFFさせる。これにより、入力電流が正弦波となり、出力電圧が正弦波となる。
次に、第3の内部構成例について説明する。
第3の内部構成例を、図11に示す。制御部20において、コンパレータ122は、カウンタ23のデータ(第1のキャリア波形パターン)と正弦波用ROM121から読み出した正弦波のデータとをコンパレートすることで、スイッチング周期Tにおける3区間を演算で求めて乗算器221−1〜221−9へ出力する。
乗算器221−1〜221−3は、それぞれ、スイッチング周期Tにおける3区間のうち対応する区間のデータと、U相制御信号CSuとを乗算する。乗算器221−1〜221−3は、それぞれ、乗算結果をコンパレータ223−1〜223−3へ出力する。
乗算器221−4〜221−6は、それぞれ、スイッチング周期Tにおける3区間のうち対応する区間のデータと、V相制御信号CSvとを乗算する。乗算器221−4〜221−6は、それぞれ、乗算結果をコンパレータ223−4〜223−6へ出力する。
乗算器221−7〜221−9は、それぞれ、スイッチング周期Tにおける3区間のうち対応する区間のデータと、W相制御信号CSwとを乗算する。乗算器221−7〜221−9は、それぞれ、乗算結果をコンパレータ223−7〜223−9へ出力する。
カウンタ222は、スイッチング周期Tにおける3区間のデータに応じて、キャリア用クロック発生器22で発生されたキャリアクロックを積算し、キャリアクロックの積算値をコンパレータ223−1〜223−9へ出力する。
コンパレータ223−1〜223−3は、乗算器221−1〜221−3の乗算結果とキャリアクロックの積算値とをコンパレートし、コンパレート結果を合成器224−1へ出力する。合成器224−1は、コンパレート結果と各区間用データφP1〜φP18とを合成して、合成されたコンパレート結果φUHを図9に示す回路へ出力する。
コンパレータ223−4〜223−6は、乗算器221−4〜221−6の乗算結果とキャリアクロックの積算値とをコンパレートし、コンパレート結果を合成器224−2へ出力する。合成器224−2は、コンパレート結果と各区間用データφP1〜φP18とを合成して、合成されたコンパレート結果φVHを図9に示す回路へ出力する。
コンパレータ223−7〜223−9は、乗算器221−7〜221−9の乗算結果とキャリアクロックの積算値とをコンパレートし、コンパレート結果を合成器224−3へ出力する。合成器224−3は、コンパレート結果と各区間用データφP1〜φP18とを合成して、合成されたコンパレート結果φWHを図9に示す回路へ出力する。
第3の内部構成例では、コンパレータ122により切換り目の時間計測を行い、第2の制御信号と時間計測した数値とを乗算し、時間を加味した第2の制御信号とキャリアクロックの積算時間とをコンパレートして、コンパレート結果を出力している。
すなわち、第2の内部構成例が第2の制御信号のレベルでコンパレートしたのに対して、第3の内部構成例では、第2の制御信号を時間領域の値に換算して、時間領域でコンパレートしている。第2の内部構成例及び第3の内部構成例は、コンパレートの方法が異なるが、得られるコンパレート結果としては同等のものになる。そして、コンパレート結果、及び、18個の区間信号が出力される。この信号が、図9に示す回路よって合成され、図1の双方向スイッチをON・OFFさせる。これにより、入力電流が正弦波となり、出力電圧が正弦波となる。
以上のように、実施の形態では、制御部20は、入力された3相交流電力に対して、入力された3相交流電力における各相の電圧の大小関係に応じて区分された複数のモードI〜VIに応じて異なる仮想AC/DC変換処理を行い、仮想AC/DC変換処理が行われた電力に対して、複数のモードI〜VIに応じて異なる仮想DC/AC変換処理を行うように、双方向スイッチ回路10のスイッチングパターンを生成する。具体的には、制御部20は、入力された3相交流電力に対して、複数のモードI〜VIに応じて異なる第1のキャリア波形パターンCW11〜CW13(図4参照)を用いて仮想AC/DC変換処理を行い、仮想AC/DC変換処理が行われた電力に対して、複数のモードI〜VIに応じて異なる第2のキャリア波形パターンCW21〜CW26(図6参照)を用いて仮想DC/AC変換処理を行うように、双方向スイッチ回路10のスイッチングパターンを生成する。これにより、マトリックス演算のような複雑な演算を行うことなく、簡易な処理で交流電力を交流電力に直接変換できる。
また、実施の形態では、制御部20は、複数のモードI〜VIのそれぞれにおいて、第1のキャリア波形パターンCW11〜CW13と入力側の相(R相、S相、T相)に対応した第1の制御信号(例えば、図4に示す変調波形1,2A,2B,3)とを比較して、複数の線間電圧発生区間TS11〜TS63を求める。そして、制御部20は、複数の線間電圧発生区間TS11〜TS63に対応した第2のキャリア波形パターンCW21〜CW26を生成し、生成された第2のキャリア波形パターンCW21〜CW26と出力側の相(U相、V相、W相)に対応した第2の制御信号CSu〜CSwとを比較して、双方向スイッチ回路10のスイッチングパターンを生成する。これにより、複雑なマトリックス演算を行うことなく、仮想AC/DC変換処理及び仮想DC/AC変換処理を簡易に行うことができる。
また、実施の形態では、制御部20は、入力された3相交流電力における最大電圧相、最小電圧相、及び中間電圧相を認識する。そして、制御部20は、1スイッチング周期T中の複数の線間電圧発生区間を、中間電圧相及び最小電圧相に対応した第1の区間と、最大電圧相及び最小電圧相に対応した第2の区間と、最大電圧相及び中間電圧相に対応した第3の区間とに分けて求める。第1の区間は、例えば、図6に示す区間TS11,TS22,TS32,TS43,TS53,TS61を含む。第2の区間は、例えば、図6に示す区間TS12,TS21,TS33,TS42,TS51,TS63を含む。第3の区間は、例えば、図6に示す区間TS13,TS23,TS31,TS41,TS52,TS62を含む。従って、1スイッチング周期T中に最大−最小、最大−中間、中間−最小の3種類の線間電圧を仮想的に発生でき、電流の引き算等の物理現象を利用してその仮想的な線間電圧により仮想的な直流電圧を略一定にすることができ、略一定の仮想的な直流電圧から、各々の電圧区間で作成する第2のキャリア波形パターンと第2の制御信号とをコンパレートしてスイッチング信号を生成できる。これにより、第1の制御信号及び第2の制御信号をそれぞれ正弦波とすることで、マトリックスコンバータ1の入力電流及び出力電圧をそれぞれ容易に正弦波とすることができる。
また、実施の形態では、第2のキャリア波形パターンCW21〜CW26(図6参照)は、複数の線間電圧発生区間のうち連続する2つの区間に跨って山型にレベルが変化するパターンを有する。これにより、各スイッチング周期Tにおけるスイッチング回数を低減できるので、双方向スイッチ回路10における各双方向スイッチSRU〜STWのスイッチング損失を低減できる。
また、実施の形態では、第2のキャリア波形パターンCW21〜CW26(図6参照)が複数の線間電圧発生区間のうち連続する2つの区間に跨って山型にレベルが変化するパターンを有するので、双方向スイッチ回路10における各双方向スイッチSRU〜STWのスイッチング信号φSRU〜φSTWのパルス幅を容易に広く確保できるので、例えば低負荷時における電流・電圧の波形の歪率を高負荷時と同等程度に抑制できる。これにより、転流の失敗を低減できるので、負荷LD(例えば、モータ、アクチュエータ等)の故障を抑制できる。また、電力の変換効率を向上できる。
また、実施の形態では、制御部20は、入力された3相交流電力における最大電圧相、最小電圧相、及び中間電圧相を認識する。制御部20により生成される第2のキャリア波形パターンCW21〜CW26は、複数の線間電圧発生区間のそれぞれにおける2つの電圧相のうちレベルの大きい電圧相を+側相としレベルの小さい電圧相を−側相とするとき、モードが切り換わる際に+側相及び−側相に共通する相がある場合、切り換わる2つのモードに跨って山型にレベルが連続するパターンを有し、モードが切り換わる際に+側相及び−側相で反転する相がある場合、切り換わる2つのモードの境界で鋸歯状にレベルが変化するパターンを有する。これにより、モードが切り換わる際においても、実質的に、各双方向スイッチSRU〜STWについてスイッチング周期Tごとに1回のスイッチング回数を実現できる。言い換えると、各モード内とモード間の切り換わりとで、同様の制御を実現できるので、切り替わり目のショックも低減できる。
また、実施の形態では、入力交流電圧のゼロクロス点を演算し、ゼロクロス点を同期信号として各相の入力交流電圧を推定するので、各相の入力交流電圧を検出する場合に比べて、簡易にマトリックスコンバータを構成できる。
また、実施の形態では、第2の制御信号は、他の物理量と演算することなく入力できる。これにより、第2の制御信号を、負荷に供給すべき交流電力と同様のものとすることができ、出力電圧を正弦波とすることが容易である。
なお、上記の実施の形態では、入力された3相交流電力のうち1つの相の交流電力を検出し、検出された交流電力のゼロクロス点を演算し、そのゼロクロス点を起点として入力側の各相の交流電圧を推定しているが、入力された3相交流電力をそれぞれ検出することで認識してもよい。
以上のように、本発明にかかるマトリックスコンバータは、3相交流電力の3相交流電力への直接変換に有用である。
1 マトリックスコンバータ
10 双方向スイッチ回路
20 制御部
30 制御信号発生部
40 3相リアクトル
50 入力コンデンサ
LD 負荷
PS 3相交流電源

Claims (4)

  1. 入力された3相交流電力を3相交流電力に直接変換して負荷に出力するマトリックスコンバータであって、前記入力された3相交流電力の前記負荷への供給をON/OFFする双方向スイッチ回路と、前記入力された3相交流電力に対して、前記入力された3相交流電力における各相の電圧の大小関係に応じて区分された複数のモードに応じて仮想AC/DC変換処理を行うと共に仮想DC/AC変換処理を行うように、前記双方向スイッチ回路のスイッチングパターンを生成する制御部と、を備え
    前記制御部は、前記仮想AC/DC変換処理を行って一つのスイッチング周期を3つの区間に分けると共に、前記各区間において前記仮想DC/AC変換処理を行うように、前記双方向スイッチ回路のスイッチングパターンを生成する
    ことを特徴とするマトリックスコンバータ。
  2. 前記複数のモードに応じて異なる仮想AC/DC変換処理を行う、請求項1に記載のマトリックスコンバータ。
  3. 前記複数のモードに応じて異なる仮想DC/AC変換処理を行う、請求項1又は請求項2に記載のマトリックスコンバータ。
  4. 前記入力された3相交流電力における最大電圧相、最小電圧相、及び中間電圧相に対し、前記3つの区間は、中間電圧相及び最小電圧相に対応した第1の区間と、最大電圧相及び最小電圧相に対応した第2の区間と、最大電圧相及び中間電圧相に対応した第3の区間である、請求項1〜請求項3のいずれか一項に記載のマトリックスコンバータ。
JP2014125804A 2013-01-23 2014-06-18 マトリックスコンバータ Active JP6187396B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014125804A JP6187396B2 (ja) 2013-01-23 2014-06-18 マトリックスコンバータ

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2013010583A JP5672319B2 (ja) 2013-01-23 2013-01-23 マトリックスコンバータ
JP2014125804A JP6187396B2 (ja) 2013-01-23 2014-06-18 マトリックスコンバータ

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2013010583A Division JP5672319B2 (ja) 2013-01-23 2013-01-23 マトリックスコンバータ

Publications (2)

Publication Number Publication Date
JP2014197980A JP2014197980A (ja) 2014-10-16
JP6187396B2 true JP6187396B2 (ja) 2017-08-30

Family

ID=51227568

Family Applications (3)

Application Number Title Priority Date Filing Date
JP2013010583A Active JP5672319B2 (ja) 2013-01-23 2013-01-23 マトリックスコンバータ
JP2014125804A Active JP6187396B2 (ja) 2013-01-23 2014-06-18 マトリックスコンバータ
JP2014126642A Active JP5880628B2 (ja) 2013-01-23 2014-06-19 マトリックスコンバータ

Family Applications Before (1)

Application Number Title Priority Date Filing Date
JP2013010583A Active JP5672319B2 (ja) 2013-01-23 2013-01-23 マトリックスコンバータ

Family Applications After (1)

Application Number Title Priority Date Filing Date
JP2014126642A Active JP5880628B2 (ja) 2013-01-23 2014-06-19 マトリックスコンバータ

Country Status (7)

Country Link
US (1) US9979311B2 (ja)
EP (1) EP2950437B1 (ja)
JP (3) JP5672319B2 (ja)
KR (1) KR101729628B1 (ja)
CN (1) CN105144563B (ja)
AU (1) AU2014208591C1 (ja)
WO (1) WO2014115777A1 (ja)

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5672319B2 (ja) * 2013-01-23 2015-02-18 株式会社富士通ゼネラル マトリックスコンバータ
JP6331925B2 (ja) * 2014-09-25 2018-05-30 株式会社安川電機 マトリクスコンバータ、発電システムおよび電力変換方法
JP6079808B2 (ja) * 2015-03-27 2017-02-15 株式会社富士通ゼネラル 3相/単相マトリクスコンバータ
JP6015873B1 (ja) * 2016-02-29 2016-10-26 株式会社富士通ゼネラル 交流/交流系統連系装置
AU2016240621B2 (en) * 2015-03-31 2018-07-26 Fujitsu General Limited DC/AC system interconnection device and AC/AC system interconnection device
JP6015800B1 (ja) * 2015-03-31 2016-10-26 株式会社富士通ゼネラル 直流/交流系統連系装置
GB2538312B (en) * 2015-05-15 2021-07-14 Itt Mfg Enterprises Llc Bidirectional energy transfer control
CN106374978A (zh) * 2016-08-29 2017-02-01 阳光电源股份有限公司 电力载波信号耦合电路及通信系统
JP7027875B2 (ja) * 2017-12-21 2022-03-02 株式会社富士通ゼネラル マトリックスコンバータおよび電力変換システム
CN109951088B (zh) * 2019-03-26 2020-10-16 哈工大(张家口)工业技术研究院 用于电动车充电机的单级式ac-dc变换器的控制方法
CN114492820B (zh) * 2022-01-28 2024-07-09 中国科学技术大学 微波脉冲优化方法

Family Cites Families (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4423950B2 (ja) 2003-12-03 2010-03-03 富士電機ホールディングス株式会社 交流交流直接変換器の制御装置
JP4600731B2 (ja) * 2004-06-29 2010-12-15 富士電機ホールディングス株式会社 交流交流直接変換装置の制御装置
KR100949639B1 (ko) * 2005-04-27 2010-03-26 가부시키가이샤 야스카와덴키 전력 변환 장치와 전력 변환 방법
JP4747252B2 (ja) 2005-06-22 2011-08-17 国立大学法人 名古屋工業大学 交流−交流直接電力変換器の制御装置
JP4029904B2 (ja) * 2006-04-28 2008-01-09 ダイキン工業株式会社 マトリックスコンバータおよびマトリックスコンバータの制御方法
JP2008283774A (ja) 2007-05-10 2008-11-20 Mitsubishi Electric Corp 交流−交流電力変換装置
JP5167869B2 (ja) 2008-03-04 2013-03-21 ダイキン工業株式会社 電力変換装置における状態量検出方法及び電力変換装置
WO2010032761A1 (ja) * 2008-09-22 2010-03-25 ダイキン工業株式会社 電力変換器及びその制御方法並びにダイレクトマトリックスコンバータ
JP5293072B2 (ja) * 2008-10-17 2013-09-18 サンケン電気株式会社 交流−交流直接変換装置
JP2010115081A (ja) * 2008-11-10 2010-05-20 Mitsubishi Electric Corp 交流−交流電力変換装置
CN101867300B (zh) 2009-04-16 2012-07-11 上海三菱电梯有限公司 矩阵变换器的控制方法及控制装置
JP4687824B2 (ja) * 2009-06-26 2011-05-25 株式会社富士通ゼネラル 3相整流器
JP5434957B2 (ja) 2011-05-10 2014-03-05 株式会社安川電機 マトリクスコンバータ
WO2013132538A1 (ja) * 2012-03-09 2013-09-12 パナソニック株式会社 電力変換装置、電力変換方法、モータシステム、2相誘導モータ
JP5672319B2 (ja) * 2013-01-23 2015-02-18 株式会社富士通ゼネラル マトリックスコンバータ
JP6115590B2 (ja) * 2014-06-19 2017-04-19 株式会社富士通ゼネラル マトリックスコンバータ

Also Published As

Publication number Publication date
EP2950437A1 (en) 2015-12-02
JP5672319B2 (ja) 2015-02-18
EP2950437B1 (en) 2018-11-07
AU2014208591B2 (en) 2016-11-17
US20150372610A1 (en) 2015-12-24
AU2014208591A1 (en) 2015-08-06
CN105144563B (zh) 2018-01-02
JP5880628B2 (ja) 2016-03-09
JP2014143825A (ja) 2014-08-07
WO2014115777A1 (ja) 2014-07-31
CN105144563A (zh) 2015-12-09
JP2014197980A (ja) 2014-10-16
KR101729628B1 (ko) 2017-04-24
JP2014168382A (ja) 2014-09-11
AU2014208591C1 (en) 2017-04-20
KR20150104119A (ko) 2015-09-14
US9979311B2 (en) 2018-05-22
EP2950437A4 (en) 2016-12-14

Similar Documents

Publication Publication Date Title
JP6187396B2 (ja) マトリックスコンバータ
JP4957303B2 (ja) 交流−交流直接変換装置の空間ベクトル変調方法
JP6079808B2 (ja) 3相/単相マトリクスコンバータ
JP5454732B1 (ja) 直接形電力変換装置の制御方法
JP2015096020A (ja) マトリクスコンバータおよび出力電圧誤差の補償方法
AU2010288068B2 (en) Power Converter and Method for Controlling same
JP2012239265A (ja) マトリクスコンバータ
US10389269B2 (en) Inverter apparatus including control circuit employing two-phase modulation control, and interconnection inverter system including the inverter apparatus
JP2007306676A (ja) 交流−交流直接変換装置のスイッチングパターン生成方法
US20190334452A1 (en) Inverter apparatus including control circuit employing two-phase modulation control, and interconnection inverter system including the inverter apparatus
JP6115590B2 (ja) マトリックスコンバータ
JP2012070497A (ja) インバータ装置及び制御方法
JP5849632B2 (ja) 電力変換装置
JP6677050B2 (ja) 電力変換装置
JP6409945B2 (ja) マトリックスコンバータ
JP5887853B2 (ja) 電力変換装置
JP7027875B2 (ja) マトリックスコンバータおよび電力変換システム
JP6292021B2 (ja) マトリックスコンバータ
JP6015800B1 (ja) 直流/交流系統連系装置
JP2024017498A (ja) 電力変換装置

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20151228

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20161110

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20161115

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20170113

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20170323

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20170704

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20170717

R151 Written notification of patent or utility model registration

Ref document number: 6187396

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151