JP6174891B2 - レーザ加工ヘッド - Google Patents

レーザ加工ヘッド Download PDF

Info

Publication number
JP6174891B2
JP6174891B2 JP2013080095A JP2013080095A JP6174891B2 JP 6174891 B2 JP6174891 B2 JP 6174891B2 JP 2013080095 A JP2013080095 A JP 2013080095A JP 2013080095 A JP2013080095 A JP 2013080095A JP 6174891 B2 JP6174891 B2 JP 6174891B2
Authority
JP
Japan
Prior art keywords
gas
cross jet
nozzle
processing head
passage
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2013080095A
Other languages
English (en)
Other versions
JP2014200827A (ja
Inventor
功明 塩地
功明 塩地
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Amada Co Ltd
Original Assignee
Amada Holdings Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Amada Holdings Co Ltd filed Critical Amada Holdings Co Ltd
Priority to JP2013080095A priority Critical patent/JP6174891B2/ja
Publication of JP2014200827A publication Critical patent/JP2014200827A/ja
Application granted granted Critical
Publication of JP6174891B2 publication Critical patent/JP6174891B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Laser Beam Processing (AREA)

Description

本発明は、クロスジェット方式のレーザ加工ヘッドに関するものである。
レーザ溶接用あるいはレーザ切断用のレーザ加工ヘッドの中に、加工点から発生・飛散するスパッタから光学部品を保護する目的で、加工点と光学部品との間にレーザ光路と交差する方向にクロスジェットガス(主に圧縮空気)を噴射して、スパッタを吹き飛ばすようにしたクロスジェット方式のレーザ加工ヘッドがある(例えば、特許文献1参照)。
特開2012−648号公報
この種のレーザ加工ヘッドでは、クロスジェットガスを噴射した際に、その強い流れによって周囲の空気が引き込まれる現象(以下「二次流れ」とも言う)が発生する。
ところで、レーザ溶接で溶接点から発生するヒュームは、スパッタなどよりも小さく、空気の流れに乗りやすい。クロスジェットによってレーザ加工ヘッド内部に二次流れが発生した場合、その流れに乗ってヒュームが吸い込まれ、そのヒュームによって、レーザ加工ヘッド内を通過するレーザ光が遮蔽されてしまい、レーザ光を安定して加工点に照射できずに加工に悪影響が出ることがあった。
また、レーザ光とシールドガス(溶接部に吹きかけて酸素との反応を抑制するためのガス)を同じノズル(加工ヘッド本体に相当)から出射して溶接加工を行う溶接ヘッドにおいて、上記の二次流れが強く起こると、ノズル内部に供給したシールドガスがヘッド先端側でなくヘッド上側に吸引されて、ノズルの上部から出て行ってしまうため、ノズル先端から充分な量のシールドガスが排出しなくなったりする。また、それを防ぐために多量のシールドガスをノズルに供給する必要が発生する。しかも、シールドガスの供給流量が増えることで、シールドガスの流れが層流から乱流になり、シールドガスのシールド性能まで劣化してしまう場合がある。
本発明は、上記事情を考慮し、クロスジェットガスの流れによって加工ヘッド本体の内部(レーザ光の通過する貫通路)に二次的に発生していた上昇流(二次流れ)を抑制することができ、これにより、シールドガスを噴射する場合の加工点へのシールドガスの供給不足の問題と、ヒュームの吸い込みによるレーザ遮光の問題を改善することができるレーザ加工ヘッドを提供することを目的とする。
請求項1の発明は、光学素子を収容した光学系組立体と、該光学系組立体の下部に設けられたクロスジェット組立体と、該クロスジェット組立体の下部に設けられた加工ヘッド本体と、を有し、前記クロスジェット組立体と加工ヘッド本体とに、前記光学系組立体から出射されたレーザ光の通過する貫通路が設けられると共に、前記クロスジェット組立体に、前記貫通路と直交する方向に貫通するクロスジェット通路が設けられ、前記クロスジェット通路に設けられたクロスジェットノズルのノズル孔から前記貫通路と直交する方向にクロスジェットガスを噴射することで、前記貫通路に交差するクロスジェットガスのガスカーテンを形成し、このガスカーテンにより、前記加工ヘッド本体の先端方向の加工点より前記貫通路を通して進入してくるスパッタから前記光学系組立体を保護するレーザ加工ヘッドにおいて、前記クロスジェットノズルに、前記ノズル孔から噴射する前の前記クロスジェットガスの一部を、前記ガスカーテンの下側において前記加工ヘッド本体の貫通路の入口方向に向けて該貫通路の軸線に対し斜めに噴射する副噴射孔を設けたことを特徴とする。
請求項2の発明は、請求項1に記載のレーザ加工ヘッドであって、前記クロスジェット組立体を構成するクロスジェットボディに前記クロスジェット通路が形成され、このクロスジェット通路の天井壁に、前記クロスジェットノズルを構成するノズルプレートが取り付けられ、これらノズルプレートと天井壁との間に、クロスジェットガスの供給路に連通したガス空間が形成され、このガス空間の出口として、前記貫通路に面するノズルプレートの端部に前記ノズル孔が形成され、かつ、前記ノズルプレートに、該ノズルプレートと直交する方向に対して斜めに単数または複数の前記副噴射孔が穿設されていることを特徴とする。
請求項3の発明は、請求項1または2に記載のレーザ加工ヘッドであって、前記副噴射孔の前記貫通路の軸線に対する傾斜角度が20°〜70°の範囲に設定されていることを特徴とする。
請求項4の発明は、請求項1〜3のいずれか1項に記載のレーザ加工ヘッドであって、前記副噴射孔から噴射されるクロスジェットガスの噴射流量が、前記ノズル孔から噴射されるクロスジェットガスの噴射流量を含めた全体流量の5%以下に設定されていることを特徴とする。
請求項5の発明は、請求項1〜4のいずれか1項に記載のレーザ加工ヘッドであって、前記加工点にシールドガスを供給していないときの前記加工ヘッド本体の先端における吸い込み流速が0.1m/s〜2m/sの範囲となるように、前記副噴射孔から噴射されるクロスジェットガスの噴射流量が設定されていることを特徴とする。
クロスジェットノズルのノズル孔からクロスジェットガスを噴射し、この噴射により形成されるガスカーテンにより、加工ヘッド本体の貫通路を通して進入してくるスパッタから光学系組立体を保護するとき、クロスジェット通路内のクロスジェットガスの流れによって、加工ヘッド本体の貫通路内にクロスジェット通路側へ向かう吸い込み流が発生する。
この吸い込み流が強く発生すると、加工ヘッド本体の貫通路の途中から貫通路を通して加工点にシールドガスを供給している場合(加工ヘッド本体がシールドガスの噴射ノズルとして構成されている場合)は、シールドガスが貫通路の上端の入口側(クロスジェット通路側)に多く流れるようになり、貫通路の先端方向の加工点へのシールドガスの供給不足を生じる可能性が出てくる。また、加工点へのシールドガスの供給不足を生じないようにするためには、シールドガスの供給量を増やす必要が生じる。
また、加工ヘッド本体の貫通路を通さないで、シールドガスを加工ヘッド本体の外部から加工点に供給する場合(サイドノズル方式の場合)も、加工ヘッド本体の貫通路へのシールドガスの吸い込みが起こり、その吸い込み流れにヒュームが乗ることで、加工点に照射すべきレーザ光の一部がヒュームによって遮られ、安定したレーザ加工を実施できないおそれが出てくる。
この点、請求項1の発明によれば、クロスジェットノズルのノズル孔とは別に設けた副噴射孔から、加工ヘッド本体の貫通路の入口に向けて斜めにクロスジェットガスの一部を噴射することにより、クロスジェットガスの強い流れによって二次的に発生していた上昇気流(二次流れ=加工ヘッド本体の貫通路を通しての吸い込み流れ)を抑制することができる。
従って、加工点へのシールドガスの供給不足を解消することができ、シールドガスの供給量を増やさないで済む。また、ヒュームが加工ヘッド本体の貫通路内に吸い込まれる流れを弱めることができるので、ヒュームによるレーザ光の遮蔽作用を抑制することができ、安定したレーザ加工を実施することができる。
請求項2の発明によれば、クロスジェットノズルのノズルプレートに単数または複数の副噴射孔が設けられており、該副噴射孔からクロスジェットガスの一部を、ノズル孔からの噴射方向よりも下向きに噴射するようにしているので、この噴射流により、ノズル孔から噴射されるクロスジェットに伴う二次的な吸い込み流れを抑制することができる。
請求項3の発明によれば、副噴射孔の貫通路の軸線に対する傾斜角度を20°〜70°の範囲に限定しているので、吸い込み流れの抑制効果を確実に得ることができる。
例えば、傾斜角度を20°より小さくすると、副噴射孔からの噴射流が貫通路の入口から中に入りがちになり、貫通路の内部にシールドガスを流す場合は、シールドガスの流れに乱れを与えてしまう可能性が出てくる。一方、傾斜角度を70°より大きくすると、副噴射孔からの噴射流によって貫通路の入口を遮蔽する効果が弱くなり、吸い込み流の抑制効果が低下してしまう可能性がある。従って、傾斜角度を20°〜70°の範囲に限定することに有意性がある。
請求項4の発明によれば、副噴射孔から分岐噴射されるクロスジェットガスの噴射流量が全体流量の5%以下であるため、ノズル孔から噴射されるクロスジェットガスによる本来のスパッタ排除効果を損なうことがない。
請求項5の発明によれば、加工点にシールドガスを供給していないときの加工ヘッド本体の先端の吸い込み流速を0.1m/s〜2m/sの範囲に設定することにより、ヒュームの吸い込みを極力防ぐことができ、レーザ遮光を抑制し、安定したレーザ加工が可能になる。
本発明の第1実施形態のレーザ加工ヘッドの外観斜視図である。 同第1実施形態のレーザ加工ヘッドの要部の断面図である。 同第1実施形態のレーザ加工ヘッドにおけるクロスジェットの流れとそれに伴う二次流れの状態を矢印で示す要部の拡大断面図である。 図3の部分拡大断面図である。 同第1実施形態のレーザ加工ヘッドの加工ヘッド本体の構成の詳細を示す断面図である。 副噴射孔を設けない比較例の場合のクロスジェットの流れとそれに伴う二次流れの状態を矢印で示す要部の拡大断面図である。 第1実施形態の作用効果の説明ための特性図である。 本発明の第2実施形態の説明に用いる第1実施形態とは別のタイプのレーザ加工ヘッドの外観側面図である。 同レーザ加工ヘッドの従来の問題点の説明用の拡大側面図である。
以下、本発明の実施形態を図面を参照して説明する。
図1は第1実施形態のレーザ加工ヘッドの構成を示す斜視図、図2は同レーザ加工ヘッドの要部の断面図である。
このレーザ加工ヘッド3は、例えば、レーザ光LBを使用してワークを溶接するレーザ溶接機に採用されるもので、図示しない光学素子を収容した光学系組立体5と、光学系組立体5の下部に設けられたクロスジェット組立体7と、クロスジェット組立体7の下部に設けられた加工ヘッド本体10と、を備えている。
この場合の加工ヘッド本体10は、クロスジェット組立体7のクロスジェットボディ71(図3参照)の下部に設けられたノズルベース9と、ノズルベース9の下部に設けられた同軸ノズル1と、から構成されている。
ここで、説明の便宜のために、レーザ加工ヘッド3の軸(中心軸)の延伸方向をZ軸方向とし、このZ軸方向における一端側を基端側(上側)とし、他端側を先端側(下側)とすると、光学系組立体5は、レーザ加工ヘッド3の基端部側に位置しており、光学系組立体5の先端にクロスジェット組立体7が一体的に設けられ、クロスジェット組立体7の先端にノズルベース9が一体的に設けられ、ノズルベース9の先端に同軸ノズル1が一体的に設けられている。
光学系組立体5は、レーザ光を集光する集光レンズ等の光学素子を収容したものであり、クロスジェット組立体7は、光学系組立体5に設けられた集光レンズ等の光学素子を保護するために、クロスジェットガス(主に圧縮空気)G3のガスカーテン(エアーカーテン)G4を生成する部分である。
図示しないレーザ発振器が発したレーザ光LBは、レーザ加工ヘッド3の内部を通って(レーザ加工ヘッド3の中心軸やこのまわりを通って、Z軸方向の基端側から先端側に進み)同軸ノズル1の先端から出射されてワークWに照射されるようになっている。
クロスジェット組立体7と加工ヘッド本体10には、光学系組立体5から出射されたレーザ光LBの通過する貫通路50が設けられており、クロスジェット組立体7のボディ71には、貫通路50と直交する方向に貫通するクロスジェット通路51が設けられている。
図3はクロスジェットの流れとそれに伴う二次流れの状態を矢印で示す図2の要部の拡大断面図、図4は図3の部分拡大断面図、図5は加工ヘッド本体の構成の詳細を示す断面図、図6は比較例の場合のクロスジェットの流れとそれに伴う二次流れの状態を矢印で示す要部の拡大断面図である。
図3および図4に示すように、クロスジェット組立体7のクロスジェットボディ71に形成されたクロスジェット通路51の天井壁には、クロスジェットノズル60を構成するノズルプレート64がスペーサ63を介して取り付けられており、ノズルプレート64と天井壁との間に、クロスジェットガスの供給路61に連通したガス空間63aが形成されている。そして、このガス空間63aの出口として、貫通路50に面するノズルプレート64の端部に、クロスジェットガスG3a(G3)を貫通路50と直交する方向に噴射するスロット状のノズル孔65が形成されている。
そして、クロスジェットノズル60のノズル孔65から貫通路50と直交する方向にクロスジェットガスG3a(G3)を噴射することで、貫通路50に交差するクロスジェットガスG3a(G3)のガスカーテン(エアーカーテン)G4(図1参照)を形成し、このガスカーテンG4により、加工ヘッド本体10の先端方向のワークW上の加工点より貫通路50を通して進入してくるスパッタSから光学系組立体5を保護することができるようになっている。
クロスジェットガスG3aの流速は、クロスジェットノズル60のノズル孔65から噴射された直後から減速するので、ノズル孔(クロスジェットの噴射口)65は、貫通路50のすぐ近くに開口されている。ノズル孔65から噴射されるクロスジェットガスG3aの方向は、ワークW上の加工点を覆うシールドガスにクロスジェットによる悪影響が出ないように、貫通路50(レーザ光路)にほぼ直交する方向に設定されている。
ところで、図6に示すように、クロスジェットノズル60のノズル孔65からクロスジェットガスG3を噴射した場合、クロスジェット通路51内のクロスジェットガスG3の流れによって、クロスジェット通路51の入口側から外気を吸い込む二次流れAを発生すると共に、加工ヘッド本体10の貫通路50内に、クロスジェット通路51側へ向かう吸い込み流(二次流れ)B1が発生する。
この吸い込み流B1(上昇流)が強く発生すると、加工ヘッド本体10の貫通路50の途中から貫通路50を通して加工点にシールドガスG1を供給している本実施形態のような場合(加工ヘッド本体10がシールドガスG1の噴射ノズルとして構成されている場合)は、貫通路50内に供給されたシールドガスG1が貫通路50の上端の入口側(クロスジェット通路51側)に多く流れるようになり、貫通路50の先端方向のワークW上の加工点へのシールドガスG1の供給不足を生じる可能性が出てくる。また、加工点へのシールドガスG1の供給不足を生じないようにするためには、シールドガスG1の供給量を増やす必要が生じる。しかも、シールドガスG1の供給流量を増やした場合、シールドガスG1の流れが層流から乱流になりやすくなり、シールドガスG1のシールド性能まで劣化してしまうおそれが出てくる等の問題を生じる。
そこで、本実施形態のレーザ加工ヘッド3では、そのような問題を解消するために、図3および図4に示すように、クロスジェットノズル60に、ノズル孔65から噴射する前のクロスジェットガスG3の一部を、ガスカーテンG4の下側において加工ヘッド本体10の貫通路50の入口方向に向けて貫通路50の軸線に対し斜めに噴射する副噴射孔67を設けている。
この場合、副噴射孔67は、ノズルプレート64に、該ノズルプレート64と直交する方向に対して斜めに穿設されている。副噴射孔67の数は単数でも複数でもよい。また、副噴射孔67の貫通路50の軸線に対する傾斜角度θは、20°〜70°の範囲に設定されている。
また、副噴射孔67から噴射されるクロスジェットガスG3bの噴射流量が、ノズル孔65から噴射されるクロスジェットガスG3aの噴射流量を含めた全体流量の5%以下となるように、副噴射孔67の孔径や孔数が設定されている。さらに、加工点にシールドガスを供給していないときの加工ヘッド本体10の先端における吸い込み流速が0.1m/s〜2m/sの範囲となるように、副噴射孔67から噴射されるクロスジェットガスG3bの噴射流量が設定されている。
次に、図5を用いて加工ヘッド本体10の同軸ノズル1について詳しく説明する。
同軸ノズル1は、インナーノズル13と、アウターノズル15と、冷却回路17と、を備えて構成されている。
インナーノズル13は、筒状(例えば円筒状)に形成されており、内側をレーザ光と、レーザ光の加工部位(加工点)に供給されるインナーシールドガス(シールドガス)G1とが通過することで、先端からワークWに向けてレーザ光LBを出射すると共に、ワークWに対する加工部位に向けてインナーシールドガスG1を噴出するようになっている。
インナーノズル13の内側は、レーザ光が通過するので、インナーシールドガスG1の流れを層流化する部品(ガスレンズ用メッシュなど)等を取り付けることができない。そのため、後述するように、レーザ光の通過を邪魔しない位置(レーザ光の通過する空間の側方)に層流化を実現する部品を配置している。
インナーシールドガスG1とは、例えば、レーザ光が照射されたワークWの酸化を防止すると共に発生するプラズマを除去するためにワークWの加工部位に供給されるガスであり、ここでは窒素ガスやアルゴンガス等の不活性ガスが使用されている。プラズマとは、レーザ光によって蒸発したワークWの蒸気(ワークWが金属である場合には、金属蒸気)である。
アウターノズル15は、筒状(例えば円筒状)に形成されており、インナーノズル13の外側でインナーノズル13に一体的に連結されている。また、アウターノズル15は、インナーノズル13の外側に筒状(例えば円筒状)の空間(隙間)19を形成するように、インナーノズル13を囲んでおり、筒状の空間19のところをアウターシールドガス(シールドガス)G2が流れ、先端からアウターシールドガスG2を噴出するようになっている。
アウターシールドガスG2とは、例えば、レーザ光が照射された加工部位でのワークWの酸化を防止するために加工部位のまわりに供給されるガスであり、ここでは窒素ガスやアルゴンガス等の不活性ガスが使用されている。
アウターノズル15とインナーノズル13の間の筒状の空間19は、レーザ光が通過する部分ではないために、通常の層流化部品(ガスレンズ用メッシュ27など)を設置することができて、層流化した状態でアウターシールドガスG2をインナーノズル13に沿って噴出することができるようになっている。
インナーノズル13の中心軸とアウターノズル15の中心軸とは、レーザ加工ヘッド3の軸に一致しており、レーザ加工ヘッド3は、平面状のワークWの加工面に対し垂直な直線に対して、同軸ノズル1の軸を10°〜20°傾けて主に使用される。
また、冷却回路17は、インナーノズル13の外周を冷却するものであり、本実施形態の冷却回路17は、前述したインナーシールドガスG1やアウターシールドガスG2とは異なるガスであるクロスジェットガスG3を用いてインナーノズル13の外周を冷却する構成になっている。
この冷却回路17は、インナーノズル13とアウターノズル15との間に存在する円筒状の空間(間隙)19に、例えば円筒状の中間筒状体21を設置することで(中間筒状体21をインナーノズル13に一体的に設置することで)、クロスジェットガスG3のみが流れる空間(例えば円筒状等の筒状の空間)23を形成している。この空間23は、インナーノズル13の外周の少なくとも一部を囲んでいる。
ノズルベース9の先端(下端)には、インナーノズル13の内側の空間34に連通する筒状部品として円筒状のメッシュ支持体25が設けられており、このメッシュ支持体25の外側に、メッシュ支持体25よりも径の大きい円筒状のパーテーション29が設けられ、そのパーテーション29の外側に、パーテーション29よりも径の大きい円筒状のノズルホルダー33が設けられている。
パーテーション29は、アウターノズル15の内側の円筒状の空間19の内部に別の空間を仕切るもので、メッシュ支持体25とパーテーション29との間には、この別の空間として、円筒状のインナーガスチャンバ31が確保されている。
メッシュ支持体25の周壁には、インナーガスチャンバ31の上部に位置させて、インナーノズル13の内側の空間34にインナーシールドガスG1を供給する複数の供給口(切欠によって構成されている)26が設けられており、これら供給口26に、インナーノズル13の内側の空間35に供給するインナーシールドガスG1の流れを層流化するためのガスレンズ用のメッシュ(整流手段)27が設けられている。つまり、インナーガスチャンバ31の基端(上端)側の箇所はメッシュ27を通して、メッシュ支持体25の内側の空間35(インナーノズル13の内側の空間34に連通する空間)につながっている。
この場合のメッシュ27は、供給口26ごとに円弧曲面状または矩形平面状の形で設けられていてもよいし、全部の供給口26を覆うように円筒面状に設けられていてもよい。また、供給口26の向きをメッシュ支持体25の軸線に直交する方向に設定するのではなく、ノズル先端方向に斜めに向くように設定してもよい。
インナーガスチャンバ31には、この上部に位置して、インナーシールドガスG1がインナーガスチャンバ31内に流入する流入口(図示せず)が設けられている。
そして、ノズルベース9に設けられた流路(図示せず)を通ってきたインナーシールドガスG1は、インナーガスチャンバ31とメッシュ27と空間35とを通り、インナーノズル13の内部の空間34を経てインナーノズル13の先端から噴出され、レーザ加工部位に供給されるようになっている。
なお、ノズルベース9に設けられた流路(図示せず)を通ってインナーガスチャンバ31まで到達したインナーシールドガスG1の少なくとも一部は、インナーガスチャンバ31の先端側の内面(インナーガスチャンバ31の内底面)にぶつかって、一旦基端側に方向を変え、メッシュ27を通るようになっている。このようにガス流れの方向が反転することで、流入口から流入するインナーガスを流入時の流体エネルギーを減衰させた上でインナーガスを供給口25から排出する。従って、インナーシールドガスG1の流速および不均一性が緩和され、この後、メッシュ27を通過することで層流化された状態でインナーノズル13内に導入される。
パーテーション29の先端には、ノズルホルダー33と一体の円筒状の基端側インナーノズル13Aが連結されており、基端側インナーノズル13Aの先端には、筒状の先端側インナーノズル13Bが接続されている。
そして、円筒状の基端側インナーノズル13Aと先端側インナーノズル13Bとでインナーノズル13が形成されており、先端側インナーノズル13Bが基端側インナーノズル13Aに螺合されていることで、先端側インナーノズル13Bが容易に交換できるようになっている。
なお、本実施形態では、ノズルホルダー33と基端側インナーノズル13Aとが一体で構成され、ノズルホルダー33の先端側は、インナーノズル13の一部を形成する基端側インナーノズル13Aとなっている。
中間筒状体21の径は、インナーノズル13の径よりも大きくなっており、ノズルホルダー33の先端に設けられており、基端側インナーノズル13Aを覆っている。中間筒状体21と基端側インナーノズル13Aとの間には、円筒状の空間23が形成されている。
そして、図示しない流路を通ってきたクロスジェットガスG3が、空間23を通って基端側インナーノズル13Aを冷却し、図示しない別流路を通って、クロスジェット組立体7まで戻り、集光レンズ等の光学素子を保護するためにクロスジェットガスG3のエアーカーテンG4を生成するようになっている。
なお、基端側インナーノズル13Aの外周には、大きな外径部と小さな外径部とが軸方向で交互に並んで形成されているフィン39が設けられており、クロスジェットガスG3による基端側インナーノズル13Aの冷却効率が高められている。
アウターノズル15の径は、インナーノズル13や中間筒状体21の径よりも大きくなっており、アウターノズル15は、ノズルホルダー33の先端に設けられ、中間筒状体21と基端側インナーノズル13Aと先端側インナーノズル13Bの一部(基端側部位)を覆っている。
そして、図示しない流路を通ってきたアウターシールドガスG2が、アウターノズル15とインナーノズル13との間に確保された円筒状の空間19を経由し、アウターノズル15の先端の開口37に設けたガスレンズ用のメッシュ27を通過し、レーザ加工部位のまわりに向けて層流状態で噴出されるようになっている。
このレーザ加工ヘッド3によれば、図3に示すように、クロスジェットノズル60のノズル孔65とは別に設けた副噴射孔67から、加工ヘッド本体10の貫通路50の入口に向けて斜めにクロスジェットガスG3の一部(矢印G3bで示す流れ)を噴射することにより、ノズル孔65から噴射されたクロスジェットガスG3aの強い流れによって二次的に発生していた上昇気流(二次流れ=加工ヘッド本体の貫通路を通しての吸い込み流れ)を抑制することができる。つまり、副噴射孔67からの噴射がない場合は、矢印B1で示すように強い上昇流が生じていたが、その流れを矢印B2で示すように弱めることができる。
従って、図5に示すインナーシールドガスG1の上昇流G1bを抑制できることから、加工点へ向かうインナーシールドガスG1の流れ(本来必要なシールドガスの流れ)G1aを多くすることができ、加工点へのインナーシールドガスG1の供給不足を解消することができる。従って、インナーシールドガスG1の供給量を増やさないで済み、インナーシールドガスG1を層流状態で加工点に安定供給することができる。
また、このレーザ加工ヘッド3によれば、クロスジェットノズル60のノズルプレート64に副噴射孔67を設けており、該副噴射孔67からクロスジェットガスG3の一部を、ノズル孔65からの噴射方向よりも下向きに噴射するようにしているので、この噴射流G3bにより、ノズル孔65から噴射されるクロスジェットG3aに伴う二次的な吸い込み流れを矢印B2のように抑制することができる。
また、このレーザ加工ヘッド3によれば、副噴射孔67の貫通路50の軸線に対する傾斜角度θを20°〜70°の範囲に限定しているので、吸い込み流れの抑制効果を確実に得ることができる。
例えば、傾斜角度θを20°より小さくすると、副噴射孔67からの噴射流G3bが貫通路50の入口から中に入りがちになり、貫通路50の内部のシールドガスG1の流れに乱れを与えてしまう可能性が出てくる。一方、傾斜角度θを70°より大きくすると、副噴射孔67からの噴射流G3bによって貫通路50の入口を遮蔽する効果が弱くなり、吸い込み流の抑制効果が低下してしまう可能性がある。従って、傾斜角度θを20°〜70°の範囲に限定することに有意性がある。
さらに、本実施形態のレーザ加工ヘッド3によれば、副噴射孔67から分岐噴射されるクロスジェットガスG3bの噴射流量が全体流量の5%以下であるため、ノズル孔65から噴射されるクロスジェットガスG3aによる本来のスパッタ排除効果を損なうことがない。
図7は同軸ノズル1の先端の吸引速度とシールドガス濃度の関係を示す特性図で、この特性図から、クロスジェットにより発生する同軸ノズル1方向からの吸引流速を2.0m/s以下にすることで、シールドガス濃度を良好に維持しやすくなることが分かる。
また、本実施形態のレーザ加工ヘッド3の同軸ノズル1によれば、クロスジェットガスG3を用いてインナーノズル13の外周を冷却する構成であるので、冷却用の媒体を新たに追加することなく、簡素な構成で同軸ノズル1を冷却することができる。また、クロスジェットガスG3を用いるので、同軸ノズル1の冷却にかかるランニングコストを低減することができる。
なお、上記第1実施形態のレーザ加工ヘッド3は、加工ヘッド本体10の内部通路(貫通路50)を通してシールドガスを加工点に噴射するノズルタイプのものである場合について説明したが、図8および図9に示すように、レーザ加工ヘッド101の外部に、インナーシールドガスG1を噴射するサイドノズル110を配置するタイプの場合にも本発明は適用することができる。
そこで、このサイドノズル110を配置するタイプのレーザ加工ヘッド101に本発明を適用したものを第2実施形態として挙げる。
このレーザ加工ヘッド101も、第1実施形態と同様に、クロスジェットガスを噴射することで、貫通路50を通しての光学系組立体5へのスパッタの進入を阻止するようにしている(図6参照)。この場合も、クロスジェット通路51内のクロスジェットガスG3の流れによって、加工ヘッド本体の貫通路50内にクロスジェット通路51側へ向かう吸い込み流B1が発生する。
この吸い込み流B1が強く発生すると、サイドノズル110を使って(加工ヘッド本体の貫通路50を通さないで)インナーシールドガスG1を加工点に供給する場合であっても、加工ヘッド本体の貫通路への吸い込み流(図8中矢印Aで示す流れ)が発生し、図9に示すように、その吸い込み流れにヒュームFが乗ることで、加工点に照射すべきレーザ光LBの一部がヒュームFによって遮られ、よって、安定したレーザ加工を実施できないおそれが出てくる。
そこで、図3および図4に示すように、第2実施形態のレーザ加工ヘッドでは、クロスジェットノズル60のノズル孔65とは別に設けた副噴射孔67から、加工ヘッド本体の貫通路50の入口に向けて斜めにクロスジェットガスG3の一部を噴射するようにしている。
これにより、クロスジェットガスG3の強い流れによって二次的に発生していた上昇気流(二次流れ=加工ヘッド本体の貫通路を通しての吸い込み流れ)を抑制することができる。従って、ヒュームFが加工ヘッド本体の貫通路内に吸い込まれる流れを弱めることができ、ヒュームFによるレーザ光LBの遮蔽作用を抑制することができ、安定したレーザ加工を実施することができる。
この場合、加工点にインナーシールドガスG1を供給していないときの加工ヘッド本体の先端の吸い込み流速を0.1m/s〜2m/sの範囲に設定することにより、ヒュームFの吸い込みを極力防ぐことができ、レーザ遮光を抑制し、安定したレーザ加工が可能になる。
3 レーザ加工ヘッド
5 光学系組立体
7 クロスジェット組立体
10 加工ヘッド本体
50 貫通路
51 クロスジェット通路
60 クロスジェットノズル
63a ガス空間
64 ノズルプレート
65 ノズル孔
67 副噴射孔
71 クロスジェットボディ
G3,G3a,G3b クロスジェットガス
G4 ガスカーテン(エアーカーテン)
S スパッタ

Claims (5)

  1. 光学素子を収容した光学系組立体と、該光学系組立体の下部に設けられたクロスジェット組立体と、該クロスジェット組立体の下部に設けられた加工ヘッド本体と、を有し、
    前記クロスジェット組立体と加工ヘッド本体とに、前記光学系組立体から出射されたレーザ光の通過する貫通路が設けられると共に、前記クロスジェット組立体に、前記貫通路と直交する方向に貫通するクロスジェット通路が設けられ、
    前記クロスジェット通路に設けられたクロスジェットノズルのノズル孔から前記貫通路と直交する方向にクロスジェットガスを噴射することで、前記貫通路に交差するクロスジェットガスのガスカーテンを形成し、このガスカーテンにより、前記加工ヘッド本体の先端方向の加工点より前記貫通路を通して進入してくるスパッタから前記光学系組立体を保護するレーザ加工ヘッドにおいて、
    前記クロスジェットノズルに、前記ノズル孔から噴射する前の前記クロスジェットガスの一部を、前記ガスカーテンの下側において前記加工ヘッド本体の貫通路の入口方向に向けて該貫通路の軸線に対し斜めに噴射する副噴射孔を設けたことを特徴とするレーザ加工ヘッド。
  2. 請求項1に記載のレーザ加工ヘッドであって、
    前記クロスジェット組立体を構成するクロスジェットボディに前記クロスジェット通路が形成され、このクロスジェット通路の天井壁に、前記クロスジェットノズルを構成するノズルプレートが取り付けられ、これらノズルプレートと天井壁との間に、クロスジェットガスの供給路に連通したガス空間が形成され、このガス空間の出口として、前記貫通路に面するノズルプレートの端部に前記ノズル孔が形成され、かつ、前記ノズルプレートに、該ノズルプレートと直交する方向に対して斜めに単数または複数の前記副噴射孔が穿設されていることを特徴とするレーザ加工ヘッド。
  3. 請求項1または2に記載のレーザ加工ヘッドであって、
    前記副噴射孔の前記貫通路の軸線に対する傾斜角度が20°〜70°の範囲に設定されていることを特徴とするレーザ加工ヘッド。
  4. 請求項1〜3のいずれか1項に記載のレーザ加工ヘッドであって、
    前記副噴射孔から噴射されるクロスジェットガスの噴射流量が、前記ノズル孔から噴射されるクロスジェットガスの噴射流量を含めた全体流量の5%以下に設定されていることを特徴とするレーザ加工ヘッド。
  5. 請求項1〜4のいずれか1項に記載のレーザ加工ヘッドであって、
    前記加工点にシールドガスを供給していないときの前記加工ヘッド本体の先端における吸い込み流速が0.1m/s〜2m/sの範囲となるように、前記副噴射孔から噴射されるクロスジェットガスの噴射流量が設定されていることを特徴とするレーザ加工ヘッド。
JP2013080095A 2013-04-08 2013-04-08 レーザ加工ヘッド Active JP6174891B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013080095A JP6174891B2 (ja) 2013-04-08 2013-04-08 レーザ加工ヘッド

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013080095A JP6174891B2 (ja) 2013-04-08 2013-04-08 レーザ加工ヘッド

Publications (2)

Publication Number Publication Date
JP2014200827A JP2014200827A (ja) 2014-10-27
JP6174891B2 true JP6174891B2 (ja) 2017-08-02

Family

ID=52351761

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013080095A Active JP6174891B2 (ja) 2013-04-08 2013-04-08 レーザ加工ヘッド

Country Status (1)

Country Link
JP (1) JP6174891B2 (ja)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6162014B2 (ja) * 2013-09-26 2017-07-12 小池酸素工業株式会社 レーザ加工ヘッド
CN105772942B (zh) * 2014-12-25 2018-07-03 大族激光科技产业集团股份有限公司 一种激光焊缝同轴吹气保护装置及应用方法
JP6512880B2 (ja) * 2015-03-16 2019-05-15 日立造船株式会社 シールドノズルおよびシールド方法
JP6713313B2 (ja) * 2016-03-29 2020-06-24 株式会社Wel−Ken レーザ加工装置用加工ヘッド
CN108213700A (zh) * 2016-12-09 2018-06-29 宁波方太厨具有限公司 用于激光焊接的同轴气体保护装置
JP2020022978A (ja) * 2018-08-07 2020-02-13 株式会社トヨコー レーザ照射装置、流体供給装置、及び、レーザ加工方法
CN112008242B (zh) * 2019-05-31 2022-06-03 大族激光科技产业集团股份有限公司 一种激光焊接辅助结构、激光焊接装置和激光焊接方法
JP7396865B2 (ja) 2019-11-13 2023-12-12 ファナック株式会社 レーザ溶接装置

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6431590A (en) * 1987-07-24 1989-02-01 Mitsubishi Electric Corp Laser beam machine
JPH11267876A (ja) * 1998-03-23 1999-10-05 Sumitomo Heavy Ind Ltd レーザ加工用ノズル
JP2004306106A (ja) * 2003-04-09 2004-11-04 Babcock Hitachi Kk レーザ加工ヘッド
JP4352920B2 (ja) * 2004-02-09 2009-10-28 日産自動車株式会社 レーザ加工ヘッドおよびレーザ加工方法
JP4896457B2 (ja) * 2005-07-12 2012-03-14 エンシュウ株式会社 レーザ加工機のレーザ照射用ノズル装置及びこの照射用ノズルによるブロー方法。
JP4840110B2 (ja) * 2006-03-09 2011-12-21 日産自動車株式会社 レーザ溶接装置およびレーザ溶接方法
DE102006047278A1 (de) * 2006-10-04 2008-04-10 Lt Ultra-Precision-Technology Gmbh Vorrichtung zum Laserschweissen
JP5654780B2 (ja) * 2010-06-17 2015-01-14 株式会社レーザックス レーザ切断・レーザ溶接両用ノズル、それを用いたレーザ加工機、およびレーザ切断・レーザ溶接両用ノズルを用いた板突き合わせ溶接方法

Also Published As

Publication number Publication date
JP2014200827A (ja) 2014-10-27

Similar Documents

Publication Publication Date Title
JP6174891B2 (ja) レーザ加工ヘッド
JP6148878B2 (ja) レーザ加工機の同軸ノズル
CN102672349B (zh) 激光焊接设备
JP2007021574A (ja) レーザ加工ヘッド
CN110153554B (zh) 激光加工头
JP6159583B2 (ja) 保護ガラスの保護方法及びレーザ加工ヘッド
JP2007216290A (ja) レーザトーチ
JP4896457B2 (ja) レーザ加工機のレーザ照射用ノズル装置及びこの照射用ノズルによるブロー方法。
JP4352920B2 (ja) レーザ加工ヘッドおよびレーザ加工方法
WO2019221181A1 (ja) ハイブリッド溶接装置
JPH11123578A (ja) レーザ加工ヘッド
JP2016030264A (ja) レーザ加工ヘッド
JP6308865B2 (ja) 複合溶接装置
JP2008114275A (ja) レーザ加工ヘッド及びレーザ加工方法
JP6805710B2 (ja) レーザ溶接装置及びレーザ溶接方法
JP5957576B2 (ja) レーザ加工ヘッド
JPH042353B2 (ja)
JP6120646B2 (ja) レーザ加工機の同軸ノズルおよび該同軸ノズルを用いたレーザ加工方法
JP6205022B1 (ja) レーザ加工ヘッド
JP2003311456A (ja) レーザ照射アーク溶接ヘッド
JP2006068773A (ja) ハイブリッドレーザ溶接機
JP2017036538A (ja) 建設機械の排風構造
WO2019239974A1 (ja) レーザ加工ヘッド及びレーザ加工装置
JP4685080B2 (ja) アーク溶接用トーチ
JP6162014B2 (ja) レーザ加工ヘッド

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20160114

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20161114

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20161122

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20170404

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20170522

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20170613

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20170707

R150 Certificate of patent or registration of utility model

Ref document number: 6174891

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350