JP6173001B2 - Iron supply material and iron supply method - Google Patents

Iron supply material and iron supply method Download PDF

Info

Publication number
JP6173001B2
JP6173001B2 JP2013080455A JP2013080455A JP6173001B2 JP 6173001 B2 JP6173001 B2 JP 6173001B2 JP 2013080455 A JP2013080455 A JP 2013080455A JP 2013080455 A JP2013080455 A JP 2013080455A JP 6173001 B2 JP6173001 B2 JP 6173001B2
Authority
JP
Japan
Prior art keywords
iron
carbon
humus
supply
carbon material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2013080455A
Other languages
Japanese (ja)
Other versions
JP2014200213A (en
Inventor
小島 昭
昭 小島
昌生 藤重
昌生 藤重
敏明 石井
敏明 石井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Institute of National Colleges of Technologies Japan
Ishii Corp
Original Assignee
Institute of National Colleges of Technologies Japan
Ishii Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Institute of National Colleges of Technologies Japan, Ishii Corp filed Critical Institute of National Colleges of Technologies Japan
Priority to JP2013080455A priority Critical patent/JP6173001B2/en
Publication of JP2014200213A publication Critical patent/JP2014200213A/en
Application granted granted Critical
Publication of JP6173001B2 publication Critical patent/JP6173001B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A40/00Adaptation technologies in agriculture, forestry, livestock or agroalimentary production
    • Y02A40/80Adaptation technologies in agriculture, forestry, livestock or agroalimentary production in fisheries management
    • Y02A40/81Aquaculture, e.g. of fish

Landscapes

  • Artificial Fish Reefs (AREA)
  • Cultivation Of Seaweed (AREA)
  • Farming Of Fish And Shellfish (AREA)
  • Treatment Of Sludge (AREA)

Description

本発明は、環境水中に対して、鉄分を適度に供給できる鉄分供給材およびその鉄分供給材を用いた鉄分供給方法に関するものである。   The present invention relates to an iron supply material capable of appropriately supplying iron to environmental water and an iron supply method using the iron supply material.

「森は海の恋人」という言葉がある。この言葉は、海が森から流れ込む鉄分によって活性化していることを端的に表した言葉である。しかし、現実の日本の海は、世界第6位の海域を保有していながら、貧血状態で磯焼けが起って、コンブが不作となり、魚介類も不漁となっている。これらの要因は、様々であるが、森から流れ込む鉄分不足もその一つである。   There is a word "forest is a lover of the sea". This is a word that expresses the fact that the sea is activated by the iron flowing from the forest. However, the actual Japanese sea has the sixth largest sea area in the world, but it has been burned in anemia, making it difficult to produce kombu, and seafood. These factors vary, but the lack of iron flowing from the forest is one of them.

一方、海の中に植物が繁茂しない海域が、地球上には存在する。その海域は、窒素やリンが豊富に存在するのに、植物プランクトンが増えないで、クロロフィル濃度が低い傾向にある。これは、微量栄養素の鉄分の不足が要因である。
従って、鉄分を供給することは、植物プランクトを増やし、それを餌とするエビ、牡蠣、貝類を殖やし、さらには、コンブや海藻も、繁殖させることを可能にする。
On the other hand, there are areas on the earth where plants do not grow in the sea. Although the sea area is rich in nitrogen and phosphorus, phytoplankton does not increase and chlorophyll concentration tends to be low. This is due to the lack of iron in micronutrients.
Therefore, supplying iron can increase the plant plank, grow shrimp, oysters and shellfish that feed on it, and also make it possible to breed kombu and seaweed.

ここに、鉄分を持続的に供給することで、コンブやワカメ等の有用資源を養殖し食糧源とすることを考えた場合、大型藻類が成長するには、それの餌となる炭素源が必要であるが、これは海水中の二酸化炭素を利用するものである。その結果、海水中の二酸化炭素濃度が低下する。そして、それを補充するべく大気中の二酸化炭素が海水に溶解する。このような二酸化炭素消費のサイクルが確立すると、二酸化炭素が海水に溶解する溶解速度が大きくなって、最終的には地球温暖化防止に貢献することができるのである。   Here, if we consider that useful resources such as kombu and seaweed are cultivated and used as a food source by supplying iron continuously, a carbon source that feeds macroalgae is necessary to grow macroalgae. However, this uses carbon dioxide in seawater. As a result, the carbon dioxide concentration in seawater decreases. And carbon dioxide in the atmosphere dissolves in seawater to replenish it. When such a carbon dioxide consumption cycle is established, the dissolution rate of carbon dioxide dissolved in seawater increases, which can ultimately contribute to the prevention of global warming.

すなわち、海水中に鉄分を増やすことは、下記の効果がある。
(1) クロロフィルを増やす。
(2) 海草、海藻が繁殖する。
(3) 海藻から酸素ガスが放出する。
(4) 水質を浄化し、ヘドロを分解し、海の透明度が向上する。
(5) 磯焼けを防止する。
(6) 魚介類が繁殖する。
(7) 海藻による二酸化炭素の吸収がある。
(8) 大気中の二酸化炭素の海水への溶解促進がある。
(9) 地球の温暖化を防止する。
等である。
That is, increasing the iron content in seawater has the following effects.
(1) Increase chlorophyll.
(2) Seaweed and seaweed breed.
(3) Oxygen gas is released from seaweed.
(4) Purify water, decompose sludge, and improve the transparency of the sea.
(5) Prevent firewood burning.
(6) Fish and shellfish breed.
(7) There is absorption of carbon dioxide by seaweed.
(8) Promotion of dissolution of atmospheric carbon dioxide into seawater.
(9) Prevent global warming.
Etc.

加えて、環境水中に鉄分を供給することは、水質を浄化するとともに、海水では藻場を形成し、魚介類および海藻類を増殖する効果を有している。しかしながら、海水中の鉄分は、極微量でしか存在しないため、海水中の生物体が吸収できる高濃度の鉄分を持続的に供給する技術は、地球工学的見地から求められている。
すなわち、陸水中の鉄濃度は、数mg/Lオーダーであるのに対し、海水中の鉄濃度は、数ng/Lオーダーであって、陸水の百万分の一にしかすぎない。
In addition, supplying iron into the environmental water has the effect of purifying water quality, forming seaweed beds in seawater, and proliferating seafood and seaweeds. However, since iron in seawater exists only in a very small amount, a technology for continuously supplying high-concentration iron that can be absorbed by organisms in seawater is demanded from an earth engineering standpoint.
That is, the iron concentration in land water is on the order of several mg / L, whereas the iron concentration in sea water is on the order of several ng / L, which is only a part per million of land water.

鉄は、ヒトはもとより、その他の生物体にとっても不可欠な元素である。特に、牡蠣、昆布、わかめ、海苔の養殖業では、鉄分の供給が切実な問題であって、これまで種々の方法が検討されてはいるものの、決定的な鉄分供給材は開発されていない。   Iron is an essential element not only for humans but also for other organisms. In particular, in the oyster, kelp, seaweed, and seaweed aquaculture industries, the supply of iron is a serious problem, and although various methods have been studied so far, no definitive iron supply material has been developed.

例えば、特許文献1においては、製鋼スラグとフルボ酸を含む浚渫土、好ましくはフルボ酸含有量が0.002質量%以上の浚渫土を混合した混合物を水中に設置することで、製鋼スラグから溶出する鉄分(二価鉄)と浚渫土中に含まれるフルボ酸が結合してフルボ酸鉄が生成し、このフルボ酸鉄を水中に長期間にわたって供給することができる技術が開示されている。   For example, in Patent Document 1, it is eluted from steelmaking slag by installing in a water a mixture containing steelmaking slag and slag containing fulvic acid, preferably a slag containing 0.002% by mass or more of fulvic acid content. A technique is disclosed in which iron (divalent iron) to be produced and fulvic acid contained in the clay are combined to produce iron fulvic acid, and this fulvic acid iron can be supplied into water for a long period of time.

また、特許文献2には、海底に、製鋼スラグなどの鉄含有物質を水没材として沈めることによって、干潮時における平均水深が2〜15メートルの範囲となる埋め戻し部を形成し、この埋め戻し部内にフルボ酸鉄溶出ユニットを埋設する技術が開示されている。特に、このフルボ酸鉄溶出ユニットは、ヤシノミ繊維製のイオン溶出性収容体内に、ダム湖底に堆積した腐植物等の堆積物を採取して固形化した固形有機態と、製鋼スラグ等の鉄含有物質とを収納している。なお、この鉄含有物質は、弱酸性の固形有機態と反応させてアルカリ調整され、溶出を遅らせることができる。   Further, Patent Document 2 forms a backfill portion having an average water depth in the range of 2 to 15 meters at low tide by sinking an iron-containing substance such as steelmaking slag as a submerged material on the sea floor. A technique for embedding an iron fulvic acid elution unit in the section is disclosed. In particular, this iron fulvic acid elution unit is a solid organic state obtained by collecting and solidifying sediments such as humic substances deposited on the bottom of a dam lake in an ion-eluting container made of palm fleece fibers, and containing iron such as steelmaking slag. Contains the substance. In addition, this iron-containing substance is alkali-adjusted by making it react with a weakly acidic solid organic state, and can delay elution.

さらに、特許文献3には、廃木材チップに石炭溶融灰または転炉スラグの少なくとも一方を混合したものが詰め込まれたココナッツ繊維製の袋を海中に沈設しておくことで、フルボ酸鉄を安定的に供給できる技術が開示されている。   Furthermore, Patent Document 3 stabilizes iron fulvic acid by placing a coconut fiber bag filled with waste wood chips mixed with at least one of coal molten ash or converter slag in the sea. Technologies that can be supplied automatically are disclosed.

特開2011−155993号公報JP 2011-155993 A 特開2010−110255号公報JP 2010-110255 A 特許第3829140号公報Japanese Patent No. 3829140 特開2011−153353号公報JP 2011-153353 A

ここで、特許文献1〜3に記載された技術では、いずれも、製鋼スラグ等を用いることが肝要であるが、この製鋼スラグ中には、有害金属が含まれているおそれ、並びに近年使用が自粛されている金属等が種々含有しており、魚類への生物濃縮が課題として懸念される。   Here, in the techniques described in Patent Documents 1 to 3, it is important to use steelmaking slag and the like. However, the steelmaking slag may contain harmful metals and has recently been used. There are various kinds of self-suppressed metals, and there is a concern about bioconcentration in fish.

この問題に対し、特許文献4では、製鋼スラグを用いずに、鉄粉、酸化鉄、炭素および2価の鉄イオンとキレートを形成する有機酸とを含有し、水中への鉄イオンを供給する鉄粉混合物が開示されている。   With respect to this problem, Patent Document 4 contains iron powder, iron oxide, carbon and divalent iron ions and an organic acid that forms a chelate without using steelmaking slag, and supplies iron ions into water. An iron powder mixture is disclosed.

しかしながら、特許文献4に記載された技術では、高価な薬剤である2価の鉄イオンとキレートを形成する有機酸を用いることが必須であって、コスト的な問題があった。
さらに、発明者らが検討した結果、特許文献1〜3に記載されたような、フルボ酸を含む物質に、鉄粉、酸化鉄および炭素をそのまま適用したとしてもフルボ酸鉄が効果的に生じないという問題があることが新たに分かった。
However, in the technique described in Patent Document 4, it is essential to use an organic acid that forms a chelate with a divalent iron ion, which is an expensive drug, and there is a problem of cost.
Furthermore, as a result of investigations by the inventors, even if iron powder, iron oxide and carbon are directly applied to a substance containing fulvic acid as described in Patent Documents 1 to 3, iron fulvic acid is effectively produced. I found out that there is no problem.

そこで、発明者らが上記新たな問題を鋭意検討した結果、フルボ酸を含む物質として腐葉土を選択し、さらに、酸素分が所定値以下の鉄材と、炭素材とを併せて用いることによって、最も経済的であって、かつフルボ酸鉄が効果的に生成することが分かった。   Therefore, as a result of the intensive study of the new problem by the inventors, humus is selected as a substance containing fulvic acid, and furthermore, by using an iron material having a predetermined oxygen content or less and a carbon material in combination, It has been found to be economical and to effectively produce iron fulvic acid.

本発明は、上記した現状に鑑み開発されたもので、安全性が高く、経済性に優れると同時に、フルボ酸鉄の生成速度も速い鉄分供給材を、それを用いた鉄分供給方法と共に提供することを目的とする。   The present invention has been developed in view of the above-described present situation, and provides an iron supply material that is high in safety and excellent in economic efficiency, and at the same time has a high generation rate of iron fulvic acid, together with an iron supply method using the same. For the purpose.

すなわち、本発明の要旨構成は次のとおりである。
1.環境水中に対して鉄分を供給する鉄分供給材であって、腐葉土と、炭素材と、さらに酸素含有量が1質量%以下の鉄材を含み、該炭素材と該鉄材との少なくとも一部が接触している鉄分供給材。
That is, the gist configuration of the present invention is as follows.
1. An iron supply material for supplying iron to environmental water, comprising humus, a carbon material, and an iron material having an oxygen content of 1% by mass or less, and at least a part of the carbon material and the iron material are in contact with each other Iron supply material.

2.前記鉄材が、酸素含有量:1質量%以下の純鉄である前記1に記載の鉄分供給材。 2. The iron supply material according to 1, wherein the iron material is pure iron having an oxygen content of 1% by mass or less.

3.前記炭素材の電気伝導度が体積抵抗率で103Ω・cm以下である前記1または2に記載の鉄分供給材。 3. 3. The iron supply material according to 1 or 2 above, wherein the electric conductivity of the carbon material is 10 3 Ω · cm or less in volume resistivity.

4.前記炭素材が、炭素繊維強化プラスチック、膨張黒鉛シート、木炭、黒鉛材、炭素材、竹炭および炭素繊維のうちから選んだ少なくとも1種である前記1〜3のいずれかに記載の鉄分供給材。 4). The iron supply material according to any one of 1 to 3, wherein the carbon material is at least one selected from carbon fiber reinforced plastic, expanded graphite sheet, charcoal, graphite material, carbon material, bamboo charcoal, and carbon fiber.

5.前記鉄材および炭素材を鉄分供給材の中心とし、その外周に前記腐葉土を配置する前記1〜4のいずれかに記載の鉄分供給材。 5. The iron supply material according to any one of 1 to 4, wherein the iron material and the carbon material are used as a center of the iron content supply material, and the humus is disposed on the outer periphery thereof.

6.前記腐葉土の外側から、自己収縮性を持つ固縛材で包んだ前記1〜5のいずれかに記載の鉄分供給材。 6). 6. The iron supply material according to any one of 1 to 5 above, wherein the iron content is wrapped with a self-shrinking binding material from the outside of the humus.

7.前記1〜6のいずれかに記載の鉄分供給材を、河川中、湖沼中および海中のうちから選んだ少なくとも1箇所の環境水中に設置し、鉄錯体として鉄分を該環境水中に溶出させる鉄分供給方法。 7). The iron supply material according to any one of 1 to 6 above is installed in at least one environmental water selected from among a river, a lake, and the sea, and iron is supplied to elute iron into the environmental water as an iron complex. Method.

本発明によれば、安全性が高く、経済性に優れると同時に、フルボ酸鉄の生成速度も速い鉄分供給材を、それを用いた鉄分供給方法と共に提供することができる。   According to the present invention, it is possible to provide an iron supply material that is high in safety and excellent in economic efficiency and at the same time has a high generation rate of iron fulvic acid, together with an iron supply method using the same.

本発明に従う環境水中に対して鉄分を供給する鉄分供給材の例を示した図である。It is the figure which showed the example of the iron supply material which supplies iron with respect to the environmental water according to this invention. 本発明に従う持続的鉄分供給材の構成の1例を示した図である。It is the figure which showed one example of the structure of the continuous iron supply material according to this invention. 図2に示した持続的鉄分供給材の一単位の構成の1例を示した図である。It is the figure which showed one example of the structure of the unit of the continuous iron supply material shown in FIG. 本発明に従う持続的鉄分供給材のうち、炭素材と鉄材との構成の1例を示した図である。It is the figure which showed one example of the structure of a carbon material and an iron material among the continuous iron supply materials according to this invention. 本発明に従う鉄分供給材の配置例を示した図である。It is the figure which showed the example of arrangement | positioning of the iron content supply material according to this invention. 実施例に用いた腐葉土を示した図である。It is the figure which showed the humus used for the Example. 実施例に用いた鉄材を示した図である。It is the figure which showed the iron material used for the Example.

以下、本発明を具体的に説明する。
本発明は、図1に示すように、環境水中に対して鉄分を供給する鉄分供給材であって、腐葉土と、炭素材と、さらに、酸素含有量が1質量%以下の鉄材とを含み、該炭素材と該鉄材との少なくとも一部が接触していることを特徴としている。
Hereinafter, the present invention will be specifically described.
As shown in FIG. 1, the present invention is an iron supply material that supplies iron to environmental water, including humus, a carbon material, and an iron material having an oxygen content of 1% by mass or less, At least a part of the carbon material and the iron material are in contact with each other.

本発明で使用する鉄材は、酸素含有量が1質量%以下であって、鉄成分、すなわち金属鉄が含まれていれば、特に材質は制限されず、鉄ニッケル合金などFeを含む合金で有っても良いが、環境への溶出物質を考えると、純鉄であることが最も望ましい。   The iron material used in the present invention is not particularly limited as long as it has an oxygen content of 1% by mass or less and contains an iron component, that is, metallic iron, and is an alloy containing Fe such as an iron nickel alloy. However, it is most desirable to use pure iron in view of the substances released to the environment.

また、本発明で使用する鉄材は、炭素材との接触面積が大きいことが求められているので、平面、あるいは曲面をもつ板状および筒状の形状を有することが望ましい。特に、線状、棒状の鉄材の利用が好ましい。また、フィルム状鉄板も期間限定であるならば利用可能である。   Moreover, since the iron material used by this invention is calculated | required that a contact area with a carbon material is large, it is desirable to have a plate shape and a cylindrical shape with a plane or a curved surface. In particular, it is preferable to use a linear or rod-shaped iron material. A film-like iron plate can also be used if it is limited in time.

他方、本発明で使用する炭素材は、炭素成分が含まれていれば、特に材質は制限されず、黒鉛構造炭素が含まれていても良い。また、上記炭素材の電気伝導度は、体積抵抗率で103Ω・cm以下であることが好ましい。というのは、鉄イオンの溶出量が制御しやすいからである。 On the other hand, the carbon material used in the present invention is not particularly limited as long as it contains a carbon component, and may contain graphite structure carbon. Further, the electric conductivity of the carbon material is preferably 10 3 Ω · cm or less in terms of volume resistivity. This is because the elution amount of iron ions is easy to control.

また、上記炭素材は、その純度や形状も制限されずに鉄イオンの溶出量や設置場所等に応じて適宜選択することができる。すなわち、上記炭素材は、炭素繊維からなる織物であっても良いが、波浪などの激しい海域で使用する場合には、耐久性が重要である。そのため、炭素繊維強化プラスチック(以下、CFRPともいう)が望ましい。さらに、波浪の激しくない制限された海域であるならば、膨張黒鉛シートからつくられた炭素材シートや、木炭、黒鉛材、炭素材、竹炭なども用いることができる。また、炭素成分を含んだ導電性のゴムや黒鉛含有塗料なども使用可能である。   The carbon material can be appropriately selected according to the elution amount of iron ions, the installation location, etc. without being limited in purity or shape. That is, the carbon material may be a woven fabric made of carbon fiber, but durability is important when used in a severe sea area such as a wave. Therefore, carbon fiber reinforced plastic (hereinafter also referred to as CFRP) is desirable. Furthermore, if it is a limited sea area where waves are not severe, a carbon material sheet made from an expanded graphite sheet, charcoal, graphite material, carbon material, bamboo charcoal and the like can also be used. In addition, conductive rubber containing carbon components, graphite-containing paints, and the like can also be used.

さらに、上記炭素材の形状は、特に限定されないものの、鉄材との接触面積が大きいことが望まれるので、粉や粒形状よりは、炭素繊維製織物で一般的な形状や、板状、フィルム状である方が好ましい。   Furthermore, although the shape of the carbon material is not particularly limited, since it is desired that the contact area with the iron material is large, it is preferable to use a carbon fiber woven fabric, a plate shape, or a film shape rather than a powder or grain shape. Is preferable.

本発明における腐葉土は、森林生態系において地上部の植物により生産された有機物が朽木や落葉・落枝となり地表部に堆積し、それを資源として利用するバクテリアなどの微生物やミミズなど大小様々な土壌動物による生化学的な代謝作用により分解(落葉分解)されて土状になったものなので、厳密に言うと土ではないが、一般に、腐葉土または腐植土と呼ばれるものを用いる。   In the present invention, the humus is a soil animal of various sizes, such as microorganisms such as bacteria and earthworms, in which organic matter produced by above-ground plants in the forest ecosystem becomes deciduous trees, deciduous leaves, and twigs and accumulates on the surface. Although it is a soil that has been decomposed (deciduous leaf decomposition) due to biochemical metabolic action by, it is not strictly soil, but in general, what is called humus or humus is used.

自然にできた腐葉土は、成分が窒素に偏っていることが多いが、燐酸やカリウムなどはミミズ、その他の動物の糞や微生物などの働きによって補われることがある。なお、人工的に作られた腐葉土は、成分が人工的に調整されているが、本発明への使用に問題はない。   Naturally made humus is often biased towards nitrogen, but phosphoric acid and potassium may be supplemented by the action of earthworms, other animal feces and microorganisms. In addition, although the humus produced artificially has the component adjusted artificially, there is no problem in the use to this invention.

ここで、腐葉土になりやすい葉は、落葉樹や、広葉樹など、油分が少なく発酵しやすい種類で、杉、松などの油分が多い葉は腐葉土になりにくい。
自然にできた腐葉土は、発酵して出来上がるのに1〜2年以上かかるが、人工的に作る場合は、米糠などを使って発酵しやすい環境を作る。そのため出来上がるまでの期間は2ヶ月程まで縮まる。なお、腐葉土中の鉄含有量は、購入した腐葉土中の鉄含有量をX線分析装置で測定した結果、0.5質量%程度であった。
Here, leaves that tend to become humus are deciduous trees and broad-leaved trees, such as deciduous trees and broad-leaved trees, that are easy to ferment.
Naturally made humus takes more than a year or two to ferment, but when it is made artificially, it is easy to ferment using rice bran. Therefore, the period until completion is shortened to about two months. As a result of measuring the iron content in the purchased humus using an X-ray analyzer, the iron content in the humus was about 0.5% by mass.

このように、腐葉土の性質は、原料、製造方法によって、性状が異なるが、最適な腐葉土を選定することが重要である。
具体的に、腐葉土は、シイノキ、シラカシ、アラカシ、ブナ、クヌギ、コナラ、クリなど葉肉が厚く広葉樹の落ち葉を堆積し適度に発酵させたものが好ましい。使用する状態は、手でもむと、直ぐにくずれる程度に発酵したものがよく、コナラ、クリなどブナ科の落ち葉を使ったものが特に最良である。さらに、ミネラル成分として、海藻の成長にとって必須元素である、鉄、カリウム、カルシウム、マグネシウムなどを含むものが好ましい。
発酵が不十分な腐葉土では、フルボ酸の含有量が少なく、効果が少ない。一方で、完熟状態になると、無酸素状態が作りにくくなって、効果が低下する場合がある。
As described above, the properties of humus vary depending on the raw materials and the production method, but it is important to select the most suitable humus.
Specifically, the mulch is preferably one that has thick leaf flesh such as cypress, sardine, arakashi, beech, kunugi, konara, chestnut, and deposits fallen leaves of broad-leaved trees and is appropriately fermented. The condition to be used should be fermented to the extent that it can be easily broken by hand, and the ones that use fallen leaves of the beech family such as Japanese oak and chestnut are especially best. Furthermore, what contains iron, potassium, calcium, magnesium etc. which are essential elements for the growth of seaweed as a mineral component is preferable.
In humic soil with insufficient fermentation, the content of fulvic acid is small and the effect is small. On the other hand, when it reaches a fully matured state, it becomes difficult to produce an oxygen-free state, and the effect may be reduced.

本発明では、炭素材と鉄材との反応によって水酸化鉄および/または酸化鉄が生成するが、この生成した水酸化鉄および/または酸化鉄は除去されることが望まれる。といのは、水酸化鉄および/または酸化鉄が両者の界面付近に存在することで、両者の接触を妨害し、反応を阻害するからである。そこで、本発明では、腐葉土を用いることによって、無酸素状態を作り出し、水酸化鉄および/または酸化鉄が効率よく除去される構造になっている。   In the present invention, iron hydroxide and / or iron oxide is generated by the reaction between the carbon material and the iron material, and it is desirable that the generated iron hydroxide and / or iron oxide is removed. This is because the presence of iron hydroxide and / or iron oxide in the vicinity of the interface between the two obstructs the contact between the two and inhibits the reaction. Therefore, in the present invention, an oxygen-free state is created by using humus, and iron hydroxide and / or iron oxide is efficiently removed.

また、本発明に用いる鉄材は、炭素材と接触した箇所から溶解するため、消耗していく、そして、消耗した鉄材は、交換することが必要となるため、図2〜4に示すような持続的鉄分供給材の構造を採ることが好ましい。
ここで、図2は、本発明に従う持続的鉄分供給材の構成の1例を示した図である。天然繊維の袋を入れる容器(例えば、コンクリート製や金属製)に、腐葉土と、炭素材と、さらに酸素含有量が1質量%以下の鉄材とを一つの天然繊維の袋(一単位)に詰めて装入してある。
また、図3は、図2に示した天然繊維の袋、すなわち一単位の構成の1例を示した図である。腐葉土と、炭素材と、さらに鉄材とを詰めてある。
さらに、図4は、本発明に従う持続的鉄分供給材のうち炭素材と鉄材との構成の1例を示した図である。
Moreover, since the iron material used for this invention melts | dissolves from the location which contacted the carbon material, since it is necessary to replace | exchange the consumed iron material, it is continuous as shown in FIGS. It is preferable to adopt the structure of a general iron supply material.
Here, FIG. 2 is the figure which showed one example of the structure of the continuous iron supply material according to this invention. A natural fiber bag (for example, made of concrete or metal) is filled with humus, carbon, and iron with an oxygen content of 1% by mass or less in one natural fiber bag (one unit). Is charged.
FIG. 3 is a diagram showing an example of the natural fiber bag shown in FIG. 2, that is, one unit configuration. It is packed with humus, carbon, and iron.
Furthermore, FIG. 4 is the figure which showed one example of the structure of a carbon material and an iron material among the continuous iron supply materials according to this invention.

本発明では、効果的に鉄を溶出させるため、図1に示したように、前記鉄材および炭素材を鉄分供給材の中心とし、その外周に前記腐葉土を配置することが好ましい。   In this invention, in order to elute iron effectively, as shown in FIG. 1, it is preferable that the iron material and the carbon material are used as the center of the iron supply material, and the humus soil is arranged on the outer periphery thereof.

また、前記腐葉土の外側から、自己収縮性を持つ固縛材で包むこともできる。かかる構成とすることにより、鉄材と炭素材とが安定して常に接触できるからである。なお、本発明における固縛材とは、メッシュ形状をしているゴム材やナイロン製の網であることが好ましいが、例えば、単にゴム紐で留めたり、ナイロン製の糸などで固縛したりすることも含まれる。
その際の鉄材および炭素材の形状は、特に限定されないが、特に鉄材は棒状であることが望ましい。安定して固縛できるからである。
また、円筒状の竹炭の中に鉄線を充填する、あるいは、半月形の竹炭の凹部に番線を充填することでも可能である。
Moreover, it can also wrap with the securing material which has a self-shrink property from the outer side of the said humus. This is because, with this configuration, the iron material and the carbon material can always come into contact stably. The lashing material in the present invention is preferably a mesh-shaped rubber material or a nylon net, but for example, it is simply fastened with a rubber string or tyed with a nylon thread or the like. To include.
The shape of the iron material and carbon material at that time is not particularly limited, but the iron material is particularly preferably rod-shaped. This is because it can be secured stably.
It is also possible to fill the cylindrical bamboo charcoal with an iron wire, or to fill a recess in the half-moon shaped bamboo charcoal with a wire.

本発明における鉄分供給材の配置について、図5を用いて説明する。
腐葉土中に鉄材と炭素材を一緒にしたものをネットあるいは通水性の容器(あるいは袋)の中に充填する。それをコンクリート製ボックス内に配置する(図5中、Aとして示されたもの)。
あるいは、腐葉土だけをいれた袋、炭素材と鉄材とをいれた袋を共に別の大きめの袋の中に充填したものを、コンクリート製ボックス内に配置する(図5中、BまたはCとして示されたもの)。
あるいは、コンクリート製ボックスの代わりに、鉄筒を使用する場合もある。この鉄の中に、腐葉土中に鉄材と炭素材を一緒にしたものをネットあるいは通水性の容器(あるいは袋)の中に充填する。また、腐葉土だけをいれた袋、炭素材と鉄材とをいれた袋を共に別の大きめの袋の中に充填したものを、鉄筒の中に配置する。この場合、鉄筒は長期間使用後には、溶解することになる。
The arrangement of the iron supply material in the present invention will be described with reference to FIG.
Fill the net or water-permeable container (or bag) with a combination of iron and carbon in humus. It is placed in a concrete box (shown as A in FIG. 5).
Alternatively, a bag containing only humus and a bag containing carbon material and iron material filled in another large bag is placed in a concrete box (shown as B or C in FIG. 5). )
Alternatively, an iron tube may be used instead of a concrete box. In this iron, a combination of iron and carbon materials in humus is filled into a net or a water-permeable container (or bag). Also, a bag containing only humus and a bag containing carbon material and iron material, both of which are filled in another large bag, is placed in an iron cylinder. In this case, the steel tube will dissolve after long-term use.

本発明に従う鉄分供給材は、鉄の供給を必要とする場所(環境水中)、すなわち河川中、湖沼中および海中のいずれかに設置することで、鉄分を鉄錯体として効果的に環境水中に溶出させることができる。   The iron supply material according to the present invention can be effectively dissolved in the environmental water as an iron complex by installing it in a place (environmental water) where iron supply is required, that is, in a river, a lake, or the sea. Can be made.

〔実施例1〕
腐葉土は、図6に示すSB(アカギ園芸製、広葉樹)を使用した。鉄材は、図7に示す鉄線(1本の長さ:50cm、直径:0.8mm、質量:2.27g、なまし鉄線、JIS規格番号:JIS G 3532、記号:SMW-A)、および粒状の鉄材(通称ではビレットと呼ばれている)を使用した。炭素材は、炭素繊維製織物(20cm×15cm、質量:30g)を用いた。ここで、鉄線中の酸素は、電子プローブマイクロアナライザ(電子線マイクロアナライザ)で観察した結果、検出限界以上の存在は認められなかった。また、木炭に簡易型テスターの両端子をあてたところ、電流の流れるのを確認した。
鉄線は、束ねたものを腐葉土中に挿入した。鉄材と炭素材を使用する場合は、炭素繊維織物の中に、鉄線の束を巻き込むようにして使用した。
[Example 1]
As the humus, SB (manufactured by Akagi Horticulture, hardwood) shown in FIG. 6 was used. The iron material is the iron wire shown in Fig. 7 (length: 50cm, diameter: 0.8mm, mass: 2.27g, annealed iron wire, JIS standard number: JIS G 3532, symbol: SMW-A), and granular iron material (Commonly called billet). As the carbon material, a carbon fiber fabric (20 cm × 15 cm, mass: 30 g) was used. Here, as a result of observing oxygen in the iron wire with an electron probe microanalyzer (electron beam microanalyzer), the presence of oxygen above the detection limit was not recognized. In addition, when both terminals of a simple tester were applied to charcoal, it was confirmed that current flowed.
The bundled iron wire was inserted into the mulch. When using an iron material and a carbon material, a bundle of iron wires was used in the carbon fiber fabric.

腐葉土、鉄材および炭素材をいれる容器は、広口びん(容量:2L、ポリエチレン製)を使用し、水は、腐葉土、鉄材および炭素材が水中に埋没するように1500mLを加えた。ついで、広口びんの蓋をした状態で静置した。表1に示すように、鉄と炭素材との構成を変えて、5種類の試料水溶液を作製した。
10日後、各水溶液をくみ出し、鉄濃度をICP法(誘導結合プラズマ発光分析法)で測定する準備を行った。容器内からくみ出した水溶液は、水切りネットで固形物を取り除いた。メスフラスコ50mLの中にイオン交換水:約25mLを入れ、そこに試料水溶液:5mLと12M-HCl:0.5mLを加えた。次に、イオン交換水を加えて50mLに正確に希釈した。希釈した試料水溶液は、孔径:0.45μmのミニザルトで濾過した。鉄濃度は、ICP法で測定した。
測定結果を表1に併記する。
The container containing humus, iron, and carbon was a wide-mouth bottle (capacity: 2 L, made of polyethylene), and 1500 mL of water was added so that the humus, iron, and carbon were buried in water. Then, it was left standing with the lid of the wide-mouth bottle. As shown in Table 1, five types of sample aqueous solutions were prepared by changing the configuration of iron and carbon material.
Ten days later, each aqueous solution was drawn out and preparations were made to measure the iron concentration by the ICP method (inductively coupled plasma emission spectrometry). The aqueous solution pumped out of the container was freed from solids with a draining net. Ion exchange water: about 25 mL was placed in a 50 mL volumetric flask, and an aqueous sample solution: 5 mL and 12 M HCl: 0.5 mL were added thereto. Next, ion-exchanged water was added to dilute accurately to 50 mL. The diluted sample aqueous solution was filtered through a minisalt having a pore size of 0.45 μm. The iron concentration was measured by the ICP method.
The measurement results are also shown in Table 1.

同表より、腐葉土単独の場合(1−1)よりも、鉄材と共存(1−2)させることで、鉄濃度は13.6倍も大きくなったことが分かる。さらに、炭素材と接触(1−3)させることで、腐葉土単独の場合よりも、鉄濃度が18.0倍も高濃度となったことが分かる。
上記鉄濃度を測定後、容器内の水溶液を取り出し、新たな水を加えた。10日後、同様の処理を行い、鉄濃度を測定した。腐葉土単独の場合(1−1)よりも、鉄材と共存(1−2)させることで、鉄濃度は12.2倍も大きくなったことが分かる。さらに、炭素材と接触(1−3)させることで、鉄濃度は20.9倍も高濃度となったことが分かる。
From the table, it can be seen that the iron concentration was increased 13.6 times by coexisting with the iron material (1-2) than in the case of humus alone (1-1). Furthermore, it is understood that the iron concentration is 18.0 times higher than that of humus alone by contacting with the carbon material (1-3).
After measuring the iron concentration, the aqueous solution in the container was taken out and fresh water was added. Ten days later, the same treatment was performed, and the iron concentration was measured. It turns out that iron concentration became 12.2 times larger by making it coexist with an iron material (1-2) rather than the case (1-1) of humus alone. Furthermore, it is found that the iron concentration became 20.9 times higher by contacting with the carbon material (1-3).

一方、鉄材として粒状鉄を使用した場合も、8.7倍(1−4)、10.5倍(1−5)も高濃度となった。これらの実験結果から、腐葉土中に炭素材と鉄材を接触させると、鉄の溶解量は著しく向上した。
さらに、水を交換してから10日後(実験開始から20日後)、容器内の水溶液を取り出し、上記と同様の処理を行い、鉄濃度を測定した。腐葉土単独の場合(1−1)よりも、鉄材と共存(1−4)させることで、鉄濃度は9.1倍も大となった。さらに、炭素材と接触(1−5)させることで、鉄濃度は10.8倍も高濃度となった。
On the other hand, when granular iron was used as the iron material, the concentrations were 8.7 times (1-4) and 10.5 times (1-5). From these experimental results, when the carbon material and the iron material were brought into contact with the humus, the amount of dissolved iron was remarkably improved.
Further, 10 days after the water was changed (20 days after the start of the experiment), the aqueous solution in the container was taken out and subjected to the same treatment as above, and the iron concentration was measured. The iron concentration became 9.1 times larger by coexisting with the iron material (1-4) than in the case of humus alone (1-1). Furthermore, iron concentration became 10.8 times as high concentration by making it contact with a carbon material (1-5).

〔実施例2〕
腐葉土中での鉄の溶解状況は、海水でも同様の挙動であるか否かを検討した。
腐葉土は、SBを160g使用した。鉄材は、実施例1のなまし鉄線:150gあるいは粒状鉄材(ビレット):150gを使用した。炭素材は、炭素繊維製織物(20cm×15cm、質量:30g)を用いた。鉄材は、腐葉土中に挿入した。鉄材と炭素材を併用する場合は、炭素繊維織物の中に、巻き込むようにして使用した。これらをいれる容器は、広口びん(容量:2L、ポリエチレン製)を使用した。海水と同程度の塩濃度である3%−塩化ナトリウム水溶液を使用し、これを腐葉土、鉄材、炭素材が水中に浸るように1500mLを加え、その後、容器に蓋をした状態で保持した。鉄と炭素材との構成を変えて、表2に示す5種類の試料水溶液を作製した。
[Example 2]
We investigated whether the dissolution of iron in humus was the same in seawater.
The humus used 160g of SB. As the iron material, the annealed iron wire of Example 1: 150 g or the granular iron material (billet): 150 g was used. As the carbon material, a carbon fiber fabric (20 cm × 15 cm, mass: 30 g) was used. The iron material was inserted into the humus. When using an iron material and a carbon material in combination, they were used by being wrapped in a carbon fiber fabric. A wide-mouth bottle (capacity: 2 L, made of polyethylene) was used as a container for containing these. A 3% -sodium chloride aqueous solution having a salt concentration similar to seawater was used, and 1500 mL of this was added so that the humus, iron, and carbon materials were immersed in water, and then the container was held in a covered state. Five types of sample aqueous solutions shown in Table 2 were prepared by changing the configuration of iron and carbon material.

実験は、2013年2月20日に開始。7日後、水溶液をくみ出し、鉄濃度を測定する準備を行った。容器内からくみ出した水溶液は、水切りネットで固形物を取り除いた。イオン交換水:約25mLを入れてあるメスフラスコに、試料水溶液:5mLと12M-HCl:0.5mLを加えた。次に、イオン交換水を加えて50mLに正確に希釈した。希釈した試料水溶液は、孔径:0.45μmのミニザルトで濾過した。鉄濃度は、ICP法で測定した。
測定結果を表2に併記する。
The experiment started on February 20, 2013. After 7 days, the aqueous solution was drawn out and preparations for measuring the iron concentration were made. The aqueous solution pumped out of the container was freed from solids with a draining net. Aqueous sample: 5 mL and 12 M HCl: 0.5 mL were added to a volumetric flask containing about 25 mL of ion-exchanged water. Next, ion-exchanged water was added to dilute accurately to 50 mL. The diluted sample aqueous solution was filtered through a minisalt having a pore size of 0.45 μm. The iron concentration was measured by the ICP method.
The measurement results are also shown in Table 2.

同表より、腐葉土単独の場合(2−1)の鉄濃度は、0.36mg/Lであったが、鉄材を加える(2−2)と42.6mg/Lと118倍も高濃度となった。さらに、鉄材に炭素材を接触させる(2−3)と76.4mg/Lとなり、腐葉土単独の場合よりも212倍も高くなった。炭素材の有無によって1.8倍も鉄の溶解が促進された。
一方、鉄材として粒状鉄を使用した場合には、腐葉土単独の4.9倍(2−4)、炭素材との併用(2−5)では7.0倍程度であった。使用する鉄材は、粒状鉄よりも、線状の鉄材の方が効果的であった。
From the table, in the case of humus alone, the iron concentration in (2-1) was 0.36 mg / L, but when iron material was added (2-2), it was 42.6 mg / L, 118 times higher. Furthermore, when the carbon material was brought into contact with the iron material (2-3), it was 76.4 mg / L, which was 212 times higher than that of the humus alone. Iron dissolution was accelerated 1.8 times depending on the presence or absence of carbon material.
On the other hand, when granular iron was used as the iron material, it was about 4.9 times (2-4) of humus alone, and about 7.0 times when combined with carbon material (2-5). As the iron material to be used, a linear iron material was more effective than granular iron.

〔実施例3〕
3%−塩化ナトリウムを使用し、腐葉土/鉄線、腐葉土/鉄線/炭素繊維織物を使用し、毎日、塩水溶液を交換した場合の鉄の溶出量を求めた。
腐葉土は、SBを100g、鉄材は、実施例1のなまし鉄線:100gをそれぞれ使用した。また、炭素材は、炭素繊維製織物(35cm×15cm、質量:50g)を用いた。
鉄材を単独で用いる場合は、鉄材を腐葉土中に挿入した。鉄材と炭素材を併用する場合は、炭素繊維織物の中に、巻き込むようにして使用した。
これらを入れる容器は、広口びん(容量:1L、ポリエチレン製)を使用した。試料3−1は、腐葉土と鉄、試料3−2は、腐葉土と鉄と炭素材(炭素繊維)をいれた。この容器の中に、海水と同程度の塩濃度である3%−塩化ナトリウム水溶液を、腐葉土、鉄材、炭素材が水中に浸るように700mLを加え、その後、容器に蓋をした状態で保持した。
Example 3
Using 3% -sodium chloride and humus / iron wire, humus / iron wire / carbon fiber fabric, the elution amount of iron when the salt solution was changed every day was determined.
The humus was 100 g of SB, and the iron material was 100 g of the annealed iron wire of Example 1. As the carbon material, a carbon fiber fabric (35 cm × 15 cm, mass: 50 g) was used.
When using an iron material alone, the iron material was inserted into humus. When using an iron material and a carbon material in combination, they were used by being wrapped in a carbon fiber fabric.
As a container for these, a wide-mouth bottle (capacity: 1 L, made of polyethylene) was used. Sample 3-1 contained humus and iron, and sample 3-2 contained humus, iron and carbon material (carbon fiber). In this container, 700 mL of a 3% -sodium chloride aqueous solution having a salt concentration similar to seawater was added so that the humus, iron, and carbon materials were immersed in water, and then the container was held in a covered state. .

実験は、2013年3月21日に開始。1日後、容器を傾けて中の水溶液をほぼくみ出し、新たに調製した3%−塩化ナトリウム水溶液を700ml加えた。
所定期間経過後、容器内の塩化ナトリウム水溶液をくみだし、新たな塩化ナトリウム水溶液を加える操作を行った。交換した期日は、1日後、4日後、5日後、6日後、7日後、8日後、および11日後であった。
くみだした容器内液は、鉄濃度を測定する準備を行った。容器内からくみ出した水溶液は、水切りネットで固形物を取り除いた。イオン交換水:約25mLを入れてあるメスフラスコに、試料水溶液:5mLと12M-HCl:0.5mLを加えた。次に、イオン交換水を加えて50mLに正確に希釈した。希釈した試料水溶液は、孔径:0.45μmのミニザルトで濾過した。鉄濃度は、ICP法で測定した。
測定結果を表3に併記する。
The experiment started on March 21, 2013. One day later, the container was tilted to almost draw out the aqueous solution, and 700 ml of a newly prepared 3% -sodium chloride aqueous solution was added.
After a predetermined period of time, a sodium chloride aqueous solution in the container was drawn out and a new sodium chloride aqueous solution was added. The exchange dates were 1 day, 4 days, 5 days, 6 days, 7 days, 8 days, and 11 days later.
The prepared liquid in the container was prepared for measuring the iron concentration. The aqueous solution pumped out of the container was freed from solids with a draining net. Aqueous sample: 5 mL and 12 M HCl: 0.5 mL were added to a volumetric flask containing about 25 mL of ion-exchanged water. Next, ion-exchanged water was added to dilute accurately to 50 mL. The diluted sample aqueous solution was filtered through a minisalt having a pore size of 0.45 μm. The iron concentration was measured by the ICP method.
The measurement results are also shown in Table 3.

表3より、1日後の腐葉土/鉄の場合(3−1)の鉄濃度は、10.6mg/Lであったが、炭素材を加えると32.1mg/Lと約3倍も高濃度となった。
いずれの場合も、炭素材を加えることで、鉄の溶出量は大となっていた。各7回の測定値を累計すると、炭素材をくわえることで、鉄の溶解は、1.5倍も促進された。
From Table 3, the iron concentration in the case of humus / iron after 1 day was (1) 10.6 mg / L, but when carbon material was added, it became 32.1 mg / L, which was about three times as high. .
In either case, the amount of iron elution was increased by adding a carbon material. By accumulating the measured values for each of the seven measurements, the melting of iron was promoted 1.5 times by adding the carbon material.

なお、上述していないその他の実施形態、例えば、炭素繊維強化プラスチック、膨張黒鉛シート、木炭、黒鉛材、炭素材、および竹炭のうちから選んだ少なくとも1種であれば、上記の実施例同様の優れた鉄溶出効果を有していることを確認している。   Other embodiments not described above, for example, carbon fiber reinforced plastic, expanded graphite sheet, charcoal, graphite material, carbon material, and bamboo charcoal are the same as in the above examples, It has been confirmed that it has an excellent iron elution effect.

また、本発明は、炭素材と鉄材との少なくとも一部が接触していることが重要であり、その形状や接触態様は、鉄分供給材の実際の設置条件によって、適宜変更できることは言うまでもない。   In the present invention, it is important that at least a part of the carbon material and the iron material are in contact with each other, and it is needless to say that the shape and the contact mode can be appropriately changed according to the actual installation conditions of the iron supply material.

本発明に従う鉄分供給材を利用することによって、クロロフィルを増やし、海草や海藻を繁殖させ、水質を浄化し、ヘドロを分解し、海の透明度を向上させることができる。
また、磯焼けを防止して、魚介類を繁殖させる。
さらには、海藻による二酸化炭素の吸収および大気中の二酸化炭素の海水への溶解促進効果を通じて、地球の温暖化を防止することができる。
By utilizing the iron supply material according to the present invention, chlorophyll can be increased, seaweeds and seaweeds can be propagated, water quality can be purified, sludge can be decomposed, and the transparency of the sea can be improved.
It also prevents sea burning and breeds seafood.
Furthermore, global warming can be prevented through the absorption of carbon dioxide by seaweed and the effect of promoting dissolution of atmospheric carbon dioxide into seawater.

Claims (6)

環境水中に対して鉄分を供給する鉄分供給材であって、腐葉土と、炭素材と、さらに酸素含有量が1質量%以下の鉄材を含み、該炭素材と該鉄材との少なくとも一部が接触し、かつ前記鉄材および前記炭素材を前記鉄分供給材の中心とし、その外周に前記腐葉土を配置している鉄分供給材。 An iron supply material for supplying iron to environmental water, comprising humus, a carbon material, and an iron material having an oxygen content of 1% by mass or less, and at least a part of the carbon material and the iron material are in contact with each other And the iron supply material which makes the said iron material and the said carbon material the center of the said iron content supply material, and has arrange | positioned the said humus soil on the outer periphery . 前記鉄材が、酸素含有量:1質量%以下の純鉄である請求項1に記載の鉄分供給材。   The iron supply material according to claim 1, wherein the iron material is pure iron having an oxygen content of 1% by mass or less. 前記炭素材の電気伝導度が体積抵抗率で103Ω・cm以下である請求項1または2に記載の鉄分供給材。 The iron supply material according to claim 1 or 2, wherein the electric conductivity of the carbon material is 10 3 Ω · cm or less in volume resistivity. 前記炭素材が、炭素繊維強化プラスチック、膨張黒鉛シート、木炭、黒鉛材、炭素材、竹炭および炭素繊維のうちから選んだ少なくとも1種である請求項1〜3のいずれかに記載の鉄分供給材。   The iron supply material according to any one of claims 1 to 3, wherein the carbon material is at least one selected from carbon fiber reinforced plastic, expanded graphite sheet, charcoal, graphite material, carbon material, bamboo charcoal, and carbon fiber. . 前記腐葉土の外側から、自己収縮性を持つ固縛材で包んだ請求項1〜のいずれかに記載の鉄分供給材。 The iron supply material according to any one of claims 1 to 4 , wherein the iron supply material is wrapped with a self-shrinking binding material from the outside of the mulch. 請求項1〜のいずれかに記載の鉄分供給材を、河川中、湖沼中および海中のうちから選んだ少なくとも1箇所の環境水中に設置し、鉄錯体として鉄分を該環境水中に溶出させる鉄分供給方法。 The iron component according to any one of claims 1 to 5 , wherein the iron component is installed in at least one environmental water selected from among rivers, lakes and seas, and iron is eluted into the environmental water as an iron complex. Supply method.
JP2013080455A 2013-04-08 2013-04-08 Iron supply material and iron supply method Active JP6173001B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013080455A JP6173001B2 (en) 2013-04-08 2013-04-08 Iron supply material and iron supply method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013080455A JP6173001B2 (en) 2013-04-08 2013-04-08 Iron supply material and iron supply method

Publications (2)

Publication Number Publication Date
JP2014200213A JP2014200213A (en) 2014-10-27
JP6173001B2 true JP6173001B2 (en) 2017-08-02

Family

ID=52351246

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013080455A Active JP6173001B2 (en) 2013-04-08 2013-04-08 Iron supply material and iron supply method

Country Status (1)

Country Link
JP (1) JP6173001B2 (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017046593A (en) * 2014-01-09 2017-03-09 石井商事株式会社 Accretion promotion material of egg and larva of shellfish as well as seedling collection method and aquaculture method of shellfish using the same
JP6524445B2 (en) * 2014-11-21 2019-06-05 日本製鉄株式会社 Iron content supply material, method of producing iron content supply material, and method of supplying iron content
JP6604017B2 (en) * 2015-03-31 2019-11-13 日本製鉄株式会社 Application method of water area environmental conservation material
JP2016195579A (en) * 2015-04-06 2016-11-24 株式会社神戸製鋼所 Iron feeding method, iron feeding material, plant cultivation method, culture method of euglena, and method for cultivating fish and shellfish
JP5864811B1 (en) * 2015-10-08 2016-02-17 株式会社 イチキン Bivalent iron ion feeder for underwater use
CN108713527A (en) * 2018-06-15 2018-10-30 胡从武 A kind of cultural method of bamboo rat

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005006625A (en) * 2003-06-17 2005-01-13 ▲高▼島産業株式会社 Concrete block for growing marine algae
JP5258171B2 (en) * 2006-03-10 2013-08-07 幹生 杉本 Iron ion eluent
JP4556038B2 (en) * 2008-06-11 2010-10-06 石井商事株式会社 Water purification material
JP2010104362A (en) * 2008-10-02 2010-05-13 Komiya Kensetsu:Kk Hardened material for creating seaweed bed
JP2011173104A (en) * 2010-02-26 2011-09-08 Tadashi Miyamoto Production method of wastewater treatment material
JP5112483B2 (en) * 2010-08-11 2013-01-09 中川特殊鋼株式会社 Canned for marine greening, method for using canned for marine greening, and method for producing canned for marine greening

Also Published As

Publication number Publication date
JP2014200213A (en) 2014-10-27

Similar Documents

Publication Publication Date Title
JP6173001B2 (en) Iron supply material and iron supply method
de Souza Machado et al. Metal fate and effects in estuaries: a review and conceptual model for better understanding of toxicity
Jović et al. Mussels as a bio-indicator of the environmental quality of the coastal water of the Boka Kotorska Bay (Montenegro)
JP4556038B2 (en) Water purification material
JP2006212036A (en) Aquatic environment preservation material and aquatic environment preservation method
JP3829140B2 (en) How to repair salmon burn
Troell et al. Cage fish farming in the tropical Lake Kariba, Zimbabwe: impact and biogeochemical changes in sediment
JP4710036B2 (en) Iron chelate generating material and method of using the same
Zhang et al. Carbon budgets of two typical polyculture pond systems in coastal China and their potential roles in the global carbon cycle
Kapia et al. Assessment of heavy metal pollution risks in Yonki Reservoir environmental matrices affected by gold mining activity
CN102150632B (en) Method for acclimatization culture of shrimp postlarvae by using inland soda-type saline-alkali water
JPWO2016024408A1 (en) Iron supply material to environmental water, maintenance method of iron supply material, and iron supply method to environmental water
Lacerda et al. Fate of copper in intensive shrimp farms: bioaccumulation and deposition in pond sediments
Xu et al. Impacts of estuarine dissolved organic matter and suspended particles from fish farming on the biogeochemical cycling of mercury in Zhoushan island, eastern China Sea
Wollak et al. Evaluation of blue mussels (Mytilus edulis) as substrate for biogas production in Kalmar County (Sweden)
Akizuki et al. A multifunctional single-stage process for the effective methane recovery and denitrification of intermittently discharged wastes
Benitez et al. The environmental impact of human activities on the Mexican coast of the Gulf of Mexico: review of status and trends
Olowoyo et al. Assessing the levels of trace metal from two fish species harvested from treated waste water stored in a manmade lake Pretoria, South Africa
JP5884631B2 (en) Water environment container
Babu et al. Phosphorus accumulation associated with intense diagenetic metal-oxide cycling in sediments along the eastern continental margin of India
Hou et al. Effect of the bioturbation derived from sea cucumber Apostichopus japonicus (Selenka) farming on the different occurrence forms of sedimentary inorganic carbon
JP5134200B2 (en) Underwater soil improver and method for improving underwater soil thereby
JP2005342624A (en) Method for producing bottom sediment purification material composed of shell
JP2020080691A (en) Plankton growing method, and plankton growing material and plankton growing apparatus used for the plankton growing method
JP2020000016A (en) Water-soluble iron supply device and water-soluble iron supply method using the device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20160408

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20160411

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20161220

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20170217

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20170613

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20170704

R150 Certificate of patent or registration of utility model

Ref document number: 6173001

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313117

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313117

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250