JP6604017B2 - Application method of water area environmental conservation material - Google Patents

Application method of water area environmental conservation material Download PDF

Info

Publication number
JP6604017B2
JP6604017B2 JP2015073559A JP2015073559A JP6604017B2 JP 6604017 B2 JP6604017 B2 JP 6604017B2 JP 2015073559 A JP2015073559 A JP 2015073559A JP 2015073559 A JP2015073559 A JP 2015073559A JP 6604017 B2 JP6604017 B2 JP 6604017B2
Authority
JP
Japan
Prior art keywords
humic acid
substance
water area
iron
fermentation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2015073559A
Other languages
Japanese (ja)
Other versions
JP2016194195A (en
Inventor
敏朗 加藤
知佳 小杉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP2015073559A priority Critical patent/JP6604017B2/en
Publication of JP2016194195A publication Critical patent/JP2016194195A/en
Application granted granted Critical
Publication of JP6604017B2 publication Critical patent/JP6604017B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A40/00Adaptation technologies in agriculture, forestry, livestock or agroalimentary production
    • Y02A40/80Adaptation technologies in agriculture, forestry, livestock or agroalimentary production in fisheries management
    • Y02A40/81Aquaculture, e.g. of fish

Landscapes

  • Artificial Fish Reefs (AREA)
  • Processing Of Solid Wastes (AREA)
  • Treatment Of Biological Wastes In General (AREA)
  • Treatment Of Sludge (AREA)

Description

本発明は、淡水、汽水、海水の沿岸の水域に生育する藻類や微生物等の海洋生物に対して栄養成分を供給するための水域環境保全材料、並びにこの水域環境保全材料の施用方法に関する。   The present invention relates to an aquatic environment conservation material for supplying nutrient components to marine organisms such as algae and microorganisms that grow in coastal waters of freshwater, brackish water, and seawater, and a method for applying the aquatic environment conservation material.

近年、水域では、生物の生育に必要な鉄分の不足による生物生産量の低下が生じている。例えば沿岸部の海域では、岩場から海藻が消えて石灰藻に覆われる磯焼け現象が進行し、コンブ、ウニ、アワビ等の沿岸水産資源の減少が顕著になってきている。   In recent years, in the water area, the production of organisms has been reduced due to the lack of iron necessary for the growth of organisms. For example, in coastal waters, seaweed disappears from rocky areas, and a burning phenomenon that is covered with lime algae progresses, and the reduction of coastal marine resources such as kombu, sea urchins, and abalone has become remarkable.

沿岸の水域の鉄分は、森林の腐植土中で生成した水溶性の腐植酸鉄(フルボ酸(fulvic acid)やフミン酸(humic acid)等の腐植酸が鉄イオンと錯形成したもの)が河川を通じて山から海へ流入することにより、供給されていると考えられている。しかし、近年の森林の荒廃等によって腐植酸鉄の沿岸水域への供給量が減少し、そのことが原因となって、例えば磯焼けが起きる場合がある。   The iron content of coastal waters is water soluble humic acid iron (complexed humic acid such as fulvic acid and humic acid complexed with iron ions) formed in forest humus. It is thought that it is supplied by flowing into the sea from the mountain. However, due to the recent devastation of forests, the supply of humic acid fertilizer to coastal waters has decreased, which may cause, for example, firewood burning.

このような沿岸水域の鉄分の供給不足の問題に対し、従来、鉄分等のミネラルを付着させた、および/または、石炭灰(フライアッシュ)等を混入させたコンクリート等を海中に沈設する技術(例えば、下記特許文献1〜3)、あるいは、鉄分等のミネラルを供給するためのミネラル供給材を海中に設置する技術(例えば、下記特許文献4〜6)が提案されている。さらに、二価鉄含有肥料を水域に設置する技術(例えば、下記特許文献4、7)が提案されている。   In order to deal with the problem of insufficient supply of iron in coastal waters, conventionally, a technology that deposits concrete or the like with minerals such as iron attached and / or mixed with coal ash (fly ash) etc. in the sea ( For example, the following patent documents 1 to 3) or a technique (for example, the following patent documents 4 to 6) in which a mineral supply material for supplying minerals such as iron is installed in the sea has been proposed. Furthermore, the technique (for example, the following patent documents 4 and 7) which installs a ferric fertilizer containing bivalent iron in a water area is proposed.

特開平6−217657号公報JP-A-6-217657 特開平8−89126号公報JP-A-8-89126 特開2002−45078号公報Japanese Patent Laid-Open No. 2002-45078 特開2006−212036号公報JP 2006-212036 A 特開2013−102743号公報JP 2013-102743 A 特開2013−126409号公報JP2013-126409A 特開2007−330254号公報JP 2007-330254 A

生産研究、第45巻、第7号、2頁(1993)Production Research, Vol. 45, No. 7, p. 2 (1993) http://www.humicsubstances.org/soilhafa.htmlhttp://www.humicsubstances.org/soilhafa.html 地盤工学会「JGS T 232 土の腐植含有量試験」Geotechnical Society “JGS T 232 Soil Humic Content Test” 「堆肥等有機物分析法」(日本土壌学会)"Analytical method for organic matter such as compost" (Japan Soil Society) 海洋科学研究、第22巻、第1号、19頁(2009)Marine Science Research, Vol. 22, No. 1, p. 19 (2009)

特許文献1〜3に記載の技術では、コンクリート材料からの鉄分等のミネラルの溶出は極めて遅く、かつ、少ないため、海水中での海藻増殖の効果が小さい。また、特許文献2、4〜7に記載の技術では、従来のミネラル供給材を海中設置する際、鉄イオン等を生物が取り込みやすい溶存態として安定化させるために、ミネラル含有物質をフルボ酸や有機酸などのイオン交換物質と混合する必要がある。しかしながら、これらのイオン交換物質は水溶性が高く、速やかに海水中に溶出するため、ミネラル供給材に含まれるイオン交換物質は急速に枯渇してしまうことから、海中に対する施肥効果が持続しない。さらに、特許文献2、4〜7では、水域への鉄分等の供給効果を長期間にわたって持続させるための要件については何ら開示されていない。具体的には、特許文献4には、ミネラル供給材が、発酵後にフルボ酸を含有する物質と、発酵促進剤とを含有することの開示があるが、水域への鉄分等の供給効果を持続させるためにミネラル供給材に含有される物質の含有量や状態についての詳細な要件は、明確にされていない。   In the techniques described in Patent Documents 1 to 3, since the elution of minerals such as iron from the concrete material is extremely slow and small, the effect of seaweed growth in seawater is small. In addition, in the techniques described in Patent Documents 2, 4 to 7, when a conventional mineral supply material is installed in the sea, in order to stabilize iron ions and the like in a dissolved state that can be easily taken up by living organisms, It must be mixed with an ion exchange material such as an organic acid. However, since these ion exchange materials are highly soluble in water and are quickly eluted in seawater, the ion exchange materials contained in the mineral supply material are rapidly depleted, so that the fertilizing effect on the sea does not continue. Furthermore, Patent Documents 2 and 4 to 7 do not disclose any requirements for maintaining the supply effect of iron or the like to the water area over a long period of time. Specifically, Patent Document 4 discloses that the mineral supply material contains a substance containing fulvic acid after fermentation and a fermentation accelerator, but sustains the effect of supplying iron or the like to the water area. The detailed requirements for the content and state of the substances contained in the mineral supply are not clarified.

そこで、本発明の課題は、鉄イオンを、持続的に水域に供給することを可能とする水域環境保全材料の施用方法を提供することである。   Then, the subject of this invention is providing the application method of the water area environmental conservation material which makes it possible to supply an iron ion to a water area continuously.

上記の課題を解決するために、本発明は以下の構成を要旨とする。
(1)腐植酸供給物質を発酵させて腐植酸を生成させる腐植酸供給物質の発酵工程と、前記発酵工程後の前記腐植酸を含む前記腐植酸供給物質を、鉄含有物質と混合して水域環境保全材料を製造する水域環境保全材料の製造工程と、前記水域環境保全材料を水域に施用する施用工程と、を備える、水域環境保全材料の施用方法であって、前記腐植酸供給物質には、腐植土が含まれており、前記腐植酸供給物質の発酵工程にて、フルボ酸とフミン酸とのそれぞれの含有量の経時変化を測定し、予め測定されている発酵期間と前記含有量との関係に基づいて、前記フミン酸に比べて前記フルボ酸が多く含有されている発酵途中の腐植酸供給物質を取得し、前記製造工程にて、取得した前記発酵途中の腐植酸供給物質を前記鉄含有物質と混合する、水域環境保全材料の施用方法。
In order to solve the above-described problems, the present invention has the following configuration.
(1) A fermentation process of a humic acid supply substance that ferments a humic acid supply substance to produce humic acid, and the humic acid supply substance containing the humic acid after the fermentation process is mixed with an iron-containing substance to form a water area A method for applying an aquatic environment-preserving material, comprising: a process for producing an aquatic environment-preserving material for producing an environmentally-preserving material; and an application process for applying the aquatic environment-preserving material to a water area. Humus soil is contained, and in the fermentation step of the humic acid supply substance, the time-dependent changes in the contents of fulvic acid and humic acid are measured, and the fermentation period and the contents measured in advance are measured. Based on the relationship, obtaining the humic acid supply substance in the middle of fermentation containing more fulvic acid than the humic acid, the obtained humic acid supply substance in the fermentation in the production step, Mixed with iron-containing materials, A method of applying the frequency environmental protection material.

(2)前記腐植土は、廃木材チップ、樹木のバーク、落ち葉、剪定くず、除草発生材の少なくともいずれか一つを含む、上記(1)に記載の水域環境保全材料の施用方法。(2) The said humus soil is an application method of the water area environmental conservation material as described in said (1) containing at least any one of a waste wood chip | tip, a bark of a tree, a fallen leaf, a pruning waste, and a weed generating material.

(3)前記発酵途中の腐植酸供給物質は、前記フルボ酸の含有量が最大量に達する以前に取得される、上記(1)又は(2)に記載の水域保全材料の施用方法。(3) The application method of the water area conservation material according to (1) or (2), wherein the humic acid supply substance during fermentation is acquired before the content of the fulvic acid reaches a maximum amount.

(4)前記鉄含有物質には製鋼スラグを含まれることを特徴とする、上記(1)〜(3)のいずれか一つに記載の水域環境保全材料の施用方法。 (4) The method for applying an aquatic environment conservation material according to any one of (1) to (3) above, wherein the iron-containing substance contains steel slag.

本発明の水域環境保全材料は、鉄含有物質(鉄イオンを溶出可能な物質)と腐植酸供給物質とを混合して用いるので、設置初期ばかりでなく、長期間にわたって腐植酸鉄を持続的に生成させることが可能となる。これにより水域環境保全が達成できる。つまり、初期の含有成分としての腐植酸鉄ばかりでなく、水域環境保全材料の設置後、微生物等の作用によって初期の含有成分が代謝されて腐植酸鉄が新たに、かつ、持続的に生成することにより、長期間にわたって水域に持続的に鉄分を供給できる。水域に鉄分を供給することができれば、それを必要とする海藻類の増殖を惹起し、それを契機として豊かな水辺環境が創生される。   The aquatic environment conservation material of the present invention uses a mixture of an iron-containing substance (a substance capable of eluting iron ions) and a humic acid supply substance. Can be generated. As a result, water environment conservation can be achieved. In other words, not only iron humate as an initial component, but also after the installation of the water environment conservation material, the initial component is metabolized by the action of microorganisms, etc., and iron humate is newly and continuously generated. Thus, iron can be continuously supplied to the water area over a long period of time. If iron can be supplied to the water area, it will cause the growth of seaweeds that need it, and this will create a rich waterfront environment.

実施例1の腐植酸供給物質の発酵工程における腐植酸含有量および有機物質含有量の経時変化を示した図である。It is the figure which showed the time-dependent change of humic acid content in the fermentation process of the humic acid supply substance of Example 1, and organic substance content. 実施例1〜2で用いた水域環境保全材料を収納して海中に沈設するための容器の斜視図である。It is a perspective view of the container for accommodating the water area environmental conservation material used in Examples 1-2 and sinking it in the sea. 実施例Aにおける海水中の溶存鉄濃度増加量の経時変化を示した図である。It is the figure which showed the time-dependent change of the dissolved iron concentration increase amount in seawater in Example A. 比較例Bにおける海水中の溶存鉄濃度増加量の経時変化を示した図である。It is the figure which showed the time-dependent change of the dissolved iron concentration increase amount in the seawater in the comparative example B. 実施例2で用いた腐植酸供給物質の発酵工程におけるフルボ酸含有量、フミン酸含有量および有機物質含有量の経時変化を示した図である。It is the figure which showed the time-dependent change of the fulvic acid content in the fermentation process of the humic acid supply substance used in Example 2, humic acid content, and organic substance content.

以下に添付図面を参照しながら、本発明の実施の形態について詳細に説明する。まず、本実施形態で使用される材料について説明する。   Hereinafter, embodiments of the present invention will be described in detail with reference to the accompanying drawings. First, materials used in the present embodiment will be described.

以下の説明において、「水域環境保全材料」とは、水域環境の保全に寄与する材料を意味し、「水域環境保全」とは、水域環境にとって良い影響を与えることを意味する幅広い概念を意味する。具体的には、「水域環境保全」には、海藻の繁茂を契機として、水質汚濁栄養成分の吸収除去等を通じた水質改善や魚介類の蝟集や生息を誘起した生物環境改善などが含まれる。また、「水域」とは、海水であるか淡水であるかを問わず、水が関連する場所を意味する概念である。例えば、海、河川、湖沼、干潟などが水域の例としてあげられる。   In the following description, “aquatic environment conservation material” means a material that contributes to the conservation of the aquatic environment, and “aquatic environment conservation” means a broad concept that means having a positive impact on the aquatic environment. . Specifically, “aquatic environment conservation” includes the improvement of water quality through the absorption and removal of water-polluting nutrients and the improvement of the biological environment induced by the collection and inhabiting of seafood, triggered by the growth of seaweeds. The “water area” is a concept that means a place where water is related regardless of whether it is seawater or fresh water. For example, seas, rivers, lakes, and tidal flats are examples of water bodies.

(水域環境保全材料)
本実施形態に係る水域環境保全材料は、フルボ酸やフミン酸などの腐植酸と、腐植酸等を生成することができる腐植酸供給物質と、鉄イオンを溶出可能な鉄含有物質とを含有することができる。水域環境保全材料は、さらに、ギ酸や酢酸などの低分子の有機酸等を含有してもよい。
(Water Environment Conservation Materials)
The water area environmental conservation material according to the present embodiment contains humic acid such as fulvic acid and humic acid, a humic acid supply substance capable of generating humic acid and the like, and an iron-containing substance capable of eluting iron ions. be able to. The water area environmental conservation material may further contain a low molecular organic acid such as formic acid or acetic acid.

(腐植酸)
以下に、本実施形態に係る腐植酸について説明する。狭義にはフミン酸のことを腐植酸と呼ぶ場合があるが、本実施形態においては、腐植酸はフルボ酸とフミン酸の両方を含む。なお、腐植酸のうち、酸可溶性成分がフルボ酸であり、酸性条件下で沈殿する有機物質がフミン酸である。なお、水域環境保全材料に含有される腐植酸に関しては、フミン酸は水溶性が低いために水域への腐植酸鉄供給量が少なくなることから、フルボ酸が多く含有されることが好ましく、フミン酸よりもフルボ酸が多く含有されていることがさらに好ましい。
(Humic acid)
Below, the humic acid which concerns on this embodiment is demonstrated. Although humic acid may be called humic acid in a narrow sense, in this embodiment, humic acid contains both fulvic acid and humic acid. Of the humic acids, the acid-soluble component is fulvic acid, and the organic substance that precipitates under acidic conditions is humic acid. As for the humic acid contained in the water environment conservation material, it is preferable that humic acid contains a large amount of fulvic acid because humic acid is low in water solubility, and therefore the supply amount of humic acid iron to the water area decreases. More preferably, the fulvic acid is contained more than the acid.

(腐植酸供給物質)
次に、本実施形態に係る腐植酸供給物質について説明する。腐植酸供給物質とは、微生物の代謝反応による発酵によって、腐植酸や有機酸を生成することができる有機物質である。本実施形態の腐植酸供給物質としては、腐植土を用いるのが好適である。腐植土は、植物系の有機物質原料を発酵させて堆肥化したものであり、他の腐植酸供給物質に比べ、最も腐植酸生成量が多く、更にはフルボ酸生成量が多く、熟成し易く、劣化が少なく、環境汚染の可能性が低く、さらに、植物の一種である海藻類の成分組成に近い。腐植土としては、例えば廃木材チップ、樹木のバーク、落ち葉、剪定くず、除草発生材、水産加工残渣、魚かす、家畜ふん、下水汚泥などを用いることができる。
(Humic acid supply substance)
Next, the humic acid supply substance according to this embodiment will be described. The humic acid supply substance is an organic substance that can generate humic acid and organic acid by fermentation by metabolic reaction of microorganisms. It is preferable to use humus as the humic acid supply substance of this embodiment. Humus soil is fermented from fermented organic materials of plant-based materials. It produces the highest amount of humic acid, and more fulvic acid than other humic acid supply substances, and is easy to mature. It is less degraded, has a low possibility of environmental pollution, and is close to the composition of seaweeds, a kind of plant. As the humus soil, for example, waste wood chips, bark of trees, fallen leaves, pruning scraps, weed generating materials, fishery processing residues, fish cake, livestock dung, sewage sludge and the like can be used.

本実施形態の腐植酸供給物質としては、天然に発酵した腐植土を用いることもでき、人工的な発酵で熟成させた腐植土を用いることもできる。しかしながら、本実施形態においては、天然の腐植土中では微生物が代謝しにくい有機物質に変質している場合が多いことから、天然に発酵した腐植土よりも、人工的な発酵で熟成させた腐植土を用いる方が好ましい。   As a humic acid supply substance of this embodiment, humus soil fermented naturally can also be used, and humus soil ripened by artificial fermentation can also be used. However, in this embodiment, in many natural humus soils, microorganisms are often transformed into organic substances that are difficult to metabolize, and therefore, humus aged by artificial fermentation rather than naturally fermented humus soil. It is preferable to use soil.

さらに、人工的な発酵で熟成された腐植土を用いる場合、腐植土の発酵が進み過ぎると、腐植土の発酵から生成された腐植酸が分解されて、腐植酸供給物質の腐植酸の含有量が減少する場合がある。したがって、本実施形態においては、予め腐植酸の含有量を測定して、十分な腐植酸を含有することを確認した腐植酸供給物質を用いることが好ましい。   Furthermore, when using humus soil that has been aged by artificial fermentation, if the fermentation of the humus soil proceeds too much, the humic acid produced from the fermentation of the humus soil is decomposed and the content of humic acid in the humic acid supply substance May decrease. Therefore, in this embodiment, it is preferable to use a humic acid supply substance that has been measured in advance to confirm that it contains sufficient humic acid.

そこで、本実施形態においては、腐植酸供給物質を発酵させ、腐植酸を生成する工程で、予め発酵期間と腐植酸含有量の関係を測定によって把握する。そして、把握した発酵期間と腐植酸含有量の関係に基づいて、腐植酸の含有量が最大量に到達する以前の(すなわち、腐植酸の含有量が増加している途中の)腐植酸供給物質を取得する。そして、この腐植酸供給物質と鉄含有物質とを混合する。このような発酵途中の腐植酸供給物質を選択することで、水域環境保全材料を水域に設置した後も熟成反応が進行して持続的に腐植酸を生成させることができる。なお、本明細書においては、腐植酸の含有量が最大量に到達する以前には、腐植酸含有量が最大量に到達する前と、腐植酸含有量が最大量に到達した時点とを含む。   Therefore, in the present embodiment, in the step of fermenting the humic acid supply substance and generating humic acid, the relationship between the fermentation period and the humic acid content is previously grasped by measurement. Based on the relationship between the fermentation period and the humic acid content, the humic acid supply substance before the humic acid content reaches the maximum amount (that is, while the humic acid content is increasing) To get. Then, the humic acid supply substance and the iron-containing substance are mixed. By selecting such a humic acid supply substance in the middle of fermentation, the aging reaction proceeds and the humic acid can be continuously generated even after the aquatic environment conservation material is installed in the aquatic area. In addition, in this specification, before the content of humic acid reaches the maximum amount, it includes before the content of humic acid reaches the maximum amount and when the content of humic acid reaches the maximum amount. .

さらに、本実施形態においては、腐植酸の含有量が最大量程度となっている腐植酸供給物質を鉄含有物質と混合することが好ましい。水域環境保全材料が設置される水域は、例えば、腐植酸供給物質の発酵に最適な温度と比べ低い温度であったり、発酵を阻害する塩分の濃度が高かったりと、腐植酸供給物質の発酵に最適な環境ではないことが多い。したがって、水域環境保全材料が設置される水域によっては、設置後に腐植酸供給物質の熟成反応が十分に進まず、熟成反応未達となる腐植酸供給物質が多くなり、水域環境保全材料に含まれる腐植酸供給物質が本来供給可能な量の腐植酸を水域に供給できない可能性がある。そこで、本実施形態においては、発酵に最適の環境下で行われる後述の発酵工程においてあらかじめ腐植酸供給物質の発酵を十分に行って得た、腐植酸の含有量が最大量程度となった腐植酸供給物質を用いることで、腐植酸供給物質が本来供給可能な量の腐植酸を水域に供給することができる。そして、腐植酸供給物質が生成可能な腐植酸をより多く利用することが可能となることから、鉄イオンを効果的、且つ、持続的に水域に供給することができる。   Furthermore, in this embodiment, it is preferable to mix the humic acid supply substance in which the humic acid content is about the maximum amount with the iron-containing substance. The water area where the water environment conservation material is installed is, for example, a temperature lower than the optimum temperature for fermentation of the humic acid supply substance, or the salt concentration that inhibits fermentation is high. Often not the optimal environment. Therefore, depending on the water area where the aquatic environment conservation material is installed, the ripening reaction of the humic acid supply substance does not proceed sufficiently after installation, and the humic acid supply material that does not reach the aging reaction increases and is included in the aquatic environment conservation material There is a possibility that the amount of humic acid that the humic acid supply substance can originally supply cannot be supplied to the water area. Therefore, in the present embodiment, the humus obtained by sufficiently fermenting the humic acid supply substance in advance in the later-described fermentation process performed in an optimum environment for fermentation, and the humic acid content is about the maximum amount. By using the acid supply substance, an amount of humic acid that can be supplied by the humic acid supply substance can be supplied to the water area. And since it becomes possible to utilize more humic acids which can produce | generate a humic acid supply substance, an iron ion can be supplied to a water area effectively and continuously.

すなわち、本実施形態は、水域環境保全材料が水域に設置された後の腐植酸供給物質の状態について考慮して、用いる腐植酸供給物質の選定を行うことにより、腐植酸供給物質の腐植酸供給能力を最大限に引き出そうとするものである。そして、本実施形態においては、腐植酸供給物質の選定は、後述するように、腐植酸供給物質に含有される腐植酸を測定することによって行う。   That is, this embodiment considers the state of the humic acid supply material after the water environment protection material is installed in the water area, and selects the humic acid supply material to be used, thereby supplying the humic acid supply material to the humic acid supply material. It tries to maximize its capabilities. And in this embodiment, selection of a humic acid supply substance is performed by measuring the humic acid contained in a humic acid supply substance so that it may mention later.

腐植酸の含有量は、例えば上記非特許文献2に開示された方法、あるいは上記非特許文献3で開示された方法によって、測定することできる。非特許文献2では、供試材料から指定の方法で腐植酸を抽出したのち、腐植酸の乾燥質量として腐植酸の含油量を測定する方法が開示されている。また、非特許文献3では、供試材料から指定の方法で腐植酸を抽出したのちに、腐植酸を二クロム酸カリウム含有の酸化剤により酸化し、その際使用した酸化剤の量から酸化に必要な酸素量を求めて、腐植酸の量に換算する測定方法が開示されている。   The content of humic acid can be measured by, for example, the method disclosed in Non-Patent Document 2 or the method disclosed in Non-Patent Document 3. Non-Patent Document 2 discloses a method of measuring the oil content of humic acid as a dry mass of humic acid after extracting humic acid from a test material by a designated method. In Non-Patent Document 3, after extracting humic acid from a test material by a specified method, humic acid is oxidized with an oxidizing agent containing potassium dichromate, and the amount of oxidizing agent used at that time is changed to oxidation. A measuring method for obtaining a necessary amount of oxygen and converting it to the amount of humic acid is disclosed.

先に説明したように、本実施形態に係る水域環境保全材料には、フルボ酸が多く含有されることが好ましく、フミン酸よりもフルボ酸が多く含有されていることがさらに好ましい。腐植酸供給物質の発酵が進み過ぎると、例えば、発酵から生成された水溶性の高いフルボ酸から水溶性の低いフミン酸やフミン質への分解・重合が進んで(例えば、非特許文献1)、フルボ酸含有量が減少する場合がある。したがって、予めフルボ酸又はフミン酸の含有量を測定して、十分なフルボ酸を含有しつつ、フルボ酸が分解・重合して生成されたフミン酸が少ないことを確認した腐植酸供給物質を選択することが好ましい。すなわち、本実施形態は、フルボ酸の状態について考慮して、用いる腐植酸供給物質の選定を行うことにより、腐植酸供給物質のフルボ酸供給能力を最大限に引き出そうとするものである。そして、本実施形態においては、腐植酸供給物質の選定は、後述するように、腐植酸供給物質に含有されるフルボ酸及びフミン酸を測定することによって行う。   As explained above, the water area environmental conservation material according to the present embodiment preferably contains more fulvic acid, and more preferably contains more fulvic acid than humic acid. If the fermentation of the humic acid supply substance proceeds too much, for example, the decomposition / polymerization of the highly water-soluble fulvic acid generated from the fermentation into humic acid or humic acid having low water solubility proceeds (for example, Non-Patent Document 1). The fulvic acid content may be reduced. Therefore, by measuring the content of fulvic acid or humic acid in advance, select a humic acid supply substance that has been confirmed to contain a sufficient amount of fulvic acid and that humic acid produced by decomposition and polymerization of fulvic acid is low. It is preferable to do. In other words, in the present embodiment, the humic acid supply substance to be used is selected in consideration of the state of fulvic acid, so that the fulvic acid supply ability of the humic acid supply substance is maximized. And in this embodiment, selection of a humic acid supply substance is performed by measuring the fulvic acid and humic acid which are contained in a humic acid supply substance so that it may mention later.

そこで、本実施形態においては、腐植酸供給物質を発酵させ、腐植酸を生成する工程で、予め発酵期間とフルボ酸及びフミン酸の各含有量の関係を測定によって把握し、把握した発酵期間とフルボ酸及びフミン酸の各含有量の関係に基づいて、フルボ酸の含有量が最大量に到達する以前の腐植酸供給物質を選択する。より好ましくは、フルボ酸の含有量が最大量程度である腐植酸供給物質を選択する。このような発酵途中の腐植酸供給物質を選択することで、水域環境保全材料を水域に設置した後も熟成反応が進行して持続的にフルボ酸を生成させることができ、鉄イオンを効果的、且つ、持続的に水域に供給することができる。なお、本明細書においては、フルボ酸の含有量が最大量に到達する以前には、フルボ酸含有量が最大量に到達する前と、フルボ酸含有量が最大量に到達した時点とを含む。   Therefore, in the present embodiment, in the step of fermenting the humic acid supply substance and generating humic acid, the relationship between the fermentation period and each content of fulvic acid and humic acid is previously grasped by measurement, and the grasped fermentation period and Based on the relationship between the contents of fulvic acid and humic acid, the humic acid supply substance before the fulvic acid content reaches the maximum is selected. More preferably, a humic acid supplying substance having a maximum content of fulvic acid is selected. By selecting such a humic acid supply substance during fermentation, the maturation reaction can proceed and the fulvic acid can be generated continuously even after the aquatic environment conservation material is installed in the aquatic area. And can be continuously supplied to the water area. In addition, in this specification, before the content of fulvic acid reaches the maximum amount, it includes before the fulvic acid content reaches the maximum amount and when the fulvic acid content reaches the maximum amount. .

なお、フルボ酸とフミン酸の含有量は、例えば上記非特許文献2に開示された方法、あるいは上記非特許文献3で開示された方法によって、測定することできる。   In addition, content of a fulvic acid and humic acid can be measured by the method disclosed by the said nonpatent literature 2, or the method disclosed by the said nonpatent literature 3, for example.

また、本実施形態の水域環境保全材料を海域で使用する場合、海水のpHは一般に8程度であり、鉄イオンは十分に溶解できないため、鉄含有物質からの鉄イオンの溶解を促進するために、水域環境保全材料の内部を酸性状態にすることが好ましい。そこで、腐植酸供給物質として酸性度の高い材料を選定することが好ましく、具体的には、pH7を下回ると鉄イオンの溶解度が急速に高まるので、水域環境保全材料の内部のpHが7を下回る状態にすることができるような腐植酸供給物質を用いることがより好ましい。また、鉄含有物質として鉄鋼スラグを採用した場合、水域環境保全材料の内部はアルカリ性を示す。このため、鉄含有物質として鉄鋼スラグを使用した場合であっても、水域環境保全材料の内部のpHが海水のpHを下回るような腐植酸供給物質を用いることが好ましい。さらに、水域環境保全材料に、腐植酸供給物質と共に、ピートモス、木酢液、水産加工残さもしくはその発酵物などの酸性資材を混合してもよい。   In addition, when the water area environmental conservation material of the present embodiment is used in the sea area, the pH of seawater is generally about 8, and iron ions cannot be sufficiently dissolved. Therefore, in order to promote dissolution of iron ions from iron-containing substances. It is preferable to make the inside of the water area environmental conservation material acidic. Therefore, it is preferable to select a material with high acidity as the humic acid supply substance. Specifically, since the solubility of iron ions rapidly increases below pH 7, the pH inside the aquatic environment conservation material is below 7 It is more preferable to use a humic acid supplying substance that can be brought into a state. Moreover, when steel slag is employ | adopted as an iron-containing substance, the inside of water area environmental conservation material shows alkalinity. For this reason, even when steel slag is used as the iron-containing substance, it is preferable to use a humic acid supply substance in which the pH inside the water area environmental conservation material is lower than the pH of seawater. Furthermore, you may mix acidic materials, such as peat moss, a wood vinegar liquid, a fishery processing residue, or its fermented material with a humic acid supply substance with a water area environmental conservation material.

(鉄含有物質)
本実施形態の鉄含有物質としては、先に述べたように、鉄や鉄を含有する物質を用いる。具体的には、鉄を含有する物質としては、製鋼スラグを用いることができ、特に、有害な重金属の混入が少ない転炉系製鋼スラグを用いることが好ましい。さらに、先に説明したが、水域環境保全材料の周囲の水域のpHがアルカリ性となる場合、鉄の溶出が低減することから、製鋼スラグは炭酸化処理によって中和されていることが好ましい。
(Iron-containing substances)
As the iron-containing material of the present embodiment, as described above, iron or a material containing iron is used. Specifically, steelmaking slag can be used as the substance containing iron, and it is particularly preferable to use converter steelmaking slag with less harmful heavy metal contamination. Furthermore, as described above, it is preferable that the steelmaking slag is neutralized by carbonation treatment since the elution of iron is reduced when the pH of the water area around the water area environmental conservation material becomes alkaline.

(施用方法)
本実施形態に係る水域環境保全材料の施用方法は、腐植酸供給物質を発酵させて腐植酸を生成させる腐植酸供給物質の発酵工程と、発酵工程後の腐植酸供給物質を、鉄含有物質と混合して水域環境保全材料を製造する水域環境保全材料の製造工程と、水域環境保全材料を水域に施用する施用工程とを有することができる。
(Application method)
The application method of the aquatic environment conservation material according to the present embodiment includes a fermentation process of a humic acid supply substance that ferments the humic acid supply substance to generate humic acid, and the humic acid supply substance after the fermentation process is converted into an iron-containing substance. It can have the manufacturing process of the water area environmental conservation material which mixes and manufactures a water area environmental protection material, and the application process which applies a water area environmental protection material to a water area.

(発酵工程)
本実施形態の発酵工程では、廃木材のチップ、樹木のバーク、落ち葉、剪定くず、除草発生材、水産加工残渣、魚かす、家畜ふん、下水汚泥などの有機物質原料を1種または2種以上混合して得られた腐植酸供給物質を、必要に応じて加水した後、静置することにより、腐植酸供給物質の発酵を行う。この際、腐植土に含まれる微生物の活性によって腐植土中の有機物が分解され、例えば、セルロースやリグニンなどの高分子成分が低分子化し、さらに、低分子化した成分が重合し、様々な有機酸や腐植酸が生成する。本実施形態の発酵工程の温度は、腐植酸供給物質の発酵を行うことができる温度であれば特に限定されないが、60℃以上にすることが好ましい。また、発酵期間は、腐植酸供給物質の種類や状態等によって異なり、後述する測定の結果に基づいて最適な発酵期間が選択されることとなるが、好ましくは3か月以上から2年以下である。さらに、発酵の途上で必要に応じて、腐植土の切り返しを行い、腐植土中の状態の均質化をはかってもよい。
(Fermentation process)
In the fermentation process of the present embodiment, one or more organic material raw materials such as waste wood chips, tree bark, fallen leaves, pruning waste, weeding material, fishery processing residue, fish meal, livestock dung, sewage sludge and the like are used. The humic acid supply substance obtained by mixing is subjected to fermentation of the humic acid supply substance by adding water as necessary and then allowing to stand. At this time, the organic matter in the humus soil is decomposed by the activity of microorganisms contained in the humus soil, for example, high molecular components such as cellulose and lignin are reduced in molecular weight, and further, the low molecular weight components are polymerized and various organic substances are polymerized. Acid and humic acid are produced. Although the temperature of the fermentation process of this embodiment will not be specifically limited if it is the temperature which can ferment a humic acid supply substance, It is preferable to set it as 60 degreeC or more. In addition, the fermentation period varies depending on the type and state of the humic acid supply substance, and the optimum fermentation period is selected based on the measurement results described later, but preferably from 3 months to 2 years. is there. Further, the humus soil may be turned over as needed during the fermentation to homogenize the state in the humus soil.

本実施形態においては、発酵工程で、発酵期間と腐植酸(フルボ酸、フミン酸)含有量の関係を測定によって把握する。腐植酸(フルボ酸、フミン酸)の含有量の経時変化は、発酵中に定期的に試料をサンプリングして測定する。測定方法については、上述したとおりである。なお、腐植土中の成分や発酵を行う環境(温度、湿度、酸素量等)によって、腐植酸供給物質の発酵速度や完熟期間は異なるため、試料のサンプリング間隔は、腐植酸の含有量の変化が識別できる程度の任意の間隔にすることができる。そして、測定に基づいて、腐植酸の含有量がピークに到達する以前の腐植酸供給物質を取得し、この腐植酸供給物質を次の水域環境保全材料の製造工程で用いる。   In this embodiment, the relationship between a fermentation period and humic acid (fulvic acid, humic acid) content is grasped | ascertained by a measurement at a fermentation process. The time course of the content of humic acid (fulvic acid, humic acid) is measured by sampling a sample periodically during fermentation. The measurement method is as described above. In addition, since the fermentation rate and maturity period of the humic acid supply substance differ depending on the components in the humus soil and the environment (temperature, humidity, oxygen amount, etc.) in which fermentation takes place, the sampling interval of the sample varies with the content of humic acid. Can be set at an arbitrary interval that can be identified. And based on a measurement, the humic acid supply substance before content of humic acid reaches a peak is acquired, and this humic acid supply substance is used in the manufacturing process of the following water area environmental conservation material.

(製造工程)
本実施形態の水域環境保全材料の製造工程では、上記発酵工程で得られた腐植酸を含む腐植酸供給物質と、鉄含有物質と混合することによって水域環境保全材料を製造する。腐植酸供給物質と鉄含有物質との混合比は、腐植酸鉄の供給速度やその持続性を鑑みて任意の割合を選ぶことができる。腐植酸供給物質の混合割合が高すぎると鉄含有物質の混合割合が低くなるため、水域への水域環境保全材料の設置初期の腐植酸鉄の供給速度は高くなるが、水域への腐植酸鉄の供給は持続性に欠ける。一方、鉄含有物質の混合割合が高すぎると腐植酸供給物質の混合割合が低くなるため、鉄の供給に対して腐植酸の供給が不足し、その結果、水域への腐植酸鉄の供給量が少なくなる。したがって、水域への腐植酸鉄の供給量とその持続性を顧慮して、最適な混合割合を選択することが好ましい。
(Manufacturing process)
In the manufacturing process of the water area environmental conservation material of the present embodiment, the water area environmental protection material is manufactured by mixing the humic acid supply substance containing the humic acid obtained in the fermentation process and the iron-containing substance. The mixing ratio of the humic acid supply substance and the iron-containing substance can be selected at any ratio in view of the supply rate of humic acid iron and its sustainability. If the mixing ratio of the humic acid supply substance is too high, the mixing ratio of the iron-containing substance decreases, so the supply rate of humic acid iron in the initial stage of the installation of the aquatic environment conservation material to the water area increases, but the humic acid iron to the water area Supply is not sustainable. On the other hand, if the mixing ratio of the iron-containing substance is too high, the mixing ratio of the humic acid supply substance will be low, so the supply of humic acid will be insufficient with respect to the supply of iron. Less. Therefore, it is preferable to select an optimal mixing ratio in consideration of the supply amount of humic acid iron to the water area and its sustainability.

(施用工程)
本実施形態に係る水域環境保全材料は、種々の水域において施用可能である。また、水域環境保全材料を水域に設置する方法については特に限定はなく、例えば、透水性の袋状、籠状の容器に水域環境保全材料を収容して水域に沈設することや、水辺を含む水域の地盤に水域環境保全材料を埋設することができる。また、波浪や潮流によって逸失することを予防するために、藻礁ブロックや漁礁ブロックに水域環境保全材料を固定することもできる。さらに、設置した水域の水が流通するように穿孔した箱状構造物に、水域環境保全材料を収容して水域に沈設することができる。
(Application process)
The water area environmental conservation material according to the present embodiment can be applied in various water areas. Moreover, there is no limitation in particular about the method of installing water area environmental conservation material in a water area, for example, containing water area environmental conservation material in a water-permeable bag shape, a bowl-shaped container, and subsiding in a water area, or including a waterside It is possible to embed water area environmental conservation material in the ground of the water area. In addition, in order to prevent loss due to waves and tidal currents, water environment protection materials can be fixed to the algal reef block and the fishing reef block. Furthermore, a water area environmental preservation material can be accommodated in the box-shaped structure drilled so that the water of the installed water area may circulate, and can be set in the water area.

本実施形態の水域環境保全材料によれば、水域環境保全材料を水域に設置した後も熟成反応が進行して持続的に腐植酸を生成させ、鉄イオンを持続的に水域に供給する効果を得ることができる。さらに、水域に持続的に鉄イオンを供給することによって、鉄イオンを必要とする海藻類等の増殖を惹起し、それを契機として豊かな水辺環境を創生することができる。すなわち、本実施形態の水域環境保全材料によれば、水域環境保全を達成することができる。なお、本実施形態の水域環境保全材料によって得られる効果は水域によって若干異なる。例えば、海水中の鉄分が低く、海水交換が少ない海域おいては、本実施形態の水域環境保全材料よって、顕著な効果を得ることができる。一方、潮汐や潮流による海水交換が大きい海域では、希釈拡散により、水中の鉄イオンの有効濃度の保持が難しいために、本実施形態の水域環境保全材料よる顕著な効果を期待することが難しい場合がある。さらに、鉄分が欠乏していない水域においては、本実施形態の水域環境保全材料によって得られる効果が顕著に表れることが難しい場合がある。   According to the water area environmental conservation material of the present embodiment, after the water area environmental conservation material is installed in the water area, the aging reaction proceeds to continuously generate humic acid, and the effect of supplying iron ions to the water area continuously. Obtainable. Furthermore, by continuously supplying iron ions to the water area, it is possible to induce the growth of seaweeds that require iron ions and to create a rich waterside environment. That is, according to the water area environmental conservation material of the present embodiment, water area environmental conservation can be achieved. In addition, the effect acquired by the water area environmental conservation material of this embodiment changes a little with water areas. For example, in a sea area where the iron content in seawater is low and the seawater exchange is low, a remarkable effect can be obtained by the water environment protection material of the present embodiment. On the other hand, in sea areas where seawater exchange by tides and tides is large, it is difficult to maintain the effective concentration of iron ions in the water due to dilution and diffusion, so it is difficult to expect significant effects from the water environment conservation material of this embodiment There is. Furthermore, in a water area that is not deficient in iron, it may be difficult to make the effect obtained by the water area environmental conservation material of the present embodiment noticeable.

以下、本発明について、実施例に基づき説明する。なお、本発明は下記実施例に制限されるものではない。   Hereinafter, the present invention will be described based on examples. In addition, this invention is not restrict | limited to the following Example.

(実施例1)
本発明の効果を確認するために、本発明の実施例に係る鉄含有物質と腐植酸を含む腐植酸供給物質を混合した水域環境保全材料を収容した容器を海中に設置し、水域環境保全材料からの腐植酸鉄の供給性能を調べた。
(Example 1)
In order to confirm the effect of the present invention, a container containing an aquatic environment conservation material mixed with an iron-containing substance and a humic acid supply substance containing humic acid according to an embodiment of the present invention is installed in the sea, and the aquatic environment conservation material The supply performance of humic acid iron from was investigated.

実施例1においては、腐植酸供給物質として、廃木材チップを原料として製造した人工腐植土を用い、先に説明したように、腐植酸供給物質の発酵工程を行った。腐植酸供給物質の発酵工程において、経時的にのべ4回にわたって腐植酸含有量と有機物質含有量とを測定した。腐植酸供給物質の腐植酸含有量は、上記非特許文献3に準拠し、また、腐植酸供給物質の有機物質含有量は、上記非特許文献4に記載の乾式燃焼法に準拠し、測定を行った。測定された有機物質含有量は、微生物の代謝反応による発酵によって、腐植酸や有機酸を生成することができる有機物質、すなわち、腐植酸供給物質の含有量を示す。   In Example 1, the artificial humus soil manufactured using waste wood chips as a raw material was used as the humic acid supply substance, and the fermentation process of the humic acid supply substance was performed as described above. In the fermentation process of the humic acid supply substance, the humic acid content and the organic substance content were measured over four times over time. The humic acid content of the humic acid supply substance conforms to Non-Patent Document 3, and the organic substance content of the humic acid supply substance conforms to the dry combustion method described in Non-Patent Document 4 and is measured. went. The measured organic substance content indicates the content of an organic substance capable of producing humic acid or an organic acid by fermentation due to a metabolic reaction of a microorganism, that is, a humic acid supply substance.

図1に、測定した結果を示す。図1は、実施例1の腐植酸供給物質の発酵工程における腐植酸含有量および有機物質含有量の経時変化を示した図である。なお、図1において、試料番号が大きくなるにしたがって、発酵時間が長くなる。図1に示すように、有機物質含有量は、試料番号が大きくなるにしたがって低減したことから、経時的に腐植酸供給物質の発酵は進行していることが分かる。一方、腐植酸含有量は、試料番号1では6.9乾燥質量%であり、試料番号2では9.5乾燥質量%まで増加し、試料番号3、試料番号4となるにつれて腐植酸含有量が低減した。このことから、発酵時間の経過に伴い、最初は、腐植酸の含有量が多くなるが、その後、発酵時間が長くなるにつれて、生成された腐植酸が分解されて、腐植酸の含有量が減少したと推定される。なお、図1から、例えば、試料番号1と試料番号2との間の状態にある発酵途中の腐植酸供給物質と、試料番号2と試料番号3との間の状態にある腐植酸分解途中の腐植酸供給物質とでは、含まれる腐植酸の量が同じになる場合があることから、両者の水域への腐植酸供給量は同じになることが予測される。しかしながら、水域への設置後も腐植酸供給物質が発酵し、腐植酸が生成される可能性があるため、本実施形態においては、両者のうち、試料番号1と試料番号2との間の状態にある発酵途中の腐植酸供給物質を用いることが好ましい。また、発酵が難しい環境に設置する場合であっても、発酵工程に必要とする時間が短くなるため、両者のうち、試料番号1と試料番号2との間の状態にある発酵途中の腐植酸供給物質を用いることが好ましい。   FIG. 1 shows the measurement results. FIG. 1 is a diagram showing changes over time in the humic acid content and the organic substance content in the fermentation process of the humic acid supply substance of Example 1. FIG. In FIG. 1, the fermentation time increases as the sample number increases. As shown in FIG. 1, since the organic substance content decreased as the sample number increased, it can be seen that fermentation of the humic acid supply substance progressed with time. On the other hand, the content of humic acid is 6.9% by dry weight in Sample No. 1 and increases to 9.5% by dry weight in Sample No. 2. Reduced. From this, as the fermentation time elapses, the content of humic acid initially increases.However, as the fermentation time increases, the generated humic acid is decomposed and the content of humic acid decreases. It is estimated that From FIG. 1, for example, a humic acid supply substance in the middle of fermentation in a state between sample number 1 and sample number 2 and a humic acid in the state between sample number 2 and sample number 3 Since the amount of humic acid contained in the humic acid supplying substance may be the same, the amount of humic acid supplied to both water areas is expected to be the same. However, since the humic acid supply substance is fermented even after installation in the water area and humic acid may be generated, in this embodiment, the state between the sample number 1 and the sample number 2 out of the two. It is preferable to use the humic acid supply substance in the middle of fermentation. Moreover, even if it is a case where it installs in the environment where fermentation is difficult, since the time required for a fermentation process becomes short, among them, the humic acid in the middle of fermentation in the state between sample number 1 and sample number 2 It is preferred to use a feed material.

次に、上記で得られた腐植酸を含む腐植酸供給物質を用いて、水域環境保全材料を製造した。詳細には、鉄含有物質としては、粒径20mm以下の転炉系製鋼スラグを炭酸化処理して用いた。さらに、下記の表1に示すように、腐植酸含有量が異なる2種類の腐植酸供給物質(図1の試料番号2及び試料番号4)を用いた。鉄含有物質と腐植酸供給物質の割合が容積比50:50の配合となるようにして混合し、実施例A及び比較例Bの水域環境保全材料として製造した。なお、図1に示されるように、腐植酸供給物質の発酵工程において、腐植酸供給物質の発酵時間に対する生成された腐植酸と有機物質の含有量の測定を予め行うことにより、実施例Aとして、含有される腐植酸が最も多く、且つ、比較例Bと比べて、水域に水域環境保全材料を設置した後の腐植酸供給源になりうる有機物質を多く含有する腐植酸供給物質を選択した。   Next, an aquatic environment conservation material was manufactured using the humic acid supply substance containing humic acid obtained above. Specifically, as the iron-containing substance, converter steelmaking slag having a particle size of 20 mm or less was used after being carbonized. Furthermore, as shown in Table 1 below, two types of humic acid supply substances (sample number 2 and sample number 4 in FIG. 1) having different humic acid contents were used. The iron-containing substance and the humic acid supply substance were mixed so that the ratio of the volume ratio was 50:50, and were produced as water area environmental conservation materials of Example A and Comparative Example B. In addition, as shown in FIG. 1, in the fermentation process of the humic acid supply substance, by measuring the contents of the generated humic acid and the organic substance with respect to the fermentation time of the humic acid supply substance in advance, as Example A The humic acid supply material containing the largest amount of organic substances that can be a humic acid supply source after installing the aquatic environment conservation material in the water area was selected as compared with Comparative Example B. .

Figure 0006604017
Figure 0006604017

上述のように準備した実施例A及び比較例Bの水域環境保全材料を図2に示した鋼製の容器10にそれぞれ収容して、水深約5mの海中に沈設した。鋼製の容器10には、実施例A、比較例Bともにそれぞれ約1tの水域環境保全材料を、20kg毎に布製袋に充填して収容した。なお、図2は、実施例1の水域環境保全材料を収納して海中に沈設するための容器10の斜視図である。この容器10の表面11には、容器内部に収容された水域環境保全材料の成分を水域に拡散させるための複数の孔部12が形成されている。   The water area environmental conservation materials of Example A and Comparative Example B prepared as described above were accommodated in the steel container 10 shown in FIG. 2 and submerged in the sea at a depth of about 5 m. In each of the steel containers 10, about 1 t of the water area environmental conservation material was filled in each 20 kg for each of Example A and Comparative Example B and stored. FIG. 2 is a perspective view of the container 10 for storing the water area environmental conservation material of Example 1 and setting it in the sea. The surface 11 of the container 10 is formed with a plurality of holes 12 for diffusing components of the water area environmental conservation material accommodated inside the container into the water area.

実施例A及び比較例Bの水域環境保全材料が収容された容器10を海域への沈設後、18か月間の間、定期的に容器10の上面中央から上方1mの位置で海水を清澄なポリビンに採取することで周囲の海水を採取して、海水に含有される腐植酸鉄を分析した。腐植酸鉄の含有量は、非特許文献5に記載の方法に準拠し、溶存鉄濃度として計量した。さらに、実施例A及び比較例Bの容器10のそれぞれの設置場所に近接した海域であって、実施例A及び実施例Bの水域環境保全材料からの腐植酸鉄溶出の影響のない海域でも定期的に海水を採取し、採取した海水についても同様の計量を行い、溶存鉄濃度のバックグラウンド(基準)とした。そして、計測された実施例A及び比較例Bの各溶存鉄濃度からバックグラウンドとしての溶存鉄濃度を差し引くことにより、腐植酸鉄の各増加量を算出した。   After substituting the container 10 containing the water area environmental conservation material of Example A and Comparative Example B into the sea area, for 18 months, the water is periodically cleared at a position 1 m above the center of the upper surface of the container 10. The surrounding seawater was sampled to collect the humic acid iron contained in the seawater. The content of iron humate was measured as the dissolved iron concentration in accordance with the method described in Non-Patent Document 5. Furthermore, in the sea area close to the respective installation locations of the containers 10 of Example A and Comparative Example B, the sea area where there is no influence of humic acid iron elution from the water area environmental conservation material of Example A and Example B is regularly Seawater was collected and the same measurement was performed on the collected seawater to obtain a background (standard) of dissolved iron concentration. And each increase of humic acid iron was computed by subtracting the dissolved iron concentration as a background from each measured dissolved iron concentration of Example A and Comparative Example B.

実施例Aにおける海水中の溶存鉄濃度から前述のバックグラウンドの溶存鉄濃度との差分である溶存鉄増加量の経時変化を図3に示す。実施例Aの水域環境保全材料を内蔵した容器10を設置した直後の周囲海水においては、バックグラウンドの溶存鉄濃度に対して15.7μg/リットルの増加があり、設置4ヶ月後では、バックグラウンドの溶存鉄濃度に対して25.3μg/リットルの増加であった。その後、9か月後では、バックグラウンドの溶存鉄濃度に対して3μg/リットルの増加となり、増加量が低減したが、18ヶ月後でも、バックグラウンドの溶存鉄濃度に対して2.7μg/リットルの増加となっており、実施例Aの水域環境保全材料による効果が持続していることがわかった。   FIG. 3 shows the change over time in the amount of increase in dissolved iron, which is the difference between the dissolved iron concentration in seawater in Example A and the dissolved iron concentration in the background. In the surrounding seawater immediately after the installation of the container 10 containing the water environment conservation material of Example A, there is an increase of 15.7 μg / liter with respect to the dissolved iron concentration in the background. It was an increase of 25.3 μg / liter with respect to the dissolved iron concentration. Thereafter, after 9 months, the background dissolved iron concentration increased by 3 μg / liter, and the increase was reduced, but even after 18 months, the background dissolved iron concentration was 2.7 μg / liter. It was found that the effect of the water area environmental conservation material of Example A was sustained.

一方、比較例Bにおける海水中の溶存鉄濃度から前記したバックグラウンドの溶存鉄濃度との差分である溶存鉄増加量の経時変化を図4に示す。比較例Bの水域環境保全材料内蔵した容器10を設置した直後の周囲海水においては、バックグラウンドの溶存鉄濃度に対して19.0μg/リットルの増加があったが、速やかに増加量が低減し、設置4ヶ月後では、4.2μg/リットルの増加となり、6ヶ月後で1.6μg/リットルの増加量に至り、12ヶ月後には、増加量がほぼゼロとなった。この結果から、比較例Bの水域環境保全材料による効果は、実施例Aに比べて、持続しないことがわかった。   On the other hand, FIG. 4 shows the change over time in the amount of increase in dissolved iron, which is the difference between the dissolved iron concentration in the seawater in Comparative Example B and the dissolved iron concentration in the background described above. In the surrounding seawater immediately after installing the container 10 containing the water environment protection material of Comparative Example B, there was an increase of 19.0 μg / liter with respect to the dissolved iron concentration in the background, but the increase amount quickly decreased. After 4 months of installation, it increased by 4.2 μg / liter, reached an increase of 1.6 μg / liter after 6 months, and became almost zero after 12 months. From this result, it was found that the effect of the water environment conservation material of Comparative Example B did not last as compared with Example A.

図3ないしは図4の結果に基づいて、実施例Aないしは比較例Bの水域環境保全材料を海水に設置後12ヶ月後までの、実施例Aないしは比較例Bの水域環境保全材料による腐植酸鉄の累積供給量をそれぞれ算出した。表2に、比較例Bに係る累積供給量を100%とした場合の、実施例Aに係る累積供給量の割合を示す。表2に示すように、実施例Aの水域環境保全材料においては、設置後12か月の間、同期間の比較例Bの水域環境保全材料に対して2.3倍の腐植酸鉄の供給を行ったことが確認できた。   Based on the results of FIGS. 3 and 4, humic acid iron by the water environment preservation material of Example A or Comparative Example B until 12 months after the water environment preservation material of Example A or Comparative Example B was installed in seawater The cumulative supply amount of each was calculated. Table 2 shows the ratio of the cumulative supply amount according to Example A when the cumulative supply amount according to Comparative Example B is 100%. As shown in Table 2, in the water environment conservation material of Example A, supply of humic acid iron 2.3 times that of the water environment conservation material of Comparative Example B during the same period for 12 months after installation. We were able to confirm that

Figure 0006604017
Figure 0006604017

このことから、実施例Aの水域環境保全材料によれば、比較例Bの水域環境保全材料と比べて、腐植酸鉄を持続的に海水に供給することができ、且つ、腐植酸鉄の累積供給量も多いことがわかった。すなわち、実施例Aの水域環境保全材料は、比較例Bと比べて、効果的、且つ、持続的に水域に腐植酸鉄、すなわち、鉄イオンを供給することができることがわかった。   From this, according to the water area environmental conservation material of Example A, compared with the water area environmental conservation material of Comparative Example B, humic acid iron can be continuously supplied to seawater, and the accumulation of humic acid iron It was found that the supply amount was large. That is, it was found that the water area environmental conservation material of Example A can effectively and continuously supply iron humate, that is, iron ions, to the water area as compared with Comparative Example B.

(実施例2)
本発明の効果を確認するために、本発明の実施例に係る鉄含有物質と腐植酸を含む腐植酸供給物質を混合した水域環境保全材料を収容した容器を海中に設置し、水域環境保全材料としての藻場造成効果を調べた。
(Example 2)
In order to confirm the effect of the present invention, a container containing an aquatic environment conservation material mixed with an iron-containing substance and a humic acid supply substance containing humic acid according to an embodiment of the present invention is installed in the sea, and the aquatic environment conservation material As a result, we investigated the effect of seaweed beds as

実施例2においては、実施例1と同様に、腐植酸供給物質として、廃木材チップを原料として製造した人工腐植土を用い、先に説明したように、腐植酸供給物質の発酵工程を行った。腐植酸供給物質の発酵工程において、経時的にのべ4回にわたって、腐植酸供給物質のフルボ酸含有量、フミン酸含有量および有機物質含有量を測定した。フルボ酸含有量とフミン酸含有量は上記非特許文献3に準拠し、また、有機物質含有量は上記非特許文献4に記載の乾式燃焼法に準拠して測定した。   In Example 2, as in Example 1, as the humic acid supply substance, artificial humus produced using waste wood chips as a raw material was used, and as described above, the fermentation process of the humic acid supply substance was performed. . In the fermentation process of the humic acid supply substance, the fulvic acid content, the humic acid content and the organic substance content of the humic acid supply substance were measured over four times over time. The fulvic acid content and the humic acid content were measured according to Non-Patent Document 3, and the organic substance content was measured according to the dry combustion method described in Non-Patent Document 4.

図5に、測定した結果を示す。図5は、実施例2の腐植酸供給物質の発酵工程における腐植酸含有量および有機物質含有量の経時変化を示した図である。なお、図5においては、試料番号が大きくなるにしたがって、発酵時間が長くなっている。図5に示すように、腐植酸供給物質の有機物質含有量は、試料番号が大きくなるにしたがって低減したことから、経時的に腐植酸供給物質の発酵は進行していることが分かる。一方、フルボ酸含有量は、試料番号1では4.4乾燥質量%であり、試料番号2では6.1乾燥質量%まで増加し、試料番号3、試料番号4となるにつれてフルボ酸含有量が低減した。また、フミン酸含有量は、試料番号が大きくなるにしたがって、すなわち経時的に一貫して、増加傾向を示したことから、熟成の進行によってフミン酸含有量は増えることが確認された。すなわち、熟成が進みすぎた場合にはフルボ酸がフミン酸に変質し、フミン酸の含有量が増加することが確認された。本実施形態において用いる腐植酸供給物質としては、熟成が進みすぎフミン酸が増加する傾向にある試料番号3、4よりもフルボ酸を多く含み、且つ、フミン酸が少ないことから、試料番号2が最適である。   FIG. 5 shows the measurement results. FIG. 5 is a diagram showing temporal changes in the humic acid content and the organic material content in the fermentation process of the humic acid supply material of Example 2. In FIG. 5, the fermentation time increases as the sample number increases. As shown in FIG. 5, the organic substance content of the humic acid supply substance decreased as the sample number increased, indicating that the fermentation of the humic acid supply substance progressed over time. On the other hand, the fulvic acid content is 4.4% by dry weight in Sample No. 1, increases to 6.1% by dry weight in Sample No. 2, and the fulvic acid content increases with Sample No. 3 and Sample No. 4. Reduced. Moreover, since the humic acid content showed an increasing tendency as the sample number increased, that is, consistently with time, it was confirmed that the humic acid content increased as the aging progressed. That is, it was confirmed that when ripening progresses too much, fulvic acid is transformed into humic acid and the content of humic acid is increased. As the humic acid supply substance used in the present embodiment, the humic acid tends to increase too much and the humic acid tends to increase. Is optimal.

次に、上記で得られたフルボ酸を含む腐植酸供給物質を用いて、水域環境保全材料を製造した。詳細には、鉄含有物質としては、実施例1と同様に、粒径20mm以下の転炉系製鋼スラグを炭酸化処理して用いた。さらに、下記の表3に示すように、フルボ酸含有量が異なる2種類の腐植酸供給物質(図5の試料番号2及び試料番号4)を用いた。鉄含有物質と腐植酸供給物質の割合が容積比50:50の配合となるようにして混合し、実施例C及び比較例Dの水域環境保全材料として製造した。なお、図5に示されるように、腐植酸供給物質の発酵工程において、腐植酸供給物質の発酵時間に対する生成されたフルボ酸、フミン酸及び有機物質の含有量の測定を予め行うことにより、実施例Cとして、含有されるフルボ酸が最も多く、比較例Dと比べて、水域に水域環境保全材料を設置した後の腐植酸供給源になりうる有機物質を多く含有し、且つ、フミン酸の含有量が少ない腐植酸供給物質を選択した。   Next, an aquatic environment conservation material was manufactured using the humic acid supply substance containing fulvic acid obtained above. Specifically, as the iron-containing material, as in Example 1, converter steelmaking slag having a particle size of 20 mm or less was used after being carbonized. Furthermore, as shown in Table 3 below, two types of humic acid supply substances (sample number 2 and sample number 4 in FIG. 5) having different fulvic acid contents were used. The iron-containing substance and the humic acid supply substance were mixed so that the ratio of the volume ratio was 50:50, and were produced as water area environmental conservation materials of Example C and Comparative Example D. In addition, as shown in FIG. 5, in the fermentation process of the humic acid supply substance, the measurement was performed by measuring the contents of the generated fulvic acid, humic acid and organic substance with respect to the fermentation time of the humic acid supply substance. As Example C, the fulvic acid contained is the largest, and compared with Comparative Example D, the fulvic acid contained a lot of organic substances that could become a source of humic acid after the water environment protection material was installed in the water area. A humic acid feed material with a low content was selected.

Figure 0006604017
Figure 0006604017

上述のように準備した実施例C及び比較例Dの水域環境保全材料を、実施例1と同様に、図2に示した鋼製の容器10にそれぞれ収容して、水深約5mの海中に沈設した。鋼製の容器10には、実施例C、比較例Dともにそれぞれ約1tの水域環境保全材料を、20kg毎に布製袋に充填して収容した。   The water area environmental conservation materials of Example C and Comparative Example D prepared as described above are respectively stored in the steel container 10 shown in FIG. 2 and set in the sea at a water depth of about 5 m. did. In the steel container 10, about 1 t of water environment conservation material was filled in each 20 kg for each of Example C and Comparative Example D and stored.

実施例C及び比較例Dの水域環境保全材料が収容された容器10を海域への沈設後、各容器10を設置した周囲の海域における海藻類の繁茂状況を定期的に観察した。詳細には、実施例Cおよび比較例Dの水域環境保全材料が収容された容器10の中心から東西南北の方角に沿って5m離れた位置の海底に50cm四方の調査区をそれぞれ4区設定し、各区での海藻類の繁茂状況を観察した。なお、10月に容器10を沈設し、沈設後概ね3か月ごとに調査を行った。その結果、表4に示すように、比較例Dの水域環境保全材料の周囲の各区画に比べて実施例Cの水域環境保全材料の周囲の各区画での海藻類の生育がよかった。   After the container 10 containing the water area environmental conservation material of Example C and Comparative Example D was set in the sea area, the state of overgrowth of seaweeds in the surrounding sea area where each container 10 was installed was periodically observed. Specifically, four 50 cm square survey zones are set on the seabed at a distance of 5 m along the direction of east, west, south, and north from the center of the container 10 containing the water area environmental conservation material of Example C and Comparative Example D. We observed the overgrowth of seaweeds in each district. In addition, the container 10 was sunk in October, and the survey was conducted approximately every three months after the sunk. As a result, as shown in Table 4, the growth of seaweeds was better in each section around the water environment conservation material of Example C than in each section around the water environment protection material of Comparative Example D.

Figure 0006604017
Figure 0006604017

さらに、上述の各区での海藻被度を調べた。海藻被度とは、各区画の海底面全体に対する海藻に覆われている海底の面積の割合である。その結果、容器10の沈設後の約半年後の5月において、実施例Cに係る区画の海藻被度の平均値が55%であり、比較例Dに係る区画の海藻被度の平均値は16%であった。また、繁茂した主要な海藻であるヤナギモクについて、実施例Cに係る区画、比較例Dに係る区画からそれぞれ30本採取して葉長を計測した結果、平均葉長が実施例Cでは37cm、比較例Dでは23cmであった。つまり、実施例Cの水域環境保全材料によれば、比較例Cの水域環境保全材料と比べて、海藻被度が3.4倍、海藻葉長が1.6倍になるという結果が得られた。したがって、実施例Cによれば、鉄イオンを必要とする海藻類等の増殖を効果的に惹起し、効果的に水域環境保全を達成することができることがわかった。   Furthermore, the seaweed coverage in each of the above-mentioned districts was examined. Seaweed coverage is the ratio of the area of the seabed covered with seaweed to the entire seabed of each section. As a result, in May, about half a year after the installation of the container 10, the average seaweed coverage of the section according to Example C is 55%, and the average seaweed coverage of the section according to Comparative Example D is 16%. Moreover, about the willow moku which is a prosperous main seaweed, as a result of measuring 30 leaf lengths from the division concerning Example C and the division concerning Comparative Example D, the average leaf length was 37 cm in Example C, compared In Example D, it was 23 cm. That is, according to the aquatic environment conservation material of Example C, the seaweed coverage is 3.4 times and the seaweed leaf length is 1.6 times that of the aquatic environment conservation material of Comparative Example C. It was. Therefore, according to Example C, it turned out that the proliferation of seaweed etc. which require iron ions can be induced effectively, and water area environmental conservation can be achieved effectively.

以上に説明した実施例1及び実施例2から、本発明にかかる実施例によれば、鉄イオンを持続的に水域に供給することを可能とする効果を得ることができる。さらに、水域に、効果的、且つ、持続的に鉄イオンを供給することができ、その結果として海藻生長に代表される水域環境保全が達成できることは明らかである。   From Example 1 and Example 2 demonstrated above, according to the Example concerning this invention, the effect which makes it possible to supply an iron ion to a water area continuously can be acquired. Furthermore, it is clear that iron ions can be effectively and continuously supplied to the water area, and as a result, water environment conservation represented by seaweed growth can be achieved.

以上、添付図面を参照しながら本発明の好適な実施形態について詳細に説明したが、本発明はかかる例に限定されない。本発明の属する技術の分野における通常の知識を有する者であれば、特許請求の範囲に記載された技術的思想の範疇内において、各種の変更例または修正例に想到し得ることは明らかであり、これらについても、当然に本発明の技術的範囲に属するものと了解される。   The preferred embodiments of the present invention have been described in detail above with reference to the accompanying drawings, but the present invention is not limited to such examples. It is obvious that a person having ordinary knowledge in the technical field to which the present invention pertains can come up with various changes or modifications within the scope of the technical idea described in the claims. Of course, it is understood that these also belong to the technical scope of the present invention.

10 容器
11 表面
12 孔部
10 Container 11 Surface 12 Hole

Claims (4)

腐植酸供給物質を発酵させて腐植酸を生成させる腐植酸供給物質の発酵工程と、
前記発酵工程後の前記腐植酸を含む前記腐植酸供給物質を、鉄含有物質と混合して水域環境保全材料を製造する水域環境保全材料の製造工程と、
前記水域環境保全材料を水域に施用する施用工程と、
を備える、水域環境保全材料の施用方法であって、
前記腐植酸供給物質には、腐植土が含まれており、
前記腐植酸供給物質の発酵工程にて、フルボ酸とフミン酸とのそれぞれの含有量の経時変化を測定し、予め測定されている発酵期間と前記含有量との関係に基づいて、前記フミン酸に比べて前記フルボ酸が多く含有されている発酵途中の腐植酸供給物質を取得し
前記製造工程にて、取得した前記発酵途中の腐植酸供給物質を前記鉄含有物質と混合する、水域環境保全材料の施用方法。
Fermenting the humic acid supply substance to produce humic acid by fermenting the humic acid supply substance;
The process for producing an aquatic environment conservation material for producing the aquatic environment conservation material by mixing the humic acid supply substance containing the humic acid after the fermentation process with an iron-containing substance,
An application step of applying the water area environmental conservation material to the water area;
A method for applying a water area environmental conservation material comprising:
The humic acid supply substance contains humus soil,
In the fermentation process of the humic acid supply substance, the change over time in the content of each of fulvic acid and humic acid is measured, and the humic acid is based on the relationship between the fermentation period and the content measured in advance. To obtain a humic acid supply substance in the middle of fermentation containing a large amount of fulvic acid compared to
Wherein in the production step, the obtained said fermentation during the humic acid feed material was mixed with the iron-containing material, a method of applying the water zone environment preservation material.
前記腐植土は、廃木材チップ、樹木のバーク、落ち葉、剪定くず、除草発生材の少なくともいずれか一つを含む、請求項1に記載の水域環境保全材料の施用方法。The method for applying an aquatic environment conservation material according to claim 1, wherein the humus soil includes at least one of waste wood chips, bark of trees, fallen leaves, pruning waste, and a weed generating material. 前記発酵途中の腐植酸供給物質は、前記フルボ酸の含有量が最大量に達する以前に取得される、請求項1又は2に記載の水域保全材料の施用方法。The method for applying a water area conservation material according to claim 1 or 2, wherein the humic acid supply substance during fermentation is acquired before the content of the fulvic acid reaches a maximum amount. 前記鉄含有物質には製鋼スラグが含まれる、請求項1〜3のいずれか1項に記載の水域環境保全材料の施用方法。 Wherein the iron-containing material includes steel slag, a method of applying the water conservation material according to any one of Motomeko 1-3.
JP2015073559A 2015-03-31 2015-03-31 Application method of water area environmental conservation material Active JP6604017B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015073559A JP6604017B2 (en) 2015-03-31 2015-03-31 Application method of water area environmental conservation material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2015073559A JP6604017B2 (en) 2015-03-31 2015-03-31 Application method of water area environmental conservation material

Publications (2)

Publication Number Publication Date
JP2016194195A JP2016194195A (en) 2016-11-17
JP6604017B2 true JP6604017B2 (en) 2019-11-13

Family

ID=57322887

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015073559A Active JP6604017B2 (en) 2015-03-31 2015-03-31 Application method of water area environmental conservation material

Country Status (1)

Country Link
JP (1) JP6604017B2 (en)

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09127003A (en) * 1995-09-01 1997-05-16 Nkk Corp Method for judging degree of humification of compost-treated object
US5968245A (en) * 1997-09-17 1999-10-19 Encapco Composition for solid waste remediation
JP3829140B2 (en) * 2003-07-02 2006-10-04 西松建設株式会社 How to repair salmon burn
JP2006081457A (en) * 2004-09-16 2006-03-30 Misawa Kogyo Kk Environmental protection material for water area
JP4351708B2 (en) * 2006-05-18 2009-10-28 新日本製鐵株式会社 Water environment container, water environment protection system, and water environment protection method
JP4805338B2 (en) * 2008-12-18 2011-11-02 Jfeミネラル株式会社 Supplying iron into water
JP2011153353A (en) * 2010-01-27 2011-08-11 Nakagawa Special Steel Co Inc Iron powder mixture, method for using iron powder mixture, and method for producing iron powder mixture
JP5112483B2 (en) * 2010-08-11 2013-01-09 中川特殊鋼株式会社 Canned for marine greening, method for using canned for marine greening, and method for producing canned for marine greening
JP2012254450A (en) * 2011-05-18 2012-12-27 Sagaken Kankyo Seibi Jigyo Kyodo Kumiai Method for producing humus containing iron fulvate
JP6173001B2 (en) * 2013-04-08 2017-08-02 石井商事株式会社 Iron supply material and iron supply method

Also Published As

Publication number Publication date
JP2016194195A (en) 2016-11-17

Similar Documents

Publication Publication Date Title
Oleszczuk et al. Impacts of agricultural utilization of peat soils on the greenhouse gas balance
CN103331297B (en) Method for improving tea garden soil by utilizing biomass charcoals
JP4489043B2 (en) Water area environmental conservation material and water area environmental conservation method
JP4616087B2 (en) Fertilizing material and fertilizing method
JP2007330254A (en) Environmental preservation material for water area, environmental preservation system for water area and method for preserving water area environment
RU2601973C1 (en) Method cleaning oil sludge and oil contaminated soil
JP6559621B2 (en) Seaweed and algae recycling methods
Sobczyński et al. Vertical Changeability of Physical-Chemical Features of Bottom Sediments in Three Lakes, in Aspect Type of Water Mixis and Intensity of Human Impact.
Yadav et al. Bioconversion of food industry sludge into value-added product (vermicompost) using epigeic earthworm Eisenia fetida
CN107278408A (en) A kind of new method for improveing saline-alkali soil
JP6604017B2 (en) Application method of water area environmental conservation material
Gul et al. Study of some physiochemical properties of soil in fish pond at circuit house; district Sibi of province Balochistan, Pakistan
Akköz The determination of some pollution parameters, water quality and heavy metal concentrations of Aci Lake (Karapinar/Konya, Turkey)
Vinithkurnar et al. Organic matter, nutrients and major ions in the sediments of coral reefs and seagrass beds of Gulf of Mannar biosphere reserve, southeast coast of India
Sreenivasulu et al. Physico-chemical characteristics of freshwater Ramanna tank (cheruvu), Nellore district, India
Patil Alaka Limnological and correlation studies of Birnal water body of Sangli, Maharashtra
JP5884631B2 (en) Water environment container
SAEED Assessment of inorganic pollutants in water and sediments in Abbassa and Maruit fish farm, Egypt
Rasheed Nutrient Fluxes from sediments of the northern Gulf of Aqaba under various anthropogenic activities
Nair et al. Primary production in coastal waters
WO2002031273A1 (en) Method for treatment of dredging soil
JP2007302803A (en) Soil conditioner
Blázquez Pallí A comparison of two methods to reduce internal phosphorus cycling in lakes: Aluminium versus Phoslock
RU2010134446A (en) METHOD FOR OIL SLUDGES PROCESSING AND CLEANING OF OILED SOILS
Bicudo et al. Characeae Biomass: Is the Subject Exhausted?

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20171106

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20180718

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20180807

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20180928

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20190208

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20190305

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20190426

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20190426

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20190507

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20190917

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20190930

R151 Written notification of patent or utility model registration

Ref document number: 6604017

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151