JP6143725B2 - プロペラファン、流体送り装置および成形用金型 - Google Patents

プロペラファン、流体送り装置および成形用金型 Download PDF

Info

Publication number
JP6143725B2
JP6143725B2 JP2014205627A JP2014205627A JP6143725B2 JP 6143725 B2 JP6143725 B2 JP 6143725B2 JP 2014205627 A JP2014205627 A JP 2014205627A JP 2014205627 A JP2014205627 A JP 2014205627A JP 6143725 B2 JP6143725 B2 JP 6143725B2
Authority
JP
Japan
Prior art keywords
blade
propeller fan
edge portion
central axis
connecting portion
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2014205627A
Other languages
English (en)
Other versions
JP2015004365A (ja
JP2015004365A5 (ja
Inventor
ゆい 公文
ゆい 公文
大塚 雅生
大塚  雅生
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sharp Corp
Original Assignee
Sharp Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sharp Corp filed Critical Sharp Corp
Priority to JP2014205627A priority Critical patent/JP6143725B2/ja
Publication of JP2015004365A publication Critical patent/JP2015004365A/ja
Publication of JP2015004365A5 publication Critical patent/JP2015004365A5/ja
Application granted granted Critical
Publication of JP6143725B2 publication Critical patent/JP6143725B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

この発明は、一般的には、プロペラファン、流体送り装置および成形用金型に関し、より特定的には、流体を送り出すためのプロペラファンと、そのようなプロペラファンを備えた扇風機、サーキュレータ、エアーコンディショナ、空気清浄機、加湿機、除湿機、ファンヒータ、冷却装置または換気装置などの流体送り装置と、そのようなプロペラファンを樹脂により成形する際に用いられる成形用金型とに関する。
従来のプロペラファンに関して、たとえば、特開2003−206894号公報には、プロペラファンの翼先端部および翼端部より生じる渦の変動、発達を抑制するとともに、翼面上における剥離を防ぎ、風量を増大させることを目的としたプロペラファンが開示されている(特許文献1)。特許文献1に開示されたプロペラファンは、円筒状のボスと、複数の翼とからなる。翼の後縁の所定位置には、へこみが形成されている。
また、特開2011−58449号公報には、省エネルギ性や省資源化設計の面で大きく貢献することを目的としたプロペラファンが開示されている(特許文献2)。特許文献2に開示されたプロペラファンは、2枚もしくは3枚の翼と、翼同士を連接する連結部とを有する。連設部は、翼面状の表面を有しており、翼の回転中心付近において順方向に送風する機能を発揮する。
また、特開2004−293528号公報には、空力的な性能を向上させるとともに、騒音や消費電力を低減することを目的としたプロペラファンが開示されている(特許文献3)。特許文献3に開示されたプロペラファンにおいて、羽根をその回転軸方向の所定平面により切断した場合に、上流側に向かって凸である滑らかな凸曲線が得られる。
また、特開2000−54992号公報には、空気流の流れの剥離を低減して、送風性能の向上と送風騒音の低減とを共に図ることを目的としたプロペラファンが開示されている(特許文献4)。特許文献4に開示されたプロペラファンにおいては、ボス部の周りに複数の翼が配設されている。各翼は、その断面形状が周方向と半径方向との両方向で流線形をなすように形成されている。
特開2003−206894号公報 特開2011−58449号公報 特開2004−293528号公報 特開2000−54992号公報
上述の特許文献1〜4に開示されるように、送風能力を向上させることを主な目的とした各種のプロペラファンが知られている。このようなプロペラファンにおいては、翼の周速の違いによって、送風能力がファンの外周側で高くなり、内周側で低くなる。このため、ファンの外周側では、翼の高さを大きくしたり、翼のコード長さを大きくしたりして送風させるが、ファンの回転中心に配置されたボスハブ部やその付近では、材料費を削るためや軽量化のために、高さを小さくし、中心部では無くす傾向にある。
一方、節電ブームの到来により、扇風機やサーキュレータの人気が再度高まってきた昨今、これらの電気機器には、室内の空気を撹拌したり、直接人の肌に風を当てて涼を得るにあたり、撹拌能力が高く、快適(均一)な風を送ることが求められている。これまでのプロペラファンでは、風当たりの良さ、つまり風速や温度分布の均一さ(やわらかな風・自然な風・さわやかな風・心地よい風・滑らかな風)については、詳細な検討がなされていない。ファンの外周側に極端な風速のピークを有したり、ファンから送り出される空気の流れが半径方向外側に拡散されたりするために、特に扇風機やサーキュレータなどといった、人に直接風を当てて涼を得たり、室内の空気を撹拌することを目的とする使用方法では、ファンから送り出される風を不快に感じることが多くなる。
元来、ファンの回転中心付近では、ファンの固定のためにスピンナーという部材が取り付けられたり、モーターシャフトが通されたりする。このため、ほとんど送風に寄与していないばかりか、むしろ逆流してしまう場合もある。そこで、逆流を防ぐために、ファンの回転中心に大きなボスハブ部を設けるという対策が採られるが、このような対策では、ファンの回転中心付近が送風に寄与していないという問題は解決できていない。
一方、ファンの外周側では、V∝A(πr)の関係で風速が大きくなり、翼の外縁部付近では、最も高速となって極端なピーク点を有する。この風速のピークと、上述のファンの回転中心付近が送風に寄与しないこととが相まって、ファンの内周側と外周側との間で風速の差が大きくなる。このような風速のばらつきが、ファンから送り出される風を不快に感じることの原因となる。
さらに、これまでのプロペラファンでは、ファン自体の省資源化など様々な検討がなされる過程において、ファンの外周側に比べて中心部付近では、翼面の高さが低くなっている。しかしながら、このような構造では、ファンが占有可能な領域の体積に対する送風効率は非常に低い。このため、送風能力が足りない場合には、ファンがさらに大型化することによって送風装置全体としての大型化を招いたり、無駄な空間への材料費が掛かることによって高コスト化を招いたりするなど、様々な問題につながる。ファンが占有可能な領域の体積が予め決められている場合には、その範囲内で、如何に効率よく送風するかが重要である。
そこでこの発明の目的は、上記の課題を解決することであり、ファンが占有可能な領域の体積に対する流体の送り効率を高めつつ、ファンから送り出される流体の不快感が低減されるプロペラファン、そのプロペラファンを備える流体送り装置およびそのプロペラファンの製造に用いられる成形用金型を提供することである。
この発明に従ったプロペラファンは、仮想の中心軸を中心に回転する回転軸部と、回転軸部から中心軸の半径方向外側に延出する翼とを備える。翼は、回転方向の側に配置される前縁部と、回転方向の反対側に配置される後縁部と、中心軸の周方向に延び、前縁部と後縁部との間を接続する外縁部とを有する。前縁部は、回転軸部と、回転軸部から中心軸の半径方向外側に離れた位置との間で、中心軸の軸方向において一定の高さを有する。
このように構成されたプロペラファンによれば、中心軸を中心とする内周側で、翼の高さ(中心軸の軸方向における前縁部と後縁部との間の長さ)をより積極的に大きくする。これにより、その内周側において流体の送り能力が高まるため、ファンが占有可能な領域の体積に対する流体の送り効率を向上させることができる。また、中心軸を中心とする内周側と外周側との間で流体の送り能力の差が縮まり、流体をより均一に送り出すことができる。これにより、ファンから送り出される流体の不快感を低減させることができる。
また好ましくは、後縁部は、中心軸を中心とする外周側で、中心軸の軸方向において一定の高さを有する。
また好ましくは、翼は、翼および回転軸部の外表面の間に配置される翼根部と、前縁部の、中心軸の半径方向外側に配置される翼先端部と、後縁部の、中心軸の半径方向外側に配置される翼後端部と、翼根部、前縁部、翼先端部、外縁部、翼後端部および後縁部に囲まれた領域に形成される翼面とをさらに有する。外縁部は、翼先端部と翼後端部との間を接続する。翼面は、翼根部を含み、中心軸の半径方向内側に位置する内側領域と、翼後端部を含み、中心軸の半径方向外側に位置する外側領域と、前縁部、翼先端部または外縁部寄りに位置する前端部から、後縁部寄りに位置する後端部まで延在し、翼面の正圧面側が凸となり翼面の負圧面側が凹となるように、内側領域と外側領域とを連結する連結部とを含む。翼面は、翼面のうちの連結部よりも中心軸の半径方向外側の部分の食い違い角よりも、翼面のうちの連結部よりも半径方向内側の部分の食い違い角の方が小さくなるように形成される。
また好ましくは、連結部は、翼の回転に伴って翼面上に発生する翼先端渦の流れに沿うように形成される。
また好ましくは、連結部は、連結部の負圧面側に形成される内角が、翼の回転方向における連結部の中心付近で最も小さくなるように形成される。前端部および後端部の各々の周囲に位置する翼面は、前端部および後端部の各々を通り半径方向に沿った断面視において、180°となるように形成される。
また好ましくは、翼の回転方向における連結部の中心位置を通り、かつ中心軸を中心とする仮想の同心円を描いた場合に、連結部の前端部は、同心円の半径方向外側に位置し、連結部の後端部は、同心円の半径方向内側に位置する。
また好ましくは、翼面は、翼面のうちの連結部よりも半径方向内側の部分の食い違い角が、回転軸部に近づくに従って小さくなるように形成される。
また好ましくは、翼面は、翼面のうちの連結部よりも半径方向内側の部分の翼面積が、翼面のうちの連結部よりも半径方向外側の部分の翼面積と同一もしくはこれよりも大きくなるように形成されている。
また好ましくは、翼根部における食い違い角は、外縁部における食い違い角よりも小さい。翼面の翼根部は、翼面の正圧面側が凸となり翼面の負圧面側が凹となるように反った形状を有する。翼は、翼根部の反り方向と外縁部の反り方向とが逆向きになるように形成される。
また好ましくは、連結部は、内側領域から外側領域に向かって湾曲するように設けられる。
また好ましくは、連結部は、内側領域から外側領域に向かって屈曲するように設けられる。
また好ましくは、外縁部は、前縁部側に位置する前方外縁部と、後縁部側に位置する後方外縁部と、前方外縁部および後方外縁部を接続する接続部とを含む。
なお、上記接続部は、最大半径の異なる上記前方外縁部と上記後方外縁部とを接続する部位であり、望ましくは上記前方外縁部と上記後方外縁部とを滑らかに接続している。また、上記接続部は、望ましくは上記前方外縁部と上記後方外縁部とを略鋭角形状、たとえば切れ込みを有する状態で接続している。また、上記接続部は、望ましくは上記前方外縁部と上記後方外縁部とを略鈍角形状、たとえば段差を有する状態で接続している。また、上記接続部は、望ましくは上記中心軸側に向けて窪んだ形状とされている。
また好ましくは、上述のいずれかに記載のプロペラファンは、樹脂成形品からなる。
この発明に従った流体送り装置は、上述のいずれかに記載のプロペラファンと、プロペラファンを回転駆動する駆動モータとを備える。
この発明に従った成形用金型は、上述の樹脂製のプロペラファンを成形するために用いられる。
以上に説明したように、この発明に従えば、ファンが占有可能な領域の体積に対する流体の送り効率を高めつつ、ファンから送り出される流体の不快感が低減されるプロペラファン、そのプロペラファンを備える流体送り装置およびそのプロペラファンの製造に用いられる成形用金型を提供することができる。
この発明の実施の形態1におけるプロペラファンを備えたサーキュレータを示す斜視図である。 この発明の実施の形態1におけるプロペラファンを吸込側から見た斜視図である。 図2中のプロペラファンを吸込側から見た別の斜視図である。 図2中のプロペラファンを吸込側から見た平面図である。 図2中のプロペラファンを噴出側から見た斜視図である。 図2中のプロペラファンを噴出側から見た平面図である。 図2中のプロペラファンを示す側面図である。 図2中のプロペラファンを示す別の側面図である。 図2中のプロペラファンを示すさらに別の側面図である。 図2中のプロペラファンを示すさらに別の側面図である。 図4中のプロペラファンを部分的に拡大した平面図である。 図11中のA−A線上から見たプロペラファンを示す側面図である。 図11中のB−B線上に沿ったプロペラファンを示す断面図である。 図11中のC−C線上に沿ったプロペラファンを示す断面図である。 図11中のD−D線上に沿ったプロペラファンを示す断面図である。 図11中のE−E線上に沿ったプロペラファンを示す断面図である。 図11中のF−F線上に沿ったプロペラファンを示す断面図である。 図11中のG−G線上に沿ったプロペラファンを示す断面図である。 図11中のH−H線上から見たプロペラファンを示す側面図である。 図2中のプロペラファンの第1変形例を示す側面図である。 図2中のプロペラファンの第2変形例を示す側面図である。 比較例におけるプロペラファンを示す側面図である。 図2中の実施の形態1におけるプロペラファンおよび図22中の比較例におけるプロペラファンにおいて、回転中心からの距離と風速との関係を示すグラフである。 図2中の実施の形態1におけるプロペラファン、図20中の第1変形例におけるプロペラファンおよび図22中の比較例におけるプロペラファンにおいて、回転数と風量との関係を示すグラフである。 図2中の実施の形態1におけるプロペラファン、図20中の第1変形例におけるプロペラファンおよび図22中の比較例におけるプロペラファンにおいて、風量と消費電力との関係を示すグラフである。 図2中の実施の形態1におけるプロペラファン、図20中の第1変形例におけるプロペラファンおよび図22中の比較例におけるプロペラファンにおいて、風量と騒音との関係を示すグラフである。 この発明の実施の形態2におけるプロペラファンを示す斜視図である。 図27中のプロペラファンを示す平面図である。 図27中のプロペラファンを示す別の平面図である。 図29中のA−A線上から見たプロペラファンを示す側面図である。 図29中のB−B線上に沿ったプロペラファンを示す断面図である。 図29中のC−C線上に沿ったプロペラファンを示す断面図である。 図29中のD−D線上に沿ったプロペラファンを示す断面図である。 図29中のE−E線上に沿ったプロペラファンを示す断面図である。 図29中のF−F線上に沿ったプロペラファンを示す断面図である。 図29中のG−G線上に沿ったプロペラファンを示す断面図である。 図29中のH−H線上から見たプロペラファンを示す側面図である。 図27中のXXXVIII−XXXVIII線上に沿った断面図である。 図27中のXXXIX−XXXIX線上に沿った断面図である。 プロペラファンの翼が回転している際の様子を吸込側から見た平面図である。 プロペラファンの翼が回転している際の様子を噴出側から見た平面図である。 プロペラファンを連結部に沿って仮想的に切断したときの断面図であり、プロペラファンの翼が回転している際の様子を示す図である。 比較のためのプロペラファンにおいて、本実施の形態における連結部に対応する部分に沿って仮想的に切断したときの断面図であり、このプロペラファンの翼が回転している際の様子を示す図である。 図27中のプロペラファンの第1変形例を示す断面図である。 図27中のプロペラファンの第2変形例を示す平面図である。 この発明の実施の形態3におけるプロペラファンを示す平面図である。 図46中のプロペラファンを示す側面図である。 この発明の実施の形態3におけるプロペラファンを低速回転させた場合に得られる風の流れを示す概念図である。 この発明の実施の形態3におけるプロペラファンを低速回転させた場合に得られる風の状態を模式的に示す図である。 この発明の実施の形態3におけるプロペラファンを高速回転させた場合に得られる風の流れを示す概念図である。 この発明の実施の形態3におけるプロペラファンを高速回転させた場合に得られる風の状態を模式的に示す図である。 この発明の実施の形態4におけるプロペラファンを備えた扇風機を示す側面図である。 この発明の実施の形態4におけるプロペラファンを吸込側から見た斜視図である。 図53中のプロペラファンを噴出側から見た斜視図である。 図53中のプロペラファンを吸込側から見た平面図である。 図53中のプロペラファンを噴出側から見た平面図である。 図53中のプロペラファンを示す側面図である。 プロペラファンの製造に用いられる成形用金型を示す断面図である。
この発明の実施の形態について、図面を参照して説明する。なお、以下で参照する図面では、同一またはそれに相当する部材には、同じ番号が付されている。
(実施の形態1)
[プロペラファンの基本構造について]
図1は、この発明の実施の形態1におけるプロペラファンを備えたサーキュレータを示す斜視図である。図2は、この発明の実施の形態1におけるプロペラファンを吸込側から見た斜視図である。図3は、図2中のプロペラファンを吸込側から見た別の斜視図である。図4は、図2中のプロペラファンを吸込側から見た平面図である。図5は、図2中のプロペラファンを噴出側から見た斜視図である。図6は、図2中のプロペラファンを噴出側から見た平面図である。図7から図10は、図2中のプロペラファンを示す側面図である。
図1から図10を参照して、まず、本実施の形態におけるプロペラファンの基本的な構造について説明する。
本実施の形態におけるプロペラファン110は、3枚翼のプロペラファンであり、たとえば、AS(acrylonitrile-styrene)樹脂等の合成樹脂により一体成形されている。
プロペラファン110は、複数の翼として、翼21A、翼21Bおよび翼21C(以下、特に区別しない場合は翼21という)を有する。翼21は、仮想軸である中心軸101を中心に、図中の矢印102に示す方向に回転する。複数の翼21は、中心軸101を中心に回転することにより、図中の吸込側から噴出側に送風を行なう。
翼21A、翼21Bおよび翼21Cは、プロペラファン110の回転軸、すなわち中心軸101の周方向において、等間隔に配置されている。本実施の形態では、翼21A、翼21Bおよび翼21Cは、同一形状に形成されており、いずれかの翼21を中心軸101を中心に回転させた場合に、その翼21の形状と別の翼21の形状とが一致するように形成されている。翼21Bは、翼21Aに対してプロペラファン110の回転方向の側に隣り合って配置され、翼21Cは、翼21Bに対してプロペラファン110の回転方向の側に隣り合って配置されている。
翼21は、プロペラファン110の回転方向の側に配置される前縁部22と、回転方向の反対側に配置される後縁部24と、前縁部22と後縁部24との間を接続する外縁部23とを有する。
プロペラファン110を中心軸101の軸方向から見た場合、すなわち、プロペラファン110を平面的に見た場合に、前縁部22および後縁部24は、後述するボスハブ部41から、中心軸101を中心とする半径方向内側から外側に向けて延びている。前縁部22は、中心軸101を中心とする半径方向内側から外側に湾曲しながら、プロペラファン110の回転方向に向かって延びている。後縁部24は、中心軸101を中心とする周方向において、前縁部22と対向して配置されている。外縁部23は、全体として、前縁部22と後縁部24との間で円弧状に延びている。
外縁部23は、全体として、中心軸101を中心とする周方向に沿って延びている。図4中に示すように、外縁部23は、その周方向に延びる線上においてプロペラファン110の最も回転方向の側に位置する前縁側接続部104で前縁部22と交わり、その周方向に延びる線上においてプロペラファン110の最も回転方向の反対側に位置する後縁側接続部105で後縁部24と交わっている。
図4中には、複数の翼21の外接円109が示されている。外接円109は、中心軸101を中心として半径Rを有し、その内側に複数の翼21が内接している。外接円109は、翼21の外縁部23に接している。翼21は、中心軸101を中心として最大半径Rを有する。外縁部23は、外接円109と重なる位置と外接円109から離れる位置との境界に、最大径端部111を有する。外縁部23は、最大径端部111から前縁側接続部104に向けて、中心軸101を中心とする周方向に沿って延びながら、その半径方向内側に湾曲している。
前縁側接続部104および後縁側接続部105は、外接円109に隣り合って配置されている。前縁側接続部104および後縁側接続部105は、中心軸101からR/2(Rは、プロペラファンの平面視における翼21の最大半径)だけ離れた位置よりも外周側に配置されている。前縁側接続部104は、前縁部22と外縁部23とが接続される付近で極大となる曲率を有する。後縁側接続部105は、外縁部23と後縁部24とが接続される付近で極大となる曲率を有する。
図4中に示すプロペラファン110の平面視において、前縁部22は、後述するボスハブ部41と前縁側接続部104との間で湾曲しながら延びている。後縁部24は、後述するボスハブ部41と後縁部105との間で湾曲しながら延びている。
プロペラファン110を平面的に見た場合に、翼21の外形が、前縁部22、外縁部23および後縁部24によって構成されている。プロペラファン110を平面的に見た場合に、翼21は、前縁部22と外縁部23とが交わる前縁側接続部104を先端にして、鎌状に尖った形状を有する。前縁側接続部104は、翼21においてプロペラファン110の最も回転方向の側に位置する。
翼21には、プロペラファン110の回転に伴って送風を行なう(吸込側から噴出側に空気を送り出す)ための翼面28が形成されている。
翼面28は、中心軸101の軸方向において吸込側および噴出側に面する側にそれぞれ形成されている。翼面28は、前縁部22、外縁部23および後縁部24に囲まれた領域に形成されている。翼面28は、前縁部22、外縁部23および後縁部24に囲まれた領域の全面に形成されている。翼面28は、前縁部22から後縁部24に向かう周方向において吸込側から噴出側に傾斜する湾曲面により形成されている。
翼面28は、正圧面26と、正圧面26の裏側に配置される負圧面27とから構成されている。正圧面26は、翼面28の噴出側に面する側に形成され、負圧面27は、翼面28の吸込側に面する側に形成されている。プロペラファン110の回転時、翼面28上で空気流れが発生するのに伴って、正圧面26で相対的に大きく、負圧面27で相対的に小さくなる圧力分布が生じる。
プロペラファン110は、回転軸部としてのボスハブ部41を有する。ボスハブ部41は、プロペラファン110を、その駆動源である図示しないモータの回転シャフトに接続する部分である。ボスハブ部41は、中心軸101に軸方向に延びる円筒形状を有する。翼21は、ボスハブ部41から中心軸101の半径方向外側に延出するように形成されている。前縁部22および後縁部24は、ボスハブ部41から外縁部23に向けて、中心軸101の半径方向外側に延びている。
ボスハブ部41の直径と、翼21の直径(2R)との比が0.16以上であることが好ましい。中心軸101の軸方向における翼21の高さと、翼21の直径(2R)との比が0.19以上であることが好ましい。
翼21は、前縁部22と後縁部24とを結ぶ、周方向の断面形状の厚みが、前縁部22および後縁部24から翼中心付近に向かうほど厚くなり、翼中心よりも前縁部22側に寄った位置に最大厚みを有する翼型形状に形成されている。
なお、以上においては、合成樹脂により一体成形されるプロペラファン110について説明したが、本発明におけるプロペラファンは樹脂製に限られるものではない。たとえば、一枚物の板金を捻り加工することによってプロペラファン110を形成してもよいし、曲面を有して形成される一体の薄肉状物によりプロペラファンを形成してもよい。これらの場合、別に成形したボスハブ部41に翼21A、翼21Bおよび翼21Cを接合する構造としてもよい。
また、本発明は、3枚翼のプロペラファン110に限られず、3枚以外の複数枚の翼21を備えるプロペラファンであってもよいし、1枚の翼21を備えるプロペラファンであってもよい。1枚翼のプロペラファンとする場合、中心軸101に対して翼21の反対側に、バランサーとしての錘が設けられる。
図1中には、本実施の形態におけるプロペラファン110を有する流体送り装置の一例として、サーキュレータ510が示されている。サーキュレータ510は、たとえば、広い室内において、エアコンから送出された冷気を撹拌するために用いられる。サーキュレータ510は、プロペラファン110と、プロペラファン110のボスハブ部41が連結され、複数の翼21を回転させるための図示しない駆動モータとを有する。
なお、プロペラファン110は、サーキュレータ510に限られず、扇風機、エアーコンディショナ、空気清浄機、加湿機、除湿機、ファンヒータ、冷却装置または換気装置などの各種の流体送り装置に用いられてもよい。
[翼の前縁部および後縁部の高さについて]
図11は、図4中のプロペラファンを部分的に拡大した平面図である。図12は、図11中のA−A線上から見たプロペラファンを示す側面図である。図13は、図11中のB−B線上に沿ったプロペラファンを示す断面図である。図14は、図11中のC−C線上に沿ったプロペラファンを示す断面図である。図15は、図11中のD−D線上に沿ったプロペラファンを示す断面図である。図16は、図11中のE−E線上に沿ったプロペラファンを示す断面図である。図17は、図11中のF−F線上に沿ったプロペラファンを示す断面図である。図18は、図11中のG−G線上に沿ったプロペラファンを示す断面図である。図19は、図11中のH−H線上から見たプロペラファンを示す側面図である。
図11から図19を参照して、本実施の形態におけるプロペラファン110においては、前縁部22が、ボスハブ部41と、ボスハブ部41から中心軸101の半径方向外側に離れた位置との間で、中心軸101の軸方向において一定の高さを有する。
図13中には、プロペラファン110の噴出側、すなわち翼21の正圧面26が面する側に、プロペラファン110の回転軸である中心軸101に直交する仮想上の平面107が示されている。この平面107を基準にして、前縁部22は、ボスハブ部41と、ボスハブ部41から中心軸101の半径方向外側に離れた位置との間で、一定の高さH1を有する。平面107を基準にして、高さH1は、翼21が有する全高のうちで最も大きい値となる。高さH1は、平面107を基準とする前縁側接続部104の高さと等しいか、その高さよりも大きい。
図4を参照して、好ましくは、前縁部22は、ボスハブ部41と、中心軸101から0.4R〜0.6R(Rは、プロペラファンの平面視における翼21の最大半径)だけ離れた位置との間で、中心軸101の軸方向において一定の高さを有する。より好ましくは、前縁部22は、ボスハブ部41と前縁側接続部104の間で、中心軸101の軸方向において一定の高さを有する。この場合、前縁部22は、ボスハブ部41と外縁部23との間の全範囲で一定の高さを有する。さらに好ましくは、外縁部23が、前縁側接続部104と、前縁側接続部104から中心軸101の半径方向外側に離れた位置との間で、中心軸101の軸方向において一定の高さを有する。
本実施の形態では、最も好ましい形態として、前縁部22が、ボスハブ部41と前縁側接続部104の間で、中心軸101の軸方向において一定の高さを有し、さらに、外縁部23が、前縁側接続部104と最大径端部111との間で、中心軸101の軸方向において一定の高さを有する。すなわち、翼21は、前縁部22および外縁部23が、ボスハブ部41と最大径端部111との間(図4中の2点鎖線112に示す範囲)で、中心軸101の軸方向において一定の高さを維持するように形成されている。
一般的なプロペラファンでは、前縁部22が、噴出側に想定された平面107を基準にして、中心軸101の外周側で高く、内周側で低く設けられる。この場合、翼21の高さが、中心軸101を中心とする外周側と比較して、内周側で極端に小さくなり、その内周側における翼21の送風能力が極めて低くなってしまう。
これに対して、本実施の形態におけるプロペラファン110においては、前縁部22が、中心軸101を中心とする内周側と外周側との間で一定の高さを有する。このような構成により、中心軸101を中心とする内周側において翼21の高さが大きく設定されることになり、送風能力を向上させることができる。これにより、同じ直径および同じ高さの翼を有する一般的なプロペラファンと比較した場合に、プロペラファンから送り出される風量を大幅に増大させることができる。
すなわち、本実施の形態では、中心軸101を中心とする内周側で送風能力を高めることによって、図7中に示す複数の翼21の占有空間114の体積に対する送風効率を高めることができる。この場合、同一風量を送風するに際しても、翼21の回転数をより低い値に抑えることができるため、省エネルギや低騒音の観点において有利となる。
また、中心軸101を中心とする内周側で送風能力を高めることによって、内周側と外周側との間の風量(風速)の差を緩和することができる。これにより、プロペラファン110からより均一な送風が可能となり、送風を受けた人が不快に感じることを防止できる。
図18および図19を参照して、本実施の形態におけるプロペラファン110においては、後縁部24が、中心軸101を中心とする外周側で、中心軸101の軸方向において一定の高さを有する。図19中には、プロペラファン110の噴出側に、中心軸101に直交する仮想上の平面107が示されている。この平面107を基準にして、後縁部24は、中心軸101を中心とする外周側で一定の高さH2を有する。
このような構成によれば、中心軸101を中心とする外周側においても、翼21の高さを大きく維持する。これにより、複数の翼21の占有空間114の体積に対するプロペラファン110の送風効率をさらに高めることができる。
なお、本実施の形態では、駆動モータから延出する回転シャフトにボスハブ部41を固定するための図示しないスピンナーと、翼21との干渉を避けることを目的に、後縁部24の高さが、中心軸101を中心とする内周側で高くなっている。このような構成に限られず、ボスハブ部41を噴出側に延長して、後縁部24の高さをボスハブ部41と外縁部23との間で一定としてもよい。
以上に説明した、この発明の実施の形態1におけるプロペラファン110の構造についてまとめて説明すると、本実施の形態におけるプロペラファン110は、仮想の中心軸101を中心に回転する回転軸部としてのボスハブ部41と、ボスハブ部41から中心軸101の半径方向外側に延出する翼21とを備える。翼21は、回転方向の側に配置される前縁部22と、回転方向の反対側に配置される後縁部24と、中心軸101の周方向に延び、前縁部22と後縁部24との間を接続する外縁部23とを有する。前縁部22は、ボスハブ部41と、ボスハブ部41から中心軸101の半径方向外側に離れた位置との間で、中心軸101の軸方向において一定の高さを有する。
このように構成された、この発明の実施の形態1におけるプロペラファン110によれば、中心軸101を中心とする内周側において送風能力を向上させることによって、ファンが占有可能な領域の体積に対する送風効率を高めつつ、ファンからの送風の不快感が低減されるプロペラファンを実現することができる。
[プロペラファンの変形例の説明]
図20は、図2中のプロペラファンの第1変形例を示す側面図である。本変形例におけるプロペラファンは、図4中に示す平面視と同一の平面視を有する。図4および図20を参照して、本変形例におけるプロペラファン120は、プロペラファン110と比較して、前縁部22が一定の高さを有する範囲が異なる。
より具体的には、前縁部22は、ボスハブ部41と、ボスハブ部41および前縁側接続部104の間の位置117との間(図4中の2点鎖線116に示す範囲)で、中心軸101の軸方向において一定の高さを有する。図20中には、プロペラファン120の噴出側に、中心軸101に直交する仮想上の平面107が示されている。前縁部22は、位置117から前縁側接続部104に向かうほど平面107を基準とする高さhが徐々に小さくなるように形成されている。
図21は、図2中のプロペラファンの第2変形例を示す側面図である。本変形例におけるプロペラファンは、図4中に示す平面視と同一の平面視を有する。図21を参照して、本変形例におけるプロペラファン125は、プロペラファン110と比較して、後縁部24の形状が異なる。
図21中には、プロペラファン120の噴出側に、中心軸101に直交する仮想上の平面107が示されている。より具体的には、後縁部24は、中心軸101を中心とする外周側において、外縁部23に向かうほど平面107を基準とする高さhが大きくなるように形成されている。
このような構成を備えるプロペラファン120およびプロペラファン125によっても、上記のプロペラファン110による効果を同様に奏することができる。
[作用効果の確認のための実施例]
続いて、本実施の形態におけるプロペラファン110および第1変形例におけるプロペラファン120によって上記作用効果が奏されることを確認するための実施例について説明する。
図22は、比較例におけるプロペラファンを示す側面図である。図22は、図7および図20に対応する図である。本比較例におけるプロペラファンは、図4中に示す平面視と同一の平面視を有する。図22を参照して、図中には、プロペラファン130の噴出側に、中心軸101に直交する仮想上の平面107が示されている。本比較例におけるプロペラファン130においては、前縁部22が、ボスハブ部41から外縁部23に向かうほど、平面107を基準とする高さhが大きくなるように形成されている。
翼21の直径(φ180mm)および高さ(40mm)、ならびにボスハブ部41の直径(φ30mm)が同じである、図7中に示す実施の形態1におけるプロペラファン110と、図20中に示す第1変形例におけるプロペラファン120と、図22中に示す比較例におけるプロペラファン130とを準備した。そして、各プロペラファンにおいて、回転中心からの距離と風速との関係、回転数と風量との関係、風量と消費電力との関係および風量と騒音との関係を実測により求め、測定結果を比較した。
なお、図7および図22から分かるように、実施の形態1におけるプロペラファン110と比較例におけるプロペラファン130とは、基本的に同じ翼形状を有するが、変形例におけるプロペラファン130では、前縁部22の高さがボスハブ部41から外縁部23に向かうほど大きくなっているのに対して、実施の形態1におけるプロペラファン110では、前縁部22の高さが一定となっている点で異なる。また。図7および図20から分かるように、実施の形態1におけるプロペラファン110と第1変形例におけるプロペラファン120とは、基本的に同じ翼形状を有するが、前縁部22が一定の高さを有する範囲が、第1変形例におけるプロペラファン120よりも実施の形態1におけるプロペラファン110の方が大きい。
図23は、図2中の実施の形態1におけるプロペラファンおよび図22中の比較例におけるプロペラファンにおいて、回転中心からの距離と風速との関係を示すグラフである。
図23を参照して、図22中の比較例におけるプロペラファン130においては、中心軸101から0.8R(Rは、プロペラファンの平面視における翼21の最大半径)だけ離れた位置で、風速が大きなピーク値を示した。一方、実施の形態1におけるプロペラファン110においては、中心軸101を中心とする内周側において送風能力を向上させることによって、風速のピークが解消された。
図24は、図2中の実施の形態1におけるプロペラファン、図20中の第1変形例におけるプロペラファンおよび図22中の比較例におけるプロペラファンにおいて、回転数と風量との関係を示すグラフである。図25は、図2中の実施の形態1におけるプロペラファン、図20中の第1変形例におけるプロペラファンおよび図22中の比較例におけるプロペラファンにおいて、風量と消費電力との関係を示すグラフである。図26は、図2中の実施の形態1におけるプロペラファン、図20中の第1変形例におけるプロペラファンおよび図22中の比較例におけるプロペラファンにおいて、風量と騒音との関係を示すグラフである。
図24を参照して、同一回転数における風量を比較した場合、実施の形態1におけるプロペラファン110および第1変形例におけるプロペラファン120の風量が、比較例におけるプロペラファン130の風量よりも大きくなり、実施の形態1におけるプロペラファン110の風量が第1変形例におけるプロペラファン120の風量よりもさらに大きくなった。
図25および図26を参照して、同一風量時における消費電力および騒音を比較した場合、実施の形態1におけるプロペラファン110および第1変形例におけるプロペラファン120の消費電力および騒音が、比較例におけるプロペラファン130の消費電力および騒音よりも小さくなり、実施の形態1におけるプロペラファン110の消費電力および騒音が第1変形例におけるプロペラファン120の消費電力および騒音よりもさらに小さくなった。
(実施の形態2)
図27は、この発明の実施の形態2におけるプロペラファンを示す斜視図である。図28および図29は、図27中のプロペラファンを示す平面図である。図30は、図29中のA−A線上から見たプロペラファンを示す側面図である。図31は、図29中のB−B線上に沿ったプロペラファンを示す断面図である。図32は、図29中のC−C線上に沿ったプロペラファンを示す断面図である。図33は、図29中のD−D線上に沿ったプロペラファンを示す断面図である。図34は、図29中のE−E線上に沿ったプロペラファンを示す断面図である。図35は、図29中のF−F線上に沿ったプロペラファンを示す断面図である。図36は、図29中のG−G線上に沿ったプロペラファンを示す断面図である。図37は、図29中のH−H線上から見たプロペラファンを示す側面図である。
図27から図37を参照して、本実施の形態におけるプロペラファン160は、実施の形態1におけるプロペラファン110の同一の翼形状を有する。図27から図29中には、プロペラファン160が有する3枚の翼21のうちの1枚のみが示されている。本実施の形態では、翼21が備える折れ目構造について説明する。
翼21は、翼根部34と、翼根部34から板状に延びる翼面28とを有する。翼根部34は、翼21とボスハブ部41の外表面41Sとの間(境目)に配置される。翼面28の周縁には、翼根部34のうちの回転方向の側の部分から翼根部34のうちの回転方向の反対側の部分に向かって、前縁部22、翼先端部124、外縁部23、翼後端部125および後縁部24が、挙げた順で環状に配置されている。
翼21を平面的に見た場合に、翼21は、前縁部22と外縁部23とが交わる翼先端部124を先端にして、鎌状に尖った形状を有する。翼先端部124は、中心軸101から見て前縁部22の半径方向外側に配置される。翼先端部124は、前縁部22と外縁部23とが接続される部分である。本実施の形態における翼先端部124は、翼21の中で最も回転方向の側に位置している。翼後端部125は、中心軸101から見て後縁部24の半径方向外側に配置される。翼後端部125は、後縁部24と外縁部23とが接続される部分である。
前縁部22、翼先端部124、外縁部23、翼後端部125および後縁部24は、翼根部34とともに翼21の周縁を形成する周縁部を構成している。この周縁部(前縁部22、翼先端部124、外縁部23、翼後端部125および後縁部24)は、いずれも概ね弧状の形状を有するように形成されることで、角部を有さない滑らかな形状とされている。翼面28は、翼根部34とこの周縁部(前縁部22、翼先端部124、外縁部23、翼後端部125および後縁部24)とに囲まれた領域の内側の全域に亘って形成されている。
[内側領域31、外側領域32および連結部33の説明]
プロペラファン160の翼面28は、内側領域31、外側領域32および連結部33を有する。内側領域31、外側領域32および連結部33は、正圧面26および負圧面27の双方に形成されている。
内側領域31は、翼根部34をその一部に含み、外側領域32に比べて中心軸101の半径方向内側に位置する。外側領域32は、翼後端部125をその一部に含み、連結部33および内側領域31に比べて中心軸101の半径方向外側に位置する。内側領域31における正圧面26の表面形状と、外側領域32における正圧面26の表面形状とは、相互に異なるように形成されている。内側領域31における負圧面27の表面形状と、外側領域32における負圧面27の表面形状とは、相互に異なるように形成されている。
連結部33は、翼面28の正圧面26側が凸となり、翼面28の負圧面27側が凹となるように、内側領域31と外側領域32とを連結している。連結部33は、概ね回転方向に沿うように設けられており、連結部33のうちの回転方向の最上流側に位置する前端部33Aから、連結部33のうちの回転方向の最下流側に位置する後端部33Bまで延在している。
連結部33は、内側領域31から外側領域32に向かうにしたがって翼面28がやや急峻な曲率変化を持って湾曲するようにして形成されており、相互に異なる表面形状を有する内側領域31および外側領域32との境目においてこれら同士を湾曲しながら連結している。
連結部33は、その付近において翼面28の半径方向断面視における曲率が極大となるように設けられており、正圧面26上においては湾曲状に突出した突条部として前端部33Aから後端部33Bに向かって筋状に延びるように現れており、負圧面27上においては湾曲状の窪んだ溝部として前端部33Aから後端部33Bに向かって筋状に延びるように現れている。
連結部33の前端部33Aは、翼先端部124寄りに位置し、後縁部24からは離れて設けられている。本実施の形態における連結部33の前端部33Aは、翼先端部124から回転方向とは反対側に向かって翼面28の内側にわずかに変位した位置に設けられている。
連結部33の前端部33Aは、後縁部24から離れていれば、前縁部22寄りに位置するように設けられていてもよいし、外縁部23寄りに位置するように設けられてもよい。連結部33の前端部33Aは、連結部33を滑らかに回転方向の側に延長した線上に、前縁部22、翼先端部124または外縁部23が位置するように設けられている。
連結部33の後端部33Bは、後縁部24寄りに位置し、前縁部22、翼先端部124および外縁部23のいずれに対しても離れて設けられている。本実施の形態における連結部33の後端部33Bは、中心軸101の半径方向における後縁部24の略中央位置から回転方向に向かって翼面28の内側にわずかに変位した位置に設けられている。連結部33の後端部33Bは、連結部33を滑らかに回転方向の反対側に延長した線上に、後縁部24が位置するように設けられている。
図28中に示すように、翼21が中心軸101を中心として矢印102に示す方向に回転した場合、翼面28上には、翼先端部124の付近を中心として、前縁部22、翼先端部124および外縁部23のそれぞれから、後縁部24に向かって流れる翼先端渦340が発生する。この翼先端渦340は、正圧面26上および負圧面27上のそれぞれに発生する。好ましくは、連結部33は、この翼先端渦340の流れに沿うように設けられる。
図29から図31中に示すように、本実施の形態の連結部33は、連結部33の前端部33Aが前縁部22、翼先端部124および外縁部23のいずれにも到達しない(重ならない)ように設けられている。連結部33の存在に起因した湾曲は、前縁部22、翼先端部124および外縁部23のいずれにも現れておらず、連結部33の前端部33Aの周囲に位置する翼面28(正圧面26および負圧面27)は、前端部33Aを通り、中心軸101の半径方向に沿った断面視において、180°となるように平坦に形成されている。
図29および図32中に示すように、連結部33は、翼面28(正圧面26および負圧面27)が、連結部33における前端部33Aの回転方向とは反対側の近傍で、比較的急峻に湾曲するように設けられている。図29、図33および図34中に示すように、連結部33は、連結部33の負圧面27側に仮想的に形成される内角θが、前端部33Aから回転方向における連結部33の中心付近に向かうにつれて徐々に小さくなるように設けられている。好ましくは、この内角θは、回転方向における連結部33の中心付近で最も小さくなるように形成されている。
図29および図35中に示すように、連結部33は、連結部33の負圧面27側に仮想的に形成される内角θが、回転方向における連結部33の中心付近から後端部33Bに向かうにつれて徐々に大きくなるように設けられている。図29、図36および図37中に示すように、本実施の形態の連結部33は、連結部33の後端部33Bが後縁部24に到達しない(重ならない)ように設けられている。連結部33の存在に起因した湾曲は、後縁部24には現れておらず、連結部33の後端部33Bの周囲に位置する翼面28(正圧面26および負圧面27)は、後端部33Bを通り中心軸101の半径方向に沿った断面視において、180°となるように平坦に形成されている。
[食い違い角θA,θBの説明]
図38は、図27中のXXXVIII−XXXVIII線上に沿った断面図である。図27および図38を参照して、翼面28のうちの連結部33よりも半径方向内側に位置する内側領域31は、所定の食い違い角θAを有する。内側領域31における前縁部22上の点と内側領域31における後縁部24上の点とを結ぶことにより、仮想直線31Lが形成される。食い違い角θAとは、仮想直線31Lと中心軸101とがこれらの間になす角度のことである。
図38中に示すように、本実施の形態における翼21の内側領域31は、前縁部22および後縁部24を両端として内側領域31の中腹部が仮想直線31Lから遠ざかるように湾曲し、翼面28(内側領域31)の正圧面26側が凸となり翼面28(内側領域31)の負圧面27側が凹となるように反った形状を有している。また、本実施の形態における翼21は、翼21のうちの連結部33よりも半径方向内側の部分の食い違い角θAが、ボスハブ部41に近づくにしたがって小さくなるように形成されている。
図39は、図27中のXXXIX−XXXIX線上に沿った断面図である。図27および図39を参照して、翼面28のうちの連結部33よりも半径方向外側に位置する外側領域32は、所定の食い違い角θBを有する。外側領域32における前縁部22上の点と外側領域32における後縁部24上の点とを結ぶことにより、仮想直線33Lが形成される。食い違い角θBとは、仮想直線33Lと中心軸101とがこれらの間になす角度のことである。
図39中に示すように、本実施の形態における翼21の外側領域32は、前縁部22および後縁部24を両端として外側領域32の中腹部が仮想直線33Lから遠ざかるように湾曲し、翼面28(外側領域32)の正圧面26側が凹となり翼面28(外側領域32)の負圧面27側が凸となるように反った形状を有している。
図38および図39を参照して、本実施の形態における翼21は、食い違い角θBよりも食い違い角θAの方が小さくなるように形成される。翼21は、翼根部34における食い違い角θAも、外縁部23における食い違い角θBに比べて小さくなるように形成される。さらに、翼21は、連結部33よりも半径方向内側で、正圧面26側が凸となり負圧面27側が凹となるように反った形状を有し、連結部33よりも半径方向外側で、正圧面26側が凹となり負圧面27側が凸となるように反った形状を有する。すなわち、本実施の形態では、翼21が連結部33を境界にして、互いに反対側に反った形状に形成されている。
[作用効果の説明]
図40から図42を参照して、本実施の形態におけるプロペラファン160によって差奏される作用効果について説明する。
図40は、プロペラファンの翼が回転している際の様子を吸込側から見た平面図である。図41は、プロペラファンの翼が回転している際の様子を噴出側から見た平面図である。図42は、プロペラファンを連結部に沿って仮想的に切断したときの断面図であり、プロペラファンの翼が回転している際の様子を示す図である。
図40および図41を参照して、翼21は、中心軸101を中心として矢印102に示す方向に回転する。本実施の形態のプロペラファン160における翼21の翼面28(正圧面26および負圧面27の双方)上には、翼先端渦340、主流310、二次流れ330、馬蹄渦320および馬蹄渦350が、空気流れとして発生する。
翼先端渦340は、プロペラファン160の回転時、主として翼先端部124が空気と衝突することによって形成される。翼先端渦340は、主として翼先端部124を起点として発生し、翼先端部124、翼先端部124の近傍に位置する前縁部22の翼先端部124寄りの部分、および翼先端部124の近傍に位置する外縁部23の翼先端部124寄りの部分から、翼面28上を通過して後縁部24に向かって流れる。
主流310は、プロペラファン160の回転時、翼先端渦340よりも翼面28のさらに上層側に形成される。換言すると、主流310は、翼先端渦340が形成される翼面28の表層に対して、翼先端渦340を挟んで翼面28の反対側に形成される。主流310は、前縁部22、翼先端部124および外縁部23から翼面28上に流入し、後縁部24に向かって流れる。
馬蹄渦320は、プロペラファン160の回転に伴って生じる正圧面26と負圧面27との圧力差に起因して、正圧面26から負圧面27に流れ込むように外縁部23に沿って発生する。二次流れ330は、プロペラファンの回転に伴って生じる遠心力に起因して、ボスハブ部41から外縁部23に向かって流れるように発生する。馬蹄渦350は、連結部33が翼面28に設けられている部分を二次流れ330が横切るように流れることにより発生する。
上述のとおり、本実施の形態における連結部33の前端部33Aは、翼先端部124から回転方向とは反対側に向かって翼面28の内側にわずかに変位した位置に設けられ、連結部33の後端部33Bは、中心軸101の半径方向における後縁部24の略中央位置から回転方向に向かって翼面28の内側にわずかに変位した位置に設けられている。この構成によって、連結部33は、主流310および翼先端渦340の流れる方向に概ね沿うように形成されることになる。
図42を参照して、内側領域31および外側領域32を湾曲して連結する連結部33は、翼面28の表層における連結部33の近傍に、馬蹄渦350および翼先端渦340を保持させ、翼面28の表層から馬蹄渦350および翼先端渦340が剥離してしまうことを抑制する。連結部33は、連結部33の近傍で発生し連結部33によって保持されながら流れる馬蹄渦350が、発達したり変動したりすることも抑制する。
翼先端部124の近傍で発生し連結部33によって保持されながら流れる翼先端渦340と、連結部33の近傍で発生し連結部33によって保持されながら流れる馬蹄渦350とは、主流310に対して運動エネルギを付与する。運動エネルギを付与された主流310は、翼面28上の下流側で翼面28から剥離しにくくなる。結果として、剥離領域52を縮小もしくは消滅させることができる。プロペラファン160は、剥離が抑制されることによって、回転時に発生する騒音を低減することができ、連結部33を設けない場合と比較して風量を増加させて高効率化することが可能となる。
図43は、比較のためのプロペラファンにおいて、本実施の形態における連結部に対応する部分に沿って仮想的に切断したときの断面図であり、このプロペラファンの翼が回転している際の様子を示す図である。比較のためのプロペラファンは、連結部33を有していない点のほかは、プロペラファン160と略同様に構成される。
図43を参照して、このような比較のためのプロペラファンにおいては、翼面28の正圧面26および負圧面27に発生する主流310および翼先端渦340が、前縁部22、翼先端部124および外縁部23に近い翼面28上の上流側では翼面28に沿った流れとなるものの、後縁部24に近い翼面28上の下流側では翼面28に沿った流れとなりにくい。下流側で翼先端渦340から主流310に対して運動エネルギが付与されないため、主流310が翼面28から剥離する剥離領域52が生じやすい。このプロペラファンは、回転時に発生する騒音を低減することは困難となる。このような傾向は、正圧面26および負圧面27のうち、特に負圧面27上で顕著となる。
本実施の形態におけるプロペラファン160の回転時、連結部33が設けられている領域の近傍においては、主流310は半径方向外側から同方向内側に向かって流れる。したがって、連結部33を主流310の流れに概ね沿うように形成し、連結部33が設けられている領域についても翼型を採用することで、あらゆる主流310の流れに対して翼型を実現できるため、より効率的な送風を行うことが可能となる。
内側領域31側から外側領域32側に向かって翼面28が滑らかに湾曲するようにして連結部33が設けられていることによって、翼面28の形状に設計上の自由度を確保することができる。たとえば、馬蹄渦の発生を抑制するために、翼先端部124に向かって前縁部22および外縁部23の幅が細くなる鎌形状を維持しながらボスハブ部41付近での翼面28の高さを高くするといった複雑な翼面28の形状についても対応可能となる。
本実施の形態におけるプロペラファン160では、連結部33の前端部33Aの周囲に位置する翼面28(正圧面26および負圧面27)が、前端部33Aを通り中心軸101の半径方向に沿った断面視において180°となるように平坦に形成され、さらに、連結部33の後端部33Bの周囲に位置する翼面28(正圧面26および負圧面27)は、後端部33Bを通り中心軸101の半径方向に沿った断面視において、180°となるように平坦に形成されている。このような構成によれば、翼面28に流入する風および翼面28から流出する風を乱さないので、主流310に対する抵抗を少なくすることが可能となる。なお、当該構成は、必要に応じて設けられるとよい。
また、本実施の形態における翼21は、翼根部34および内側領域31においては正圧面26側が凸となり負圧面27側が凹となるように反った形状を有し、外側領域32および外縁部23においては正圧面26側が凹となり負圧面27側が凸となるように反った形状を有している。当該構成は、逆キャンバー構造ということができる。
一般的なプロペラファンは、その構造に起因して、半径方向内側の部分の周速は遅く、半径方向外側の部分の周速は速くなる。空気の流入角は、半径方向内側に位置する翼根部側と半径方向外側に位置する外縁部側(翼端側)とで異なることになる。したがって、外縁部側(翼端側)で適切な空気の流入が行われるように外縁部側(翼端側)の流入角(キャンバー角)を設計すると、翼根部側では空気の流入が良好に行われにくくなり、翼根部側では空気流れに剥離が生じてしまう場合がある(逆も然り)。
このため、本実施の形態におけるプロペラファン160のように、半径方向内側に位置する翼根部34側と半径方向外側に位置する外縁部23側(翼端側)とでそれぞれ適切にキャンバー角を変化させ、翼根部34側の空気の流入角が大きな領域においては逆キャンバー構造を与えることにより、半径方向の全域にわたって翼面28に対して空気を適切な流入角で流入させることができ、さらには空気流れの剥離を防止することが可能となる。
なお、翼根部34および内側領域31においては正圧面26側が凸となり負圧面27側が凹となるように反った形状を有し、外側領域32および外縁部23においては正圧面26側が凹となり負圧面27側が凸となるように反った形状を有するような翼面28の構成(逆キャンバー構造)は、翼面28に連結部33が設けられるという技術的な思想とは独立して実施することが可能である。
プロペラファンに連結部33が設けられていなくても、翼面28が逆キャンバー構造を有するという構成によれば、半径方向の全域にわたって翼面28に対して空気を適切な流入角で流入させることができ、さらには空気流れの剥離を防止するといった課題が解決されることとなる。
また、本実施の形態におけるプロペラファン160では、翼21が、食い違い角θBよりも食い違い角θAの方が小さくなるように形成される。翼21は、翼根部34における食い違い角θAも、外縁部23における食い違い角θBに比べて小さくなるように形成される。このような構成によれば、翼面28の傾きが内周側でより急になり、外周側でよりなだらかになるため、不快感の原因となっている半径方向外側の風速のピークを調整することが可能である。
また、本実施の形態における翼21は、翼21のうちの連結部33よりも半径方向内側の部分の食い違い角θAが、ボスハブ部41に近づくにしたがって小さくなるように形成されている。当該構成によって、中心軸101を中心とする内周側においては、中心軸101に近づくにつれて送風能力が高くなる。
一般的なプロペラファンにおいては、半径方向の吹き出し風速分布に大きな差があり、半径方向外側では風速が大きくなり、翼の先端部付近では最も高速となり極端なピーク点を有する。中心軸101の近傍の翼21が機能していない部分と、翼21が最も機能している部分とでは、風速の差が過大となり、吹き出し風速のムラが生じ、これが不快感の大きな原因となってしまう。
これに対して、本実施の形態におけるプロペラファン160によれば、内周側と外周側との間の風量(風速)の差を緩和することができる。プロペラファン160によってより均一な送風が行われ、送風を受けた人が不快に感じることを抑制することが可能となる。プロペラファン160によれば、ファンの占有可能な空間を最大限活用することもでき、強力な送風をすることも可能となる。なお、当該構成は、必要に応じて設けられるとよい。
プロペラファン160によってより均一な送風を行うという観点からは、翼21は、翼21のうちの連結部33よりも半径方向内側の部分(内側領域31)の翼面積が、翼21のうちの連結部33よりも半径方向外側の部分(外側領域32)の翼面積と同一もしくはこれよりも大きくなるように形成されているとよい。
このような構成によって、翼21のうちの連結部33よりも半径方向内側の部分(内側領域31)の送風能力を増加させ、翼21のうちの連結部33よりも半径方向外側の部分(外側領域32)の送風能力を低減することができる。内周側と外周側との間の風量(風速)の差を緩和することができ、プロペラファン110によってより均一な送風が行われ、送風を受けた人が不快に感じることを抑制することが可能となる。当該構成は、必要に応じて設けられるとよい。
[各種変形例の説明]
図44は、図27中のプロペラファンの第1変形例を示す断面図である。図44は、図33に対応する図である。
上述のプロペラファン160の連結部33は、内側領域31から外側領域32に向かうにしたがって翼面28がやや急峻な曲率変化を持って湾曲するようにして形成されており、相互に異なる表面形状を有する内側領域31および外側領域32との境目においてこれら同士を湾曲しながら連結している。
図44を参照して、連結部33は、内側領域31から外側領域32に向かうにしたがって翼面28がやや急峻な曲率変化を持って湾曲するようにして形成され、相互に異なる表面形状を有する内側領域31および外側領域32との境目においてこれら同士を屈曲しながら連結していてもよい。当該構成によっても、上述のプロペラファン160と同様の効果を奏することができる。
なお、連結部33において翼面28があまり極端に折れ曲がると、その連結部33の形状は、翼面28で発生する主流ではない二次流れに影響しやすくなる。同じ空間を最大限使用する場合にも、連結部33での空気流れを考慮し、適切な湾曲度合いまたは屈曲度合いを定めるとよい。
図45は、図27中のプロペラファンの第2変形例を示す平面図である。図45を参照して、本変形例では、連結部33が、回転方向における連結部33の中心位置P1を通り、かつ中心軸101を中心とする仮想の同心円Z1を描いた場合に、連結部33の前端部33Aは同心円Z1の半径方向外側に位置し、連結部33の後端部33Bは同心円Z1の半径方向内側に位置するように設けられる。このような構成によれば、翼面28上に形成される主流は、半径方向外側から内側へ向かう方向となるため、そのような主流の流れに沿って連結部33を設けることができる。
(実施の形態3)
図46は、この発明の実施の形態3におけるプロペラファンを示す平面図である。図47は、図46中のプロペラファンを示す側面図である。本実施の形態におけるプロペラファンは、実施の形態1におけるプロペラファン110と比較して、基本的には同様の構造を備える。以下、重複する構造についてはその説明を繰り返さない。
図46および図47を参照して、本実施の形態におけるプロペラファン140においては、翼21の外縁部23が、前縁部22側に位置する前方外縁部156と、後縁部24側に位置する後方外縁部157と、これら前方外縁部156および後方外縁部157を接続する所定形状の接続部151とを含む。このような形状の外縁部23とすることにより、後述する様々な効果が発揮されることになる。
外縁部23には、中心軸101側に向けて窪む接続部151が形成されている。接続部151は、前縁側接続部104と後縁側接続部105との間の途中の位置に形成されている。
外縁部23に上述した接続部151が形成されることにより、翼21の外縁部23には、前縁側接続部104側に位置する前方外縁部156(図4を参照)と、後縁側接続部105側に位置する後方外縁部157(図4を参照)とが設けられることになる。
接続部151は、滑らかに湾曲した形状とされても、屈曲した形状とされてもよい。本実施の形態においては、接続部151が比較的浅く窪むように形成されているため、当該接続部151は、略鈍角形状を有している。
接続部151が形成される位置は、外縁部23上の位置であれば特に限定されるものではないが、本実施の形態においては、前縁側接続部104よりも後縁側接続部105に寄った位置に接続部151が形成されている。このため、本実施の形態においては、前方外縁部156の回転方向に沿った幅が、後方外縁部157の回転方向に沿った幅よりも大きく形成されている。
翼21にこのような接続部151を形成することによって、以下のような効果が奏される。
第一に、径方向における風速分布をより均一にすることができ、風速のムラを抑制することが可能となって風当たりの良い風とすることができる。
すなわち、外縁部23に窪み形状の接続部151が形成されていない翼形状とした場合には、径方向外側に向かうにつれてほぼ比例して風速が大きくなるため、径方向内側寄りの部分において発生する風の風速と、径方向外側寄りの部分において発生する風の風速との間に大きな差が生じ、発生する風に大きな圧力変動が生じてしまうことになる。
これに対して、本実施の形態においては、外縁部23に窪み形状の接続部151が形成されているため、外縁部23に窪み形状の接続部151が形成されていない場合に比べて、外縁部23近傍(すなわち、径方向外側寄りの部分)において翼面積が減少することになる。このため、径方向外側に向かうにつれてほぼ比例して大きくなる風速が、外縁部23寄りの部分において緩和されることになり、径方向内側寄りの部分において発生する風の風速と、外縁部23寄りの部分において発生する風の風速とが近づくことになり、径方向における風速分布がより均一になる。したがって、風速のムラが抑制可能となり、風当たりの良い風とすることができる。
第二に、径方向外側寄りの部分において発生される風に含まれる圧力変動が小さくなり、風当たりの良い風を発生させることができる。
すなわち、外縁部23に窪み形状の接続部が形成されていない翼形状とした場合には、翼と翼との間の比較的大きな空間を空気が通過することとなり、発生する風に大きな圧力変動が生じてしまうことになる。これは、より風速の速い風が発生される外縁部23側の部分において特に顕著となり、翼の枚数が少なくなればなるほど大きな圧力差を含む風が発生することとなる。
これに対して、本実施の形態においては、外縁部23に窪み形状の接続部151が形成された翼形状であるため、各翼21に、1枚の翼21の前方外縁部156と後方外縁部157との間に比較的小さな空間(すなわち、窪み形状の接続部151が位置する空間)が形成されることになり、当該空間が、翼21の中に風を発生させない空間として存在することになる。その結果、風速の速い風が発生される外縁部23側の部分において、翼面積が減少することで発生される風に生じる圧力差が緩和されることとなる上に、圧力変動がより小刻みに生じることになる。このため、1枚の翼21に設けられた前方外縁部156および後方外縁部157があたかも2枚分の翼で風を送風するような作用が得られ、全体として圧力変動が小さな風当たりの良い風を発生させることができる。
第三に、低速回転時においては、広範囲に拡散する風当たりの良い風とすることができ、高速回転時においては、直進性が高くより遠くへ到達する風とすることができる。この点について、図48から図51を参照して、より詳細に説明する。
図48は、この発明の実施の形態3におけるプロペラファンを低速回転させた場合に得られる風の流れを示す概念図である。図49は、この発明の実施の形態3におけるプロペラファンを低速回転させた場合に得られる風の状態を模式的に示す図である。図50は、この発明の実施の形態3におけるプロペラファンを高速回転させた場合に得られる風の流れを示す概念図である。図51は、この発明の実施の形態3におけるプロペラファンを高速回転させた場合に得られる風の状態を模式的に示す図である。
なお、図48および図50においては、翼先端渦の代表的な軌道として、前縁側接続部104付近で発生する翼先端渦の軌道を破細線にて模式的に示し、馬蹄渦の代表的な軌道を細線にて模式的に示し、さらに翼21の外縁部23寄りの位置にて発生される風の軌道を太線にて模式的に示している。
上述したように、本実施の形態においては、翼21の外縁部23に窪み形状の接続部151が形成されている。当該外縁部23上の位置は、前縁側接続部104を含む翼先端部の下流側であって、かつ翼面28上を流れる翼先端渦の流線に沿った位置に該当することになる。
図48および図49を参照して、翼21が低速で回転した場合には、翼21が回転することで生じる翼先端渦および馬蹄渦の運動エネルギが小さく、このため翼先端渦および馬蹄渦が窪み形状の接続部151によって捉えられることなく、当該部分においてその剥離が促されることになる。これにより、翼先端渦および馬蹄渦は、いずれも窪み形状の接続部151が形成された部分において遠心力によって径方向外側に飛ばされることになる。したがって、図42中に示すように、翼21で発生された風がサーキュレータ510の前方において拡散することになり、風当たりの良い風152を広範囲に送風できることになる。このため、夜間等の就寝時に風を殆ど感じることなくサーキュレータ510を運転させたい場合に、これを満足する微風運転の実現も可能になる。
図50および図51を参照して、一方、翼21が高速で回転した場合には、翼21が回転することで生じる翼先端渦および馬蹄渦の運動エネルギが大きく、このため翼先端渦および馬蹄渦が窪み形状の接続部151によって捉えられて保持されることになり、翼先端渦および馬蹄渦の変動や発達が抑制されることになる。また、その際、翼先端渦および馬蹄渦が窪み形状の接続部151に沿って内側に移動することになるため、その後、後縁側接続部153において剥離した翼先端渦および馬蹄渦が高速回転による大風量および高静圧によって軸方向に飛ばされることになる。したがって、図51中に示すように、翼21で発生された風がサーキュレータ510の前方において収束することになり、直進性が高くより遠くへ到達する風153が送風できることになる。このため、効率よく送風を行なうことが可能になるとともに、風の直進性が高まることによって騒音の発生をも抑制することが可能になる。
このように、本実施の形態におけるプロペラファン140およびこれを備えたサーキュレータ510によれば、発生される風の圧力変動が小さく快適な風を送り出すことが可能になるとともに、騒音の低減を図ることが可能になる。
(実施の形態4)
図52は、この発明の実施の形態4におけるプロペラファンを備えた扇風機を示す側面図である。図53は、この発明の実施の形態4におけるプロペラファンを吸込側から見た斜視図である。図54は、図53中のプロペラファンを噴出側から見た斜視図である。図55は、図53中のプロペラファンを吸込側から見た平面図である。図56は、図53中のプロペラファンを噴出側から見た平面図である。図57は、図53中のプロペラファンを示す側面図である。
なお、本実施の形態におけるプロペラファンは、実施の形態1におけるプロペラファン110と基本的には同様の構造を有する。以下、プロペラファン110と重複する構造については、説明を繰り返さない。
図52から図57を参照して、本実施の形態におけるプロペラファン210は、7枚翼のプロペラファンであり、複数の翼として、翼21A、翼21B、翼21C、翼21D、翼21E、翼21Fおよび翼21G(以下、特に区別しない場合は翼21という)を有する。
プロペラファン210は、扇風機610に搭載されている。扇風機610は、たとえば、人に直接風を当てて涼を得るために用いられる。扇風機610は、プロペラファン210と、プロペラファン210のボスハブ部41が連結され、複数の翼21を回転させるための図示しない駆動モータとを有する。
本実施の形態におけるプロペラファン210においては、前縁部22が、ボスハブ部41と、ボスハブ部41から中心軸101の半径方向外側に離れた位置との間で、中心軸101の軸方向において一定の高さを有する。
図57中には、プロペラファン210の噴出側、すなわち翼21の正圧面26が面する側に、プロペラファン210の回転軸である中心軸101に直交する仮想上の平面107が示されている。この平面107を基準にして、前縁部22は、ボスハブ部41と、ボスハブ部41から中心軸101の半径方向外側に離れた位置との間で、一定の高さH3を有する。より具体的には、前縁部22は、ボスハブ部41と、ボスハブ部41および前縁側接続部104の間の位置119との間(図55中の2点鎖線118に示す範囲)で、中心軸101の軸方向において一定の高さを有し、位置119よりも外周側で、外縁部23に近づくほど小さくなる高さを有する。
このように構成された、この発明の実施の形態4におけるプロペラファン210によれば、実施の形態1に記載の効果を同様に奏することができる。
なお、以上に説明した実施の形態1〜4における各種のプロペラファンの翼構造を適宜組み合わせて、新たなプロペラファンを構成してもよい。
(実施の形態5)
本実施の形態では、実施の形態1〜4における各種のプロペラファンを樹脂を用いて成形するための成形用金型の構造について説明する。
図58は、プロペラファンの製造に用いられる成形用金型を示す断面図である。図58を参照して、成形用金型61は、固定側金型62および可動側金型63を有する。固定側金型62および可動側金型63により、プロペラファンと略同一形状であって、流動性の樹脂が注入されるキャビティが規定されている。
成形用金型61には、キャビティに注入された樹脂の流動性を高めるための図示しないヒータが設けられてもよい。このようなヒータの設置は、たとえば、ガラス繊維入りAS樹脂のような強度を増加させた合成樹脂を用いる場合に特に有効である。
なお、図63中に示す成形用金型61においては、プロペラファンにおける正圧面側表面を固定側金型62によって形成し、負圧面側表面を可動側金型63によって形成することを想定しているが、プロペラファンの負圧面側表面を固定側金型62によって形成し、プロペラファンの正圧面側表面を可動側金型63によって形成してもよい。
プロペラファンとして、材料に金属を用い、プレス加工による絞り成形により一体に形成するものがある。これらの成形は、厚い金属板では絞りが困難であり、質量も重くなるため、一般的には薄い金属板が用いられる。この場合、大きなプロペラファンでは、強度(剛性)を保つことが困難である。これに対して、翼部分より厚い金属板で形成したスパイダーと呼ばれる部品を用い、翼部分を回転軸に固定するものがあるが、質量が重くなり、ファンバランスも悪くなるという問題がある。また、一般的には、薄く、一定の厚みを有する金属板が用いられるため、翼部分の断面形状を翼型にすることができないという問題がある。
これに対して、プロペラファンを樹脂を用いて形成することにより、これらの問題を一括して解決することができる。
今回開示された実施の形態はすべての点で例示であって制限的なものではないと考えられるべきである。本発明の範囲は上記した説明ではなくて特許請求の範囲によって示され、特許請求の範囲と均等の意味および範囲内でのすべての変更が含まれることが意図される。
この発明は、たとえば、扇風機、サーキュレータ、エアーコンディショナ、空気清浄機、加湿機、除湿機、ファンヒータ、冷却装置または換気装置などの家庭用電気機器に適用される。
10,110,120,125,130,140,160,210 プロペラファン、21,21A,21B,21C,21D,21E,21F,21G 翼、22 前縁部、23 外縁部、24 後縁部、26 正圧面、27 負圧面、28 翼面、31 内側領域、31L,33L 仮想直線、32 外側領域、33 連結部、33A 前端部、33B 後端部、34 翼根部、41 ボスハブ部、41S 外表面、52 剥離領域、61
成形用金型、62 固定側金型、63 可動側金型、101 中心軸、104 前縁側接続部、105 後縁側接続部、107 平面、109 外接円、111 最大径端部、114 占有空間、151 切り込み、152,153 風、151 接続部、156 前方外縁部、157 後方外縁部、310 主流、320,350 馬蹄渦、330 二次流れ、340 翼先端渦、510 サーキュレータ、610 扇風機。

Claims (5)

  1. 仮想の中心軸を中心に回転する回転軸部と、
    前記回転軸部から前記中心軸の半径方向外側に延出する翼とを備え、
    前記翼は、
    回転方向の側に配置される前縁部と、
    回転方向の反対側に配置される後縁部と、
    前記中心軸の周方向に延び、前記前縁部と前記後縁部との間を接続する外縁部とを有し、
    前記前縁部は、回転方向に向かって半径方向内側から外側に湾曲しながら延び、
    前記前縁部と前記外縁部の回転方向に沿って幅が細くなる鎌形状を呈し、
    前記翼は、
    前記翼および前記回転軸部の外表面の間に配置される翼根部と、
    前記前縁部の、前記中心軸の半径方向外側に配置される翼先端部と、
    前記後縁部の、前記中心軸の半径方向外側に配置される翼後端部と、
    前記翼根部、前記前縁部、前記翼先端部、前記外縁部、前記翼後端部および前記後縁部に囲まれた領域に形成される翼面とをさらに有し、
    前記外縁部は、前記翼先端部と前記翼後端部との間を接続し、
    前記翼面は、
    前記翼根部を含み、前記中心軸の半径方向内側に位置する内側領域と、
    前記翼後端部を含み、前記中心軸の半径方向外側に位置する外側領域と、
    前記前縁部寄り、前記翼先端部寄りまたは前記外縁部寄りに位置する前端部から、前記後縁部寄りに位置する後端部まで延在し、前記翼面の正圧面側が軸方向に凸となり前記翼面の負圧面側が軸方向に凹となるように、前記内側領域と前記外側領域とを連結する連結部とを含み、
    前記翼面は、前記翼面のうちの前記連結部よりも前記中心軸の半径方向外側の部分の食い違い角よりも、前記翼面のうちの前記連結部よりも前記半径方向内側の部分の食い違い角の方が小さくなるように形成され
    前記連結部の前記前端部と前記連結部の前記後端部とを直線で結んだ場合の回転方向における中心位置を通り且つ前記中心軸を中心とする仮想の同心円を描いた場合に、前記連結部の前記前端部は前記同心円の前記半径方向外側に位置し、前記連結部の前記後端部は前記同心円の前記半径方向内側に位置する、プロペラファン。
  2. 前記前縁部は、前記回転軸部と、前記回転軸部から前記中心軸の半径方向外側に離れた位置との間で、前記中心軸の軸方向において一定の高さを有する、請求項1に記載のプロペラファン。
  3. 前記翼根部は、前記翼面の正圧面側が軸方向に凸となり前記翼面の負圧面側が軸方向に凹となるように反った形状を有し、前記外縁部は、前記翼面の正圧面側が軸方向に凹となり前記翼面の負圧面側が軸方向に凸となるように反った形状を有し、前記翼根部の反り方向と前記外縁部の反り方向とが逆向きになる逆キャンバー構造とように形成される、請求項1または2に記載のプロペラファン。
  4. 請求項1から3のいずれかに記載のプロペラファンを備える、流体送り装置。
  5. 請求項1から3のいずれかに記載のプロペラファンは樹脂成形品からなり、
    前記プロペラファンを成形するために用いられる、成形用金型。
JP2014205627A 2014-10-06 2014-10-06 プロペラファン、流体送り装置および成形用金型 Active JP6143725B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014205627A JP6143725B2 (ja) 2014-10-06 2014-10-06 プロペラファン、流体送り装置および成形用金型

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014205627A JP6143725B2 (ja) 2014-10-06 2014-10-06 プロペラファン、流体送り装置および成形用金型

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2012089283A Division JP5631353B2 (ja) 2012-04-10 2012-04-10 プロペラファン、流体送り装置および成形用金型

Publications (3)

Publication Number Publication Date
JP2015004365A JP2015004365A (ja) 2015-01-08
JP2015004365A5 JP2015004365A5 (ja) 2015-04-23
JP6143725B2 true JP6143725B2 (ja) 2017-06-07

Family

ID=52300442

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014205627A Active JP6143725B2 (ja) 2014-10-06 2014-10-06 プロペラファン、流体送り装置および成形用金型

Country Status (1)

Country Link
JP (1) JP6143725B2 (ja)

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3203994B2 (ja) * 1994-10-31 2001-09-04 三菱電機株式会社 軸流送風機
JP3483447B2 (ja) * 1998-01-08 2004-01-06 松下電器産業株式会社 送風装置
JP3743222B2 (ja) * 1999-09-24 2006-02-08 松下電器産業株式会社 送風機羽根車と空気調和機
JP4501575B2 (ja) * 2004-07-26 2010-07-14 三菱電機株式会社 軸流送風機
TWI305612B (en) * 2004-08-27 2009-01-21 Delta Electronics Inc Heat-dissipating fan
AU2009291507B2 (en) * 2008-09-11 2013-06-13 Hunter Pacific International Pty Ltd Extraction fan and rotor
JP5401331B2 (ja) * 2010-01-05 2014-01-29 日東光学株式会社 光学素子および発光装置

Also Published As

Publication number Publication date
JP2015004365A (ja) 2015-01-08

Similar Documents

Publication Publication Date Title
US10487846B2 (en) Propeller fan, fluid feeder, and molding die
US10544797B2 (en) Propeller fan, fluid feeder, electric fan, and molding die
JP4798640B2 (ja) プロペラファン、成型用金型および流体送り装置
JP6154990B2 (ja) 扇風機用プロペラファンおよびこれを備えた扇風機ならびに扇風機用プロペラファンの成形用金型
JP5631353B2 (ja) プロペラファン、流体送り装置および成形用金型
JP6604981B2 (ja) 軸流送風機の羽根車、及び軸流送風機
JP5629721B2 (ja) プロペラファン、流体送り装置および成形用金型
JP6058276B2 (ja) プロペラファン、流体送り装置および成形用金型
JP6068720B2 (ja) 扇風機またはサーキュレータ用プロペラファン、扇風機またはサーキュレータ、および成形用金型
JP6141247B2 (ja) プロペラファン、流体送り装置および成形用金型
JP5712346B2 (ja) 天井扇
JP5629720B2 (ja) プロペラファン、流体送り装置および成形用金型
JP6373414B2 (ja) プロペラファン、流体送り装置および成形用金型
JP5697465B2 (ja) プロペラファン、成型用金型および流体送り装置
JP6143725B2 (ja) プロペラファン、流体送り装置および成形用金型
JP6088702B2 (ja) 扇風機またはサーキュレータ用プロペラファン、扇風機またはサーキュレータ、および成形用金型
JP2012026380A (ja) 天井扇
JP6050297B2 (ja) プロペラファン、および成形用金型
JP6980921B2 (ja) プロペラファンおよび送風装置
JP6084368B2 (ja) プロペラファンおよびこれを備えた流体送り装置、扇風機ならびにプロペラファンの成形用金型
JP6644026B2 (ja) プロペラファンおよびこれを備えた流体送り装置ならびにプロペラファンの成形用金型
JPWO2020136750A1 (ja) 羽根車、送風機及び空気調和機

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150310

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20150310

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20160531

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160721

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20161129

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20170118

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20170418

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20170509

R150 Certificate of patent or registration of utility model

Ref document number: 6143725

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150