JP6143085B2 - チップクリアランス計測装置 - Google Patents

チップクリアランス計測装置 Download PDF

Info

Publication number
JP6143085B2
JP6143085B2 JP2013125190A JP2013125190A JP6143085B2 JP 6143085 B2 JP6143085 B2 JP 6143085B2 JP 2013125190 A JP2013125190 A JP 2013125190A JP 2013125190 A JP2013125190 A JP 2013125190A JP 6143085 B2 JP6143085 B2 JP 6143085B2
Authority
JP
Japan
Prior art keywords
blade
laser sensor
moving blade
casing
laser beam
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2013125190A
Other languages
English (en)
Other versions
JP2015001414A (ja
Inventor
富士雄 笹本
富士雄 笹本
大山 宏治
宏治 大山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Heavy Industries Ltd
Original Assignee
Mitsubishi Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Heavy Industries Ltd filed Critical Mitsubishi Heavy Industries Ltd
Priority to JP2013125190A priority Critical patent/JP6143085B2/ja
Publication of JP2015001414A publication Critical patent/JP2015001414A/ja
Application granted granted Critical
Publication of JP6143085B2 publication Critical patent/JP6143085B2/ja
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Length Measuring Devices By Optical Means (AREA)

Description

本発明は、軸流回転機械における動翼とケーシングとの隙間距離(チップクリアランス)を計測するチップクリアランス計測装置に関する。
ガスタービンや蒸気タービンなどの軸流回転機械は、円筒状のケーシング内に周方向に複数の動翼を有するロータ軸が回転自在に設置され、ケーシング内においてロータ軸および動翼が回転作動されるものである。そして、軸流回転機械としての作動安全性および作動効率向上のためには、動翼とケーシングとの間に適切なチップクリアランスの隙間が設けられる。
チップクリアランスが過小である場合には、軸流回転機械を作動させ、ロータ軸および動翼を回転動作させた際に、動翼が遠心力や熱膨張によって変形することにより、動翼とケーシングが干渉し、軸流回転機械の安全性が損なわれる虞がある。一方、チップクリアランスが過大である場合には、軸流回転機械を作動させ、ロータ軸および動翼を回転動作させた際に、流体物が動翼とケーシングとの隙間から軸方向へ流れ出ることにより、流体物が動翼の回転動作に寄与せず、軸流回転機械の作動効率が低下してしまう虞がある。
よって、軸流回転機械としての安全性および作動効率を確保するために、動翼とケーシングが干渉しない程度にチップクリアランスを最小限にする必要がある。そこで、軸流回転機械には、設計通りのチップクリアランスが確保できているかを確認するために、チップクリアランス計測装置が備えられる。チップクリアランスの計測方法としては、種々の方法が知られており、例えば、過電流式、静電容量式、光量式、放電式などがある。
特開平9−324603号公報
しかし、これらのチップクリアランス計測方法においては、以下に示すような問題がある。渦電流式および静電容量式によるチップクリアランスの計測方法においては、環境温度の変化に伴って電気抵抗が変化するので、測定結果が測定する際の環境温度に大きく影響され、計測結果であるチップクリアランスを正確に測定できない。光量式のチップクリアランス測定方法においては、光の反射量の強さで距離を測定するため、計測面やセンサの発受光面の汚れで感度が変化し、チップクリアランスを正確に測定できない。放電式のチップクリアランス測定方法においては、クリアランス値が連続データとして得られないので、軸流回転機械におけるチップクリアランスの測定には不適切である。なお、渦電流式、静電容量式および放電式のチップクリアランス測定方法においては、被測定物の材質が導電体に制限される。
また、その他のチップクリアランス測定方法としては、例えば、特許文献1がある。これは、角度θで出射する出射光が動翼によって散乱反射する光を受光して動翼が任意の一点を通過する時刻を検知し、位置センサによって異なる二点を動翼が通過する時刻を検知して、動翼の回転速度等から幾何学的にチップクリアランスを計測する。
しかし、出射部の取付け誤差等により、既知とされる出射光の出射方向である角度θに誤差が生じ、正確なチップクリアランスを算出することができない。
本発明は、上記のような問題に鑑みてなされたもので、環境温度の影響や被測定物の制限を伴わずに、チップクリアランスの測定誤差を小さくすることを目的とする。
上記課題を解決する第一の発明に係るチップクリアランス計測装置は、円筒状のケーシングと、ケーシング内において回転自在に支持されるロータ軸と、ロータ軸の外周に植設されロータ軸と共にケーシング内で回転される動翼とを備える軸流回転機械における前記動翼の翼頂部と前記ケーシングの内周面との距離であるチップクリアランスを計測するチップクリアランス計測装置であって、前記ケーシングに設置され、所定方向にレーザ光を出射して前記動翼に反射した反射光を受光することにより、前記動翼が所定位置を通過したことを検出可能な第一レーザセンサと、前記ケーシングに設置され、前記所定方向とは別の所定方向にレーザ光を出射して前記動翼に反射した反射光を受光することにより、前記動翼が前記所定位置とは別の所定位置を通過したことを検出可能な第二レーザセンサと、前記動翼または前記ロータ軸の回転数を検出可能な回転計と、前記第一レーザセンサおよび前記第二レーザセンサの検出結果から前記動翼の前記所定位置から前記別の所定位置までの通過時間を算出すると共に、前記回転計によって検出される前記動翼の所定位相分の回転時間を算出し、前記通過時間と前記回転時間とチップクリアランス校正値とから成るチップクリアランス校正式によってチップクリアランスを算出するデータ処理部とを備え、前記チップクリアランス校正値は、前記動翼とは別の模擬動翼を前記ケーシングに組付けて求められるものであることを特徴とする。
上記課題を解決する第二の発明に係るチップクリアランス計測装置は、第一の発明に係るチップクリアランス計測装置において、前記第一レーザセンサおよび前記第二レーザセンサを、前記第一レーザ光と前記第二レーザ光が前記ケーシングの軸方向に対して直角の方向において交差するように互いに傾斜し、更に、前記第一レーザ光と前記第二レーザ光との交点が前記動翼の翼頂部よりも内周側となるように設置することを特徴とする。
上記課題を解決する第三の発明に係るチップクリアランス計測装置は、第一の発明に係るチップクリアランス計測装置において、前記第一レーザセンサおよび前記第二レーザセンサを、前記第一レーザ光と前記第二レーザ光が前記ケーシングの軸方向に対して直角の方向において交差しないように、前記ケーシング内周側へ向かって広がるように互いに傾斜して設置することを特徴とする。
上記課題を解決する第四の発明に係るチップクリアランス計測装置は、第一から第三のいずれか一つの発明に係るチップクリアランス計測装置において、前記第一レーザセンサおよび前記第二レーザセンサを、前記ケーシングの中心よりも前記動翼の回転方向側へ向けて設置することを特徴とする。
第一の発明に係るチップクリアランス計測装置によれば、動翼は、第一レーザ光および第二レーザ光を反射するものであれば良いので、被測定物の材質を制限されず、環境温度の影響を受けることもない。また、チップクリアランス校正値a,bを、ロータ軸20および動翼30とは別の模擬ロータ軸120と第一模擬動翼130Aおよび第二模擬動翼130Bを用いて、第一レーザセンサ50および第二レーザセンサ60が既設されたケーシング10において算出しているので、第一レーザセンサ50および第二レーザセンサ60の取付け誤差等がチップクリアランスDの算出値に影響することはない。すなわち、第一レーザセンサ50および第二レーザセンサ60の取付け誤差等を許容することができる。よって、より正確なチップクリアランスDを測定することができる。
第二の発明に係るチップクリアランス計測装置によれば、第一レーザ光および第二レーザ光が小さい範囲に出射されるので、ロータ軸に設置される複数の動翼のうち測定対象である動翼を特定し易く、誤認の虞を低減することができる。
第三の発明に係るチップクリアランス計測装置によれば、第一レーザ光と第二レーザ光が交差しないので、第一レーザ光と第二レーザ光との交点の位置を考慮する必要がなく、第一レーザセンサおよび第二レーザセンサの設置角度の制限を緩和することができる。
第四の発明に係るチップクリアランス計測装置によれば、動翼の計測面の汚れ等によって反射光量が変化した場合においても、第一レーザセンサおよび第二レーザセンサの検出結果における時刻は変化しないので、測定誤差を低減することができる。
実施例1に係るチップクリアランス計測装置を備えた軸流回転機械の一部を示す説明図である。 実施例1における軸流回転機械の第一レーザセンサおよび第二レーザセンサによって得られる時間tに対する反射光量vの関係を示すグラフである。 実施例1における軸流回転機械の動翼の翼頂部近傍の拡大図である。 実施例1における軸流回転機械の第一模擬動翼および第二模擬動翼の翼頂部近傍の拡大図である。 実施例2に係るチップクリアランス計測装置を備えた軸流回転機械の一部を示す説明図である。 実施例2における軸流回転機械の第一レーザセンサおよび第二レーザセンサによって得られる時間tに対する反射光量vの関係を示すグラフである。 実施例3に係るチップクリアランス計測装置を備えた軸流回転機械の一部を示す説明図である。 実施例3における軸流回転機械の第一レーザセンサおよび第二レーザセンサによって得られる時間tに対する反射光量vの関係を示すグラフである。
以下に、本発明に係るチップクリアランスセンサ装置の実施例について、添付図面を参照して詳細に説明する。もちろん、本発明は以下の実施例に限定されず、本発明の趣旨を逸脱しない範囲で、各種変更が可能であることは言うまでもない。
先ず、本発明の実施例1に係るチップクリアランス計測装置を備えた軸流回転機械の構造について、図1乃至図4を参照して説明する。
図1に示すように、本実施例に係るチップクリアランス計測装置を備えた軸流回転機械1は、円筒状のケーシング10と、ケーシング10内において回転自在に支持されるロータ軸20と、ロータ軸20の外周に稙設されロータ軸20と共にケーシング10内で回転される動翼30とを備える。本実施例における軸流回転機械1では、動翼30とケーシング10との干渉を防止するために、動翼30の翼頂部(チップ)31とケーシング10の内周面11との間に隙間40を設け、当該隙間40を所定の距離(チップクリアランス)Dに設定している。
このチップクリアランスDが過小である場合には、軸流回転機械1を作動させ、ロータ軸20および動翼30を回転動作させた際に、動翼30が遠心力や熱膨張によって変形することにより、動翼30とケーシング10が干渉し、軸流回転機械1の安全性が損なわれる虞がある。一方、チップクリアランスDが過大である場合には、軸流回転機械1を作動させ、ロータ軸20および動翼30を回転動作させた際に、図示しない流体物が動翼30とケーシング10との隙間40から軸方向(図1における紙面前後方向)へ流れ出ることにより、流体物が動翼30の回転動作に寄与せず、軸流回転機械1の作動効率が低下してしまう虞がある。
そこで、本実施例においては、軸流回転機械1としての安全性および作動効率を確保するために、軸流回転機械1にチップクリアランスDの計測装置を備えている。これにより、チップクリアランスDを正確に計測し、当該チップクリアランスDが安全性および作動効率を確保する最小限の設定であることを確認することができる。
本実施例における軸流回転機械1は、チップクリアランスDを正確に計測するための計測装置として、回転動作する動翼30が所定位置を通過したことを検出するための第一レーザセンサ50と、回転動作する動翼30が前記所定位置とは別の所定位置を通過したことを検出するための第二レーザセンサ60と、動翼30の回転数すなわちロータ軸20の回転数を検出する回転計70と、第一レーザセンサ50と第二レーザセンサ60と回転計70の検出結果からチップクリアランスDを算出するデータ処理部80とを備える。
第一レーザセンサ50および第二レーザセンサ60は、それぞれ第一レーザ光51,第二レーザ光61を出射する図示しない出射部と、出射された第一レーザ光51,第二レーザ光61が動翼30に当たって反射した光(反射光)を感知する図示しない受光部とを有し、回転動作する動翼30が出射された第一レーザ光51および第二レーザ光61を横切るように、第一レーザ光51,第二レーザ光61を動翼30の回転軌道範囲内すなわちケーシング10内周側(図1における下方側)へ向かって出射するように出射部をケーシング10内周側へ向けて設置される。
本実施例においては、第一レーザセンサ50は、第一レーザ光51がケーシング10側からロータ軸20中心よりも動翼30の回転方向側(図1における右方側)へ向けて出射されるように、ケーシング10の径方向に対して傾斜して設置され、第二レーザセンサ60は、第二レーザ光61がケーシング10側からロータ軸20中心よりも動翼30の回転方向反対側(図1における左方側)へ向けて出射されるように、ケーシング10の径方向に対して傾斜して設置されている。
すなわち、第一レーザセンサ50および第二レーザセンサ60は、第一レーザ光51と第二レーザ光61が、第一レーザセンサ50および第二レーザセンサ60の設置位置からケーシング10およびロータ軸20の中心位置までの間で交差するように、ケーシング10に設置されている。なお、図3に示すように、第一レーザ光51と第二レーザ光61の交点Pが動翼30の翼頂部31の軌道31aよりも内周側に位置するように、第一レーザセンサ50および第二レーザセンサ60の設置角度を設定する。
また、第一レーザ光51と第二レーザ光61の交点Pがロータ軸20の中心および動翼30の翼根部近傍ではなく、動翼30の翼頂部31近傍に位置するように、第一レーザセンサ50および第二レーザセンサ60の設置角度を設定することが好ましい。これによれば、後述する動翼30の通過時間TXの測定誤差によるチップクリアランスDの算出値への影響を抑えることができる。
上述の軸流回転機械1におけるチップクリアランスDの測定について、その詳細を以下に説明する。
回転動作される動翼30が第一レーザ光51の径路および第二レーザ光61の径路を横切る際に、第一レーザセンサ50および第二レーザセンサ60によって得られる時間tに対する反射光量(反射光の光量)vの関係を、それぞれ図2(a),(b)に示す。第一レーザセンサ50および第二レーザセンサ60の図示しない受光部において感知される反射光量vは、それぞれ第一レーザセンサ50および第二レーザセンサ60から第一レーザ光51,第二レーザ光61の照射位置までの距離に比例し、図2(a),(b)に示すように、直立部aと平行部bと傾斜部cとを組み合わせた線図を描くように変化する。
詳細には、第一レーザセンサ50においては、第一レーザ光51はケーシング10側から動翼30の回転方向後方側へ向けて出射されているので、第一レーザ光51はまず回転している動翼30の前方側面32には照射されずに翼頂部31に照射され(図2(a)における直立部aに相当)、その照射位置は動翼30の回転に伴って動翼30の翼頂部31の面上を回転方向後方側へ移動し(図2(a)における平行部bに相当)、更に動翼30の後方側面33へ移って後方側面33上を翼根側へ移動する(図2(a)における傾斜部cに相当)。
一方、第二レーザセンサ60においては、第二レーザ光61はケーシング10側から動翼30の回転方向後方側へ向けて出射されているので、第二レーザ光61はまず回転している動翼30の前方側面32の翼根部側に照射され、その照射位置は動翼30の回転に伴って動翼30の前方側面32上を翼頂部31側へ移動し(図2(b)における直立部aに相当)、更に動翼30の翼頂部31の面上へ移って翼頂部31の面上を回転方向後方側へ移動し(図2(b)における平行部bに相当)、動翼30は後方側面33に第二レーザ光61が照射されずに第二レーザ光61の径路上を抜ける(図2(b)における傾斜部cに相当)。
データ処理部80においては、上記の第一レーザセンサ50および第二レーザセンサ60の検出結果から、回転動作する動翼30が所定位置である第一レーザ光51の径路を通過してから前記所定位置とは別の所定位置である第二レーザ光61の径路を通過するまでの通過時間TXを算出する。
本実施例においては、動翼30が第一レーザ光51の径路および第二レーザ光61の径路をそれぞれ通過した時期を、動翼30における所定箇所が第一レーザ光51の径路および第二レーザ光61の径路上に至る時刻TX1,TX2とした。具体的には、動翼30の翼頂部31における回転方向前方側端部34が、第一レーザ光51の径路上および第二レーザ光61の径路上に達したそれぞれ時刻TX1,TX2であり(図3参照)、それぞれ図2に示すように、第一レーザセンサ50における平行部bの前方端(図2における右方端)と、第二レーザセンサ60における平行部bの前方端との時間差TX(=TX2−TX1)である。
また、図3に示すように、動翼30の前記所定箇所(本実施例においては、翼頂部31の回転方向前方側端部34)が、ケーシング10内周面から所定の距離Cに位置する第一レーザ光51の径路上の第一基準点M1、同じくケーシング10内周面から所定の距離Cに位置する第二レーザ光61の径路上の第二基準点M2を通過するに相当する位相を回転計70によるロータ軸20の回転位相から算出し、動翼30の所定位相分の回転時間を基準通過時間TM(=TM2−TM1)とする。
そして、上記で求めた通過時間TXと基準通過時間TMとの比(X=TM/TX)から、下式(1)のチップクリアランス校正式によってチップクリアランスDを算出する。
D=aX+b ・・・(1)
ここで、係数aおよび係数bは、それぞれ式(1)のチップクリアランス校正式におけるチップクリアランス校正値であり、第一レーザセンサ50および第二レーザセンサ60の取付け角度、取付け位置等によって決められるものである。
式(1)ののチップクリアランス校正式におけるチップクリアランス校正値a,bの求め方について、その詳細を以下に説明する。なお、本実施例においては、チップクリアランス校正値a,bを、前述のロータ軸20および動翼30とは別のロータ軸および動翼を用いて求める。
まず、前述の軸流回転機械1におけるロータ軸20および動翼30に代えて、図4に示すように、前述のロータ軸20および動翼30とは別の模擬ロータ軸120と第一模擬動翼130Aおよび第二模擬動翼130Bを、第一レーザセンサ50および第二レーザセンサ60を取付けたケーシング10に回転自在に組付ける。
なお、実際には、ケーシング10に第一レーザセンサ50および第二レーザセンサ60を取付けた後、かつ、ロータ軸20および動翼30を取付ける前に、模擬ロータ軸120、第一模擬動翼130Aおよび第二模擬動翼130Bを取付け、以下に説明するチップクリアランス校正値a,bの取得作業を済ませることが好ましい。
模擬ロータ軸120は、ケーシング10と同心で回転動作可能に組付けられる軸体である。第一模擬動翼130Aおよび第二模擬動翼130Bは、模擬ロータ軸120の外周に稙設され、ケーシング10内において模擬ロータ軸120と共に回転動作される回転翼であり、径方向における長さ(翼長)が互いに異なるものとする。なお、第一模擬動翼130Aおよび第二模擬動翼130Bは、第一レーザ光51および第二レーザ光61の反射具合などが前述の動翼30と同等になるように、翼形状、特に翼頂部131A,131Bの形状を同じにすることが好ましい。
模擬ロータ軸120、第一模擬動翼130Aおよび第二模擬動翼130Bを組付けたケーシング10においては、前述の動翼30を備えたケーシング10の場合と同様に、第一レーザセンサ50から第一模擬動翼130Aおよび第二模擬動翼130Bの回転方向側へ向けて第一レーザ光51が出射され、第二レーザセンサ60から第一模擬動翼130Aおよび第二模擬動翼130Bの回転方向反対側へ向けて第二レーザ光61が出射される。
第一模擬動翼130Aは、模擬ロータ軸120と共に回転動作され、第一模擬動翼130Aの翼頂部(チップ)131Aは、基準点M1から距離LAだけ離れた第一レーザ光51の径路上の通過点TLA1を通過し、基準点M2から同じく距離LAだけ離れた第二レーザ光61の径路上の通過点TLA2を通過する。
一方、第二模擬動翼130Bは、模擬ロータ軸120および第一模擬動翼130Aと共に回転動作されるが、その翼長は第一模擬動翼130Aと異なるので、第二模擬動翼130Bの翼頂部(チップ)131Bは、基準点M1から距離LBだけ離れた第一レーザ光51の径路上の通過点TLA1を通過し、基準点M2から同じく距離LBだけ離れた第二レーザ光61の径路上の通過点TLA2を通過する。
以上のように模擬ロータ軸120、第一模擬動翼130Aおよび第二模擬動翼130Bを組付けたケーシング10において、第一レーザセンサ50および第二レーザセンサ60によって、第一模擬動翼130Aおよび第二模擬動翼130Bが第一レーザ光51の径路および第二レーザ光61の径路を横切る際の時間tに対する反射光量vの関係(図2と同様の関係であるので、図示を省略する)が検出され、データ処理部80によって、当該検出結果から第一模擬動翼130Aおよび第二模擬動翼130Bのそれぞれの通過時間TLA,TLBが算出される。
式(1)のチップクリアランス校正式におけるチップクリアランス校正値a,bは、下式(2),(3)に、第一模擬動翼130Aおよび第二模擬動翼130Bの形状設定値であってそれぞれの翼長を示す基準点M1,M2からの距離LA,LBと、データ処理部80による算出値である通過時間TLA,TLBとを、代入することにより求められる。なお、式(2)において、T=TLA/TLBである。
a=(LB−LA)/(T−1) ・・・(2)
b=LA−a−c ・・・(3)
以上により求めたチップクリアランス校正値a,bをデータ処理部80に記憶させ、前述のロータ軸20および動翼30を備えた軸流回転機械1におけるケーシング10と動翼30との隙間40におけるチップクリアランスDを求める。すなわち、模擬ロータ軸120と第一模擬動翼130Aおよび第二模擬動翼130Bをケーシング10から取外し、本来のロータ軸20と動翼30をケーシング10に組付け、軸流回転機械1を運転させることにより、チップクリアランスDを計測する。
本実施例に係る軸流回転機械1におけるチップクリアランスDの計測について、以下に説明する。なお、前述したように、チップクリアランスDは、第一レーザセンサ50および第二レーザセンサ60の検出結果および回転計70の検出結果から、上述のチップクリアランス校正値a,bを用いて式(1)のチップクリアランス校正式によって求められる。
データ処理部80において、第一レーザセンサ50および第二レーザセンサ60によって、動翼30の翼頂部31における回転方向前方側端部34がそれぞれ第一レーザ光51の径路上および第二レーザ光61の径路上に達した時刻TX1,TX2を検出し、動翼30が第一レーザ光51の径路を横切ってから第二レーザ光61の径路を横切るまでの通過時間TX(=TX2−TX1)を算出する(図2および図3参照)。
また、回転計70によって、動翼30における翼頂部31の回転方向前方側端部34が、第一基準点M1および第二基準点M2を通過するに相当する位相を検出し、当該位相の差分を回転する基準通過時間TMを算出する(図3参照)。
そして、上記で求めた通過時間TXと基準通過時間TMとの比(X=TM/TX)から、チップクリアランス校正値a,bを用いた式(1)のチップクリアランス校正式によって、チップクリアランスDを算出する。
以上により、本実施例に係るチップクリアランス計測装置を備えた軸流回転機械1において、チップクリアランスDを求めることができる。本実施例によれば、動翼30は、第一レーザセンサ50および第二レーザセンサ60による第一レーザ光51および第二レーザ光61を反射するものであれば良いので、被測定物の材質を制限されず、環境温度の影響を受けることもない。
また、本実施例のように、第一レーザ光51と第二レーザ光61を、第一レーザセンサ50および第二レーザセンサ60の設置位置からケーシング10およびロータ軸20の中心位置までの間で交差させて、第一レーザセンサ50および第二レーザセンサ60をケーシング10に設置することにより、第一レーザ光51および第二レーザ光61が小さい範囲に出射されるので、ロータ軸20に設置される複数の動翼30のうち測定対象である動翼30を特定し易い。よって、測定対象の動翼30を誤認する虞を低減することができる。
また、チップクリアランス校正値a,bを、ロータ軸20および動翼30とは別の模擬ロータ軸120と第一模擬動翼130Aおよび第二模擬動翼130Bを用いて、第一レーザセンサ50および第二レーザセンサ60が既設されたケーシング10において算出しているので、第一レーザセンサ50および第二レーザセンサ60の取付け誤差等がチップクリアランスDの算出値に影響することはない。すなわち、第一レーザセンサ50および第二レーザセンサ60の取付け誤差等を許容することができる。よって、より正確なチップクリアランスDを測定することができる。
もちろん、本発明に係るチップクリアランス計測装置において、第一レーザセンサ50および第二レーザセンサ60によって通過を検出する箇所は、動翼30における翼頂部31の回転方向前方側端部34に限定されない。例えば、動翼30における翼頂部31の回転方向後方側端部を通過検出箇所として、図2における通過時間TYを前記通過時間TXとしても良く、動翼30における翼頂部31の回転方向前方側端部34および回転方向後方側端部を通過検出箇所として、図2における通過時間TZから動翼30の厚み分を除いたものを前記通過時間TXとしても良い。
また、本発明に係るチップクリアランス計測装置において、チップクリアランス校正値a,bを求める際に、本実施例のように翼長の異なる第一模擬動翼130Aおよび第二模擬動翼130Bを用いることに限定されない。例えば、チップクリアランス校正値a,bを求める際に、翼長すなわち径方向における長さが可変のテスト用動翼を用いても良い。
また、本発明に係るチップクリアランス計測装置における第一レーザセンサおよび第二レーザセンサの設置角度は、本実施例に限定されず、第一レーザセンサ50の第一レーザ光51と第二レーザセンサ60の第二レーザ光61のいずれかがロータ軸20の半径方向と一致しない方向に出射されるものであれば良い。第一レーザ光51と第二レーザ光61のいずれかをロータ軸20の径方向と一致しないようにすることで、動翼30の翼頂部31の半径方向位置、すなわち、チップクリアランスDが変化した場合に、第一レーザ光51と第二レーザ光61の径路を横切る際の通過時間TXが変化するので、当該通過時間TXに対応するチップクリアランスDを求めることができる。
本発明の実施例2に係るチップクリアランス計測装置を備えた軸流回転機械について、図5および図6を参照して説明する。
本実施例に係る軸流回転機械は、実施例1における第一レーザセンサ50および第二レーザセンサ60のケーシング10に対する取付け角度を除いて、実施例1と同様な構成を有するので、同様な構成については同一の符号を付して重複説明を省略する。
図5に示すように、本実施例における軸流回転機械1は、チップクリアランスDを正確に計測するための計測装置として、回転動作する動翼30が所定位置を通過したことを検出するための第一レーザセンサ250と、回転動作する動翼30が前記所定位置とは別の所定位置を通過したことを検出するための第二レーザセンサ260と、動翼30の回転数すなわちロータ軸20の回転数を検出する回転計70と、第一レーザセンサ250と第二レーザセンサ260と回転計70の検出結果からチップクリアランスDを算出するデータ処理部80とを備える。
第一レーザセンサ250および第二レーザセンサ260は、それぞれ第一レーザ光251,第二レーザ光261を出射する図示しない出射部と、出射された第一レーザ光251,第二レーザ光261が動翼30に当たって反射した光(反射光)を感知する図示しない受光部とを有し、回転動作する動翼30が出射された第一レーザ光251および第二レーザ光261を横切るように、第一レーザ光251,第二レーザ光261を動翼30の回転軌道範囲内すなわちケーシング10内周側(図5における下方側)へ向かって出射するように出射部をケーシング10内周側へ向けて設置される。
本実施例においては、第一レーザセンサ250は、第一レーザ光251がケーシング10側からロータ軸20中心よりも動翼30の回転方向反対側(図5における左方側)へ向けて出射されるように、ケーシング10の径方向に対して傾斜して設置され、第二レーザセンサ260は、第二レーザ光261がケーシング10側からロータ軸20中心よりも動翼30の回転方向側(図5における右方側)へ向けて出射されるように、ケーシング10の径方向に対して傾斜して設置されている。
すなわち、第一レーザセンサ250および第二レーザセンサ260は、第一レーザ光251と第二レーザ光261が交差しないよう、ケーシング10内周側へ向かって開くようにケーシング10に設置されている。
回転動作される動翼30が第一レーザ光251の径路および第二レーザ光261の径路を横切る際に第一レーザセンサ250および第二レーザセンサ260によって得られる時間tに対する反射光量(反射光の光量)vの関係を、それぞれ図6(a),(b)に示す。第一レーザセンサ250および第二レーザセンサ260の図示しない受光部において感知される反射光量vは、それぞれ第一レーザセンサ250および第二レーザセンサ260から第一レーザ光251,第二レーザ光261の照射位置までの距離に比例し、図6(a),(b)に示すように、直立部aと平行部bと傾斜部cとを組み合わせた線図を描くように変化する。
詳細には、第一レーザセンサ250においては、第一レーザ光251はケーシング10側から動翼30の回転方向反対側へ向けて出射されているので、第一レーザ光251はまず回転している動翼30の後方側面33の翼根部側に照射され、その照射位置は動翼30の回転に伴って動翼30の後方側面33上を翼頂部31側へ移動し(図6(a)における傾斜部cに相当)、更に動翼30の翼頂部31の面上へ移って翼頂部31の面上を回転方向後方側へ移動し(図6(a)における平行部bに相当)、動翼30は後方側面33に第二レーザ光261が照射されずに第二レーザ光261の径路上を抜ける(図6(a)における直立部aに相当)。
一方、第二レーザセンサ260においては、第二レーザ光261はケーシング10側から動翼30の回転方向後方側へ向けて出射されているので、第二レーザ光261はまず回転している動翼30の前方側面32には照射されずに翼頂部31に照射され(図6(a)における直立部aに相当)、その照射位置は動翼30の回転に伴って動翼30の翼頂部31の面上を回転方向後方側へ移動し(図6(a)における平行部bに相当)、更に動翼30の後方側面33へ移って後方側面33上を翼根側へ移動する(図6(a)における傾斜部cに相当)。
データ処理部80においては、上記の第一レーザセンサ250および第二レーザセンサ260の検出結果から、回転動作する動翼30が所定位置である第一レーザ光251の径路を通過してから前記所定位置とは別の所定位置である第二レーザ光261の径路を通過するまでの通過時間TXを算出する。
本実施例においては、動翼30が第一レーザ光251の径路および第二レーザ光261の径路をそれぞれ通過した時期を、動翼30における所定箇所が第一レーザ光251の径路および第二レーザ光261の径路上に至る時刻TX1,TX2とした。具体的には、動翼30の翼頂部31における回転方向前方側端部34が、第一レーザ光251の径路上および第二レーザ光261の径路上に達したそれぞれ時刻TX1,TX2であり、それぞれ図6に示すように、第一レーザセンサ250における平行部bの前方端(図6における右方端)と、第二レーザセンサ260における平行部bの前方端との時間差TX(=TX1−TX2)である。
式(1)のチップクリアランス校正式およびチップクリアランス校正値a,bについては、実施例1と同様であるので説明を省略する。
本実施例によれば、第一レーザ光251と第二レーザ光261が交差しないので、第一レーザ光251と第二レーザ光261との交点の位置を考慮する必要がなく、第一レーザセンサ250および第二レーザセンサ260の設置角度の制限を緩和することができる。
本発明の実施例3に係るチップクリアランス計測装置を備えた軸流回転機械について、図7および図8を参照して説明する。
本実施例に係る軸流回転機械は、実施例1における第一レーザセンサ50および第二レーザセンサ60のケーシング10に対する取付け角度を除いて、実施例1と同様な構成を有するので、同様な構成については同一の符号を付して重複説明を省略する。
図7に示すように、本実施例における軸流回転機械1は、チップクリアランスDを正確に計測するための計測装置として、回転動作する動翼30が所定位置を通過したことを検出するための第一レーザセンサ350と、回転動作する動翼30が前記所定位置とは別の所定位置を通過したことを検出するための第二レーザセンサ360と、動翼30の回転数すなわちロータ軸20の回転数を検出する回転計70と、第一レーザセンサ350と第二レーザセンサ360と回転計70の検出結果からチップクリアランスDを算出するデータ処理部80とを備える。
第一レーザセンサ350および第二レーザセンサ360は、それぞれ第一レーザ光351,第二レーザ光361を出射する図示しない出射部と、出射された第一レーザ光351,第二レーザ光361が動翼30に当たって反射した光(反射光)を感知する図示しない受光部とを有し、回転動作する動翼30が出射された第一レーザ光351および第二レーザ光361を横切るように、第一レーザ光351,第二レーザ光361を動翼30の回転軌道範囲内すなわちケーシング10内周側(図7における下方側)へ向かって出射するように出射部をケーシング10内周側へ向けて設置される。
本実施例においては、第一レーザセンサ350は、第一レーザ光351がケーシング10側からロータ軸20中心よりも動翼30の回転方向側(図7における右方側)へ向けて出射されるように、ケーシング10の径方向に対して傾斜して設置され、第二レーザセンサ360は、第二レーザ光361がケーシング10側からロータ軸20中心よりも動翼30の回転方向側(図7における右方側)へ向けて出射されるように、ケーシング10の径方向に対して傾斜して設置されている。
なお、第一レーザセンサ350および第二レーザセンサ360は、第一レーザ光351と第二レーザ光361が交差しないよう、ケーシング10内周側へ向かって開くようにケーシング10に設置されている。もちろん、実施例1のように、第一レーザセンサ350および第二レーザセンサ360を、第一レーザ光351と第二レーザ光361が交差するように設置しても良い。
回転動作される動翼30が第一レーザ光351の径路および第二レーザ光361の径路を横切る際に第一レーザセンサ350および第二レーザセンサ360によって得られる時間tに対する反射光量(反射光の光量)vの関係を、それぞれ図8(a),(b)に示す。第一レーザセンサ350および第二レーザセンサ360の図示しない受光部において感知される反射光量vは、それぞれ第一レーザセンサ350および第二レーザセンサ360から第一レーザ光351,第二レーザ光361の照射位置までの距離に比例し、図8(a),(b)に示すように、直立部aと平行部bと傾斜部cとを組み合わせた線図を描くように変化する。
詳細には、第一レーザセンサ350においては、第一レーザ光351はケーシング10側から動翼30の回転方向側へ向けて出射されているので、第一レーザ光351はまず回転している動翼30の前方側面32には照射されずに翼頂部31に照射され(図8(a)における直立部aに相当)、その照射位置は動翼30の回転に伴って動翼30の翼頂部31の面上を回転方向後方側へ移動し(図8(a)における平行部bに相当)、更に動翼30の後方側面33へ移って後方側面33上を翼根側へ移動する(図8(a)における傾斜部cに相当)。
一方、第二レーザセンサ360においては、第二レーザ光361はケーシング10側から動翼30の回転方向側へ向けて出射されているので、第二レーザ光361はまず回転している動翼30の前方側面32には照射されずに翼頂部31に照射され(図8(b)における直立部aに相当)、その照射位置は動翼30の回転に伴って動翼30の翼頂部31の面上を回転方向後方側へ移動し(図8(b)における平行部bに相当)、更に動翼30の後方側面33へ移って後方側面33上を翼根側へ移動する(図8(b)における傾斜部cに相当)。
データ処理部80においては、上記の第一レーザセンサ350および第二レーザセンサ360の検出結果から、回転動作する動翼30が所定位置である第一レーザ光351の径路を通過してから前記所定位置とは別の所定位置である第二レーザ光361の径路を通過するまでの通過時間TXを算出する。
本実施例においては、動翼30が第一レーザ光351の径路および第二レーザ光361の径路をそれぞれ通過した時期を、動翼30における所定箇所が第一レーザ光351の径路および第二レーザ光361の径路上に至る時刻TX1,TX2とした。具体的には、動翼30の翼頂部31における回転方向前方側端部34が、第一レーザ光351の径路上および第二レーザ光361の径路上に達したそれぞれ時刻TX1,TX2であり、それぞれ図8に示すように、第一レーザセンサ350における平行部bの前方端(図8における右方端)と、第二レーザセンサ360における平行部bの前方端との時間差TX(=TX2−TX1)である。
式(1)のチップクリアランス校正式およびチップクリアランス校正値a,bについては、実施例1と同様であるので説明を省略する。
本実施例によれば、第一レーザセンサ350および第二レーザセンサ360の検出結果における時刻TX1,TX2は、図8(a),(b)に示すように、平行部bの前方端、すなわち、平行部bと直立部aとの交点(直立部aの上端部)における時刻であり、反射光量vが変化した場合においても、当該時刻は変化しないので、測定誤差を生じ難い。つまり、動翼30の計測面の汚れ等によって反射光量vが変化した場合においても、第一レーザセンサ350および第二レーザセンサ360の検出結果における時刻TX1,TX2は変化しないので、測定誤差を低減することができる。
また、本実施例においては、第一レーザ光351と第二レーザ光361が交差しないので、第一レーザセンサ350および第二レーザセンサ360の設置角度の制限を緩和することができる。もちろん、実施例1のように、第一レーザセンサ350および第二レーザセンサ360を、第一レーザ光351と第二レーザ光361が交差するように設置しても良い。
1 軸流回転機械
10 ケーシング
20 ロータ軸
30 動翼
31 動翼の翼頂部(チップ)
31a 動翼の翼頂部(チップ)の軌道
32 動翼の回転方向前方側面
33 動翼の回転方向後方側面
40 隙間
50 第一レーザセンサ
51 第一レーザ光
60 第二レーザセンサ
61 第二レーザ光
70 回転計
80 データ処理部
120 模擬ロータ軸
130A 第一模擬動翼
130B 第二模擬動翼

Claims (4)

  1. 円筒状のケーシングと、ケーシング内において回転自在に支持されるロータ軸と、ロータ軸の外周に植設されロータ軸と共にケーシング内で回転される動翼とを備える軸流回転機械における前記動翼の翼頂部と前記ケーシングの内周面との距離であるチップクリアランスを計測するチップクリアランス計測装置であって、
    前記ケーシングに設置され、所定方向にレーザ光を出射して前記動翼に反射した反射光を受光することにより、前記動翼が所定位置を通過したことを検出可能な第一レーザセンサと、
    前記ケーシングに設置され、前記所定方向とは別の所定方向にレーザ光を出射して前記動翼に反射した反射光を受光することにより、前記動翼が前記所定位置とは別の所定位置を通過したことを検出可能な第二レーザセンサと、
    前記動翼または前記ロータ軸の回転数を検出可能な回転計と、
    前記第一レーザセンサおよび前記第二レーザセンサの検出結果から前記動翼の前記所定位置から前記別の所定位置までの通過時間を算出すると共に、前記回転計によって検出される前記動翼の所定位相分の回転時間を算出し、前記通過時間と前記回転時間とチップクリアランス校正値とから成るチップクリアランス校正式によってチップクリアランスを算出するデータ処理部と
    を備え、
    前記チップクリアランス校正値は、前記動翼とは別の模擬動翼を前記ケーシングに組付けて求められるものである
    ことを特徴とするチップクリアランス計測装置。
  2. 前記第一レーザセンサおよび前記第二レーザセンサを、前記第一レーザ光と前記第二レーザ光が前記ケーシングの軸方向に対して直角の方向において交差するように互いに傾斜し、更に、前記第一レーザ光と前記第二レーザ光との交点が前記動翼の翼頂部よりも内周側となるように設置することを特徴とする請求項1に記載のチップクリアランス計測装置。
  3. 前記第一レーザセンサおよび前記第二レーザセンサを、前記第一レーザ光と前記第二レーザ光が前記ケーシングの軸方向に対して直角の方向において交差しないように、前記ケーシング内周側へ向かって広がるように互いに傾斜して設置することを特徴とする請求項1に記載のチップクリアランス計測装置。
  4. 前記第一レーザセンサおよび前記第二レーザセンサを、前記ケーシングの中心よりも前記動翼の回転方向側へ向けて設置することを特徴とする請求項1乃至請求項3のいずれか一項に記載のチップクリアランス計測装置。
JP2013125190A 2013-06-14 2013-06-14 チップクリアランス計測装置 Expired - Fee Related JP6143085B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013125190A JP6143085B2 (ja) 2013-06-14 2013-06-14 チップクリアランス計測装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013125190A JP6143085B2 (ja) 2013-06-14 2013-06-14 チップクリアランス計測装置

Publications (2)

Publication Number Publication Date
JP2015001414A JP2015001414A (ja) 2015-01-05
JP6143085B2 true JP6143085B2 (ja) 2017-06-07

Family

ID=52296029

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013125190A Expired - Fee Related JP6143085B2 (ja) 2013-06-14 2013-06-14 チップクリアランス計測装置

Country Status (1)

Country Link
JP (1) JP6143085B2 (ja)

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6532061B2 (ja) 2016-03-18 2019-06-19 三菱重工業株式会社 光計測装置、光計測方法及び回転機械
JP2017173017A (ja) * 2016-03-22 2017-09-28 三菱重工業株式会社 光学センサ、回転機械及びクリアランス計測方法
JP6629118B2 (ja) 2016-03-30 2020-01-15 三菱重工業株式会社 光学センサ及び回転機械
JP6599285B2 (ja) 2016-06-07 2019-10-30 三菱重工業株式会社 光学センサ
JP2018004313A (ja) * 2016-06-28 2018-01-11 三菱重工業株式会社 回転機械におけるクリアランスの計測方法、計測装置および計測システム
JP6596399B2 (ja) 2016-08-30 2019-10-23 三菱重工業株式会社 クリアランス計測装置およびクリアランス制御システム
JP6959027B2 (ja) 2017-04-25 2021-11-02 三菱重工業株式会社 クリアランス計測装置、クリアランス計測センサ及びクリアランス計測方法
US10533839B2 (en) 2018-05-16 2020-01-14 United Technologies Corporation Determination of a clearance and a position of a target
CN113865519A (zh) * 2021-09-29 2021-12-31 中国航发动力股份有限公司 一种同心度装配质量检测装置和方法
CN114111609A (zh) * 2021-11-19 2022-03-01 华能国际电力股份有限公司 基于干涉信号测量法的燃气轮机透平叶片叶尖间隙监测系统
CN114034259B (zh) * 2022-01-11 2022-06-10 成都中科翼能科技有限公司 一种基于双光纤探头的叶尖间隙测量系统和方法

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3492339B2 (ja) * 2001-08-02 2004-02-03 三菱重工業株式会社 動翼寿命評価装置、軸流送風機及び動翼寿命評価方法
EP1429155B1 (de) * 2002-12-12 2009-08-05 Siemens Aktiengesellschaft Verfahren zur Messung des Abstands eines an einer Referenzfläche vorbei gefürhrten Bauteils und Durchführung des Verfahrens

Also Published As

Publication number Publication date
JP2015001414A (ja) 2015-01-05

Similar Documents

Publication Publication Date Title
JP6143085B2 (ja) チップクリアランス計測装置
CA2993232C (en) Rotating blade analysis
EP2162698B1 (en) Eddy current sensor
US8687206B2 (en) Optical detection of airfoil axial position with NSMS
JP5190464B2 (ja) 非接触ブレード振動測定方法
RU2593427C2 (ru) Устройство и способ измерения времени прохождения вершин лопаток в турбомашине
JP6532061B2 (ja) 光計測装置、光計測方法及び回転機械
US20200339244A1 (en) Blade angle position feedback system with offset sensors
CN105423976A (zh) 用于测量涡轮机中的叶片或导叶的几何参数的工具
JP2019526015A5 (ja)
CN110439842B (zh) 静子叶片转动角度测定结构及标定方法
KR20110093499A (ko) 회전식 인코더 및 그 제어 방법
JP5683509B2 (ja) シャフトの変形を測定するための装置及び方法
JP6596399B2 (ja) クリアランス計測装置およびクリアランス制御システム
JP2010237208A (ja) 過渡クリアランス測定のための時間表示摩擦ピン及び関連する方法
KR20200002952A (ko) 블레이드 진동 감시 장치, 블레이드 진동 감시 시스템, 동익, 및 회전 기계
JP6042213B2 (ja) 凹面光学素子の測定装置及び凹面回折格子の測定装置並びに平面回折格子の測定装置
WO2016147849A1 (ja) 回転体
JP6590808B2 (ja) 回転ブレードが受ける振動を測定するためのタービンエンジン用アセンブリ
US6776055B2 (en) Measurement of fuel flow
JP6455702B2 (ja) 回転体の振動計測方法と装置
JP6959027B2 (ja) クリアランス計測装置、クリアランス計測センサ及びクリアランス計測方法
CN114207278B (zh) 叶片传感器配置
EP3662144A1 (en) Turbine and compressor blade deformation and axial shift monitoring by pattern deployment and tracking in blade pockets
JPH08152312A (ja) 迎角・横滑角計

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20160421

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20170220

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20170404

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20170404

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20170426

R150 Certificate of patent or registration of utility model

Ref document number: 6143085

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees