JP6133492B2 - 多元接続wlan通信システムのための後方互換性プリアンブルフォーマットを使用する装置および方法 - Google Patents

多元接続wlan通信システムのための後方互換性プリアンブルフォーマットを使用する装置および方法 Download PDF

Info

Publication number
JP6133492B2
JP6133492B2 JP2016507683A JP2016507683A JP6133492B2 JP 6133492 B2 JP6133492 B2 JP 6133492B2 JP 2016507683 A JP2016507683 A JP 2016507683A JP 2016507683 A JP2016507683 A JP 2016507683A JP 6133492 B2 JP6133492 B2 JP 6133492B2
Authority
JP
Japan
Prior art keywords
bandwidth
packet
preamble
devices
sig
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2016507683A
Other languages
English (en)
Other versions
JP2016521051A5 (ja
JP2016521051A (ja
Inventor
ベルマニ、サミーア
タンドラ、ラーフル
メルリン、シモーネ
サンパス、ヘマンス
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Qualcomm Inc
Original Assignee
Qualcomm Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Qualcomm Inc filed Critical Qualcomm Inc
Publication of JP2016521051A publication Critical patent/JP2016521051A/ja
Publication of JP2016521051A5 publication Critical patent/JP2016521051A5/ja
Application granted granted Critical
Publication of JP6133492B2 publication Critical patent/JP6133492B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0044Arrangements for allocating sub-channels of the transmission path allocation of payload
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/26Systems using multi-frequency codes
    • H04L27/2601Multicarrier modulation systems
    • H04L27/2602Signal structure
    • H04L27/2603Signal structure ensuring backward compatibility with legacy system
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/26Systems using multi-frequency codes
    • H04L27/2601Multicarrier modulation systems
    • H04L27/2602Signal structure
    • H04L27/261Details of reference signals
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0091Signaling for the administration of the divided path
    • H04L5/0094Indication of how sub-channels of the path are allocated
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W56/00Synchronisation arrangements
    • H04W56/0035Synchronisation arrangements detecting errors in frequency or phase
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/26Systems using multi-frequency codes
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/26Systems using multi-frequency codes
    • H04L27/2601Multicarrier modulation systems
    • H04L27/2602Signal structure
    • H04L27/261Details of reference signals
    • H04L27/2613Structure of the reference signals

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Mobile Radio Communication Systems (AREA)
  • Synchronisation In Digital Transmission Systems (AREA)

Description

[0001]本願は、一般にワイヤレス通信に関し、より詳細には、後方互換性のある多元接続ワイヤレス通信を可能にするためのシステム、方法、およびデバイスに関する。本明細書では、いくつかの態様は、特にワイヤレス通信規格のIEEE802.11ファミリーにおける、直交周波数分割多元接続(OFDMA)通信に関する。
[0002]多くの電気通信システムでは、通信ネットワークが、いくつかの相互作用する空間的に離間したデバイス間でメッセージを交換するために使用される。ネットワークは、たとえばメトロポリタンエリア、ローカルエリア、またはパーソナルエリアであり得る地理的範囲に従って分類され得る。そのようなネットワークは、それぞれ、ワイドエリアネットワーク(WAN)、メトロポリタンエリアネットワーク(MAN)、ローカルエリアネットワーク(LAN)、またはパーソナルエリアネットワーク(PAN)として指定され得る。ネットワークはまた、様々なネットワークノードとデバイスとを相互接続するために使用されるスイッチング/ルーティング技法(たとえば、回線交換対パケット交換)、送信のために採用される物理媒体のタイプ(たとえば、有線対ワイヤレス)、および使用される通信プロトコルのセット(たとえば、インターネットプロトコルスイート、SONET(同期光ネットワーキング)、イーサネット(登録商標)など)によって異なる。
[0003]ワイヤレスネットワークは、ネットワーク要素がモバイルであり、したがって、動的接続性の必要を有するときに、またはネットワークアーキテクチャが固定ではなくアドホックなトポロジーで形成される場合に、しばしば好適である。ワイヤレスネットワークは、無線、マイクロ波、赤外線、光などの周波数帯域中の電磁波を使用する非誘導伝搬モードでは、無形物理媒体を利用する。ワイヤレスネットワークは、有利には、固定有線ネットワークと比較すると、ユーザモビリティと迅速なフィールド展開とを容易にする。
[0004]本発明のシステム、方法、およびデバイスは各々、いくつかの態様を有し、それらのうちのいずれの単一の態様も単独で本発明の望ましい属性を担うものではない。ここで、後記の特許請求の範囲によって表される本発明の範囲を限定することなく、いくつかの特徴について簡単に説明する。この議論を考察すれば、特に「詳細な説明」と題するセクションを読めば、当業者は本発明の特徴が、ワイヤレス媒体の効率的な使用を含む利点をどのように提供するかが理解されよう。
[0005]本開示の一態様は、ワイヤレス通信ネットワーク上で送信する方法を提供する。本方法は、帯域幅の第1の部分において1または複数の第1のデバイスに送信することであって、1または複数の第1のデバイスは第1の能力セットを有する、送信することと、帯域幅の第2の部分において1または複数の第2のデバイスに同時に送信することであって、1または複数の第2のデバイスは第2の能力セットを有する、送信することと、を含み、ここにおいて、送信は、第2の能力セットを有するデバイスが、第2の能力セットを有するデバイスに関する送信パラメータのセットを含むシンボルに関する帯域幅内の周波数帯域を位置特定するための、インジケーションを含むプリアンブルを備え、ここで、インジケーションは、第1の能力セットを有するデバイスのプリアンブル復号に実質的な影響を有さないように送られる。
[0006]該インジケーションは、帯域幅の第1の部分において送信されるコードを含み得る。このコードは、プリアンブル内の1つまたは複数の信号フィールド内のデータトーンの虚軸上で搬送され得る。このコードは、帯域幅の第1の部分において送信される1ビットコードを含み得る。該インジケーションは、帯域幅の第2の部分において送信されるコードを含み得る。パケットの帯域幅の第1の部分はプライマリチャネルを含み得、帯域幅の第2の部分は1つまたは複数のセカンダリチャネルを含み得る。プリアンブルは帯域幅の第1の部分において送信され得、1または複数の第2のデバイスに同時に送信するために使用されることになる帯域幅の各部分においてプリアンブルの1つまたは複数の複製を送信することをさらに含み、1つまたは複数の複製の少なくとも一部はそのインジケーションを含む。帯域幅の第2の部分において1または複数の第2のデバイスに同時に送信することは、帯域幅の第2の部分において1または複数の第2のデバイスに第2のプリアンブルを同時に送信することであり得、第2のプリアンブルは、第2の能力セットを有する1または複数の第2のデバイスに関する送信パラメータのセットを含む。送信パラメータは、帯域幅の第2の部分内の送信の対象とされる受信側のインジケーションを含み得る。
[0007]本開示の一態様は、ワイヤレス通信のための装置を提供する。本装置は、帯域幅の第1の部分において1または複数の第1のデバイスに送信することであって、1または複数の第1のデバイスは第1の能力セットを有する、送信することと、帯域幅の第2の部分において1または複数の第2のデバイスに同時に送信することであって、1または複数の第2のデバイスは第2の能力セットを有する、送信することと、を含む、帯域幅を介して送信するように構成された送信機を含み、ここにおいて、送信は、第2の能力セットを有するデバイスが、第2の能力セットを有するデバイスに関する送信パラメータのセットを含むシンボルに関する帯域幅内の周波数帯域を位置特定するための、インジケーションを含むプリアンブルを含み、ここで、インジケーションは、第1の能力セットを有するデバイスのプリアンブル復号に実質的な影響を有さないように送られる。
[0008]該インジケーションは、帯域幅の第1の部分において送信されるコードを含み得る。パケットの帯域幅の第1の部分は、プライマリチャネルを含み得、パケットの帯域幅の第2の部分は1つまたは複数のセカンダリチャネルを含み得る。プリアンブルは帯域幅の第1の部分において送信され得、送信されることは、1または複数の第2のデバイスに同時に送信するために使用されることになる帯域幅の各部分においてプリアンブルの1つまたは複数の複製を送信するようにさらに構成され、1つまたは複数の複製の少なくとも一部は該インジケーションを含む。帯域幅の第2の部分において1または複数の第2のデバイスに同時に送信することは、帯域幅の第2の部分において1または複数の第2のデバイスに第2のプリアンブルを同時に送信することを含み得、第2のプリアンブルは、第2の能力セットを有する1または複数の第2のデバイスに関する送信パラメータのセットを含む。
[0009]本開示の一態様は、ワイヤレス通信ネットワーク上で受信する方法を含む。本方法は、帯域幅の第1の部分においてプリアンブルを受信することであって、プリアンブルは、第1の能力セットを有するデバイスと互換性があるフォーマットで送信される、受信することと、帯域幅の第2の部分内の信号フィールドを位置特定することを、第2の能力セットを有するデバイスに知らせるために十分な情報を、プリアンブルが含むかどうかを決定することであって、帯域幅の第1の部分および第2の部分はオーバーラップしない、決定することと、帯域幅の第2の部分において信号フィールドを受信することとを含む。
[0010]本方法は、帯域幅の第2の部分においてデータを受信することをさらに含み得る。帯域幅の第1の部分はプライマリチャネルを含み得、ここにおいて、帯域幅の第2の部分は1つまたは複数のセカンダリチャネルを含み得る。この情報は、プリアンブルにおいて送信される1ビットコードを含み得る。この1ビットコードは、プリアンブル内の1つまたは複数の信号フィールド内のデータトーンの虚軸上で搬送され得る。プリアンブル内のこの情報は、第1の能力セットを有するデバイスのプリアンブル復号に実質的な影響を有さない。
IEEE802.11システムのために利用可能なチャネルに関するチャネル割振りを示す図。 IEEE802.11a/b/g/j/p通信において使用され得る物理層パケット(PPDUフレーム)の構造を示す図。 IEEE802.11n通信において使用され得る物理層パケット(PPDUフレーム)の構造を示す図。 IEEE802.11ac通信において使用され得る物理層パケット(PPDUフレーム)の構造を示す図。 後方互換性多元接続ワイヤレス通信を可能にするために使用され得るダウンリンク物理層パケットの例示的な構造を示す図。 STAを識別して、それらのSTAにサブバンドを割り振るために使用され得る、信号の例示的な図。 後方互換性多元接続ワイヤレス通信を可能にするために使用され得るダウンリンク物理層パケットの第2の例示的な構造を示す図。 後方互換性多元接続ワイヤレス通信を可能にするために使用され得るダウンリンク物理層パケットの第3の例示的な構造を示す図。 後方互換性多元接続ワイヤレス通信を可能にするために使用され得るダウンリンク物理層パケットの第4の例示的な構造を示す図。 本開示の態様が採用され得るワイヤレス通信システムの一例を示す図。 図1のワイヤレス通信システム内で採用され得る例示的なワイヤレスデバイスの機能ブロック図。 後方互換性多元接続ワイヤレス通信を可能にするために使用され得るアップリンク物理層パケットの例示的な構造を示す図。 2以上のワイヤレス通信デバイスに高効率パケットを送信する例示的な方法に関するプロセスフロー図。 後方互換性多元接続ワイヤレス通信を可能にするために使用され得るハイブリッドダウンリンク物理層パケットの例示的な構造を示す図。 ハイブリッドパケットを送信する例示的な方法を示す図。 ハイブリッドパケットを受信する例示的な方法を示す図。 1つの例示的なHEプリアンブルフォーマットを有するパケットを示す図。 別の例示的なHEプリアンブルフォーマットを有するパケットを示す図。 別の例示的なHEプリアンブルフォーマットを有するパケットを示す図。 HE−SIG1フィールドに関する例示的なビット割振りを示す図。 後方互換性多元接続ワイヤレス通信を可能にするために使用され得るアップリンク物理層パケットの例示的な構造を示す図。 後方互換性多元接続ワイヤレス通信を可能にするために使用され得るアップリンク物理層パケットの別の例示的な構造を示す図。 パケットを受信する例示的な方法を示す図。 アップリンクHEパケットのための例示的なアップリンクパケット構造を示す図。 アップリンクHEパケットのための例示的なアップリンクパケット構造を示す図。 各送信デバイスがいくつの空間ストリームを使用し得るかに関する情報を含む、APからの例示的なダウンリンクメッセージを示す図。 UL OFDMAパケット内で使用され得るトーンインターリーブLTFを示す図。 UL OFDMAパケット内で使用され得るサブバンドインターリーブLTFを示す図。 UL OFDMAパケットにおいて送信され得るパケットの例示的なLTF部分を示す図。 HE−STFに先立つ共通SIGフィールド、およびすべてのHE−LTFの後のユーザごとのSIGフィールドを有するパケットを示す図。 単一の送信で1または複数のデバイスに送信する例示的な方法を示す図。 第1の能力セットを有する1または複数の第1のデバイスに送信し、第2の能力セットを有する1または複数の第2のデバイスに同時に送信する、例示的な方法を示す図。 第1の能力セットを有するデバイスと第2の能力セットを有するデバイスの両方と互換性がある送信を受信する例示的な方法を示す図。 送信の複数の部分が異なるワイヤレスデバイスによって送信される、送信を受信する例示的な方法を示す図。 ワイヤレス通信システム内で採用され得るワイヤレスデバイスにおいて利用され得る様々な構成要素を示す図。
詳細な説明
以下、新規のシステム、装置、および方法の様々な態様について、添付の図面を参照してより完全に説明する。ただし、開示される教示は、多くの異なる形態で実施され得るものであり、本開示全体を通して提示する任意の特定の構造または機能に限定されるものと解釈すべきではない。むしろ、これらの態様は、本開示が十分なものであり、完全であるように、また本開示の範囲を当業者に十分伝えるように提供される。本明細書での教示に基づいて、当業者は、本発明の任意の他の態様から独立して実装されるか、または、本発明の任意の他の態様と組み合わされて実装されるかにかかわらず、本開示の範囲が、本明細書で開示する新規のシステム、装置、および方法の任意の態様を包含することを意図することを諒解するべきである。たとえば、本明細書で述べられる任意の数の態様を使用して装置が実装されることができ、または方法が実施されることができる。加えて、本発明の範囲は、本明細書で述べられる本発明の様々な態様に加えて、またはそれ以外の、他の構造、機能、または構造および機能を使用して実施されるそのような装置または方法を包含することを意図する。本明細書で開示する任意の態様は、特許請求の範囲の1つまたは複数の要素により実施されてもよいことを理解されたい。
本明細書では特定の態様について説明するが、これらの態様の多くの変形および置換が、本開示の範囲内に属する。好ましい態様のいくつかの利益および利点について述べるが、本開示の範囲は、特定の利点、使用、または目的に限定されることを意図したものではない。むしろ、本開示の態様は、異なるワイヤレス技術、システム構成、ネットワーク、および伝送プロトコルに、広範囲に適用できることが意図され、これらのうちのいくつかは、図面および好ましい態様の以下の説明で、例として示される。詳細な説明および図面は、限定ではなく、本開示の単なる例示であり、本開示の範囲は、添付の特許請求の範囲およびその均等物によって定義される。
ワイヤレスネットワーク技術は、様々なタイプのワイヤレスローカルエリアネットワーク(WLAN)を含み得る。WLANは、広く使用されているネットワーキングプロトコルを採用する、隣接デバイスをともに相互接続するために使用され得る。本明細書で説明する様々な態様は、WiFi(登録商標)、またはより一般的には、ワイヤレスプロトコルのIEEE802.11ファミリーの任意のメンバーなど、任意の通信規格に適用し得る。たとえば、本明細書で説明する様々な態様は、直交周波数分割多元接続(OFDMA)通信をサポートする802.11プロトコルなど、IEEE802.11プロトコルの一部として使用され得る。
STAなど、複数のデバイスが同時にAPと通信することを可能にすることは有益であり得る。たとえば、これは、複数のSTAがより短い時間にAPから応答を受信して、より短い遅延でAPからデータを送受信することができるようにすることを可能にし得る。これはまた、APが全体的により多くの数のデバイスと通信することを可能にし得、帯域幅使用をより効率的にすることも可能である。多元接続通信を使用することによって、APは、たとえば、80MHz帯域幅を介して一度に4つのデバイスに対してOFDMシンボルを多重化することが可能であり得、この場合、各デバイスは20MHz帯域幅を利用する。したがって、多元接続は、APがそのAPに利用可能なスペクトルをより効率的に使用することを可能にし得るため、多元接続は、いくつかの多様では、有益であり得る。
APとSTAとの間で送信されるシンボルの異なるサブキャリア(または、トーン)を異なるSTAに割り当てることによって、802.11ファミリーなど、OFDMシステム内でそのような多元接続プロトコルを実装することが提案されている。このようにして、APは、単一の送信OFDMシンボルを用いて複数のSTAと通信することが可能であり、この場合、シンボルの異なるトーンは異なるSTAによって符号化および処理され、したがって、複数のSTAに対する同時データ転送を可能にする。これらのシステムは、OFDMAシステムと呼ばれる場合がある。
そのようなトーン割振り方式は、本明細書では「高効率」(HE)システムと呼ばれ、そのようなマルチプルトーン割振りシステム内で送信されるデータパケットは高効率(HE)パケットと呼ばれる場合がある。後方互換性プリアンブルフィールドを含むそのようなパケットの様々な構造が以下で詳細に説明される。
以下、新規のシステム、装置、および方法の様々な態様について、添付の図面を参照してより完全に説明する。しかしながら、本開示は、多くの異なる形態で実施され得るものであり、本開示の全体を通して示される任意の特定の構造または機能に限定されるものと解釈されるべきでない。むしろ、これらの態様は、本開示が十分なものであり、完全であるように、また本開示の範囲を当業者に十分伝えるように提供される。本明細書での教示に基づいて、当業者は、本発明の任意の他の態様から独立して実装されるか、または、本発明の任意の他の態様と組み合わされて実装されるかにかかわらず、本開示の範囲が、本明細書で開示する新規のシステム、装置、および方法の任意の態様を包含することを意図することを諒解するべきである。たとえば、本明細書で述べられる任意の数の態様を使用して装置が実装されることができ、または方法が実施されることができる。加えて、本発明の範囲は、本明細書で述べられる本発明の様々な態様に加えて、またはそれ以外の、他の構造、機能、または構造および機能を使用して実施されるそのような装置または方法を包含することを意図する。本明細書で開示する任意の態様は、特許請求の範囲の1つまたは複数の要素により実施されてもよいことを理解されたい。
本明細書では特定の態様について説明するが、これらの態様の多くの変形および置換が、本開示の範囲内に属する。好ましい態様のいくつかの利益および利点について述べるが、本開示の範囲は、特定の利点、使用、または目的に限定されることを意図したものではない。むしろ、本開示の態様は、異なるワイヤレス技術、システム構成、ネットワーク、および伝送プロトコルに、広範囲に適用できることが意図され、これらのうちのいくつかは、図面および好ましい態様の以下の説明で、例として示される。詳細な説明および図面は、限定的ではなく、本開示の単なる例示であり、本開示の範囲は、添付の特許請求の範囲およびその均等物によって定義される。
普及しているワイヤレスネットワーク技術は、様々なタイプのワイヤレスローカルエリアネットワーク(WLAN)を含み得る。WLANは、広く使用されているネットワーキングプロトコルを採用する、隣接デバイスをともに相互接続するために使用され得る。本明細書で説明する様々な態様は、ワイヤレスプロトコルなどの任意の通信規格に適用され得る。
いくつかの態様では、ワイヤレス信号は802.11プロトコルに従って送信され得る。いくつかの実施態様では、WLANは、このワイヤレスネットワークにアクセスする構成要素である様々なデバイスを含む。たとえば、2つのタイプのデバイス、すなわち、アクセスポイント(AP)およびクライアント(局またはSTAとも呼ばれる)が存在し得る。一般に、APはWLANのためのハブまたは基地局として機能することができ、STAはWLANのユーザとして機能する。たとえば、STAはラップトップコンピュータ、携帯情報端末(PDA)、携帯電話などであり得る。一例では、STAは、インターネットまたは他のワイドエリアネットワークへの一般的接続性を得るためにWiFi互換ワイヤレスリンクを介してAPに接続する。いくつかの実装態様では、STAは、APとしても使用され得る。
アクセスポイント(AP)はまた、基地局、ワイヤレスアクセスポイント、アクセスノード、または類似の用語を備える、それらとして実装される、またはそれらの用語で呼ばれることもある。
局「STA」は、アクセス端末(AT)、加入者局、加入者ユニット、移動局、遠隔局、遠隔端末、ユーザ端末、ユーザエージェント、ユーザデバイス、ユーザ機器、または他の用語を備える、それらとして実装される、またはそれらの用語で呼ばれることもある。したがって、本明細書で教示する1つまたは複数の態様は、電話(たとえば、セルラーフォンまたはスマートフォン)、コンピュータ(たとえば、ラップトップ)、ポータブル通信デバイス、ヘッドセット、ポータブルコンピューティングデバイス(たとえば、携帯情報端末)、エンターテインメントデバイス(たとえば、音楽デバイスもしくはビデオデバイス、または衛星ラジオ)、ゲームデバイスもしくはゲームシステム、全地球測位システムデバイス、または、ワイヤレス媒体を介したネットワーク通信用に構成された任意の他の適切なデバイスに組み込まれる場合がある。
上で論じたように、本明細書で説明するデバイスのいくつかは、たとえば、802.11規格を実装し得る。そのようなデバイスは、STAとして使用されるか、またはAPとして使用されるか、または他のデバイスとして使用されるかにかかわらず、スマート検針用に、またはスマートグリッドネットワークにおいて使用され得る。そのようなデバイスは、センサアプリケーションを提供するか、またはホームオートメーションにおいて使用され得る。デバイスは、代わりにまたは加えて、たとえば個人の健康管理のために、健康管理の状況において使用され得る。それらはまた、(たとえばホットスポットとともに使用するための)広範囲のインターネット接続を可能にするために、または機械間通信を実装するために、監視に使用され得る。
図1は、IEEE802.11システムに利用可能なチャネルに関するチャネル割振りを示す。様々なIEEE802.11システムは、5MHzチャネル、10MHzチャネル、20MHzチャネル、40MHzチャネル、80MHzチャネル、および160MHzチャネルなど、いくつかの異なるサイズのチャネルをサポートする。たとえば、802.11acデバイスは、20MHzチャネル、40MHzチャネル、および80MHzチャネルの帯域幅の受信および送信をサポートし得る。より大きなチャネルが、2つの隣接する、より小さなチャネルを備え得る。たとえば、80MHzチャネルは2つの隣接する40MHzチャネルを備え得る。現在実施されているIEEE802.11システムでは、20MHzチャネルは、312.5kHzだけ互いに隔てられた、64のサブキャリアを含む。これらのサブキャリアの中で、より小さな数のサブキャリアはデータを搬送するために使用され得る。たとえば、20MHzチャネルは、−1サブキャリアから−28サブキャリアおよび1サブキャリアから28サブキャリア、または56サブキャリアと番号付けされた送信サブキャリアを含み得る。これらのキャリアのうちのいくつかは、また、パイロット信号を送信するために使用されることも可能である。長年にわたって、IEEE802.11規格はいくつかのバージョンを通して発展してきた。より古いバージョンは11a/gバージョンおよび11nバージョンを含む。最も最近のリリースは802.11acバージョンである。
図2、図3、および図4は、いくつかの現存のIEEE802.11規格のためのデータパケットフォーマットを示す。まず図2を参照すると、IEEE802.11a、11b、および11g用のパケットフォーマットを示す。このフレームは、ショートトレーニングフィールド22と、ロングトレーニングフィールド24と、信号フィールド26とを含む。トレーニングフィールドはデータを送信しないが、トレーニングフィールドは、データフィールド28内のデータを復号するためにAPと受信STAとの間の同期を可能にする。
信号フィールド26は、届けられているパケットの性質に関する情報をAPからSTAに届ける。IEEE802.11a/b/gデバイスでは、この信号フィールドは、24ビットの長さを有し、BPSK変調および1/2のコードレートを使用して、6Mb/sのレートで単一のOFDMシンボルとして送信される。SIGフィールド26内の情報は、パケット内のデータの変調方式(たとえば、BPSK、16QAM、64QAMなど)を記述する4ビットと、パケット長に関する12ビットとを含む。この情報は、パケットがSTAを対象とするとき、そのパケット内のデータを復号するためにSTAによって使用される。パケットが特定のSTAを対象としないときには、STAは、SIGシンボル26の長さフィールド内で定義された時間期間の間、いずれの通信試行も延期することになり、電力を節約するために、最大約5.5ミリ秒のパケット期間の間、スリープモードに入ることができる。
IEEE802.11に特徴が追加されるにつれて、追加の情報をSTAに提供するために、データパケット内のSIGフィールドのフォーマットに対する変更が開発された。図3は、IEEE802.11nパケットに関するパケット構造を示す。IEEE802.11規格に対する11nの追加は、IEEE802.11互換性デバイスにMIMO機能を追加した。IEEE802.11a/b/gデバイスとIEEE802.11nデバイスの両方を含むシステムに後方互換性を提供するために、IEEE802.11nシステム用のデータパケットは、また、それらが「レガシー」フィールドであることを示すためにプレフィックスLを伴う、L−STF22、L−LTF24、およびL−SIG26として知られる、より前のこれらのシステムのSTFフィールド、LTFフィールド、およびSIGフィールドを含む。IEEE802.11n環境で必要な情報をSTAに提供するために、2つの追加の信号シンボル140および142がIEEE802.11nデータパケットに追加された。しかしながら、SIGフィールドおよびL−SIGフィールド26と対照的に、これらの信号フィールドは(QBPSK変調とも呼ばれる)回転BPSK変調を使用した。IEEE802.11a/b/gと動作するように構成されたレガシーデバイスがそのようなパケットを受信するとき、そのレガシーデバイスは、通常の11a/b/gパケットとして、L−SIGフィールド26を受信および復号することになる。しかしながら、L−SIGフィールド26の後のデータパケットのフォーマットは11a/b/gパケットのフォーマットとは異なるので、デバイスが追加のビットを復号し続けると、それらのビットは成功裏に復号されないことになり、このプロセスの間にそのデバイスによって実行されるCRC検査は失敗することになる。これは、これらのレガシーデバイスにそのパケットの処理を停止させるが、さらに、当初復号されたL−SIG内の長さフィールドによって定義された時間期間が経過するまでさらなる動作を延期させる。対照的に、IEEE802.11nと互換性がある新しいデバイスは、HT−SIGフィールド内の回転変調を感知して、そのパケットを802.11nパケットとして処理することになる。さらに、11nデバイスがL−SIG26に続くシンボル内のQBPSK以外のいずれかの変調を感知する場合、11nデバイスはそれを11a/b/gパケットとして無視するので、11nデバイスは、パケットが11a/b/gデバイスを対象とすることを見分けることができる。HT−SIG1シンボルおよびSIG2シンボルの後、MIMO通信に適した追加のトレーニングフィールドが提供され、その後にデータ28が続く。
図4は、IEEE802.11ファミリーにマルチユーザMIMO機能を追加した、現存のIEEE802.11ac規格用のフレームフォーマットを示す。IEEE802.11nと同様に、802.11acフレームは、同じレガシーショートトレーニングフィールド(L−STF)22とロングトレーニングフィールド(L−LTF)24とを含む。802.11acフレームはまた、上で説明したレガシー信号フィールドL−SIG26を含む。
次に、802.11acフレームは、超高スループット信号(VHT−SIG−A1 150およびA2 152)フィールドの2つのシンボル長を含む。この信号フィールドは、11a/b/gデバイスおよび11nデバイス内に存在しない11ac特徴に関する追加の構成情報を提供する。VHT−SIG−Aの第1のOFDMシンボル150はBPSKを使用して変調され得、その結果、パケットをリッスンしている任意の802.11nデバイスは、そのパケットが802.11aパケットであると確信することになり、L−SIG126の長さフィールド内で定義されたパケット長の持続時間の間、パケットに譲歩する(defer to the packet)ことになる。11a/gに従って構成されたデバイスは、L−SIG26フィールドに続くサービスフィールドおよびMACヘッダを予想することになる。これらのデバイスがこの復号を試みるときには、11nパケットが11a/b/gデバイスによって受信されたときの手順と同様の形でCRC失敗(CRC failure)が発生することになり、11a/b/gデバイスはまたL−SIGフィールド26内で定義された期間の間延期することになる。VHT−SIG−Aの第2のシンボル152は90度回転BPSKで変調される。この回転した第2のシンボルは、80211acデバイスがそのパケットを802.11acパケットとして識別するのを可能にする。VHT−SIGA1 150フィールドおよびA2 152フィールドは、帯域幅モードに関する情報、単一ユーザの場合の変調およびコーディング方式(MCS)に関する情報、空間時間ストリームの数(NSTS)に関する情報、および他の情報を含む。VHT−SIGA1 150およびA2 152はまた、「1」に設定された、いくつかの予約済みビットを含み得る。レガシーフィールドならびにVHT−SIGA1フィールドおよびA2フィールドは、利用可能な帯域幅の各20MHzを通じて重複(duplicated)され得る。
VHT−SIG−Aの後、802.11acパケットは、多入力多出力(MIMO)送信における自動利得制御推定を改善するように構成されたVHT−STFを含み得る。802.11acパケットの次の1フィールドから8フィールドはVHT−LTFであり得る。これらは、MIMOチャネルを推定し、次いで、受信信号を等化するために使用され得る。送られるVHT−LTFの数は、ユーザごとの空間ストリームの数以上であり得る。最終的に、データフィールドの前のプリアンブル内の最後のフィールドはVHT−SIG−B 154である。このフィールドはBPSK変調され、パケット内の有用なデータの長さに関する情報を提供し、マルチユーザ(MU)MIMOパケットの場合、MCSを提供する。シングルユーザ(SU)の場合、このMCS情報は、代わりに、VHT−SIGA2内に含まれる。VHT−SIG−Bに続いて、データシンボルが送信される。802.11acは様々な新しい特徴を802.11ファミリーに導入し、11a/g/nデバイスと後方互換性があったプリアンブル設計を備えるデータパケットを含み、また11acの新しい特徴を実装するのに必要な情報を提供したが、多元接続用のOFDMAトーン割振りに関する構成情報は11acデータパケット設計によって提供されない。IEEE802.11、またはOFDMサブキャリアを使用する任意の他のワイヤレスネットワークプロトコルの何らかの将来のバージョンにおいてそのような特徴を実装するために、新しいプリアンブル構成が必要である。以下で、特に図3〜図9を参照して、有利なプリアンブル設計を提示する。
図5は、この環境で後方互換性多元接続ワイヤレス通信を可能にするために使用され得る物理層パケットの例示的な構造を示す。
この例示的な物理層パケットには、L−STF22と、L−LTF26と、L−SIG26とを含むレガシープリアンブルが含まれる。これらの各々は20MHzを使用して送信され得、APが使用する各20MHzのスペクトルに関して複数の複製(multiple copies)が送信され得る。
このパケットはまた、HE−SIG1シンボル455と、HE−SIG2シンボル457と、1つまたは複数のHE−SIG3シンボル459とを含む。これらのシンボルの構造は、IEEE802.11a/b/g/n/acデバイスと後方互換性があるべきであり、また、パケットがHEパケットであることをOFDMA HEデバイスにシグナリングすべきである。IEEE802.11a/b/g/n/acデバイスと後方互換性があるためには、これらのシンボルの各々に関して適切な変調が使用され得る。いくつかの実装形態では、第1のシンボルHE−SIG1 455はBPSK変調で変調され得る。これは、やはりそれらの第1のSIGシンボルBPSKを変調させた11acパケットをもつ現在の事例と同じ影響を11a/b/g/nデバイスに引き起こす。これらのデバイスの場合、後続のHE−SIGシンボル457、459に何の変調が行われるかは問題ではない。第2のシンボル457は、BPSK変調またはQPSK変調され得る。BPSK変調される場合、11acデバイスは、そのパケットが11a/b/gパケットであるとみなし、そのパケットの処理を停止することになり、L−SIG26の長さフィールドによって定義された時間の間、延期することになる。QBPSK変調される場合、11acデバイスは、プリアンブル処理の間、CRCエラーを生み出すことになり、そのパケットの処理をやはり停止することになり、L−SIGの長さフィールドによって定義された時間の間、延期することになる。これがHEパケットであることをHEデバイスにシグナリングするために、HE−SIG3 459の少なくとも第1のシンボルがQBPSK変調され得る。
OFDMA多元接続通信を確立するために必要な情報は、HE−SIGフィールド455、457、および459内の様々な位置に配置され得る。図5の例では、HE−SIG1 455は、OFDMA動作用のトーン割振り情報を含む。HE−SIG3 459は、多重化された各ユーザに関するユーザ固有変調タイプを定義するビットを含む。加えて、HE−SIG2 457は、図4の11acフォーマットで提供されるようなユーザ固有MIMO空間ストリームを定義するビットを含む。図5の例は、4人の異なるユーザ各々に、トーンの特定のサブバンドと、特定の数のMIMO空間時間ストリームとが割り当てられることを可能にし得る。12ビットの空間時間ストリーム情報は、1〜8のストリームが各々に割り当てられ得るように、4人のユーザの各々に関して3ビットを可能にする。16ビットの変調タイプデータは、4人のユーザの各々に関して4ビットを可能にし、4人のユーザの各々に対して16の異なる変調方式(16QAM、64QAMなど)のいずれか1つの割当てを可能にする。12ビットのトーン割振りデータは、特定のサブバンドが4人のユーザの各々に割り当てられることを可能にする。
サブバンド割振りに関する1つの例示的なSIGフィールド方式を図6に示す。この例は、IEEE802.11acで現在使用されているものと同様の6ビットのグループIDフィールド、ならびにサブバンドトーンを4人のユーザの各々に割り振るための10ビットの情報を含む。パケット130を届けるために使用される帯域幅は、何らかの数のMHzの倍数でSTAに割り振られ得る。たとえば、帯域幅は、B MHzの倍数でSTAに割り振られ得る。Bの値は、1MHz、2MHz、5MHz、10MHz、15MHz、または20MHzなどの値であり得る。Bの値は、図6の2ビット割振り粒度フィールドによって提供され得る。たとえば、HE−SIG155は、Bの4つの可能値を可能にする、1つの2ビットフィールドを含み得る。たとえば、Bの値は、割振り粒度フィールド内の0〜3の値に対応する、5MHz、10MHz、15MHz、または20MHzであり得る。いくつかの態様では、0からNの数を定義するBの値をシグナリングするためにkビットのフィールドが使用され得、この場合、0は自由度が最も低いオプション(the least flexible option)(最大粒度)を表し、Nの高い値は自由度が最も高いオプション(the most flexible option)(最小粒度)を表す。各B MHz部分はサブバンドと呼ばれ得る。
HE−SIG1はさらに、各STAに割り振られるサブバンドの数を示すために、ユーザあたり2ビットを使用することができる。これは、0〜3のサブバンドが各ユーザに割り振られることを可能にし得る。OFDMAパケット内でデータを受信することになるSTAを識別するために、802.11acからのグループid(G_ID)概念が使用され得る。この6ビットのG_IDは、この例では、特定の順序で、最高4つのSTAを識別することができる。
この例では、割振り粒度フィールドは「00」に設定される。この例では、割振り粒度フィールドは2ビットフィールドであり、その値は、順に5MHz、10MHz、15MHz、または20MHzに対応し得る。たとえば、「00」は5MHzの割振り粒度に対応し得る。
この例では、最初の2ビットは、G_IDによって識別された第1のユーザ用のサブバンドの数を与える。ここで、ユーザ1には「11」のサブバンドが与えられる。これは、ユーザ1が3つのサブバンドを受信することに対応し得る。各サブバンドが5MHzである場合、これはユーザ1に15MHzのスペクトルが割り振られることを意味し得る。同様に、ユーザ2はやはり3のサブバンドを受信するのに対して、ユーザ3はゼロのサブバンドを受信し、ユーザ4は2のサブバンドを受信する。したがって、この割振りは、15MHzがユーザ1とユーザ2の両方に使用されるのに対して、ユーザ4が10MHzを受信し、ユーザ3が何のサブバンドも受信しない、40MHz信号に対応し得る。
HE−SIGシンボルの後に送られるトレーニングフィールドおよびデータは、各STAに、割り振られたトーンに従ってAPによって届けられる。この情報は、潜在的にビームフォーミングされ得る。この情報をビームフォーミングすることは、より精確な復号を可能にすること、および/またはビームフォーミングされていない送信よりも大きな範囲を提供することなど、いくつかの利点を有し得る。
各ユーザに割り当てられた空間時間ストリームに応じて、異なるユーザは異なる数のHE−LTF165を必要とし得る。各STAは、一般に、空間ストリームの数に等しいまたはそれより多い、STAに関連付けられた各空間ストリームについてのチャネル推定を可能にするHE−LTF165の数を必要とし得る。LTFはまた、周波数オフセット推定および時間同期のために使用され得る。異なるSTAが異なる数のHE−LTFを受信し得るので、あるトーン上にHE−LTF情報を含み、他のトーン上にデータを含むシンボルが、APから送信され得る。
いくつかの態様では、同じOFDMシンボル上でHE−LTF情報とデータの両方を送ることは、問題がある場合がある。たとえば、これは、ピーク対平均電力比(PAPR)をあまりにも高いレベルに増大させ得る。したがって、代わりに、各STAが少なくとも必要とされる数のHE−LTF165を受信するまで、送信されるシンボルのすべてのトーン上でHE−LTF165を送信することが有益であり得る。たとえば、各STAは、STAに関連付けられた空間ストリームあたりに1つのHE−LTF165を受信する必要があり得る。したがって、APは、任意のSTAに割り当てられた空間ストリームの最大数に等しい数のHE−LTF165を各STAに送信するように構成され得る。たとえば、3つのSTAに単一の空間ストリームが割り当てられるが、第4番目のSTAには3つの空間ストリームが割り当てられる場合、この態様では、APは、ペイロードデータを含むシンボルを送信する前に、HE−LTF情報の4つのシンボルを4つのSTAの各々に送信するように構成され得る。
任意の所与のSTAに割り当てられたトーンが隣接している必要はない。たとえば、いくつかの実装形態では、異なる受信STAのサブバンドはインターリーブされ得る。たとえば、ユーザ1およびユーザ2の各々が3つのサブバンドを受信するのに対して、ユーザ4が2のサブバンドを受信する場合、これらのサブバンドはAP帯域幅全体にわたってインターリーブされ得る。たとえば、これらのサブバンドは、1,2,4,1,2,4,1,2などの順でインターリーブされ得る。いくつかの態様では、サブバンドをインターリーブするための他の方法がまた使用され得る。いくつかの態様では、サブバンドをインターリーブすることは、干渉の悪影響または特定のサブバンド上の特定のデバイスからの受信不良の影響を低減し得る。いくつかの態様では、APは、STAが選好するサブバンド上でSTAに送信することができる。たとえば、ある特定のSTAは、いくつかのサブバンド内では、他のサブバンドよりも良好な受信を有し得る。したがって、APは、STAがどのサブバンド上でより良好な受信を有し得るかに少なくとも一部基づいて、STAに送信することができる。いくつかの態様では、サブバンドは、また、インターリーブされなくてもよい。たとえば、サブバンドは、代わりに、1,1,1,2,2,2,4,4として送信され得る。いくつかの態様では、サブバンドがインターリーブされるか否かは事前定義され得る。
図5の例では、パケットがHEパケットであることをHEデバイスにシグナリングするために、HE−SIG3シンボル変調が使用され得る。パケットがHEパケットであることをHEデバイスにシグナリングする他の方法が使用されてもよい。図7の例では、L−SIG126は、HEプリアンブルがレガシープリアンブルの後に続くことになることをHEデバイスに指示する情報を含み得る。たとえば、L−SIG26は、L−SIG26の期間中にQ信号に敏感なHEデバイスに後続のHEプリアンブルの存在を示す低エネルギーの1ビットコードをQレール上に含み得る。単一ビット信号がパケットを送信するためにAPによって使用されるすべてのトーンにわたって拡散され得るので、振幅が非常に低いQ信号が使用され得る。このコードは、HEプリアンブル/パケットの存在を検出するために高効率デバイスによって使用され得る。レガシーデバイスのL−SIG26検出感度は、Qレール上のこの低エネルギーコードによって実質的に影響を受けるとは限らない。したがって、これらのデバイスは、L−SIG26を読み取ることが可能になり、コードの存在に気づかないことになるのに対して、HEデバイスはコードの存在を検出することが可能である。この実装形態では、所望される場合、すべてのHE−SIGフィールドがBPSK変調され得、このL−SIGシグナリングとともに、レガシー互換性に関して本明細書で説明する技法のいずれかが使用され得る。
図8は、同様に11acデバイスとの後方互換性を実装するための別の方法を示す。この例では、HE−SIG−A1 455は、VHT−SIGフィールドを復号するときに11acデバイスが必要とする値から反転された(flipped)値に設定されたビットを含み得る。たとえば、802.11ac VHT−SIG−Aフィールドは、正確にアセンブルされたVHT−SIG−Aフィールドにおいて予約されて1に設定されたビット2および23を含む。高効率プリアンブルHE−SIG−A455では、これらのビットのうちの1つまたは両方はゼロに設定され得る。802.11acデバイスがそのような反転された値(flipped value)を有する予約済みビットを含むパケットを受信する場合、11acデバイスは、そのパケットの処理を停止して、L−SIG26内で指定された持続時間の間パケット依然として譲歩しながら、そのパケットを復号不可能として扱う。この実装形態では、11a/b/g/nデバイスとの後方互換性は、HE−SIG1シンボル455に関してBPSK変調を使用することによって達成され得、HEデバイスにシグナリングすることは、HE−SIG2 457またはHE−SIG3 459の1つまたは複数のシンボルに関してQBPSK変調を使用することによって達成され得る。
図9に示した例によって示されるように、HEパケットの構造は、802.11acで利用されるパケット構造に基づくことができる。この例では、レガシープリアンブル22、24、26の後、図9でHE−SIGA1およびHE−SIGA2と呼ばれる、2つのシンボルが提供される。これは、図4のVHT−SIGA1およびVHT−SIGA2と同じ構造である。空間時間ストリーム割振りとトーン割振りの両方をこれらの2つの24ビットシンボルに適合させるために、空間時間ストリームオプションに与えられる自由はより少ない。
図9の例はまた、図4のVHT−SIGBフィールド154とやはり同様に、HEトレーニングフィールドの後にHE−SIGBシンボル459を配置する。
しかしながら、この11acベースのプリアンブルに関する1つの潜在的な問題は、この設計はHE−SIG−B470の空間制限に陥る可能性があることである。たとえば、HE−SIG−B470は、少なくともMCS(4ビット)とテールビット(6ビット)とを含む必要があり得る。したがって、HE−SIG−B470は、少なくとも10ビットの情報を含む必要があり得る。802.11ac仕様では、VHT−SIG−Bは1つのOFDMシンボルである。しかしながら、各サブバンドの帯域幅に応じて、単一のOFDMシンボル内に十分な数のビットが存在しない可能性がある。たとえば、下の表1はこの潜在的な問題を示す。
Figure 0006133492
表1に示されるように、各サブバンドが10MHzである場合、単一のOFDMシンボルは13ビットを提供する。これらのビットのうちの6はテールビットとして必要であり、したがって、7ビットがMCSフィールドのために残る。上述のように、MCSフィールドは4ビットを必要とする。したがって、各サブバンドが少なくとも10MHzである場合、HE−SIG−B470のために単一のOFDMシンボルが使用され得、これは4ビットのMCSフィールドを含むために十分であり得る。しかしながら、各サブバンドが、代わりに、5MHzまたは6MHzである場合、これはOFDMシンボルあたりに6ビットまたは8ビットだけを可能にし得る。これらのビットのうち、6ビットはテールビットである。したがって、0ビットまたは2ビットだけがMCSフィールドに利用可能である。これはMCSフィールドを提供するには不十分である。SIGBフィールドにおいて必要とされる情報を提供するにはサブバンド粒度があまりにも小さいこれらの事例では、HE−SIG−B470のために1を超えるOFDMシンボルが使用され得る。必要とされるシンボルの数は、システムが可能にする最小サブバンドに関係する。これが、IEEE802.11ファミリーOFDMシステムにおける13のトーンに対応する、5MHzである場合、HE−SIG−Bのための2つのシンボルは、HE−SIG−B情報MCSおよびテールビット用に十分な長さである12ビットを提供するために、BPSK変調および1/2前方誤り訂正コードレートを可能にする。図10は、本開示の態様が採用され得るワイヤレス通信システム100の一例を示す。ワイヤレス通信システム100は、ワイヤレス規格、たとえばIEEE802.11規格に従って動作することができる。ワイヤレス通信システム100は、STA106a、106b、106c、および106d(総称してSTA106)と通信するAP104を含み得る。ネットワークは、レガシーSTA106bと高効率(HE)STA106a、106c、106dの両方を含み得る。
様々な処理および方法が、AP104とSTA106との間のワイヤレス通信システム100における送信のために使用され得る。たとえば、信号は、OFDM/OFDMA技法に従ってAP104とSTA106との間で送受信され得る。この場合、ワイヤレス通信システム100は、OFDM/OFDMAシステムと呼ばれ得る。
AP104からSTA106のうちの1つまたは複数への送信を容易にする通信リンクは、ダウンリンク(DL)108と呼ばれることがあり、STA106のうちの1つまたは複数からAP104への送信を容易にする通信リンクは、アップリンク(UL)110と呼ばれることがある。代替的に、ダウンリンク108は順方向リンクまたは順方向チャネルと呼ばれることがあり、アップリンク110は逆方向リンクまたは逆方向チャネルと呼ばれることがある。いくつかの態様では、一部のDL108通信は、HEパケット130など、HEパケットであり得る。そのようなHEパケットは、レガシーSTA106bにHEパケット130を認識させて、その送信の持続時間の間、HEパケット130の送信に譲歩させるために十分な情報を含む、802.11aおよび802.11nなどの仕様に従うプリアンブル情報など、レガシープリアンブル情報を含み得る。同様に、HEパケット130であるDL108通信は、上で論じたように、どのデバイスがHEパケット130内で情報を受信することができるかをHE STA160a、106c、106dに知らせるために十分な情報を含み得る。
AP104は、基地局の役割を果たし、基本サービスエリア(BSA)102内のワイヤレス通信カバレッジを提供し得る。AP104は、そのAP104と関連付けられた、そのAP104を通信に使用するSTA106とともに、基本サービスセット(BSS)と呼ばれることもある。なお、ワイヤレス通信システム100は、中央のAP104を有さないこともあり、むしろSTA106間のピアツーピアネットワークとして機能し得ることに留意されたい。したがって、本明細書で説明するAP104の機能は、代替的に、STA106のうちの1つまたは複数によって実行され得る。
図11は、ワイヤレス通信システム100内で採用され得るワイヤレスデバイス202で利用され得る様々な構成要素を示す図である。ワイヤレスデバイス202は、本明細書で説明する様々な方法を実装するように構成され得るデバイスの一例である。たとえば、ワイヤレスデバイス202は、図10のAP104、またはSTA106のうちの1つを備え得る。いくつかの態様では、ワイヤレスデバイス202は、HEパケット130など、HEパケットを送信するように構成されたAPを備え得る。
ワイヤレスデバイス202は、ワイヤレスデバイス202の動作を制御するプロセッサ204を含み得る。プロセッサ204は、また、中央処理装置(CPU)と呼ばれる場合もある。読取り専用メモリ(ROM)とランダムアクセスメモリ(RAM)の両方を含み得るメモリ206は、プロセッサ204に命令とデータとを供給する。メモリ206の一部分は、不揮発性ランダムアクセスメモリ(NVRAM)も含み得る。プロセッサ204は、通常は、メモリ206内に記憶されたプログラム命令に基づいて、論理動作および演算動作を実行する。メモリ206中の命令は、本明細書で説明する方法を実装するように実行可能であり得る。たとえば、ワイヤレスデバイス202がAP104である場合、メモリ206は、ワイヤレスデバイス202が、HEパケット130など、HEパケットを送信することを可能にするために十分な命令を含み得る。たとえば、メモリ206は、ワイヤレスデバイス202がレガシープリアンブル、続いて、HE−SIGまたはHE−SIG−Aを含むHEプリアンブルを送信することを可能にするために十分な命令を含み得る。いくつかの態様では、ワイヤレスデバイス202は、ワイヤレスデバイス202が本明細書で開示する実施形態に従ってフレームを送信することを可能にするために十分な命令を含み得るフレームフォーマット回路221を含み得る。たとえば、フレームフォーマット回路221は、ワイヤレスデバイス202が、レガシープリアンブルと高効率プリアンブルの両方を含むパケットを送信することを可能にするために十分な命令を含み得る。
プロセッサ204は、1つまたは複数のプロセッサとともに実装される処理システムの構成要素を備える、またはその構成要素であり得る。この1つまたは複数のプロセッサは、汎用マイクロプロセッサ、マイクロコントローラ、デジタル信号プロセッサ(DSP)、フィールドプログラマブルゲートアレイ(FPGA)、プログラマブル論理デバイス(PLD)、コントローラ、ステートマシン、ゲート型論理、離散ハードウェア構成要素、専用ハードウェア有限ステートマシン、または情報の計算または他の操作を実行することができる任意の他の適当なエンティティの任意の組合せで実装され得る。
処理システムは、ソフトウェアを記憶するための機械可読媒体も含み得る。ソフトウェアは、ソフトウェア、ファームウェア、ミドルウェア、マイクロコード、ハードウェア記述言語、または他の用語のいずれと呼称されるかにかかわらず、任意のタイプの命令を意味するものとして広範に解釈されるものとする。命令は、コード(たとえばソースコードフォーマット、バイナリコードフォーマット、実行可能コードフォーマット、または任意の他の適当なコードフォーマットのもの)を含み得る。命令は、1つまたは複数のプロセッサによって実行されたときに、処理システムに、本明細書で説明する様々な機能を実行させる。
ワイヤレスデバイス202は、ワイヤレスデバイス202と遠隔位置との間のデータの送受信を可能にする送信機210と受信機212とを含み得るハウジング208も含み得る。送信機210および受信機212は、トランシーバ214に結合され得る。アンテナ216は、ハウジング208に取り付けられ、トランシーバ214に電気的に結合され得る。ワイヤレスデバイス202は、複数の送信機、複数の受信機、複数のトランシーバ、および/または複数のアンテナも含み得る(図示せず)。
ワイヤレスデバイス202は、トランシーバ214によって受信された信号のレベルを検出し、定量化するために使用され得る信号検出器218も含み得る。信号検出器218は、総エネルギー、シンボルごとのサブキャリア当たりのエネルギー、電力スペクトル密度、および他の信号などの信号を検出することができる。ワイヤレスデバイス202は、信号を処理する際に使用するデジタル信号プロセッサ(DSP)220も含み得る。DSP220は、送信用のデータユニットを生成するように構成され得る。いくつかの態様では、データユニットは、物理レイヤデータユニット(PPDU)を備え得る。いくつかの態様では、PPDUはパケットと呼ばれる。
一部の態様では、ワイヤレスデバイス202はさらに、ユーザインターフェース222を備え得る。ユーザインターフェース222は、キーパッド、マイクロホン、スピーカ、および/またはディスプレイを含み得る。ユーザインターフェース222は、ワイヤレスデバイス202のユーザに情報を伝える、および/またはユーザからの入力を受信する、任意の要素または構成要素を含み得る。
ワイヤレスデバイス202の様々な構成要素は、バスシステム226によってともに結合され得る。バスシステム226は、たとえば、データバス、ならびに、データバスに加えて、電力バスと、制御信号バスと、ステータス信号バスとを含み得る。ワイヤレスデバイス202の構成要素は、何らかの他の機構を使用して、一緒に結合され得るか、または互いに対する入力を受け入れ、もしくは提供し得ることを当業者は諒解されよう。
図11にはいくつかの別個の構成要素が示されているが、これらの構成要素のうちの1つまたは複数は、結合され得る、または共通に実装され得る。たとえば、プロセッサ204は、プロセッサ204に関して上述した機能を実装するためだけでなく、信号検出器218および/またはDSP220に関連して上述した機能を実装するためにも、使用され得る。さらに、図11に示される構成要素の各々は、複数の別個の要素を用いて実装され得る。さらに、プロセッサ204は、以下で説明する構成要素、モジュール、回路などのいずれかを実装するために使用され得、または各々が複数の別個の要素を使用して実装され得る。
図12は、後方互換性多元接続ワイヤレス通信を可能にするために使用され得るアップリンク物理層パケット830の例示的な構造を示す。そのようなアップリンクメッセージ内では、APの最初のダウンリンクメッセージによってNAVが設定されるため、レガシープリアンブルは必要とされない。したがって、アップリンクパケット830はレガシープリアンブルを含まない。アップリンクパケット830は、APによって送られたUL−OFDMAアナウンスメッセージに応答して送られ得る。
アップリンクパケット830はいくつかの異なるSTAによって送られ得る。たとえば、ダウンリンクパケット内で識別される各STAは、アップリンクパケット830の一部を送信することができる。STAの各々は、その割り当てられた1つの帯域幅内でまたは複数の帯域幅内で同時に送信することができ、その送信は、単一のパケットとしてAPによって受信され得る。
パケット830において、各STAは、前述したように、最初のダウンリンクメッセージ内のトーン割当ての間、そのSTAに割り当てられたチャネルまたはサブバンドだけを使用する。これは、AP上の完全な直交受信処理を可能にする。これらのサブバンドの各々の上でメッセージを受信するために、APはパイロットトーンを受信しなければならない。残余周波数オフセットに起因するまたは位相雑音に起因するデータシンボルにわたる位相変化に関して補正するためのシンボルごとの位相オフセットを推定するために、これらのパイロットトーンが位相追跡のために802.11パケット内で使用される。この位相オフセットはまた、時間および周波数の追跡ループに送られ得る。
パイロットトーンを送信するために、少なくとも2つの異なるオプションが使用され得る。第1に、各ユーザは、その割り当てられたサブバンドに該当するパイロットトーンを送信することができる。しかしながら、低帯域幅OFDMA割振りの場合、これは一部のユーザにとって十分な数のパイロットトーンを可能にしない場合がある。たとえば、802.11a/n/acにおける20MHz送信には4つのパイロットトーンが存在する。しかしながら、ユーザに5MHzだけが割り当てられている場合、そのユーザはそのサブバンド内に1つのパイロットトーンだけを有し得る。ディープフェードなど、何らかの問題がそのパイロットトーンで生じる場合、良好な位相推定を得ることは非常に困難であり得る。
パイロットトーンを送信する別の可能な方法は、各ユーザが、そのサブバンドに該当するパイロットトーンだけではなく、すべてのパイロットトーン上で送信することに関連し得る。これは結果として、ユーザごとに多数のパイロットトーンを送信させることをもたらし得る。しかしながら、これは結果として、APが複数のユーザから各パイロットトーンを同時に受信することになり得、これはAPにとって処理がより困難なものとなり得る。APはすべてのユーザに関するチャネルを推定することが必要であろう。これを達成するために、すべてのユーザの空間ストリームの合計に対応する数など、より多くのLTFが必要となる場合がある。たとえば、4人のユーザの各々が2つの空間ストリームに関連付けられた場合、この手法では、8つのLTFが使用され得る。
このようにして、各STAはHE−STF835を送信することができる。パケット830に示すように、HE−STF835は、8usで送信され得、2つのOFDMAシンボルを含み得る。各STAは、また、1つまたは複数のHE−LTF840を送信することもできる。パケット830に示すように、HE−LTF840は、8usで送信され得、2つのOFDMAシンボルを含み得る。たとえば、前述のように、各STAは、そのSTAに割り当てられた各サブバンドについてHE−LTF840を送信することができる。各STAは、また、HE−SIG845を送信することもできる。HE−SIG845の長さは、Uの各々に対して1つのODFMAシンボル長(4us)であり得、この場合、Uは送信において多重化されたSTAの数である。たとえば、4つのSTAがアップリンクパケット830を送っている場合、HE−SIG845は16usであり得る。HE−SIG845の後、追加のHE−LTF840が送信され得る。最終的に、各STAはデータ855を送信することができる。
結合されたアップリンクパケット830を送るために、STAの各々は、他のSTAとの時間、周波数、および電力の点で互いと同期することができる。そのようなパケットに必要とされるタイミング同期は、およそ100ns程度におけるものであり得る。このタイミングは、APのUL−OFDMAアナウンスメッセージに応答することによって協調がとられ得る。このタイミング精度は、当業者に知られているいくつかの解決策を使用して得られ得る。たとえば、ショートフレーム間スペース(SIFS)のタイミングをとるために802.11acデバイスおよび802.11nデバイスによって使用される技法は、結合されたアップリンクパケット830を得るために必要とされるタイミング精度を提供するために十分であり得る。このタイミング精度はまた、アップリンククライアント間のタイミングエラーおよび往復遅延差を吸収する目的で、400nsガードタイムを得るためにアップリンクOFDMAに対してだけ800nsの長さのガードインターバルを使用することによって維持され得る。
アップリンクパケット830によって対処されなければならない別の技術的課題は、送る側のデバイスの周波数が同期されなければならないことである。アップリンクパケット830など、UL−OFDMAシステム内のSTA間で周波数オフセット同期に対応するためのいくつかのオプションが存在する。第1に、各STAはその周波数差を計算して、それを補正することができる。たとえば、STAは、STAに送られたUL−OFDMAアナウンスメッセージに基づいて、APに関する周波数オフセットを計算することができる。このメッセージに基づいて、STAは時間領域アップリンク信号に位相ランプを適用することができる。APはまた、LTFを使用して、各STAに関する共通位相オフセットを推定することができる。たとえば、STAによって送信されるLTFは周波数の点で直交であり得る。したがって、APは、STAインパルス応答を分離するために、ウィンドウ化された逆高速フーリエ変換(IFFT)関数を使用することができる。2つの同一LTFシンボルにわたるこれらのインパルス応答の変動は、あらゆるユーザに関する周波数オフセット推定を与えることができる。たとえば、STAにおける周波数オフセットは、経時的に位相ランプをもたらし得る。したがって、2つの同一のLTFシンボルが送信される場合、APは、周波数オフセットの推定値を得る目的で2つのインパルス応答にわたる位相の勾配を計算するために、それらの2つのシンボル間の差を使用することが可能であり得る。この手法は、当業者に知られている可能性があるUL−MU−MIMOメッセージで提案されているトーンインターリーブ手法と同様であり得る。
図13は、2以上のワイヤレス通信デバイスに高効率パケットを送信する例示的な方法に関するプロセスフロー図を示す。この方法は、APなどのデバイスによって行われ得る。
ブロック905で、APはレガシープリアンブルを送信し、該レガシープリアンブルは、パケットに譲歩するようにレガシーデバイスに知らせるために十分な情報を含む。たとえば、レガシープリアンブルは、パケットに譲歩するようにレガシーデバイスに警告するために使用され得る。レガシーパケットは、予約済みビットまたは予約済みビットの結合を含み得る。これらの予約済みビットは、レガシーデバイスにやはりパケットに譲歩させながら、高効率プリアンブルについてパケットをリッスンし続けるように高効率デバイスに警告し得る。いくつかの態様では、レガシープリアンブルを送信するための手段は送信機を備え得、該レガシープリアンブルは、パケットに譲歩するようにレガシーデバイスに知らせるために十分な情報を含む。
ブロック910で、APは高効率信号を送信し、該高効率信号はトーン割振り情報を含み、トーン割振り情報は2以上のワイヤレス通信デバイスを識別する。いくつかの態様では、高効率信号は、パケット内で情報を受信することになるSTAを識別する情報を含み得るトーン割振り情報を含み得、どのサブバンドがそれらのSTAを対象とするかをそれらのSTAに警告することができる。いくつかの態様では、高効率パケットはまた、802.11acデバイスにパケットに譲歩させるために十分な情報を含み得る。いくつかの態様では、高効率信号を送信するための手段は送信機を備え得、該高効率信号はトーン割振り情報を含み、トーン割振り情報は2以上のワイヤレス通信デバイスを識別する。いくつかの態様では、高効率信号は、2以上のワイヤレス通信デバイスの各々にいくつかの空間ストリームが割り当てられ得ることのインジケーションをさらに備え得る。たとえば、2以上のワイヤレス通信デバイスの各々には1つまたは複数の空間ストリームが割り当てられ得る。いくつかの態様では、1つまたは複数の空間ストリームを2以上のワイヤレス通信デバイスの各々に割り当てるための手段は、送信機またはプロセッサを備え得る。
ブロック915で、APはデータを2以上のワイヤレス通信デバイスに同時に送信し、データは2以上のサブバンド上に含まれる。たとえば、APはデータを最高で4つのSTAに送信することができる。いくつかの態様では、データを2以上のワイヤレス通信デバイスに同時に送信するための手段は送信機を備え得、データは2以上のサブバンド上に含まれる。
いくつかの態様では、APは、IEEE802.11a/n/acデバイスなど、レガシーデバイスに関する両方に関するデータと、1つまたは複数の高効率デバイスに関するデータとを含む、ハイブリッドパケットを送信することができる。そのようなハイブリッドパケットは、レガシーデバイスと高効率デバイスの両方を含む混合環境で帯域幅のより効率的な使用を可能にし得る。たとえば、レガシーシステムでは、APが80MHzを使用するように構成されている場合、APが、全80MHzを使用することができないデバイスにパケットを送信している場合、そのAPに割り当てられた帯域幅の一部は未使用になり得る。これは、高効率パケットの使用によって対処される1つの問題である。しかしながら、STAのうちのいくつかが高効率であり、STAのうちのいくつかがレガシーデバイスである環境では、そのAPが使用するように構成された全帯域幅を使用することができないレガシーデバイスに送信するときには、帯域幅はやはり未使用になる可能性がある。たとえば、上で論じたように、そのようなシステム内の高効率パケットは全帯域幅を使用することができるが、レガシーパケットはそれが可能でない。したがって、レガシーデバイスがパケットの帯域幅の一部において情報を受信することができるのに対して、高効率デバイスはそのパケットの別の部分内で情報を受信することができる、ハイブリッドパケットを提供することが有益であり得る。そのようなパケットの一部は、IEEE802.11a/n/acなど、レガシー準拠フォーマットでデータを送信することができ、パケットの一部はデータを高効率デバイスに送信することができるため、そのようなパケットはハイブリッドパケットと呼ばれる場合がある。
例示的なハイブリッドパケット1400を図14に示す。そのようなハイブリッドパケットは、APなど、ワイヤレスデバイスによって送信され得る。ハイブリッドパケットは、データがレガシーデバイスに送信されるレガシー部分と、データが高効率デバイスに送信される高効率部分とを含み得る。
ハイブリッドパケット1400は、各々が、パケットの帯域幅の一部を通じて重複(duplicated)される、いくつかのレガシープリアンブルを含み得る。たとえば、例示的なハイブリッドパケット1400は、パケット1400の80MHzの帯域幅を介して重複された4つの20MHzレガシープリアンブルを含む80MHzパケットとして示される。80MHz帯域の一部だけの上で動作し得る他のデバイスがパケットに譲歩することを確実にするために、そのような重複がレガシーフォーマットで使用され得る。いくつかの態様では、ネットワーク内のデバイスの各々は、デフォルトによって、プライマリチャネルだけを監視することができる。
ハイブリッドパケット1400は、IEEE802.11a/n/acなど、レガシーフォーマットで指定されるものと同じであるL−STF1405とL−LTF1410とを含み得る。これらのフィールドは上で論じたのと同じであり得る。しかしながら、ハイブリッドパケット1400のL−SIG1415は、レガシーパケットのL−SIGとは異なり得る。L−SIG1415は、そのパケットがハイブリッドパケットであることを高効率デバイスにシグナリングするために使用される情報を含み得る。レガシーデバイスがパケット内の情報を受信することも可能になるために、この情報は、その情報がL−SIG1415のその受信を中断させないように、レガシーデバイスから隠されなければならない。
L−SIG1415は、L−SIG1415内の情報に対して1ビットコードを直交に配置することによって、そのパケットがハイブリッドパケットであることを高効率デバイスにシグナリングすることができる。たとえば、上で論じたように、1ビットコードはL−SIG1415のQレール上に配置され得る。レガシーデバイスは、その1ビットコードに気づかない場合があり、L−SIG1415をいつものように読み取ることが可能であり得るが、高効率デバイスは、この1ビットコードを特に探して、それが存在するか否かを決定することが可能であり得る。この1ビットコードは、ハイブリッドパケットが送られていることを高効率デバイスにシグナリングするために使用され得る。いくつかの態様では、1ビットコードは、そのコードを探すように構成されていない可能性があるレガシーデバイスから隠される場合があるか、またはレガシーデバイスに見えない場合がある。いくつかの態様では、レガシーデバイスは、1ビットコードの存在による、何らかの不規則性を観測せずに、L−SIG1415を理解することが可能であり得る。いくつかの態様では、プライマリチャネル内のL−SIG1415だけが、HE−SIG1425用の他のチャネルを調べるように高効率デバイスに命令するための1ビットコードを含むことが可能である。いくつかの態様では、いくつかのL−SIG1415は、この1ビットインジケータを有する場合があり、この場合、そのインジケータを備えたL−SIG1415の数は、レガシーパケットに関して使用されるべきチャネルの数に等しい。たとえば、レガシーパケットが第1のチャネルと第2のチャネルの両方を含むことになるが、第3のチャネルは含まないことになる場合、第1のチャネル内および第2のチャネル内のL−SIGは1ビットインジケータを含み得るが、第3のチャネル内のL−SIGはこのインジケータを含まない。高効率デバイスは、1ビットコードを含まないL−SIGを有する第1のチャネルを調べて、HE−SIG1425の存在についてそのチャネルを監視するように構成され得る。いくつかの態様では、VHT−SIG−A1420内の帯域幅情報は、レガシーパケット1430がどの程度の帯域幅を使用することになるか、したがって、どの帯域幅でHEパケット1435が開始し得るかに関する情報を含み得る。いくつかの態様では、1ビットコードは、データをHEデバイスに送信するために使用されることになるチャネル内で送信されているL−SIG1415内にだけに含まれ得る。たとえば、レガシーデバイスに送信するために第1のチャネルが使用され、特定のパケット内でHEデバイスに送信するために3つの他のチャネルが使用される場合、これらの3つの他のチャネル内で送信されるL−SIG1415の各々は1ビットコードを含み得る。いくつかの態様では、HEパケット内で、各L−SIG1415は、各チャネルがデータをHEデバイスに送信するために使用され得ることを示すための1ビットコードを含み得る。いくつかの態様では、これは、HEパケットまたはハイブリッドパケットのHE部分に関して使用される帯域幅が、パケットのL−SIG1415を使用してシグナリングされることを可能にし得る。パケットのHE部分に関して使用される帯域幅がL−SIG1415内でシグナリングされる場合、これは、HEパケット内またはハイブリッドパケット内のHE−SIG1425がパケットのHE部分に割り当てられた帯域幅のより大きな部分に及ぶのを可能にし得る。たとえば、HE−SIG1425は、HEパケットに割り当てられた帯域幅に及ぶように構成され得る。いくつかの態様では、HE−SIG1425用に20MHzだけを使用するのではなく、HE−SIG1425用により多くの帯域幅を使用することは、より多くの情報がHE−SIG1425内で送信されることを可能にし得る。いくつかの態様では、HE−SIG1425の第1のシンボルは、そのパケットのHE部分に割り当てられた帯域幅の各20MHz上で重複して送信され得るのに対して、HE−SIG1425の残りのシンボルは、そのパケットのHE部分に割り当てられた全帯域幅を使用して送信され得る。たとえば、HE−SIG1425の第1のシンボルは、HEパケットまたはハイブリッドパケットのHE部分に割り振られた帯域幅を送信するために使用され得、したがって、後続のシンボルは、そのパケットのHE部分に割り当てられた全帯域幅上で送信され得る。
L−SIG1415内の1ビットコードを受信するとすぐに、高効率デバイスは、HE−SIG1425を見出すために、高帯域チャネルなど、APに割り振られた帯域幅の高帯域部分内を調べるように構成され得る。たとえば、ハイブリッドパケット1400内で、直交方向で1ビットコードを備えたL−SIG1415を受信するとすぐ、高効率デバイスは、レガシーパケットとともに、他の周波数帯域内で送信され得る、HE−SIG1425など、HE−SIG用のレガシーデバイスにデータを搬送するチャネルとは別の20MHzチャネル内を調べるように構成され得る。たとえば、例示的なハイブリッドパケット1400内で、HE−SIG1425はVHT−SIG−A1420と同時に送信されるとして示される。この例では、ハイブリッドパケット1400は、帯域幅の下位部上にIEEE802.11ac互換性パケットを、帯域幅の上位部上に高効率パケットを含み得る。ハイブリッドパケット1400はまた、下位部内にIEEE802.11a互換性パケットまたはIEEE802.11n互換性パケットを含み得る。重要なことには、下位部がどのタイプのパケットであるかにかかわらず、L−SIG1415は、そのパケットがハイブリッドパケットであることを高効率デバイスにシグナリングし、したがって、別の周波数内でHE−SIG1425を探すために十分なシグナリング情報を含むように構成され得る。
いくつかの態様では、HE−SIG1425は、前に論じた前の高効率信号フィールドと同様であり得る。いくつかの態様では、高効率パケットとハイブリッドパケットの両方を送信するAPは、パケットが高効率パケットであることを示すために、Qレール内で1ビットシグナリングを使用するのではなく、HE−SIG1425内で回転BPSKコンスタレーション(QBPSK)シンボルを備えたシンボルを使用することができるが、これは、Qレール上で1ビット信号を使用することは、代わりに、パケットが、ハイブリッドパケット1400など、ハイブリッドパケットであることをシグナリングするために使用され得るためである。たとえば、HE−SIG1425は、どの1つまたは複数のデバイスが、先に論じたように、グループIDを使用することによってなど、パケット内の情報を受信し得るかを高効率デバイスに知らせるために使用され得る。したがって、高効率デバイスは、L−STF1405、L−LTF1410、およびL−SIG1415を受信および復号するように構成され得る。L−SIG1415が1ビットコードを含む場合、高効率デバイスは、ハイブリッドパケットの高効率部分がその特定のデバイスに関する情報を含むかどうかを決定するために、より高い周波数帯域にあるHE−SIG1425を位置特定および復号するように構成され得る。
いくつかの態様では、レガシーパケットは、示したように、帯域幅の20MHzだけを占める場合がある。しかしながら、パケット1400のレガシー部分は、同様に、異なる量の帯域幅を占める場合もある。たとえば、ハイブリッドパケットのレガシー部分は、40MHz、60MHz、80MHz、または他のサイズのレガシーパケットを備え得るのに対して、ハイブリッドパケット1400の高効率部分は、利用可能な帯域幅の残りの部分を使用することができる。いくつかの態様では、20MHz以外のサイズのチャネルも使用され得る。たとえば、チャネルは、5MHz、10MHz、15MHz、40MHz、または他のサイズであり得る。いくつかの態様では、レガシーVHT−SIG−A1420に続いて、レガシーパケット1430はプライマリチャネルにおいてレガシーデバイスに送信され得る。いくつかの態様では、レガシーパケット1430は、少なくともプライマリチャネルを含み得、追加のチャネルも含み得る。たとえば、このレガシーパケット1430は、IEEE802.11aデバイス、802.11nデバイス、または802.11acデバイスと互換性があり得る。いくつかの態様では、1つまたは複数のHE−SIG1425に続いて、APに利用可能な帯域幅の少なくとも一部を使用して、高効率パケット1435は1つまたは複数の高効率デバイスに送信され得る。いくつかの態様では、レガシーパケットは複数のレガシーデバイスに送られ得る。たとえば、ハイブリッドパケットは、2つ以上の802.11ac互換性STAに送られるMU−MIMO802.11acパケットを備え得る。
図15は、ハイブリッドパケットを送信する例示的な方法1500を示す。該方法は、APなどのワイヤレスデバイスによって行われ得る。
ブロック1505で、APは帯域幅の第1の部分において1つまたは複数の第1のデバイスに送信する、ここで、1つまたは複数の第1のデバイスは第1の能力セットを有する。いくつかの構成では、1つまたは複数の第1のデバイスはレガシーデバイスであり得る。いくつかの態様では、帯域幅の第1の部分はプライマリチャネルであり得る。いくつかの態様では、第1のデバイスに送信するための手段は送信機であり得る。
ブロック1510で、APは、帯域幅の第2の部分において1つまたは複数の第2のデバイスに同時に送信する、ここで、1つまたは複数の第2のデバイスは第2の能力セットを有する、ここにおいて、送信は、第2の能力セットを有するデバイスが、第2の能力セットを有するデバイスに関する送信パラメータのセットを含むシンボルが送られる周波数帯域を位置特定するためのインジケーションを含むプリアンブルを備える、この場合、インジケーションは、第1の能力セットを有するデバイスのプリアンブル復号に実質的な影響を有さないように送られる。いくつかの態様では、1つまたは複数の第2のデバイスに送信するための手段は送信機であり得る。いくつかの態様では、プリアンブルはレガシープリアンブルであり得、インジケーションはレガシープリアンブル内のL−SIG内の1ビットコードであり得る。いくつかの態様では、インジケーションは、プライマリチャネル内のL−SIG内、プライマリチャネルおよび1つもしくは複数の他のチャネル内、または他のチャネル内に含まれ得る。
図16は、ハイブリッドパケットを受信する例示的な方法を示す。いくつかの態様では、該方法は、高効率ワイヤレス通信デバイスなど、STAによって使用され得る。
ブロック1605で、STAはプライマリチャネル内でレガシープリアンブルを受信する。いくつかの態様では、レガシープリアンブルを受信するための手段は受信機であり得る。
ブロック1610で、STAは、レガシープリアンブルが1つまたは複数のプライマリチャネル内の高効率信号フィールドを位置特定するように高効率デバイスに知らせるために十分な情報を含むかどうかを決定する。いくつかの実施形態では、判断するための手段はプロセッサまたは受信機であり得る。
ブロック1615で、STAは1つまたは複数の非プライマリチャネルのうちの少なくとも1つにおいて高効率信号フィールドを受信する。いくつかの態様では、高効率信号フィールドを受信するための手段は受信機であり得る。いくつかの態様では、STAは1つまたは複数の非プライマリチャネルのうちの少なくとも1つの上でデータをさらに受信することができる。いくつかの態様では、データを受信するための手段は受信機であり得る。
(高効率信号フィールドの遅延拡散保護および潜在的な構造)
いくつかの態様では、屋外または他のワイヤレスネットワークは、1μsを超えるものなど、比較的高い遅延拡散を有するチャネルを有し得る。たとえば、ピコ/マクロセルタワーアクセスポイントなど、高仰角におけるアクセスポイントは高い遅延拡散を有し得る。802.11a/g/n/acによるものなど、様々なワイヤレスシステムはわずか800nsのサイクリックプレフィックス(CP)長を使用する。この長さのほぼ半分は送信フィルタおよび受信フィルタによって消費され得る。この比較的短いCP長、ならびに送信フィルタおよび受信フィルタからのオーバーヘッドにより、そのような802.11a/g/n/acネットワークは、高い遅延拡散を有する屋外展開には好適でない場合がある。
本開示の態様によれば、屋外展開で2.4GHzおよび5GHzのWiFiシステムの使用を可能にし得る、そのようなレガシーシステムと後方互換性があり、800nsよりも長いサイクリックプレフィックスをサポートするパケットフォーマット(PHY波形)が提供される。
たとえば、1つまたは複数のビットの情報は、L−STF、L−LTF、L−SIGのうちの1つもしくは複数の中、またはHE−SIGなど、パケットプリアンブルの別の部分の中に埋め込まれることが可能である。これらの1つまたは複数のビットの情報は、上記のように、それらを復号するように構成されるデバイス用に含まれ得るが、レガシー(たとえば、802.11a/g/n/ac)受信機による復号に影響を及ぼさない。これらのビットは、屋外設定で、または潜在的に高い遅延拡散を有する別の設定でそのようなパケットの使用を可能にするために、遅延拡散保護を含むパケットのインジケーションを含み得る。
いくつかの態様では、いくつかの方法は、遅延拡散保護または遅延拡散許容差を提供するために使用され得る。たとえば、(たとえば、サンプルレートを低減させるためにダウンクロックする(downclocking)か、または同じサンプルレートを維持しながらFFT長を増大して)シンボル持続時間を増大させるために異なる送信パラメータが使用され得る。2×または4×だけなど、シンボル持続時間を増大することは、より高い遅延拡散に対して許容差を増大し得る。
いくつかの態様では、増大したシンボル持続時間は、L−SIGまたはHE−SIGのフィールド内でシグナリングされ得る。いくつかの態様では、ネットワーク上の他のパケットは、増大したシンボル持続時間に関するシグナリングを含まない場合があり、むしろ、従来の、または「通常の」シンボル持続時間を有するパケットであり得る。「通常の」シンボル持続時間を保つことは、場合によっては望ましい場合があるが、これは、増大したシンボル持続時間は、一般に、増大したFFTサイズを意味し、したがって、周波数エラーおよび増大したPAPRに対して増大した感度を意味するためである。さらに、ネットワーク内のすべてのデバイスがこの増大した遅延拡散許容差を必要とするとは限らない。したがって、場合によっては、増大したFFTサイズは性能を損なう可能性があり、したがって、一部のパケットは従来のシンボル持続時間を使用することが望ましい場合がある。
したがって、いくつかの態様では、すべてのパケットは、L−SIGフィールドまたはHE−SIGフィールドの後、増大したシンボル持続時間を含み得る。他の態様では、L−SIGまたはHE−SIG内の増大したシンボル持続時間をシグナリングする情報を含むパケットだけが増大したシンボル持続時間を含み得る。いくつかの態様では、増大したシンボル持続時間に関するシグナリングは、HE−SIGフィールド、およびL−SIGフィールド、VHT−SIG−Aフィールド、またはパケット内の別のフィールドの中に含まれ得る。いくつかの態様では、このシグナリングは、たとえば、L−SIGまたはHE−SIGなど、SIGフィールドのシンボル内のQ−BPSK回転によって伝達され得る。いくつかの態様では、このシグナリングは、パケットのフィールドの、虚軸など、直交レール内に情報を隠すことによって伝達され得る。
いくつかの態様では、増大シンボル持続時間はアップリンクパケットまたはダウンリンクパケットのいずれかまたは両方に関して使用され得る。アップリンクパケットの場合、APは、増大したシンボル持続時間を使用してアップリンクパケットが送信され得ることを先行するダウンリンクパケット内でシグナリングすることができる。たとえば、アップリンクOFDMAパケット内で、APは、より長いシンボル持続時間を使用するようにユーザに伝えるトーン割振りメッセージを送ることができる。この場合、アップリンクパケット自体は特定のシンボル持続時間を示すインジケーションを搬送する必要がない場合がある。いくつかの態様では、APからSTAへの信号は、他の指定がない限り、すべての将来のアップリンクパケット内で特定のシンボル持続時間を使用するようにSTAに知らせることができる。
いくつかの態様では、そのような遅延拡散保護は、上で説明したような高効率パケット内に組み込まれ得る。本明細書で提示するプリアンブルフォーマットは、レガシーデバイスが、パケットが802.11nパケットであるか、802.11aパケットであるか、または802.11acパケットであるかを検出することを可能にしながら、遅延拡散保護がパケット内に含まれ得る方式を提供する。
本明細書で提示するプリアンブルフォーマットは、IEEE802.11ac(混合モードプリアンブル)パケットの場合のようにL−SIGベースの遅延を保つことができる。プリアンブルのレガシーセクションを802.11a/an/ac局によって復号可能にすることは、同じ送信においてレガシーデバイスとHEデバイスを混合することを容易にし得る。本明細書で提供するプリアンブルフォーマットは、HE SIG上に保護を提供するのに役立つ可能性があり、これは頑強な性能を達成するのに役立ち得る。たとえば、これらのプリアンブルフォーマットは、比較的厳しい規格試験シナリオでSIGエラー率を1%以下に下げるのに役立ち得る。
図17は、本開示の態様による、1つの例示的なHEプリアンブルフォーマットを有するパケットを示す。この例示的なHEプリアンブルフォーマットはVHTプリアンブルフォーマットと比較され得る。示すように、HEプリアンブルフォーマットは、第1のタイプのデバイス(たとえば、802.11a/ac/nデバイス)によって復号可能な1つまたは複数の信号(SIG)フィールドと、第2のタイプのデバイス(たとえば、HEデバイス)によって復号可能な1つまたは複数のSIGフィールド(HE−SIG1)とを含み得る。示すように、802.111/ac/nデバイスは、L−SIG内の持続時間フィールドに基づいて延期することができる。L−SIGの後に繰り返し高効率SIG(HE−SIG)フィールドが続き得る。示すように、繰り返しHE−SIGフィールドの後、デバイスは、パケットがVHTパケットであるかどうかをすでに知ることができ、したがって、VHT−STF利得設定の問題は存在しない場合がある。
図17に示すこの例示的なフォーマットでは、HE−SIG1フィールドは、繰り返され、HEデバイスに関するHE−SIG1に対して保護を与える通常のガードインターバル(GI)により先行され得る。繰り返しHE−SIG1により、このパケットはより低い信号対雑音比動作点を有し得、したがって、シンボル間干渉(ISI)からより頑強な保護を提供し得る。いくつかの態様では、L−SIGは、L−SIGが影響を受けない後で、2つのシンボルに関するQ−BPSK検査に基づいて、パケットタイプ検出として、6Mbpsで送信し得る。
上で論じたように、HEパケットをHEデバイスにシグナリングするために、様々な技法が使用され得る。たとえば、HEパケットは、HE−SIG1内のCRC検査に基づいて、またはHE−SIG1の反復に基づいて、L−SIG内に直交レールインジケーションを配置することによってシグナリングされ得る。
HE−SIG2上の遅延拡散保護は様々な形をとり得る。たとえば、HE−SIG2は、追加の遅延拡散保護を提供するために、(20MHz内で)128のトーンを介して送信され得る。これは結果として、1.6usのガードインターバルをもたらし得るが、従来の数のトーンを含むことになるL−LTFに基づいて計算されたチャネル推定の補間を必要とし得る。別の例として、HE−SIG2は同じシンボル持続時間を有し得るが、1.6usサイクリックプレフィックスで送られ得る。これは、従来の25%の値よりもより多くのサイクリックプレフィックスオーバーヘッドをもたらし得るが、補間を必要としない可能性がある。一態様では、HE−SIG2は、20MHzごとに繰り返すのではなく、全帯域幅を通して送られることも可能である。これは、全帯域幅を示すために、HE−SIG1内に帯域幅ビットが配置されることを必要とし得る。
図18は、本開示の態様による、別の例示的なHEプリアンブルフォーマットを有するパケットを示す。図17と同様に、この例示的なHEプリアンブルフォーマットはVHTプリアンブルフォーマットと比較される。前述のように、IEEE802.11a/ac/nデバイスは、L−SIG内の持続時間フィールドに基づいてパケットに譲歩することができる。L−SIGの後に繰り返し高効率SIG(HE−SIG)フィールドが続き得る。図18に示す例示的なフォーマットでは、HE−SIG1フィールドは繰り返され得るが、第1のHE−SIG1フィールドの前に通常のガードインターバルが先行するのに対して、第2のHE−SIG1は通常のガードインターバルに先行する。
第1のHE−SIG1の前および第2のHE−SIG1の後にガードインターバルが入れられるHE−SIG1のこの反復は、HEデバイスに保護を提供し得る。HE−SIG1セクションの中央部分は比較的大きなCPを有するHE−SIG1シンボルのように見える場合があることに気づかれよう。この態様では、L−SIGの後の第1のシンボルに対するQ−BPSK検査は、影響を受けない。しかしながら、第2のシンボルに関するQ−BPSK検査は、第2のHE−SIG1の後のガードインターバルにより、ランダムな結果をもたらし得る。しかしながら、これらのランダムな結果は、VHTデバイスに悪影響を有さない場合がある。たとえば、VHTデバイスは、パケットを802.11acパケットとして分類する可能性があるが、この時点で、デバイスはVHT−SIG CRC検査の実行を試みることができ、これは失敗することになる。したがって、L−SIG後の第2の信号に関するQ−BPSK検査のランダムな結果にもかかわらず、VHTデバイスは、このパケット依然として譲歩することになる。
(IEEE802.11acと互換性がある)VHTデバイスなど、レガシーデバイスに関する自動検出プロセスは、それらのデバイスに図18のパケットに譲歩させることになるため、これらのパケットは依然として6Mbpsを搬送し得る。図17のパケットと同様、そのパケットがHEパケットであることをHEデバイスにシグナリングするために、上で論じた、いくつかの技法が使用され得る。同様に、HE−SIG2内に含まれたフィールドなど、いくつかの方法でパケットの遅延拡散保護に関する情報がHEデバイスに提供され得る。
図19は、本開示の態様による、別の例示的なHEプリアンブルフォーマットを有するパケットを示す。前述のように、この例示的なHEプリアンブルフォーマットは802.11ac VHTプリアンブルフォーマットと同様である。示すように、802.11a/ac/nデバイスは、L−SIG内の持続時間フィールドに基づいてパケットに譲歩することができる。L−SIGの後に繰り返し高効率SIG(HE−SIG)フィールドが続き得る。
図19に示す例示的なフォーマットでは、繰り返しHE−SIG1フィールドは、ダブルガードインターバル(DGI)によって先行され得る。そのようなダブルガードインターバルの使用は、結果として、L−SIG後の第1のシンボルに関するQ−BPSK検査のランダムな結果をもたらし得る。したがって、L−SIGが6Mbpsのレートをシグナリングする場合、一部のレガシーデバイスはこのパケットに譲歩しない可能性がある。したがって、そのようなパケット内のL−SIGは、すべてのIEEE802.11a/ac/nデバイスがそのパケットに譲歩することを確実にするために、6Mbps以外のレートをシグナリングする必要があり得る。たとえば、L−SIGは9Mbpsのレートをシグナリングすることができる。上で論じた技法と同様の技法は、パケットがHEパケットであることをシグナリングするために使用され得、パケットが遅延拡散保護を含むかどうかをシグナリングするために使用され得る。
図17〜図19に示すプリアンブルフォーマットなど、プリアンブルフォーマットに関して様々な最適化が提供され得る。たとえば、図18および図19に示す例示的なフォーマットの場合、オーバーヘッドを節約するために、第2のHE−SIG1シンボルを切り捨てて、次のシンボルを早期に開始することが可能であり得る。加えて、HE−LTFの後に、MU−MIMO用にユーザごとのビットを提供し得るSIG−Bを有することに何らかの利益が存在し得る。
図20は、HE−SIG−1フィールドに関する例示的なビット割振りを示す。示すように、BWインジケーション用の2〜3ビット、8ビットの長さインジケーション、より長いシンボルが使用されることを示すための1ビット、2〜3の予約済みビット、CRC用の4ビット、および6のテールビットが存在し得る。Longer Symbols ONビットがHE−SIG1内に提供される場合、これは、HE−SIG2が遅延拡散保護を有すること、またはHE−SIG2の後のすべてが増大したFFTサイズを使用すること、のいずれかをシグナリングするために使用され得る。HE−SIGがHE−SIG1およびHE−SIG2で構成された上記のHE−SIGフォーマットは、遅延拡散保護を可能にし得、OFDMAパケットなど、多元アクセスを可能にするパケット内で使用され得る。
(レガシープリアンブルを有するアップリンクパケット)
図21は、後方互換性多元接続ワイヤレス通信を可能にするために使用され得るアップリンク物理層パケット2100の例示的な構造を示す。一般に、アップリンクメッセージにおいて、APの最初のダウンリンクメッセージによってNAVが設定されるため、レガシープリアンブルは必要とされない場合がある。APの最初のダウンリンクメッセージは、ネットワーク上のレガシーデバイスにアップリンクパケットに譲歩させることが可能である。しかしながら、一部のワイヤレスデバイスは、APの範囲外であり得るが、APに送信しているSTAの範囲内であり得る。したがって、これらのデバイスがレガシーデバイスである場合、これらのデバイスはAPの最初のダウンリンクメッセージを受信しなかったため、これらのデバイスはAPに譲歩しない場合がある。これらのデバイスはまた、図12のアップリンクパケットのようなアップリンクパケットに譲歩しないが、これは、それらのパケットは、レガシーデバイスが認識し得るレガシープリアングルを有さないためである。したがって、そのようなデバイスの送信はアップリンクパケットに干渉する場合があり、したがって、レガシーデバイスにパケットに譲歩させために十分なレガシープリアンブルを含むアップリンクパケットを送信することが望ましい場合がある。これらのアップリンクパケットはいくつかの可能な形をとり得る。アップリンクパケット2100は、レガシープリアンブルを含む例示的なアップリンクパケットである。パケット2100はパケットの各部分についての時間を含むが、これらの時間は単なる例であることに留意されたい。パケット2100の各部分は、示すよりも長くてよく、または短くてもよい。いくつかの態様では、レガシーデバイスがそのプリアンブルのレガシー部分を復号して、パケット2100に譲歩することを可能にするために、L−STF、L−LTF、およびL−SIGなど、プリアンブルのレガシー部分はリストに記載された時間であることが有利であり得る。
したがって、パケット2100は、そのようなレガシーデバイスが認識し得るレガシープリアンブルを提供することによって、アップリンクパケットに譲歩するようにそのようなレガシーデバイスに知らせるために使用され得る。このレガシープリアンブルは、L−STFと、L−LTFと、L−SIGとを含み得る。パケット830におけるように、送信デバイスの各々は、その割り当てられた帯域幅上でその独自のプリアンブルを送信するように構成され得る。これらのレガシープリアンブルは、APの最初のダウンリンクメッセージを聴取しなかったノードからアップリンク通信を保護することができる。
パケット830におけるように、いくつかのデバイス、ここではN個のデバイスの各々は、その割り当てられた帯域幅内で同時に送信することができる。レガシープリアンブルに続いて、各デバイスはその割り当てられたトーン上で高効率プリアンブルを送信することができる。たとえば、各デバイスはその独自の割り当てられたトーン上でHE−SIGを送信することができる。このHE−SIGに続いて、各デバイスは、次いで、HE−STFを送信することができ、1つまたは複数のHE−LTFを送信することができる。たとえば、各デバイスは、単一のHE−STFを送信することができるが、そのデバイスに割り当てられた空間ストリームの数に対応する、いくつかのHE−LTFを送信することができる。いくつかの態様では、各デバイスは、最大数の空間ストリームを有するデバイスに割り当てられた空間ストリームの数に対応する、いくつかのHE−LTFを送信することができる。空間ストリームのこの割当ては、たとえば、APの最初のダウンリンクメッセージ内で行われ得る。各デバイスが同じ数のHE−LTFを送る場合、これはピーク対平均電力比(PAPR)を低減し得る。PAPRのそのような低減は望ましい場合がある。さらに、各デバイスが同じ数のHE−LTFを送信する場合、これは、APが受信されたパケットを処理するのをより容易にし得る。たとえば、異なる数のHE−LTFが各デバイスによって送られる場合、APは、あるデバイスに関するプリアンブルを受信すると同時に、別のデバイスからデータを受信することができる。これは、APがパケットを復号するのをより複雑にする可能性がある。したがって、各デバイスに関して同じ数のHE−LTFを使用することが好ましい場合がある。たとえば、送信デバイスの各々は、任意のデバイスが受信している空間ストリームの最大数を決定して、その数に対応する、いくつかのHE−LTFを送信するように構成され得る。
いくつかの態様では、そのようなパケット内のL−STFは、最高でおよそ200ns程度の小さなサイクリックシフトを含み得る。大きなサイクリックシフトは、相互相関に基づく検出アルゴリズムを使用する場合があるレガシーデバイスの場合、そのようなL−STF内に問題を生じさせる場合がある。そのようなパケット2100内のHE−STFは、およそ800ns程度のより大きなサイクリックシフトを含み得る。これは、アップリンクパケット2100を受信しているAP内でより精確な利得設定を可能にし得る。
図22は、後方互換性多元接続ワイヤレス通信を可能にするために使用され得るアップリンク物理層パケット2200の別の例示的な構造を示す。このパケット2200はパケット2100と同様であり得るが、このパケット2200内で、送信デバイスの各々はHE−STFを送信することができない。代わりに、送信デバイスの各々は、およそ800ns程度など、より大きなサイクリックシフトでL−STFを送信することができる。これは相互相関パケット検出の場合にレガシーデバイスに影響を及ぼし得るが、これは送信デバイスがHE−STFを送信しないことを可能にし得るため、これはパケットがより短くなるのを可能にし得る。パケット2200はパケットの各部分に関する時間を含むが、これらの時間は単なる例であり、パケットの各部分は示すよりも長くてよく、または短くてもよい。いくつかの態様では、レガシーデバイスがそのプリアンブルのレガシー部分を復号して、パケット2200に譲歩することを可能にするために、L−STF、L−LTF、およびL−SIGなど、プリアンブルのレガシー部分はリストに記載された時間であることが有利であり得る。
パケット2200内で、各デバイスは、そのデバイスに割り当てられた空間ストリームの数に対応する、いくつかのHE−LTFを送信することができる。いくつかの態様では、各デバイスは、代わりに、最大数の空間ストリームが割り当てられたデバイスに割り当てられた空間ストリームの数に対応する、いくつかのHE−LTFを送信することができる。上で論じたように、そのような手法はPAPRを低減し得る。
いくつかの態様では、より長いシンボル持続時間は、遅延拡散保護およびタイミングオフセットからの保護を提供し得る。たとえば、アップリンクパケットを送信するデバイスは、同時にパケットの送信を開始せず、代わりに、若干異なる時間に開始することができる。より長いシンボル持続時間はまた、APがそのような場合にパケットを解釈する際に支援し得る。いくつかの態様では、デバイスは、APのダウンリンクトリガメッセージ内の信号に基づいて、より長いシンボル持続時間で送信するように構成され得る。いくつかの態様では、パケット830など、グリーンフィールドパケットの場合、レガシー互換性の必要は存在しないため、波形全体がより長いシンボル持続時間で送信され得る。パケット2100または2200など、レガシープリアンブルを含むアップリンクパケット内で、レガシープリアンブルは従来のシンボル持続時間で送信され得る。いくつかの態様では、レガシープリアンブルの後の部分は、より長いシンボル時間期間で送信され得る。いくつかの態様では、より長いシンボル持続時間は、より小さな帯域内で既存のIEEE802.11トーンプラン(tone plan)を使用することによって達成され得る。たとえば、ダウンクロッキング(down-clocking)と呼ばれる場合がある、より小さなサブキャリア間隔が使用され得る。たとえば、帯域幅の5MHz部分は、64ビットのFFT802.11a/n/acトーンプランを使用することができ、一方、20MHzは通常に使用され得る。したがって、各トーンは、そのような構成では、典型的なIEEE802.11a/n/acパケット内よりも4×より長い場合がある。他の持続時間も使用され得る。たとえば、典型的なIEEE802.11a/n/acパケット内で2倍の長さのトーンを使用することが望ましい場合がある。
図23は、パケットを受信する例示的な方法2300を示す。該方法は、APなどのワイヤレスデバイスによって行われ得る。
ブロック2305で、APは帯域幅の第1のセクション内の第1の部分を受信する、第1の部分は、第1のワイヤレスデバイスによって送信され、第1の部分は、パケットに譲歩するようにレガシーデバイスに知らせるために十分な情報を含む第1のプリアンブルのレガシーセクションと第1のプリアンブルの高効率セクションとを備える。いくつかの態様では、受信するための手段は受信機であり得る。
ブロック2310で、APは帯域幅の第2のセクション内の第2の部分を同時に受信する、第2の部分は、第2のワイヤレスデバイスによって送信される、第2の部分は、パケットに譲歩するようにレガシーデバイスに知らせるために十分な情報を含む第2のプリアンブルのレガシーセクションと第2のプリアンブルの第2の高効率セクションとを備える。いくつかの態様では、同時に受信するための手段は受信機であり得る。いくつかの態様では、第1のワイヤレスデバイスおよび/または第2のワイヤレスデバイスはいくつかの空間ストリーム上で送信することができる。いくつかの態様では、第1のワイヤレスデバイスおよび第2のワイヤレスデバイスによって送信されるプリアンブルの高効率部分はある数のロングトレーニングフィールドを含み得る。いくつかの対応では、ロングトレーニングフィールドの数は、特定のデバイスに割り当てられた空間ストリームの数、または任意のワイヤレスデバイスに割り当てられた空間ストリームの最高数に基づくことができる。
いくつかの態様では、OFDMAパケットが、アップリンクマルチユーザ多入力多出力(MU−MIMO)パケットの構造をより密に模倣する構造を有することが望ましい場合がある。たとえば、図21のパケット2100など、いくつかの先行パケットは、1つまたは複数のHE−LTFに先立ってHE−SIGを含み得る。同様に、図12のパケット830内で、送信デバイスの各々は、単一のHE−LTF、続いてHE−SIG、続いて残りの数のHE−LTFを送信する。しかしながら、アップリンクMU−MIMOパケットにより類似した構造を備えたアップリンクパケットを有するために、HE−SIGが、パケット内ですべてのHE−LTFの後に続くパケットを有することが望ましい場合がある。
したがって、説明したパケットのいずれかにおいて、すべてのHE−LTFに続いてHE−SIGを送信することが可能であり得る。いくつかの態様では、HE−SIGがすべてのHE−LTFに続くとき、アップリンクパケット内の各送信デバイスによって使用されている空間ストリームの数をシグナリングする別の方法を見出すことが望ましい場合がある。たとえば、前に説明したパケットのうちのいくつかにおいて、送信デバイスからの第1のHE−LTFは、APがその送信デバイスからのHE−SIGを復号することを可能にするために十分な情報を含み得る。前に説明したパケットのうちのいくつかにおいて、送信デバイスからのHE−SIGは、パケット内のそのデバイスによって使用されている空間ストリームの数に関する情報を含み得、したがって、いくつかの態様では、HE−SIGは、その送信デバイスによって送信されることになるHE−LTFの数を示すことができる。しかしながら、HE−SIGが各HE−LTFに続いて送信される場合、これとは異なる様式で、送信デバイスによって使用される空間ストリームの数を示すことが望ましい場合がある。たとえば、送信デバイスによって使用される空間ストリームの数は、APからのダウンリンクメッセージ内に示され得る。たとえば、アップリンクOFDMAパケットは、どのデバイスがアップリンクOFDMAパケット上で送信し得るかを示す、APからのダウンリンクパケットに応答して送られ得る。したがって、このダウンリンクパケットはいくつかの空間ストリームを各デバイスに割り当てることも可能である。
図24は、HE−SIGが各HE−LTFの後に送信される例示的なアップリンクパケット構造である。アップリンクOFDMAパケット2400内で、送信デバイスの各々は、上で説明した他のパケット内と同様に、HE−STF2410を送信することができる。HE−STF2410に続いて、送信デバイスの各々はいくつかのHE−LTF2420を送信することができる。送信デバイスの各々は、その送信デバイスによって使用されている空間ストリームの数に対応する、いくつかのHE−LTF2420を送信することができる。たとえば、送信デバイスが2つの空間ストリームを使用している場合、そのデバイスは2つのHE−LTF2420を送信することができる。そのHE−LTF2420のすべてを送信することに続いて、各送信デバイスは、次いで、HE−SIG2430を送信する。このHE−SIG2430は、上で説明したのと同様の情報を含み得る。
示すように、パケット2400において、各送信デバイスは、そのデバイスによって使用されている空間ストリームの数に対応する、いくつかのHE−LTF2420を送信する。上で論じたように、いくつかの他の態様では、デバイスによって使用されている空間ストリームの数は、そのデバイスによって送られるHE−SIG内に示され得る。しかしながら、このインジケーションは、APが、送信デバイスが送信し得るHE−LTF2420の数を予測するにはあまりにも遅く到着する可能性があるため、パケット2400内で、空間ストリームの数はHE−SIG2430内に含まれない場合がある。したがって、APが所与のイベントから空間ストリームの数を決定する他の方法が使用され得る。たとえば、アップリンクOFDMAパケット2400をトリガするメッセージなど、APからのダウンリンクメッセージは、いくつかの空間ストリームを各送信デバイスに割り当てることができる。各送信デバイスがいくつの空間ストリームを使用することができるかに関する情報を含む、APからの例示的なダウンリンクメッセージを図26に示す。いくつかの態様では、各送信デバイスによって使用される空間ストリームの数は他の方法でも同様に決定され得る。たとえば、各送信デバイスに対する空間ストリームの数は、ビーコン内など、周期的なダウンリンクメッセージ内で伝達され得る。いくつかの態様では、APは、受信されたパケット2400に基づいて、空間ストリームの数を決定するように構成され得る。たとえば、APは、着信パケット2400を解析して、HE−LTF2420の終点およびHE−SIG2430の始点を検出することによってなど、いくつの空間ストリームが送信され得るかの事前知識なしに、各送信デバイスによって送信されているHE−LTF2420の数を決定するように構成され得る。APが空間ストリームの数、したがって、パケット2400内で各デバイスによって送信されているHE−LTF2420の数を決定するのを可能にするために他の方法が使用されてもよい。各送信デバイスからのHE−SIG2430に続いて、そのデバイスは、そのデバイスがパケット2400内で送信することを望むデータ2440を送信することができる。いくつかの態様では、各デバイスは、パケット2400内で同じ数のHE−LTF2420を送信することができる。たとえば、各送信デバイスは、最大数の空間ストリームが割り当てられたデバイスに割り当てられた空間ストリームの数に対応する、いくつかのHE−LTF2420を送信することができる。
図25は、HE−SIGが各HE−LTFの後に送信される別の例示的なアップリンクパケット構造である。パケット2500は、各送信デバイスが、パケットの高効率部分を送信するのに先立って、レガシープリアンブルを送信する混合モードパケットに対応し得る。パケット2500内で、各デバイスは、最初に、L−STF2502と、L−LTF2504と、L−SIG2506とを含むレガシープリアンブルを送信する。パケット2500のこれらの部分は、上で説明したように送信され得る。
レガシープリアンブルの後、パケット2500はパケット2400と同様である。送信デバイスの各々は、HE−STF2510、続いていくつかのHE−LTF2520、続いてHE−SIG2530、続いて、送信デバイスがAPに送信することを望むデータ2540を送信することができる。パケットのこれらの部分の各々は、上で開示した方法と同様の方法で送信され得る。各デバイスによって送信されるHE−LTF2520の数は、その上で各デバイスが送信する空間ストリームの数に少なくとも一部基づくことができる。たとえば、2つの空間ストリーム上で送信しているデバイスは2つのHE−LTF2520を送信することができる。
いくつかの態様では、パケット2500内の各デバイスは、同数のHE−LTF2520を送信することができる。たとえば、送信デバイスの各々は、送信デバイスのうちのいずれかによって送信されている最大数の空間ストリームの数に対応する、いくつかのHE−LTF2520を送信することができる。したがって、パケット2500内で、送信デバイスの各々は、そのパケット内でいくつのHE−LTF2520を送信するかの知識を有さなければならない。前述のように、送信機の各々に同数のHE−LTF2520を送信させることはパケットのPAPRを低減し得るため、これは有利であり得る。PAPRのそのような低減は、上で説明したように、結果として、パケット2500を受信するAPにとって利益をもたらし得る。パケット2500内で各送信デバイスが同数のHE−LTF2520を送信する場合、これらのデバイスの各々はいくつのHE−LTF2520を送信するかを認識しているはずである。これはいくつかの方法で達成され得る。たとえば、APはダウンリンクトリガメッセージを送信デバイスに送ることができる。このトリガメッセージは、どのデバイスがアップリンクパケット内で送信することができるか、各デバイスに割り当てられた帯域幅、および各デバイスに割り当てられた空間ストリームの数などの情報を含み得る。このトリガメッセージは、いくつのHE−LTF2520をアップリンクパケット2500内に含めるかを送信デバイスに示すことも可能である。たとえば、ダウンリンクメッセージは、各デバイスがいくつの空間ストリームを使用し得るかを送信デバイスに示すことができる。各送信デバイスがいくつの空間ストリームを使用し得るかに関する情報を含む、APからの例示的なダウンリンクトリガメッセージを図26に示す。同様に、各デバイスに割り当てられた空間ストリームの数は一定であってよい。たとえば、各デバイスが2つの空間ストリームだけを使用し得るネットワークが構築され得る。同様に、各デバイスに割り当てられる空間ストリームの数は、APから周期的に送信されるビーコンメッセージ内など、メッセージ内で伝達され得る。したがって、送信デバイスは、最も多くの空間ストリームが割り当てられたデバイスに割り当てられた空間ストリームの数に対応する、いくつかのHE−LTF2520を送信することができる。いくつかの態様では、各送信デバイスによって送信されるHE−LTF2520の数を調整するために他の方法が使用されてもよい。
各送信デバイスがいくつの空間ストリームを使用し得るかに関する情報を含む、APからの例示的なダウンリンクメッセージ2600を図26に示す。このメッセージ2600は、トリガメッセージ情報2605を含み得る。たとえば、この情報2605は、アップリンクメッセージがいつ送られ得るかに関するタイミング情報を含み得る。この情報2605は、送信デバイスがトリガメッセージの受信を確認すべきかどうかに関する情報をさらに含み得る。この情報2605に続いて、ダウンリンクメッセージ2600は、デバイス1の識別2610を含み得る。この識別2610は、たとえば、デバイス1に割り当てられ、デバイス1を識別する一意の番号または値であり得る。ダウンリンクメッセージ2600はまた、デバイス1に割り当てられたいくつかのストリーム2615を含み得る。たとえば、デバイス1には2つの空間ストリームが割り当てられ得る。ダウンリンクメッセージはまた、デバイス2の識別2620と、デバイス2に関するいくつかの空間ストリーム2625と、デバイス3の識別2630と、デバイス3に関するいくつかの空間ストリーム2635とを含み得る。いくつかの態様では、他の数のデバイスもダウンリンクメッセージ2600内で識別され得る。たとえば、2つ、3つ、4つ、5つ、6つ、またはそれより多いデバイスがダウンリンクメッセージ2600内で識別され得る。このダウンリンクメッセージ2600は単なる例であることに留意されたい。他の情報もダウンリンクトリガメッセージ内に含まれることが可能であり、ダウンリンクメッセージ2600内に示したのとは異なる順序または数で含まれ得る。
いくつかの態様では、アップリンクOFDMAパケット内で送信されるLTFをUL MU−MIMOパケット内で送信されるLTFと調和(harmonize)させることが有利であり得る。たとえば、UL MU−MIMOパケット内で、各送信デバイスはすべてのトーンにわたってメッセージを送信することができる。したがって、UL MU−MIMOパケット内のLTFは、APなど、受信STAが各トーン上で各送信STAからの送信を認識することを可能にするために十分な情報を含む必要があり得る。そのようなLTFフォーマットは、UL MU−MIMOパケット内とUL OFDMAパケット内の両方で使用され得る。
たとえば、UL MU−MIMOパケットまたはUL OFDMAパケットのいずれかにおいて、LTFに関して使用され得る1つのフォーマットは、P行列ベースのLTFを送信するためである。この手法では、LTFは、各トーン上で送信STAの各々によって送信され得る。各デバイスからのLTFは、それらが互いに対して直交になるような方法で送信され得る。送信されるLTFの数は、すべてのデバイスに割り当てられた空間ストリームの数に対応し得る。たとえば、2つのデバイスが、各々、1つのストリーム上で送信する場合、2つのLTFが送られ得る。いくつかの態様では、第1のLTF内で、所与のトーンにおける値はH1+H2に等しくてよく、この場合、H1は第1のデバイスからの信号であり、H2は第2のデバイスからの信号である。次のLTFで、所与のトーンにおける値はH1−H2に等しくてよい。したがって、この直交性により、受信デバイスは各トーン上の2つの送信デバイスの各々の送信を識別することが可能であり得る。LTFに関するそのようなフォーマットは、たとえば、前のIEEE802.11フォーマット内で使用されてきた。しかしながら、P行列ベースのLTFに関する1つの潜在的な問題は、2つ以上の送信デバイスが互いに対して高い周波数オフセットを有する場合、それらのLTFは効果的でない可能性があることである。その環境で、LTFの直交性は失われる可能性があり、したがって、受信デバイスがパケットを適切に復号する能力は損なわれる可能性がある。したがって、いくつかの態様では、UL MU−MIMOパケットおよびUL OFDMAパケットに関して異なるLTFフォーマットを使用することが望ましい場合がある。
UL MU−MIMOパケットおよびUL OFDMAパケットに関する別の考えられる異なるLTFは、トーンインターリーブLTFまたはサブバンドインターリーブLTFを使用することである。前述のように、送信されるLTFの数は、すべての送信デバイスによって送られる空間ストリームの総数に対応し得る。そのようなLTFフォーマットは、アップリンクパケットを送信する様々なデバイス間に大きな周波数オフセットが存在するとき特に有用であり得る。これらのLTFフォーマットは、UL MU−MIMOパケット内で使用され得る。UL OFDMAパケットをUL MU−MIMOパケットと調和するために、これらのLTFフォーマットはUL OFDMAパケット内でも使用され得る。
図27は、UL OFDMAパケット内で使用され得るトーンインターリーブLTFの図2700である。たとえば、これらのLTFは前に説明したUL OFDMAパケットのうちのいずれかにおいて使用され得る。たとえば、このパケット内に4つの空間ストリームが存在する。これらの空間ストリームは、たとえば、空間ストリーム1〜4など、番号付けされ得る。各空間ストリームは、別個のデバイスによって送信され得るか、または1つのデバイスが空間ストリームのうちの2つ以上を送信し得る。したがって、4つの空間ストリームは、2つ、3つ、または4つのデバイスによって送信されているUL OFDMAパケットに対応し得る。4つの空間ストリームが存在するため、LTF1 2705、LTF2 2710、LTF3 2715、およびLTF4 2720とラベル付けされた4つのLTFが送られ得る。各LTFは、ここでは1から8の番号付けされた、いくつかのトーンを含み得る。UL OFDMAパケットのデータ部分内に含まれたトーンの数に対応する任意の数のトーンがLTF内に含まれ得る。このトーンインターリーブLTF内で、LTF1 2705の間、第1のストリームはトーン1、5、9などの上で送信することができる。いくつかの態様では、これらのトーン間の間隔(すなわち、1と5の間隔)は空間ストリームの数に基づく。たとえば、図2700において、4つの空間ストリームが存在し、したがって、各ストリームがその上で送信するトーン間の間隔も4である。LTF1 2705の間、第2のストリームはトーン2、6、10などの上で送信することができるのに対して、第3の空間ストリームは、3、7、11などの上で送信することができ、第4の空間ストリームはトーン4、8、12などの上で送信することができる。次のLTF、すなわち、LTF2 2710内で、各空間ストリームは、前のLTFよりも1つ高いトーンであるトーン上で送信することができる。たとえば、LTF1 2705内で、ストリーム1はトーン1および5の上で送信されるのに対して、LTF2 2710内で、ストリーム1はトーン2および5の上で送信する。したがって、空間ストリームの数に等しい、いくつかのLTFの後、各空間ストリームは各トーン上で送信した可能性がある。このトーンインターリーブLTFを使用すると、空間ストリームは同時に同じ周波数で送信しないため、オフセットにより、クロスストリーム漏洩(cross-stream leakage)は問題にならない可能性がある。たとえば、オフセットは数kHzであり得る。いくつかの態様では、ストリームごとの周波数オフセットを推定するために、最後のLTFの後でLTF1 2725を再度繰り返すことが有利であり得る。たとえば、LTF1 2705はLTF1 2725と同一であり得る。しかしながら、これらの2つのLTFは比較され得る。
図28は、UL OFDMAパケット内で使用され得るサブバンドインターリーブLTFを示す図2800である。たとえば、これらのLTFは前に説明したUL OFDMAパケットのうちのいずれかにおいて使用され得る。UL OFDMAパケットは、いくつかの空間ストリームを含み得、いくつかのトーン上で送信され得る。たとえば、図2800は4つの空間ストリームを含む。4つの空間ストリームが存在するため、1からNSCのトーンが4つのサブバンドに分割され、この場合、NSCはガードトーンおよびDCトーンを除いたサブキャリアの総数である。たとえば、64のトーンが存在する場合、トーン1〜16はサブバンド1であり得、トーン17〜32はサブバンド2であり得、トーン33〜48はサブバンド3であり得、トーン49〜64はサブバンド4であり得る。いくつかの態様では、各サブバンド内のトーンの数は等しくてよいか、またはおよそ等しくてよい。4つのLTFの各々において、4つの空間ストリームの各々はその割り当てられたサブバンドのトーン上で送信することができる。たとえば、LTF1 2805内で、サブバンド1は空間ストリーム1に割り当てられてよく、サブバンド2は空間ストリーム2に割り当てられてよい、等々である。後続のLTF2 2810内で、サブバンドの各々は空間ストリームの異なる1つの空間ストリームに割り当てられ得る。したがって、4つのLTFの後、4つの空間ストリームの各々は4つのサブバンドの各々の上で一度は送信した可能性がある。
図2700および図2800に示すLTF構造はいくつかの利点を有し得る。たとえば、アップリンククライアント間に大きな周波数オフセットが存在するとき、この構造はより良好な性能を提供し得る。さらに、これらのLTF構造は、APがトーンの各々の上で空間ストリームの各々内で送信を受信することを可能にすることになる。これは、たとえば、そのような切替えが所望される場合、空間ストリームがあるトーンからある他のトーンに切り替えることを可能にし得る。さらに、これは、APが各トーン上の所与のデバイスの所与の空間ストリームの信号強度を決定することを可能にし得る。これは、APが、将来のパケット内で、そのデバイスがどのトーンに最良の信号を有するかに基づいて、トーンをデバイスに割り当てることを可能にすることになる。たとえば、APがトーンを様々なデバイスに割り当てる場合、APは、あるデバイスが、他のトーンに対して、いくつかのトーンに関してより低い信号対雑音比およびより強力な信号を有することを観測することができる。したがって、APは、将来のパケット内で、そのデバイスにそれらのより強力なトーンを割り当てることができる。図29は、UL OFDMAパケット内で送信され得るパケットの例示的なLTF部分2900を示す。たとえば、上で説明したように、あるUL OFDMAパケット内で、パケットのSIG部分内にトーンを割り振るのではなく、トーンは他の場所に割り振られ得る。たとえば、上で説明したように、あるUL OFDMAパケットはトーンをシグナリングメッセージ内でAPから送信デバイスに割り振ることができ、その送信デバイスはあるトーンをあるデバイスに割り振ることができる。したがって、前のULパケット内で、SIGはMCSと、コードビットと、トーン割振り情報とを含み得るが、いくつかの態様では、トーン割振り情報はSIGフィールド内に含まれなくてよい。したがって、SIGフィールドは、ともに6〜7ビットの情報を備えるMCSおよびコードビットと、6ビットであり得るバイナリ重畳コーディング(BCC: binary convolutional coding)とだけを含み得る。したがって、6〜7ビットの情報だけを含むSIGフィードを送信することがオーバーヘッドとして6ビットのCRC情報も含むとき、そのようなSIGフィールドを送信することは非効率的であり得る。さらに、この場合、そのようなCRC情報を含めることが十分な利益を有するかどうかはまったく明らかでない。したがって、MCS情報2910とコーディングビット2915とを含む、パケットのLTF部分2900を送ることが望ましい可能性がある。パケットのLTF部分の中にこの情報を含めることによって、パケットはSIGフィールドを含める必要はまったくない可能性がある。
この情報は、いくつかの方法で、パケットのLTF部分2900内に含まれ得る。たとえば、非コヒーレント復調を使用することができるシグナリング機構が使用され得る。いくつかの態様では、MCS情報2910およびコーディングビット2915は、LTFのトーンのうちのいくつかまたはすべてにわたって低強度コード内に含まれ得る。いくつかの態様では、MCS情報2910およびコードビット2915は、LTF1 2825または別のLTFなど、単一のLTF内で送信され得る。いくつかの態様では、MCS情報2910およびコーディングビット2915は、複数のLTFの各々にわたって分割され得る。たとえば、1つまたは複数のビットのMCS情報2910およびコーディングビット2915はLTFのうちの2つ以上に含まれ得る。したがって、いくつかの態様では、明示的SIGフィールドはパケットのLTF内に含まれ得るため、この情報がUL OFDMAパケット内に必要とされる場合がある。
一般に、そのパケットに関するLTFの各々が送信された後、UL MU−MIMOパケット内にユーザごとのSIGフィールドが含まれ得る。たとえば、このフォーマットはパケット2400のフォーマットと同様であり得る。しかしながら、UL OFDMAパケット内に、パケット2100内に示したように、パケットのSTFまたはLTFに先立ってHE−SIGが含まれ得る。いくつかの態様では、UL MU−MIMOパケットをUL OFDMAパケットと調和させるために、両方のロケーションにSIGフィールドを有するパケットを送信することが望ましい場合がある。たとえば、HE−STFに先立つ共通SIGフィールドを含み、すべてのHE−LTFの後のユーザごとのSIGフィールドをやはり含むパケットが送信され得る。
図30は、HE−STFに先立つ共通SIGフィールド、およびすべてのHE−LTF後のユーザごとのSIGフィールドを有するパケット3000を示す。パケット3000では、パケットが、レガシーショートトレーニングフィールド3005と、レガシーロングトレーニングフィールド3010と、レガシーSIGフィールド3015とを含む、レガシープリアンブルを含む様子が示されている。しかしながら、このパケットはそのようなレガシープリアンブルなしで送信されることも可能である。レガシープリアンブルに続いて、そのようなプリアンブルが含まれる場合、パケット3000は共通SIG3020を含む。いくつかの態様では、この共通SIG3020は、前のUL OFDMAパケット内のそのようなSIGフィールド内に含まれた情報と同様の情報を含み得る。たとえば、共通SIGはOFDMAパケット内に含まれた空間ストリームの数を搬送し得る。たとえば、UL OFDMAパケット内の各送信デバイスは、共通SIG3020のトーンの一部をポピュレートし得る。共通SIG3020に続いて、HE−STF3025およびHE−LTF3030が送信される。これらのフィールドは、上記の開示に従って送信され得る。たとえば、HE−LTF3030は、図27および図28に示したLFTフォーマットに基づくことができる。任意の数のHE−LTF3030が送信され得る。たとえば、送信され得るHE−LTF303の数は、パケット3000の一部である空間ストリームの数の和に少なくとも一部基づくことができる。HE−LTF303に続いて、第2のSIGフィールドが送信され得る。このユーザごとのSIG3035は、UL OFDMAパケットを送信するデバイスの各々によって送信され得る。ユーザごとのSIGフィールド3035のフォーマットは、UL MU−MIMOパケット内のSIGフィールドのフォーマットに基づくことができる。ユーザごとのSIGフィールド3035に続いて、データ3040が送信され得る。したがって、パケット3000は、他のUL OFDMAパケットの場合のように、共通SIG3020と、他のUL MU−MIMOパケットの場合のように、ユーザごとのSIGフィールド3035の両方を含み得る。両方のSIGフィールドがパケット3000内に含まれるため、このパケットフォーマットは、UL OFDMAとUL MU−MIMOの両方で再使用され得る。
図31は、単一の送信で1つまたは複数のデバイスに送信する例示的な方法3100を示す。該方法は、APなどのワイヤレスデバイスによって行われ得る。
ブロック3105で、APは、第1のフォーマットに従ってプリアンブルの第1のセクションを送信し、プリアンブルの第1のセクションは、送信に譲歩するように、第1のフォーマットと互換性があるデバイスに知らせるために十分な情報を含む。たとえば、第1のフォーマットは、既存のIEEE802.11規格のうちの1つまたは複数によって定義されるフォーマットなど、先在するフォーマットであり得る。いくつかの態様では、第1のフォーマットはレガシーフォーマットと呼ばれる場合がある。いくつかの態様では、プリアンブルの第1のセクションは、プリアンブルの別のセクションがそれらのデバイスに送信されることを、第2の能力セットを有する、および/または第2のフォーマットと互換性があるデバイスに警告するために十分な情報を含み得る。いくつかの態様では、第1のセクションを送信するための手段は送信機を含み得る。
ブロック3110で、APは、第2のフォーマットに従ってプリアンブルの第2のセクションを送信し、プリアンブルの第2のセクションは、トーン割振り情報を含み、トーン割振り情報は2つ以上のワイヤレス通信デバイスを識別する。たとえば、プリアンブルの第2のセクションは高効率プリアンブルを備え得、第2のフォーマットは、第1のフォーマットよりも新しいIEEE802.11フォーマットを含み得る。いくつかの態様では、APの第2のセクションは2以上のワイヤレス通信デバイスを識別することができ、それらのデバイスの各々に送信の帯域幅の1つまたは複数のサブバンドを割り当てることができる。いくつかの態様では、第2のセクションを送信するための手段は送信機を含み得る。
ブロック3115で、APは、データを2以上のワイヤレス通信デバイスに同時に送信し、データは2以上のサブバンド上に含まれる。いくつかの態様では、サブバンドの各々は、送信の帯域幅の別個の異なるオーバーラップしない部分の上で送信され得る。たとえば、各サブバンドは、送信の帯域幅のある部分に対応し得、各ワイヤレス通信デバイスは、サブバンドのうちの1つまたは複数の上でデータを受信するために割り当てられ得る。したがって、APは、異なるデータを送信の帯域の異なるサブバンド内で2以上の異なるワイヤレス通信デバイスに同時に送信することができる。いくつかの態様では、データを送信するための手段は送信機を含み得る。
図32は、第1の能力セットを有する1つまたは複数の第1のデバイスに送信して、第2の能力セットを有する1つまたは複数の第2のデバイスに同時に送信する例示的な方法3200を示す。該方法は、APなどのワイヤレスデバイスによって行われ得る。
ブロック3205で、APは帯域幅の第1の部分内で1つまたは複数の第1のデバイスに送信し、1つまたは複数の第1のデバイスは第1の能力セットを有する。いくつかの態様では、この送信は、プライマリチャネル上で発生し得、所与の帯域の1つまたは複数の二次チャネル上でも発生し得る。いくつかの態様では、第1の能力セットを有するデバイスは、あるIEEE802.11規格と互換性があるデバイスを含み得る。
ブロック3210で、APは、帯域幅の第2の部分内で1つまたは複数の第2のデバイスに同時に送信し、1つまたは複数の第2のデバイスは第2の能力セットを有し、ここにおいて、送信は、第2の能力セットを有するデバイスが、第2の能力セットを有するデバイスに関する送信パラメータのセットを含むシンボルに関する帯域幅内の周波数帯域を位置特定するためのインジケーションを含むプリアンブルを備え、この場合、インジケーションは、第1の能力セットを有するデバイスのプリアンブル復号に実質的な影響を有さないように送られる。たとえば、このインジケーションは、プリアンブルの一部の虚軸上にある1ビットコードであり得る。このインジケーションは、それが第1の能力セットを有するデバイスによるプリアンブルの受信に干渉しないように、低電力で送られ得る。いくつかの態様では、第2の能力セットは、第1の能力セットよりも新しく、より高度であり得る。たとえば、第1の能力セットは「レガシー」フォーマットに対応し得るのに対して、第2の能力セットは「高効率」フォーマットに対応し得る。いくつかの態様では、第2の能力セットを有するデバイスは、送信内のインジケーションを探索するように構成され得、インジケーションが見出された場合、帯域幅の第2の部分内に含まれた送信の部分を位置特定および受信するように構成され得る。いくつかの態様では、帯域幅の第2の部分内の送信は、上で説明した様々なタイプの高効率パケットに対応し得る。
いくつかの態様では、このインジケーションは、プリアンブル内の1ビットコードとして含まれ得る。いくつかの態様では、プリアンブルは、送信の帯域幅にわたって、重複して送信され得る。いくつかの態様では、このインジケーションは、このプリアンブルのある部分内に含まれ得る。たとえば、このインジケーションは、第2の能力セットを有するデバイスに対する送信を含むことになる、帯域幅の一部内で送信されるプリアンブルの複製内に含まれ得る。いくつかの態様では、1つまたは複数の第1のデバイスに送信するための手段および1つまたは複数の第2のデバイスに同時に送信するための手段は、送信機を含み得る。
図33は、第1の能力セットを有するデバイスと第2の能力セットを有するデバイスの両方と互換性がある送信を受信する例示的な方法3300を示す。該方法は、第2の能力セットを有する、STAなどのワイヤレスデバイスによって行われ得る。
ブロック3305で、STAは帯域幅の第1の部分内でプリアンブルを受信する、プリアンブルは第1の能力セットを有するデバイスと互換性があるフォーマットで送信される。いくつかの態様では、帯域幅の第1の部分はプライマリチャネルを含み得、オプションで、1つまたは複数の二次チャネルを含み得る。いくつかの態様では、第1の能力セットは、IEEE802.11aまたは802.11acなど、IEEE802.11規格を含み得る。いくつかの態様では、プリアンブルを受信するための手段は受信機を含み得る。
ブロック3310で、STAは、帯域幅の第2の部分内の信号フィールドを位置特定することを第2の能力セットを有するデバイスに知らせるために十分な情報をプリアンブルが含むかどうかを決定し、ここで、帯域幅の第2の部分は帯域幅の第1の部分とオーバーラップしない。たとえば、上述の通り、プリアンブルは、プリアンブルの少なくとも一部の中の虚軸上の1ビットコードなどのインジケーションを含み得る。したがって、STAは、この情報が所与のプリアンブル内に存在するか否かを決定するように構成され得る。いくつかの態様では、帯域幅の第2の部分は1つまたは複数の二次チャネルを含み得る。いくつかの実施形態では、プリアンブルが情報を含むかどうかを決定するための手段はプロセッサまたは受信機を含み得る。
ブロック3315において、STAは、帯域幅の第2の部分内で信号フィールドを受信する。たとえば、このインジケーションは、帯域幅の第2の部分を位置特定して、信号フィールドが帯域幅の第2の部分内で送信されることになることを認識するために十分な情報をSTAに提供し得る。したがって、STAは、帯域幅のこの部分内で信号フィールドを受信するように構成され得る。いくつかの態様では、信号フィールドは、帯域幅の第2の部分内で第2の能力セットを有するデバイスに送信される「高効率」プリアンブルなど、プリアンブルのうちのすべてのまたは一部であり得る。いくつかの態様では、これは、第2の能力セットを有するデバイスが、帯域幅の第1の部分上で第1の能力セットを有するデバイスの受信に割り込まずに、帯域幅の一部上でAPまたは別のデバイスから情報を受信することを可能にし得る。したがって、上で論じたように、これは、帯域幅のより完全な使用をより多くの回数可能にし得るため、これはAPまたは別のデバイスに利用可能である帯域幅のより効率的な使用を可能にし得る。いくつかの態様では、信号フィールドを受信するための手段は受信機を含み得る。
図34は、送信の一部が異なるワイヤレスデバイスによって送信される、送信を受信する例示的な方法3300を示す。該方法は、APなどのワイヤレスデバイスによって行われ得る。
ブロック3405で、APは、帯域幅の第1のセクション内で送信の第1の部分を受信し、第1の部分は、第1のワイヤレスデバイスによって送信され、第1のプリアンブルと第1のデータセクションとを含む。いくつかの態様では、APは、第1のワイヤレスデバイスがAPに送信することができる時間および帯域幅について第1のワイヤレスデバイスに知らせるメッセージを以前に第1のワイヤレスデバイスに送った可能性がある。
ブロック3410で、APは、帯域幅の第2のセクション内で送信の第2の部分を同時に受信し、帯域幅の第2のセクションは帯域幅の第1のセクションとオーバーラップせず、第2の部分は第2のワイヤレスデバイスによって送信され、第2の部分は第2のプリアンブルと第2のデータセクションとを含む。いくつかの態様では、第1のプリアンブルおよび第2のプリアンブルは、各々、トレーニングフィールドを含み得る。いくつかの態様では、各プリアンブルが含むトレーニングフィールドの数は、特定のデバイスに割り当てられた空間ストリームの数に基づくことができる。たとえば、3つの空間ストリームが割り当てられたデバイスは、1つのショートトレーニングフィールドを送信して、3つのロングトレーニングフィールドを送信することができる。同様に、1つの空間ストリームが割り当てられたデバイスは、1つのショートトレーニングフィールドと1つのロングトレーニングフィールドとを送信することができる。いくつかの態様では、各デバイスは、その特定のデバイスにいくつの空間ストリームが割り当てられたかに基づいて、いくつかのトレーニングフィールドを送信することができる。いくつかの態様では、各デバイスが同じ数の空間ストリームを送信することが有利であり得る。たとえば、各デバイスが同じ数の空間ストリームを送信する場合、これは、結合された送信のピーク対平均電力比を低減することができ、これは有利であり得る。いくつかの態様では、第1のワイヤレスデバイスおよび第2のワイヤレスデバイスからの送信はAPからのメッセージによってトリガされ得る。このメッセージは、そのデバイスがいくつの空間ストリームの上で送信することができるかを各デバイスに示すこともでき、各デバイスが送信すべきトレーニングフィールドの数を示すことができる。
図35は、ワイヤレス通信システム100内で採用され得るワイヤレスデバイス3502内で利用され得る様々な構成要素を示す。ワイヤレスデバイス3502は、本明細書で説明する様々な方法を実装するように構成され得るデバイスの一例である。たとえば、ワイヤレスデバイス3502は、図10のAP104、またはSTA106のうちの1つを備え得る。いくつかの態様では、ワイヤレスデバイス3502は、上で説明したパケットを受信するように構成されたワイヤレスデバイスを備え得る。
ワイヤレスデバイス3502は、ワイヤレスデバイス3502の動作を制御するプロセッサ3504を含み得る。プロセッサ3504は、中央処理装置(CPU)と呼ばれる場合もある。読取り専用メモリ(ROM)とランダムアクセスメモリ(RAM)の両方を含む場合があるメモリ3506は、プロセッサ3504に命令とデータとを供給する。メモリ3506の一部分は、不揮発性ランダムアクセスメモリ(NVRAM)も含み得る。プロセッサ3504は、通常は、メモリ3506内に記憶されたプログラム命令に基づいて、論理動作および演算動作を実行する。メモリ3506内の命令は、本明細書で説明する方法を実装するように実行可能であり得る。たとえば、メモリ3506は、ワイヤレスデバイス3502が高効率デバイスからの送信を受信することを可能にするために十分な命令を含み得る。たとえば、メモリ3506は、ワイヤレスデバイス3502が、第1の能力セットを有するデバイスに関するプリアンブルと、第2の能力セットを有するデバイスに関する第2のプリアンブルとを含むパケットを受信することを可能にするために十分な命令を含み得る。いくつかの態様では、ワイヤレスデバイス3502は、ワイヤレスデバイス3502が方法3300および/または方法3400で説明したようにパケットを受信することを可能にするために十分な命令を含み得るフレーム受信回路3521を含み得る。このフレーム受信回路3521は、デバイスが、方法3300で説明したように、帯域幅の第1の部分内でプリアンブルを受信して、インジケーションが存在するかどうかを決定して、帯域幅の第2の部分内で信号フィールドを受信することを可能にするために十分な命令を含み得る。いくつかの態様では、フレーム受信回路3521は、デバイスが、方法3400で説明したように、帯域幅の第1のセクション内で送信の第1の部分を受信して、帯域幅の第2のセクション内で送信の第2の部分を同時に受信することを可能にするために十分な命令を含み得る。
プロセッサ3504は、1つまたは複数のプロセッサとともに実装される処理システムの構成要素を備える、またはその構成要素であり得る。この1つまたは複数のプロセッサは、汎用マイクロプロセッサ、マイクロコントローラ、デジタル信号プロセッサ(DSP)、フィールドプログラマブルゲートアレイ(FPGA)、プログラマブル論理デバイス(PLD)、コントローラ、ステートマシン、ゲート型論理、ディスクリートハードウェア構成要素、専用ハードウェア有限ステートマシン、または情報の計算または他の操作を実行することができる任意の他の適当なエンティティの任意の組合せで実装され得る。
処理システムは、ソフトウェアを記憶するための機械可読媒体も含み得る。ソフトウェアは、ソフトウェア、ファームウェア、ミドルウェア、マイクロコード、ハードウェア記述言語、または他の用語のいずれと呼称されるかにかかわらず、任意のタイプの命令を意味するものとして広範に解釈されるものとする。命令は、コード(たとえばソースコードフォーマット、バイナリコードフォーマット、実行可能コードフォーマット、または任意の他の適当なコードフォーマットのもの)を含み得る。命令は、1つまたは複数のプロセッサによって実行されたときに、処理システムに、本明細書で説明する様々な機能を実行させる。
ワイヤレスデバイス3502は、ワイヤレスデバイス3502と遠隔位置との間のデータの送受信を可能にする送信機3510と受信機3512とを含み得るハウジング3508も含み得る。送信機3510および受信機3512は、トランシーバ3514に結合され得る。アンテナ3516は、ハウジング3508に取り付けられ、トランシーバ3514に電気的に結合され得る。ワイヤレスデバイス3502は、複数の送信機、複数の受信機、複数のトランシーバ、および/または複数のアンテナも含み得る(図示せず)。
ワイヤレスデバイス3502は、トランシーバ3514によって受信された信号のレベルを検出し、定量化するために使用され得る、信号検出器3518を含み得る。信号検出器3518は、総エネルギー、シンボルごとのサブキャリア当たりのエネルギー、電力スペクトル密度、および他の信号などの信号を検出することができる。ワイヤレスデバイス3502は、信号を処理する際に使用するデジタル信号プロセッサ(DSP)3520も含み得る。DSP3520は、送信用のデータユニットを生成するように構成され得る。いくつかの態様では、データユニットは、物理レイヤデータユニット(PPDU)を備え得る。いくつかの態様では、PPDUはパケットと呼ばれる。
一部の態様では、ワイヤレスデバイス3502はさらに、ユーザインターフェース3522を備え得る。ユーザインターフェース3522は、キーパッド、マイクロホン、スピーカ、および/またはディスプレイを含み得る。ユーザインターフェース3522は、ワイヤレスデバイス3502のユーザに情報を伝えるおよび/またはユーザからの入力を受信する、任意の要素または構成要素を含み得る。
ワイヤレスデバイス3502の様々な構成要素は、バスシステム3526によってともに結合され得る。バスシステム3526は、たとえば、データバス、ならびに、データバスに加えて、電力バスと、制御信号バスと、ステータス信号バスとを含み得る。ワイヤレスデバイス3502の構成要素は、何らかの他の機構を使用して、一緒に結合され得るか、または互いに対する入力を受け入れ、もしくは提供し得ることを当業者は諒解されよう。
図35にはいくつかの別個の構成要素が示されているが、これらの構成要素のうちの1つまたは複数は、結合され得る、または共通に実装され得る。たとえば、プロセッサ3504は、プロセッサ3504に関して上述した機能を実施するためだけでなく、信号検出器3518および/またはDSP3520に関連して上述した機能を実施するためにも、使用され得る。さらに、図35に示される構成要素の各々は、複数の別個の要素を用いて実装され得る。さらに、プロセッサ3504は、以下で説明する構成要素、モジュール、回路などのいずれかを実装するために使用され得、または各々が複数の別個の要素を使用して実装され得る。本明細書で使用される、「決定する」という用語は、多種多様なアクションを包含する。たとえば、「決定すること」は、計算すること、算出すること、処理すること、導出すること、調査すること、探索すること(たとえば、テーブル、データベース、または別のデータ構造の中で探索すること)、確認することなどを含み得る。また、「決定すること」は、受信すること(たとえば、情報を受信すること)、アクセスすること(たとえば、メモリ中のデータにアクセスすること)などを含み得る。また、「決定すること」は、解決すること、選択すること、選定すること、確立することなどを含み得る。さらに、本明細書で使用される「チャネル幅」は、特定の態様では帯域幅を包含し得、または帯域幅とも呼ばれ得る。
本明細書で使用される、品目のリスト「のうちの少なくとも1つ」に言及する文句は、1つ1つのメンバーも含めて、それらの品目の任意の組合せを指す。一例として、「a、b、またはcのうちの少なくとも1つ」は、a、b、c、a−b、a−c、b−c、およびa−b−cをカバーするものと意図されている。
上記に説明した方法の様々な動作は、様々なハードウェアおよび/もしくはソフトウェア構成要素、回路、ならびに/またはモジュールなど、それらの動作を実行することができる任意の適当な手段によって実行され得る。一般に、図面に示される任意の動作は、それらの動作を実行することができる対応する機能手段によって実行され得る。
本開示に関連して説明した様々な例示的な論理ブロック、モジュール、および回路は、本明細書で説明した機能を実行するように設計された、汎用プロセッサ、デジタル信号プロセッサ(DSP)、特定用途向け集積回路(ASIC)、フィールドプログラマブルゲートアレイ信号(FPGA)もしくは他のプログラマブル論理デバイス(PLD)、ディスクリートゲートもしくはトランジスタ論理、ディスクリートハードウェア構成要素、またはそれらの任意の組合せによって実装または実行され得る。汎用プロセッサはマイクロプロセッサであり得るが、代替として、プロセッサは、任意の市販のプロセッサ、コントローラ、マイクロコントローラ、またはステートマシンであり得る。また、プロセッサは、コンピューティングデバイスの組合せ、たとえば、DSPおよびマイクロプロセッサの組合せ、複数のマイクロプロセッサ、DSPコアと連携する1つもしくは複数のマイクロプロセッサ、または任意の他のそのような構成として実装され得る。
1つまたは複数の態様では、説明した機能は、ハードウェア、ソフトウェア、ファームウェア、またはそれらの任意の組合せで実装され得る。ソフトウェアで実装される場合には、それらの機能は、1つもしくは複数の命令またはコードとして、コンピュータ可読媒体上に記憶され、またはコンピュータ可読媒体を介して送信され得る。コンピュータ可読媒体は、1つの場所から別の場所へのコンピュータプログラムの伝達を容易にする任意の媒体を含む、コンピュータ記憶媒体と通信媒体の両方を含む。記憶媒体は、コンピュータによってアクセスされ得る任意の入手可能な媒体であり得る。限定ではなく例として、そのようなコンピュータ可読媒体は、RAM、ROM、EEPROM(登録商標)、CD−ROMもしくは他の光ディスクストレージ、磁気ディスクストレージもしくは他の磁気ストレージデバイス、または、命令またはデータ構造の形態の所望のプログラムコードを搬送または記憶するために使用されコンピュータによってアクセスされ得る、任意の他の媒体を備え得る。また、任意の接続も適切にコンピュータ可読媒体と称される。たとえば、ソフトウェアが、同軸ケーブル、光ファイバケーブル、より対線、デジタル加入者線(DSL)、または赤外線、無線、マイクロ波などのワイヤレス技術を使用して、ウェブサイト、サーバ、または他のリモートソースから送信される場合、同軸ケーブル、光ファイバケーブル、より対線、DSL、または赤外線、無線、マイクロ波などのワイヤレス技術が、媒体の定義に含まれる。本明細書で使用するディスク(disk)およびディスク(disc)は、コンパクトディスク(disc)(CD)、レーザーディスク(登録商標)(disc)、光ディスク(disc)、デジタル多用途ディスク(disc)(DVD)、フロッピー(登録商標)ディスク(disk)およびブルーレイ(登録商標)ディスク(disc)を含み、ディスク(disk)は、通常、データを磁気的に再生し、一方、ディスク(disc)は、データをレーザーで光学的に再生する。したがって、いくつかの態様では、コンピュータ可読媒体は、非一時的コンピュータ可読媒体(たとえば有形媒体)を含み得る。さらに、いくつかの態様では、コンピュータ可読媒体は、一時的コンピュータ可読媒体(たとえば信号)を含み得る。上記のものの組合せもまた、コンピュータ可読媒体の範囲内に含まれるべきである。
本明細書で開示した方法は、説明した方法を達成するための1つまたは複数のステップまたはアクションを備える。方法のステップおよび/またはアクションは、特許請求の範囲を逸脱することなく、互いに入れ替えられ得る。言い換えれば、特定のステップまたはアクションの順序が指定されない限り、特定のステップおよび/またはアクションの順序および/または使用は、特許請求の範囲を逸脱することなく、修正され得る。
説明した機能は、ハードウェア、ソフトウェア、ファームウェア、またはそれらの任意の組合せで実装され得る。ソフトウェアで実施される場合には、それらの機能は、1つまたは複数の命令として、コンピュータ可読媒体上に記憶され得る。記憶媒体は、コンピュータによってアクセスされ得る任意の入手可能な媒体であり得る。限定ではなく例として、そのようなコンピュータ可読媒体は、RAM、ROM、EEPROM、CD−ROMもしくは他の光ディスクストレージ、磁気ディスクストレージもしくは他の磁気ストレージデバイス、または、命令またはデータ構造の形態の所望のプログラムコードを搬送または記憶するために使用されコンピュータによってアクセスされ得る、任意の他の媒体を備え得る。本明細書で使用するディスク(disk)およびディスク(disc)は、コンパクトディスク(disc)(CD)、レーザーディスク(disc)、光ディスク(disc)、デジタル多用途ディスク(disc)(DVD)、フロッピーディスク(disk)、およびBlu−ray(登録商標)ディスク(disc)を含み、ディスク(disk)は、通常、磁気的にデータを再生し、一方、ディスク(disc)は、データをレーザーで光学的に再生する。
したがって、特定の態様は、本明細書に提示された動作を実行するためのコンピュータプログラム製品を備え得る。たとえば、そのようなコンピュータプログラム製品は、命令が記憶(および/または符号化)され、それらの命令が本明細書で説明した動作を実行するために1つまたは複数のプロセッサによって実行可能である、コンピュータ可読媒体を備え得る。特定の態様では、コンピュータプログラム製品は、パッケージング材料を含み得る。
ソフトウェアまたは命令は、送信媒体上でも送信され得る。たとえば、ウェブサイト、サーバ、または他の遠隔ソースから、同軸ケーブル、光ファイバケーブル、より対線、デジタル加入者回線(DSL)、または赤外線、無線、およびマイクロ波などのワイヤレス技術を用いてソフトウェアが送信される場合には、それらの同軸ケーブル、光ファイバケーブル、より対線、DSL、または赤外線、無線、およびマイクロ波などのワイヤレス技術が、送信媒体の定義に含まれる。
さらに、本明細書で説明した方法および技法を実行するためのモジュールおよび/または他の適当な手段は、適用可能であれば、ユーザ端末および/または基地局によってダウンロードおよび/または他の方法で取得され得ることを理解されたい。たとえば、そのようなデバイスは、本明細書で説明した方法を実行するための手段の伝達を容易にするためにサーバに結合され得る。別法として、本明細書で説明した様々な方法は、記憶手段(たとえばRAM、ROM、コンパクトディスク(CD)またはフロッピーディスクなどの物理記憶媒体など)を介して提供され得、その記憶手段をデバイスに結合または提供したときに、ユーザ端末および/または基地局が、それらの様々な方法を取得することができるようにされ得る。さらに、本明細書で説明した方法および技法をデバイスに提供する任意の他の適当な技法が利用され得る。
特許請求の範囲は、上記に示した詳細な構成および構成要素に限定されないことを理解されたい。特許請求の範囲を逸脱することなく、上記で説明した配列と、動作と、方法および装置の詳細とに対して、様々な修正、変更および変形が行われ得る。
上記の説明は、本開示の態様を対象としたものであるが、本開示の基本的な範囲を逸脱することなく、本開示の他の態様およびさらなる態様も考案され得、本開示の範囲は、以下の特許請求の範囲によって決定される。
以下に、出願当初の特許請求の範囲に記載された発明を付記する。
[C1]
ワイヤレス通信ネットワーク上で送信する方法であって、
帯域幅の第1の部分において1または複数の第1のデバイスに送信することと、ここで、前記1または複数の第1のデバイスは第1の能力セットを有する、
前記帯域幅の第2の部分において1または複数の第2のデバイスに同時に送信することと、ここで、前記1または複数の第2のデバイスは第2の能力セットを有する、
を備え、
ここにおいて、前記送信は、前記第2の能力セットを有するデバイスが、前記第2の能力セットを有するデバイスに関する送信パラメータのセットを含むシンボルに関する前記帯域幅内の周波数帯域を位置特定するための、インジケーションを含むプリアンブルを備え、ここで、前記インジケーションは、前記第1の能力セットを有するデバイスのプリアンブル復号に実質的な影響を有さないように送られる、
方法。
[C2]
前記インジケーションは、前記帯域幅の前記第1の部分において送信されるコードを備える、上記C1に記載の方法。
[C3]
前記コードは、前記プリアンブル内の1つまたは複数の信号フィールド内のデータトーンの虚軸上で搬送される、上記C2に記載の方法。
[C4]
前記コードは、前記帯域幅の前記第1の部分において送信される1ビットコードを備える、上記C2に記載の方法。
[C5]
前記インジケーションは、前記帯域幅の前記第2の部分において送信されるコードを備える、上記C1に記載の方法。
[C6]
前記パケットの前記帯域幅の前記第1の部分はプライマリチャネルを備える、前記帯域幅の前記第2の部分は1つまたは複数のセカンダリチャネルを備える、上記C1に記載の方法。
[C7]
前記プリアンブルは、前記帯域幅の前記第1の部分において送信され、前記方法は、
前記1または複数の第2のデバイスに同時に送信するために使用されることになる前記帯域幅の各部分において前記プリアンブルの1つまたは複数の複製を送信することをさらに備え、前記1つまたは複数の複製の少なくとも一部は前記インジケーションを含む、上記C1に記載の方法。
[C8]
前記帯域幅の第2の部分において1または複数の第2のデバイスに同時に送信することは、前記帯域幅の第2の部分において1または複数の第2のデバイスに第2のプリアンブルを同時に送信することを備え、前記第2のプリアンブルは、前記第2の能力セットを有する前記1または複数の第2のデバイスに関する前記送信パラメータのセットを含む、上記C1に記載の方法。
[C9]
前記送信パラメータは、前記帯域幅の前記第2の部分内の前記送信の対象となる受信側のインジケーションを含む、上記C8に記載の方法。
[C10]
ワイヤレス通信のための装置であって、
帯域幅の第1の部分において1または複数の第1のデバイスに送信することと、ここで、前記1または複数の第1のデバイスは第1の能力セットを有する、
前記帯域幅の第2の部分において1または複数の第2のデバイスに同時に送信することと、ここで、前記1または複数の第2のデバイスは第2の能力セットを有する、
を備える、帯域幅を介して送信するように構成された送信機を備え、
ここにおいて、前記送信は、前記第2の能力セットを有するデバイスが、前記第2の能力セットを有するデバイスに関する送信パラメータのセットを含むシンボルに関する前記帯域幅内の周波数帯域を位置特定するための、インジケーションを含むプリアンブルを備え、ここで、前記インジケーションは、前記第1の能力セットを有するデバイスのプリアンブル復号に実質的な影響を有さないように送られる、
ワイヤレス通信のための装置。
[C11]
前記インジケーションは、前記帯域幅の前記第1の部分において送信されるコードを備える、上記C10に記載の装置。
[C12]
前記パケットの前記帯域幅の前記第1の部分はプライマリチャネルを備え、前記パケットの前記帯域幅の前記第2の部分は1つまたは複数のセカンダリチャネルを備える、上記C10に記載の装置。
[C13]
前記プリアンブルは、前記帯域幅の前記第1の部分において送信され、前記送信機は、
前記1または複数の第2のデバイスに同時に送信するために使用されることになる前記帯域幅の各部分において前記プリアンブルの1つまたは複数の複製を送信するようにさらに構成され、前記1つまたは複数の複製の少なくとも一部は前記インジケーションを含む、上記C10に記載の装置。
[C14]
前記帯域幅の第2の部分において1または複数の第2のデバイスに同時に送信することは、前記帯域幅の第2の部分において1または複数の第2のデバイスに第2のプリアンブルを同時に送信することを備え、前記第2のプリアンブルは、前記第2の能力セットを有する前記1または複数の第2のデバイスに関する前記送信パラメータのセットを含む、上記C10に記載の装置。
[C15]
ワイヤレス通信ネットワーク上で受信する方法であって、
帯域幅の第1の部分においてプリアンブルを受信することと、ここで、前記プリアンブルは、第1の能力セットを有するデバイスと互換性があるフォーマットで送信される、
前記帯域幅の第2の部分内の信号フィールドを位置特定することを、第2の能力セットを有するデバイスに知らせるために十分な情報を、前記プリアンブルが含むかどうかを決定することと、ここにおいて、前記帯域幅の前記第1の部分および前記第2の部分はオーバーラップしない、
前記帯域幅の前記第2の部分において前記信号フィールドを受信することと
を備える方法。
[C16]
前記帯域幅の前記第2の部分においてデータを受信することをさらに備える、上記C15に記載の方法。
[C17]
前記帯域幅の前記第1の部分はプライマリチャネルを備え、前記帯域幅の前記第2の部分は1つまたは複数のセカンダリチャネルを備える、上記C15に記載の方法。
[C18]
前記情報は、前記プリアンブルにおいて送信される1ビットコードを備える、上記C15に記載の方法。
[C19]
前記1ビットコードは、前記プリアンブル内の1つまたは複数の信号フィールド内のデータトーンの虚軸上で搬送される、上記C18に記載の方法。
[C20]
前記プリアンブル内の前記情報は、前記第1の能力セットを有するデバイスのプリアンブル復号に実質的な影響を有さない、上記C15に記載の方法。

Claims (22)

  1. ワイヤレス通信ネットワーク上で送信する方法であって、
    帯域幅の第1の部分において1または複数の第1のデバイスに送信することと、ここで、前記1または複数の第1のデバイスは第1の能力セットを有する、
    前記帯域幅の第2の部分において1または複数の第2のデバイスに同時に送信することと、ここで、前記1または複数の第2のデバイスは第2の能力セットを有する、
    を備え、
    ここにおいて、前記送信は、前記第2の能力セットを有するデバイスが、前記第2の能力セットを有するデバイスに関する送信パラメータのセットを含むシンボルに関する前記帯域幅内の周波数帯域を位置特定するためのインジケーションを含むプリアンブルを備え、ここにおいて、前記プリアンブルは、前記第1の能力セットを有するデバイスに、前記送信に譲歩するよう命令し、前記インジケーションは、前記第1の能力セットを有するデバイスによって復号可能な前記送信の一部分に隠される、方法。
  2. 前記インジケーションは、前記プリアンブル内の1つまたは複数の信号フィールド内のデータトーンに対して直交するコードを備える、請求項1に記載の方法。
  3. 前記インジケーションは、前記帯域幅の前記第1の部分において送信される1ビットコードを備える、請求項1に記載の方法。
  4. 前記帯域幅の前記第1の部分はプライマリチャネルを備え、前記帯域幅の前記第2の部分は1つまたは複数のセカンダリチャネルを備える、請求項1に記載の方法。
  5. 前記プリアンブルは、前記帯域幅の前記第1の部分において送信され、前記方法は、
    前記1または複数の第2のデバイスに同時に送信するために使用される前記帯域幅の各部分において前記プリアンブルの1つまたは複数の複製を送信することをさらに備え、ここにおいて、前記1つまたは複数の複製の少なくとも一部は前記インジケーションを含む、請求項1に記載の方法。
  6. 前記帯域幅の前記第2の部分において前記1または複数の第2のデバイスに同時に送信することは、前記帯域幅の前記第2の部分において前記1または複数の第2のデバイスに第2のプリアンブルを同時に送信することを備え、前記第2のプリアンブルは、前記第2の能力セットを有する前記1または複数の第2のデバイスに関する前記送信パラメータのセットを含み、ここにおいて、前記送信パラメータは、前記送信の対象となる受信側のインジケーションを含む、請求項1に記載の方法。
  7. ワイヤレス通信のための装置であって、
    帯域幅の第1の部分において1または複数の第1のデバイスに送信することと、ここで、前記1または複数の第1のデバイスは第1の能力セットを有する、
    前記帯域幅の第2の部分において1または複数の第2のデバイスに同時に送信することと、ここで、前記1または複数の第2のデバイスは第2の能力セットを有する、
    を備える、帯域幅を介して送信するように構成された送信機を備え、
    ここにおいて、前記送信は、前記第2の能力セットを有するデバイスが、前記第2の能力セットを有するデバイスに関する送信パラメータのセットを含むシンボルに関する前記帯域幅内の周波数帯域を位置特定するための、インジケーションを含むプリアンブルを備え、ここにおいて、前記プリアンブルは、前記第1の能力セットを有するデバイスに、前記送信に譲歩するよう命令し、前記インジケーションは、前記第1の能力セットを有するデバイスによって復号可能な前記送信の一部分に隠される
    ワイヤレス通信のための装置。
  8. 前記インジケーションは、前記帯域幅の前記第1の部分において送信されるデータトーンに対して直交する1ビットコードを備える、請求項7に記載の装置。
  9. 前記帯域幅の前記第1の部分はプライマリチャネルを備え、前記パケットの前記帯域幅の前記第2の部分は1つまたは複数のセカンダリチャネルを備える、請求項7に記載の装置。
  10. 前記プリアンブルは、前記帯域幅の前記第1の部分において送信され、ここにおいて、前記送信機は、
    前記1または複数の第2のデバイスに同時に送信するために使用される前記帯域幅の各部分において前記プリアンブルの1つまたは複数の複製を送信するようにさらに構成され、ここにおいて、前記1つまたは複数の複製の少なくとも一部は前記インジケーションを含む、請求項7に記載の装置。
  11. 前記帯域幅の前記第2の部分において前記1または複数の第2のデバイスに同時に送信することは、前記帯域幅の前記第2の部分において前記1または複数の第2のデバイスに第2のプリアンブルを同時に送信することを備え、前記第2のプリアンブルは、前記第2の能力セットを有する前記1または複数の第2のデバイスに関する前記送信パラメータのセットを含み、ここにおいて、前記送信パラメータは、前記送信の対象となる受信側のインジケーションを含む、請求項7に記載の装置。
  12. ワイヤレス通信ネットワーク上で受信する方法であって、
    帯域幅の第1の部分においてプリアンブルを受信することと、ここで、前記プリアンブルは、第1の能力セットを有するデバイスと互換性があるフォーマットで送信され、それらのデバイスに、前記送信に譲歩するよう命令する、
    前記帯域幅の第2の部分内の信号フィールドを位置特定することを、第2の能力セットを有するデバイスに知らせるために十分な情報を、前記プリアンブルが含むかどうかを決定することと、ここで、前記情報は、前記第1の能力セットを有するデバイスによって復号可能な前記プリアンブルの一部分に隠され、ここにおいて、前記帯域幅の前記第1の部分および前記第2の部分はオーバーラップしない、
    前記帯域幅の前記第2の部分において前記信号フィールドを受信することと
    を備える方法。
  13. 前記帯域幅の前記第2の部分においてデータを受信することをさらに備える、請求項12に記載の方法。
  14. 前記帯域幅の前記第1の部分はプライマリチャネルを備え、前記帯域幅の前記第2の部分は1つまたは複数のセカンダリチャネルを備える、請求項12に記載の方法。
  15. 前記情報は、前記プリアンブル内の1つまたは複数の信号フィールド内のデータトーンの虚軸上で搬送される1ビットコードを備える、請求項12に記載の方法。
  16. 前記プリアンブル内の前記情報は、前記第1の能力セットを有するデバイスが前記送信に譲歩することを可能にする、請求項12に記載の方法。
  17. ワイヤレス通信を受信するための装置であって、
    帯域幅の第1の部分においてプリアンブルを受信するように構成された受信機と、ここで、前記プリアンブルは、第1の能力セットを有するデバイスと互換性があるフォーマットで送信され、それらのデバイスに、前記送信に譲歩するよう命令する、
    前記帯域幅の第2の部分内の信号フィールドを位置特定することを第2の能力セットを有するデバイスに知らせる情報を前記プリアンブルが含むかどうかを決定するように構成されたプロセッサと、ここで、前記情報は、前記第1の能力セットを有するデバイスによって復号可能な前記送信の一部分に隠され、ここにおいて、前記帯域幅の前記第1の部分および前記第2の部分はオーバーラップせず、前記受信機は、前記帯域幅の前記第2の部分において前記信号フィールドを受信するようにさらに構成される、
    を備える、装置。
  18. 前記受信機は、前記帯域幅の前記第2の部分においてデータを受信するようにさらに構成される、請求項17に記載の装置。
  19. 前記帯域幅の前記第1の部分はプライマリチャネルを備え、前記帯域幅の前記第2の部分は1つまたは複数のセカンダリチャネルを備える、請求項17に記載の装置。
  20. 前記情報は、前記プリアンブル内の1つまたは複数の信号フィールド内のデータトーンの虚軸上で搬送される1ビットコードを備える、請求項17に記載の装置。
  21. 前記プリアンブル内の前記情報は、前記第1の能力セットを有するデバイスが前記送信に譲歩することを可能にする、請求項17に記載の装置。
  22. 前記インジケーションは、レガシー信号フィールドに対応する前記プリアンブルの部分に位置する、請求項1に記載の方法。
JP2016507683A 2013-04-15 2014-04-11 多元接続wlan通信システムのための後方互換性プリアンブルフォーマットを使用する装置および方法 Active JP6133492B2 (ja)

Applications Claiming Priority (13)

Application Number Priority Date Filing Date Title
US201361812136P 2013-04-15 2013-04-15
US61/812,136 2013-04-15
US201361819028P 2013-05-03 2013-05-03
US61/819,028 2013-05-03
US201361847525P 2013-07-17 2013-07-17
US61/847,525 2013-07-17
US201361871267P 2013-08-28 2013-08-28
US61/871,267 2013-08-28
US201361898809P 2013-11-01 2013-11-01
US61/898,809 2013-11-01
US14/250,251 2014-04-10
US14/250,251 US9344238B2 (en) 2013-04-15 2014-04-10 Systems and methods for backwards-compatible preamble formats for multiple access wireless communication
PCT/US2014/033798 WO2014172198A1 (en) 2013-04-15 2014-04-11 Apparatus and method using backwards-compatible preamble formats for multiple access wlan communication system

Publications (3)

Publication Number Publication Date
JP2016521051A JP2016521051A (ja) 2016-07-14
JP2016521051A5 JP2016521051A5 (ja) 2016-09-01
JP6133492B2 true JP6133492B2 (ja) 2017-05-24

Family

ID=51686746

Family Applications (3)

Application Number Title Priority Date Filing Date
JP2016507682A Active JP6333953B2 (ja) 2013-04-15 2014-04-11 多元接続wlan通信システムのための後方互換性プリアンブルフォーマットを使用する装置および方法
JP2016507690A Active JP6181287B2 (ja) 2013-04-15 2014-04-11 多元接続ワイヤレス通信のための後方互換性プリアンブルフォーマットのためのシステムおよび方法
JP2016507683A Active JP6133492B2 (ja) 2013-04-15 2014-04-11 多元接続wlan通信システムのための後方互換性プリアンブルフォーマットを使用する装置および方法

Family Applications Before (2)

Application Number Title Priority Date Filing Date
JP2016507682A Active JP6333953B2 (ja) 2013-04-15 2014-04-11 多元接続wlan通信システムのための後方互換性プリアンブルフォーマットを使用する装置および方法
JP2016507690A Active JP6181287B2 (ja) 2013-04-15 2014-04-11 多元接続ワイヤレス通信のための後方互換性プリアンブルフォーマットのためのシステムおよび方法

Country Status (22)

Country Link
US (4) US10439773B2 (ja)
EP (3) EP2987290A1 (ja)
JP (3) JP6333953B2 (ja)
KR (3) KR101728053B1 (ja)
CN (3) CN105379216B (ja)
AU (2) AU2014254272B2 (ja)
BR (3) BR112015026003A2 (ja)
CA (2) CA2907884C (ja)
DK (1) DK2987288T3 (ja)
ES (1) ES2634633T3 (ja)
HK (2) HK1219368A1 (ja)
HU (1) HUE035213T2 (ja)
IL (2) IL241087B (ja)
MY (2) MY168561A (ja)
PH (2) PH12015502267B1 (ja)
PT (1) PT2987288T (ja)
RU (2) RU2627043C2 (ja)
SG (2) SG11201507119SA (ja)
SI (1) SI2987288T1 (ja)
TW (3) TWI583158B (ja)
UA (2) UA115593C2 (ja)
WO (3) WO2014172201A1 (ja)

Families Citing this family (182)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101202196B1 (ko) * 2010-03-11 2012-11-20 한국전자통신연구원 Mimo 시스템에서 데이터를 송수신하는 방법 및 장치
US8885740B2 (en) 2011-02-04 2014-11-11 Marvell World Trade Ltd. Control mode PHY for WLAN
US10439773B2 (en) 2013-04-15 2019-10-08 Qualcomm Incorporated Systems and methods for backwards-compatible preamble formats for multiple access wireless communication
US9729285B2 (en) * 2013-06-13 2017-08-08 Avago Technologies General Ip (Singapore) Pte. Ltd Flexible OFDMA packet structure for wireless communications
CN109245807B (zh) 2013-06-25 2019-11-19 华为技术有限公司 上行多用户数据传输方法及上行多用户输入输出系统
US9439161B2 (en) 2013-07-17 2016-09-06 Qualcomm Incorporated Physical layer design for uplink (UL) multiuser multiple-input, multiple-output (MU-MIMO) in wireless local area network (WLAN) systems
KR20210153759A (ko) 2013-09-10 2021-12-17 마벨 아시아 피티이 엘티디. 옥외 wlan용 확장 보호 구간
US10218822B2 (en) 2013-10-25 2019-02-26 Marvell World Trade Ltd. Physical layer frame format for WLAN
US10194006B2 (en) 2013-10-25 2019-01-29 Marvell World Trade Ltd. Physical layer frame format for WLAN
KR102526618B1 (ko) 2013-10-25 2023-04-27 마벨 아시아 피티이 엘티디. 와이파이를 위한 레인지 확장 모드
CN111224913B (zh) 2013-11-11 2022-07-15 Lg 电子株式会社 发送广播信号的设备和方法及处理广播信号的设备和方法
KR101810950B1 (ko) 2013-11-12 2018-01-25 후아웨이 테크놀러지 컴퍼니 리미티드 고효율 무선 근거리 네트워크 통신을 위한 시스템 및 방법
US9271241B2 (en) 2013-11-19 2016-02-23 Intel IP Corporation Access point and methods for distinguishing HEW physical layer packets with backwards compatibility
US9544914B2 (en) 2013-11-19 2017-01-10 Intel IP Corporation Master station and method for HEW communication using a transmission signaling structure for a HEW signal field
CN108494538B (zh) 2013-11-19 2021-11-16 英特尔公司 无线局域网中用于多用户调度的方法、装置和计算机可读介质
WO2015076854A1 (en) * 2013-11-19 2015-05-28 Intel IP Corporation Frame structure with reduced signal field and method for high-efficiency wi-fi (hew) communication
BR112016008789B1 (pt) 2013-11-19 2022-12-27 SOLiD, INC Estação principal configurada para comunicação de rede de área local sem fio de alta eficiência, método executado por uma estação principal, meio de armazenamento e estação de rede de área local sem fio de alta eficiência
US9325463B2 (en) 2013-11-19 2016-04-26 Intel IP Corporation High-efficiency WLAN (HEW) master station and methods to increase information bits for HEW communication
CN105766031B (zh) * 2013-11-25 2020-04-07 Lg电子株式会社 用于在无线lan中发送上行链路帧的方法和装置
KR20160098209A (ko) * 2013-12-14 2016-08-18 엘지전자 주식회사 무선랜에서 복수의 sta으로 데이터를 전송하는 방법 및 장치
EP3764612B1 (en) * 2014-01-28 2022-07-20 Huawei Technologies Co., Ltd. Data transmission method and communications device
WO2015119372A1 (ko) * 2014-02-04 2015-08-13 엘지전자 주식회사 데이터 단위를 수신하는 방법 및 장치
WO2015127616A1 (zh) * 2014-02-27 2015-09-03 华为技术有限公司 无线局域网数据的传输方法及装置
US9935794B1 (en) * 2014-03-24 2018-04-03 Marvell International Ltd. Carrier frequency offset estimation
KR102262183B1 (ko) * 2014-04-04 2021-06-07 뉴라컴 인코포레이티드 수신 확인 방법 및 다중 사용자 전송 방법
US9680603B2 (en) 2014-04-08 2017-06-13 Intel IP Corporation High-efficiency (HE) communication station and method for communicating longer duration OFDM symbols within 40 MHz and 80 MHz bandwidth
US9716606B2 (en) * 2014-04-28 2017-07-25 Newracom, Inc. Method for transmitting frame and method for detecting transmission mode
US11855818B1 (en) * 2014-04-30 2023-12-26 Marvell Asia Pte Ltd Adaptive orthogonal frequency division multiplexing (OFDM) numerology in a wireless communication network
US9661638B2 (en) * 2014-05-07 2017-05-23 Qualcomm Incorporated Methods and apparatus for signaling user allocations in multi-user wireless communication networks
US10057899B2 (en) * 2014-05-09 2018-08-21 Newracom, Inc. Method for transmitting and receiving frame
WO2015182372A1 (ja) * 2014-05-26 2015-12-03 シャープ株式会社 無線送信装置、無線受信装置、および通信方法
US10149279B2 (en) * 2014-06-01 2018-12-04 Lg Electronics Inc. Method for transmitting multi-user frame in wireless LAN system
WO2015199306A1 (ko) * 2014-06-26 2015-12-30 엘지전자(주) 무선 통신 시스템에서 다중 사용자 상향링크 데이터 전송을 위한 방법 및 이를 위한 장치
EP3164980B1 (en) * 2014-07-04 2020-03-11 Newracom, Inc. Physical layer protocol data unit format in a high efficiency wireless lan
US10201019B2 (en) * 2014-07-10 2019-02-05 Lg Electronics Inc. Method and apparatus for accessing broadband channel in wireless LAN system
US9705643B2 (en) 2014-07-15 2017-07-11 Intel IP Corporation High-efficiency wireless local-area network devices and methods for acknowledgements during scheduled transmission opportunities
US9647816B2 (en) * 2014-07-16 2017-05-09 Newracom, Inc. Wireless local area network communications with varying subcarrier spacings
WO2016017946A1 (ko) * 2014-07-28 2016-02-04 엘지전자(주) 무선 통신 시스템의 송수신 장치 및 방법
US9819473B2 (en) * 2014-08-08 2017-11-14 Electronics And Telecommunications Research Institute Operation method of station in wireless local area network
KR20160019383A (ko) * 2014-08-11 2016-02-19 뉴라컴 인코포레이티드 고효율 무선랜의 물리계층 프로토콜 데이터 유닛 포맷
US10153873B2 (en) * 2014-08-20 2018-12-11 Newracom, Inc. Physical layer protocol data unit format applied with space time block coding in a high efficiency wireless LAN
EP3496354B1 (en) * 2014-08-21 2020-04-01 LG Electronics Inc. -1- Method for uplink transmission in wireless communication system and apparatus therefor
CN111711591B (zh) * 2014-08-25 2023-06-02 韦勒斯标准与技术协会公司 无线通信方法及使用该方法的无线通信终端
US10320601B2 (en) * 2014-08-25 2019-06-11 Lg Electronics Inc. Transmitting/receiving device and method in wireless communication system
US10693532B2 (en) * 2014-09-03 2020-06-23 Newracom, Inc. Operation method of station in wireless local area network
JP2016058962A (ja) * 2014-09-11 2016-04-21 株式会社東芝 無線通信デバイス
EP3591883B1 (en) * 2014-09-12 2021-03-10 Newracom, Inc. System and method for packet information indication in communication systems
KR102045659B1 (ko) * 2014-09-12 2019-11-15 인터디지탈 패튼 홀딩스, 인크 무선 근거리 네트워크 시스템에서 동시 송신들에 대한 프리앰블 선택
US9774425B2 (en) * 2014-09-16 2017-09-26 Newracom, Inc. Frame transmitting method and frame receiving method
EP3863187B1 (en) 2014-09-25 2023-12-27 Huawei Technologies Co., Ltd. Data communication method and related apparatus
HUE055925T2 (hu) * 2014-09-30 2022-01-28 Huawei Tech Co Ltd Adatátviteli eljárás és készülék
KR102144936B1 (ko) * 2014-09-30 2020-08-14 한국전자통신연구원 무선랜 시스템에서의 무선 통신 방법 및 무선 통신 장치
US9923666B2 (en) * 2014-10-01 2018-03-20 Qualcomm, Incorporated Encoding in uplink multi-user MIMO and OFDMA transmissions
US20160105535A1 (en) * 2014-10-08 2016-04-14 Intel Corporation Systems and methods for signal classification
US20160119171A1 (en) * 2014-10-28 2016-04-28 Huawei Technologies Co., Ltd. System and Method for Wireless Communication Using Space-Time Block Code Encoding
DE102014220646A1 (de) * 2014-10-13 2016-04-14 Bayerische Motoren Werke Aktiengesellschaft Nutzung einer Bus-Leitung zur Übertragung alternativer Signalcodierungen
US20160112157A1 (en) * 2014-10-15 2016-04-21 Qinghua Li Auto-Detection in Wireless Communications
CN106416164B (zh) * 2014-10-22 2018-10-12 华为技术有限公司 信号处理方法、装置及设备
US20160119927A1 (en) * 2014-10-24 2016-04-28 Newracom, Inc. Ofdma resource assignment rules to achieve robustness
US9893784B2 (en) * 2014-10-28 2018-02-13 Newracom, Inc. LTF design for WLAN system
US20160119933A1 (en) * 2014-10-28 2016-04-28 Qualcomm Incorporated Null data packet frame structure for wireless communication
DE102015115777B4 (de) * 2014-10-29 2020-01-30 Intel IP Corporation Gerät, Verfahren und Computer-lesbares Medium für das Übertragen eines Hoch-Effizienz-Drahtlos-Lokalnetzwerk-Signalfeldes für schmale und grosse Bandbreiten-Zuweisungen
WO2016068670A2 (ko) * 2014-10-31 2016-05-06 주식회사 윌러스표준기술연구소 전력 절약을 위한 무선 통신 방법 및 이를 이용한 무선 통신 단말
US9699727B2 (en) * 2014-11-04 2017-07-04 Intel IP Corporation Method, apparatus, and computer readable medium for signaling high efficiency preambles
WO2016072766A1 (ko) 2014-11-05 2016-05-12 엘지전자 주식회사 무선랜에서 컨테이너를 기반으로 자원 단위를 할당하는 방법 및 장치
US10165470B2 (en) * 2014-11-05 2018-12-25 Intel IP Corporation High-efficiency (HE) station and method for configuring HE packets with long and short preamble formats
WO2016074209A1 (zh) 2014-11-14 2016-05-19 华为技术有限公司 无线局域网中的用于自动增益控制的方法和通信设备
US10348460B2 (en) 2014-11-16 2019-07-09 Lg Electronics Inc. Method for transmitting frame in wireless LAN system
US10958391B2 (en) * 2014-11-18 2021-03-23 Qualcomm Incorporated Tone plans for wireless communication networks
US9660736B2 (en) * 2014-11-19 2017-05-23 Intel Corporation Systems, methods, and devices for interference mitigation in wireless networks
US9654308B2 (en) * 2014-11-19 2017-05-16 Intel Corporation Systems and methods for carrier frequency offset estimation for long training fields
KR102537595B1 (ko) * 2014-11-26 2023-06-01 아틀라스 글로벌 테크놀로지스 엘엘씨 무선랜에서 다중 사용자 전송 방법
US10098151B2 (en) * 2014-11-26 2018-10-09 Newracom, Inc. Transmission method for multi user in wireless local area network
WO2016089998A1 (en) 2014-12-02 2016-06-09 Marvell Semiconductor, Inc. Signal fields in a high efficiency wireless local area network (hew) data unit
ES2783548T3 (es) * 2014-12-02 2020-09-17 Lg Electronics Inc Método para la asignación de recursos de trama de banda ancha en un sistema inalámbrico y aparato para el mismo
WO2016090372A1 (en) 2014-12-05 2016-06-09 Marvell Semiconductor, Inc. Trigger frame format for orthogonal frequency division multiple access (ofdma) communication
US10390328B2 (en) 2014-12-05 2019-08-20 Marvell World Trade Ltd. Beamforming training in orthogonal frequency division multiple access (OFDMA) communication systems
EP4274152A3 (en) * 2014-12-05 2024-02-28 LG Electronics Inc. Method for transmitting/receiving ppdu in wireless communication system and apparatus therefor
EP3229434B1 (en) 2014-12-05 2019-09-04 LG Electronics Inc. Data transmission method in wireless communication system and device therefor
US10050750B2 (en) * 2014-12-09 2018-08-14 Qualcomm Incorporated Training field tone plans for mixed-rate wireless communication networks
US10536937B2 (en) * 2014-12-16 2020-01-14 Lg Electronics Inc. Data transmission method in wireless communication system and device therefor
US10135593B2 (en) * 2014-12-23 2018-11-20 Qualcomm Incorporated Allocation signaling for wireless communication networks
CN107155401B (zh) * 2014-12-25 2020-04-28 华为技术有限公司 无线局域网中数据分组的传输方法和传输装置
US20180263047A1 (en) * 2014-12-25 2018-09-13 Lg Electronics Inc. Method and apparatus for transmitting data unit on basis of trigger frame
KR20170103861A (ko) 2015-01-08 2017-09-13 마벨 월드 트레이드 리미티드 고효율 무선 근거리 통신망(wlan)에서의 다운링크 시그널링
US20160204915A1 (en) 2015-01-14 2016-07-14 Xiaogang Chen Apparatus, computer readable medium, and method for generating and receiving signal fields in a high efficiency wireless local-area network
US9806927B2 (en) 2015-01-21 2017-10-31 Intel IP Corporation Method, apparatus, and computer readable medium for signaling high efficiency packet formats using a legacy portion of the preamble in wireless local-area networks
US9847896B2 (en) * 2015-01-21 2017-12-19 Intel IP Corporation Method, apparatus, and computer readable medium for signaling high efficiency packet formats using a legacy portion of the preamble in wireless local-area networks
US11057253B2 (en) 2015-02-02 2021-07-06 Lg Electronics Inc. Methods and apparatus for transmitting/receiving HE-SIG B
KR102296339B1 (ko) * 2015-02-17 2021-09-01 주식회사 윌러스표준기술연구소 다중 사용자 전송을 위한 시그널링 방법 및 이를 이용한 무선 통신 단말과 무선 통신 방법
US9955469B2 (en) 2015-02-27 2018-04-24 Intel Corporation Joint encoding of wireless communication allocation information
KR101989898B1 (ko) * 2015-03-04 2019-06-17 엘지전자 주식회사 무선랜 시스템에서 제어 정보를 포함하는 무선 프레임 전송 방법 및 이를 위한 장치
JP6382134B2 (ja) * 2015-03-05 2018-08-29 Kddi株式会社 基地局装置、端末装置、通信システムおよび通信方法
US20160262048A1 (en) * 2015-03-05 2016-09-08 Qualcomm Incorporated Amplify and forward techniques to reduce collisions in wireless communication systems
KR101914727B1 (ko) * 2015-03-06 2018-11-02 니폰 덴신 덴와 가부시끼가이샤 무선 통신 시스템, 무선 통신 방법, 무선 lan 기지국 장치 및 무선 lan 단말 장치
KR102570804B1 (ko) 2015-03-06 2023-08-24 인터디지탈 패튼 홀딩스, 인크 무선 근거리 통신 네트워크(wlan) 장기 심벌 지속기간 이행용 방법 및 시스템
WO2016148411A1 (ko) * 2015-03-16 2016-09-22 엘지전자(주) 무선 통신 시스템에서 다중 사용자 송수신을 위한 방법 및 이를 위한 장치
CN107409385B (zh) * 2015-03-20 2020-09-11 华为技术有限公司 一种资源调度方法及设备
EP4170943A1 (en) * 2015-03-23 2023-04-26 Atlas Global Technologies LLC Apparatus and method for downlink and uplink multi-user transmissions
US9882687B2 (en) * 2015-03-25 2018-01-30 Intel IP Corporation Method of packet classification for 802.11ax
US10341999B2 (en) 2015-04-03 2019-07-02 Qualcomm Incorporated Methods and apparatus for multiplexing transmission control information
WO2016164912A1 (en) 2015-04-09 2016-10-13 Marvell World Trade Ltd. Contention-based orthogonal frequency division multiple access (ofdma) communication
US10153857B1 (en) * 2015-04-10 2018-12-11 Marvell International Ltd. Orthogonal frequency division multiple access protection
US10224987B2 (en) * 2015-04-14 2019-03-05 Lg Electronics Inc. Method and apparatus for configuring signal field used for multiple resource units in wireless LAN system
US9912462B2 (en) * 2015-04-28 2018-03-06 Intel IP Corporation Apparatus, computer readable medium, and method for alignment of long training fields in a high efficiency wireless local-area network
US10149198B2 (en) * 2015-04-28 2018-12-04 Qualcomm Incorporated Techniques for transmitting and/or receiving high efficiency wireless local area network information
JP6482652B2 (ja) 2015-04-30 2019-03-13 株式会社東芝 無線通信装置および無線通信方法
JP6482653B2 (ja) 2015-04-30 2019-03-13 株式会社東芝 無線通信装置および無線通信方法
WO2016179100A2 (en) * 2015-05-01 2016-11-10 Marvell Semiconductor, Inc. Beamforming training in orthogonal rfequency division multiple access (ofdma) communication systems
US20160323424A1 (en) * 2015-05-01 2016-11-03 Qualcomm Incorporated Null data packet frame structure for wireless communication
US10582025B2 (en) 2015-05-05 2020-03-03 Samsung Electronics Co., Ltd. Efficient signaling and addressing in wireless local area network systems
US9838168B2 (en) * 2015-05-05 2017-12-05 Intel IP Corporation High-efficiency wireless preamble structures with efficient tail bits
HUE056887T2 (hu) 2015-05-05 2022-03-28 Huawei Tech Co Ltd Eljárás és berendezés fizikai réteg protokoll adategység átvitelére
US10389563B2 (en) 2015-05-05 2019-08-20 Intel IP Corporation Systems and methods for Wi-Fi high efficiency preambles for resource unit allocation
WO2016178534A1 (ko) * 2015-05-05 2016-11-10 삼성전자주식회사 무선 로컬 영역 네트워크 시스템에서 정보를 시그널링하기 위한 장치 및 방법
AU2016261488B2 (en) * 2015-05-08 2020-05-28 Atlas Global Technologies LLC. Pilot transmission and reception for orthogonal frequency division multiple access
CN107534996B (zh) 2015-05-21 2023-11-03 华为技术有限公司 一种数据传输方法、装置、系统及接入点
US10616017B2 (en) * 2015-05-26 2020-04-07 Mediatek Inc. Reliable dual sub-carrier modulation schemes in high efficiency WLAN
CN107735978A (zh) 2015-05-27 2018-02-23 马维尔国际贸易有限公司 发信号通知多用户数据单元中的资源分配
US10057924B2 (en) * 2015-05-27 2018-08-21 Intel IP Corporation High efficiency signal field in high efficiency wireless local area network
WO2016187854A1 (zh) * 2015-05-27 2016-12-01 华为技术有限公司 通信方法、接入点和站点
WO2016198107A1 (en) 2015-06-11 2016-12-15 Telefonaktiebolaget Lm Ericsson (Publ) Enabling time-overlapping communication using csma/ca and ofdma
US10135957B2 (en) * 2015-06-15 2018-11-20 Qualcomm Incorporated Methods and apparatus for communicating high efficiency control information
WO2016201739A1 (zh) * 2015-06-16 2016-12-22 华为技术有限公司 资源调度的方法、装置和设备
JP2017011682A (ja) * 2015-06-17 2017-01-12 パナソニック インテレクチュアル プロパティ コーポレーション オブ アメリカPanasonic Intellectual Property Corporation of America 送信方法、受信方法、送信装置、及び受信装置
CN106304357B (zh) 2015-06-23 2021-11-09 中兴通讯股份有限公司 一种无线信号的传输方法及系统
RU2704627C2 (ru) * 2015-07-01 2019-10-30 Панасоник Интеллекчуал Проперти Менеджмент Ко., Лтд. Устройство передачи и способ передачи информации о назначении ресурсов
CN107534863B (zh) * 2015-07-08 2020-08-14 华为技术有限公司 资源调度的方法、装置和设备
JP6594682B2 (ja) * 2015-07-09 2019-10-23 Kddi株式会社 送信装置、受信装置、無線通信システム、無線通信方法及びコンピュータプログラム
US9912489B2 (en) * 2015-07-10 2018-03-06 Intel IP Corporation Multiple-user request-to-send frames in a high-efficiency wireless local-area network (HEW)
DE112016003165T5 (de) * 2015-07-14 2018-04-12 Intel IP Corporation Kurze ressourcenanforderungen
WO2017018615A1 (ko) * 2015-07-28 2017-02-02 엘지전자 주식회사 무선랜 시스템에서 신호를 송수신하는 방법 및 이를 위한 장치
WO2017022897A1 (ko) * 2015-07-31 2017-02-09 엘지전자 주식회사 무선랜 시스템에서 신호를 송수신하는 방법 및 이를 위한 장치
WO2017020283A1 (zh) * 2015-08-05 2017-02-09 华为技术有限公司 生成he-ltf序列方法、处理装置、接入点和站点
US20170048034A1 (en) * 2015-08-10 2017-02-16 Qualcomm Incorporated Methods and apparatus for he-sigb encoding
WO2017030404A1 (ko) * 2015-08-20 2017-02-23 엘지전자 주식회사 무선랜 시스템에서 데이터 필드를 지시하는 제어 필드를 포함하는 프레임 유닛을 구성하는 방법 및 장치
US20170064718A1 (en) * 2015-08-25 2017-03-02 Qualcomm Incorporated Resource allocation signaling in a wireless local area network preamble
CN108551434B (zh) 2015-08-26 2019-04-12 华为技术有限公司 传输he-ltf序列的方法和装置
CN114844616A (zh) 2015-09-01 2022-08-02 华为技术有限公司 传输信息的方法、无线局域网装置
WO2017044956A1 (en) * 2015-09-10 2017-03-16 Marvell World Trade Ltd. Systems and methods for cross-channel scheduling of high efficiency (he) multi-user (mu) frame transmission
WO2017044938A1 (en) 2015-09-10 2017-03-16 Marvell World Trade Ltd. Systems and methods for transmitting a preamble within a wireless local area network (wlan)
US9774482B2 (en) * 2015-09-21 2017-09-26 Intel IP Corporation High efficiency signal field enhancement
US9967773B2 (en) * 2015-10-08 2018-05-08 Intel IP Corporation Padding in high-efficiency signal B in a high efficiency wireless local area networks
EP3364587B1 (en) * 2015-10-14 2020-03-18 LG Electronics Inc. Method for transmitting frame type indication information in wireless lan system and device therefor
JP6664125B2 (ja) * 2015-10-30 2020-03-13 パナソニックIpマネジメント株式会社 パケットフォーマット検出のための送信方法および送信装置
WO2017078370A1 (ko) * 2015-11-02 2017-05-11 엘지전자 주식회사 무선랜 시스템에서 mcs 알림 방법 및 이를 위한 장치
US9832058B2 (en) 2015-11-03 2017-11-28 Newracom, Inc. Apparatus and method for scrambling control field information for wireless communications
EP3832915B1 (en) 2015-11-04 2023-09-06 Panasonic Intellectual Property Management Co., Ltd. Transmission apparatus and transmission method of control signaling in a wireless communications system
WO2017078800A1 (en) * 2015-11-05 2017-05-11 Intel IP Corporation Resource allocation in full-band multiuser multiple-input multiple-output communications
US20180352499A1 (en) * 2015-11-11 2018-12-06 Ruckus Wireless, Inc. Selective wlan processing based on preamble information
US10742285B1 (en) 2015-11-13 2020-08-11 Marvell International Ltd. Explicit multiuser beamforming training in a wireless local area network
US10470128B2 (en) * 2015-11-18 2019-11-05 Newracom, Inc. Early detection procedure of high-efficiency frame and decision timing for spatial reuse
WO2017088761A1 (zh) * 2015-11-23 2017-06-01 华为技术有限公司 无线局域网数据传输方法和装置
CN108540412B (zh) * 2015-11-23 2019-03-26 华为技术有限公司 无线局域网数据传输方法和装置
US10014917B2 (en) 2015-12-15 2018-07-03 Marvell World Trade Ltd. Triggered uplink transmissions in wireless local area networks
US10004081B2 (en) * 2015-12-15 2018-06-19 Marvell World Trade Ltd. Systems and methods for providing resource signaling within a wireless local area network (WLAN)
EP4131813B1 (en) 2015-12-24 2024-04-03 Wilus Institute of Standards and Technology Inc. Wireless communication method and wireless communication terminal, which use discontinuous channel
US10433283B2 (en) 2016-01-26 2019-10-01 Huawei Technologies Co., Ltd. System and method for bandwidth division and resource block allocation
CN107046460B (zh) 2016-02-06 2020-09-25 华为技术有限公司 一种无线局域网中信道指示的方法和装置
JP7297400B2 (ja) * 2016-03-18 2023-06-26 キヤノン株式会社 通信装置、情報処理装置、制御方法、および、プログラム
CN107404761B (zh) * 2016-05-20 2021-01-15 华为技术有限公司 数据传输方法及设备
CN107645745A (zh) * 2016-07-20 2018-01-30 李明璋 无线区域网路通信装置
CN107889277A (zh) * 2016-09-30 2018-04-06 李明璋 无线局域网路通信装置
US11108603B2 (en) * 2016-10-10 2021-08-31 Qualcomm Incorporated Frame format with dual mode channel estimation field
KR20220071301A (ko) * 2017-01-09 2022-05-31 주식회사 윌러스표준기술연구소 다중 사용자 패킷의 시그널링을 위한 무선 통신 방법 및 무선 통신 단말
CN107017968B (zh) * 2017-03-13 2020-04-03 上海无疆信息科技有限公司 一种Wi-Fi信号的协议类型检测方法
BR112019025018B1 (pt) 2017-06-20 2022-12-13 Telefonaktiebolaget Lm Ericsson (Publ) Métodos, nó de acesso e dispositivo de comunicação para comunicação em uma rede de comunicação sem fio, e, meios de armazenamento não-transitório legível por computador
US10827385B2 (en) * 2017-11-06 2020-11-03 Qualcomm Incorporated Techniques for preamble puncturing
CN109996343B (zh) * 2017-12-29 2022-04-29 华为技术有限公司 无线局域网中多信道混合传输方法和装置
US10785656B2 (en) * 2018-01-22 2020-09-22 Qualcomm Incorporated Bandwidth part switch management
EP3654605B1 (en) 2018-11-15 2024-02-21 Nxp B.V. Wireless vehicular communications with dynamic protocol-based relationships
CN111669783B (zh) * 2019-03-06 2024-04-23 华为技术有限公司 信息发送、信息接收方法及装置
EP3709594B1 (en) 2019-03-13 2023-09-13 Nxp B.V. Wireless vehicular communications with channel allocation
US11470581B2 (en) * 2019-05-03 2022-10-11 Qualcomm Incorporated Channel-bandwidth-attributed per-band user equipment capability reporting
US11867827B2 (en) 2019-05-03 2024-01-09 Nxp B.V. Radar sensing
US11546938B2 (en) * 2019-08-09 2023-01-03 Qualcomm Incorporated Physical layer preamble and signaling for wireless communication
US11601239B2 (en) * 2020-02-28 2023-03-07 Qualcomm Incorporated Physical (PHY) layer control for wireless local area network (WLAN) communication
EP3920645A1 (en) 2020-06-05 2021-12-08 Nxp B.V. Mitigating interference in channel access involving multiple systems
CN111867004B (zh) * 2020-06-06 2022-08-12 烽火通信科技股份有限公司 一种Wi-Fi6场景下无线终端接入的方法和装置
WO2023126522A1 (en) 2021-12-30 2023-07-06 Bk Giulini Gmbh Meat and seafood analogue products
EP4205552A1 (en) 2021-12-30 2023-07-05 BK Giulini GmbH Meat and seafood analogue products
WO2023173300A1 (zh) * 2022-03-15 2023-09-21 Oppo广东移动通信有限公司 无线通信的方法和设备

Family Cites Families (45)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20040162037A1 (en) 2003-02-18 2004-08-19 Eran Shpak Multi-channel WLAN transceiver with antenna diversity
US7039412B2 (en) * 2003-08-08 2006-05-02 Intel Corporation Method and apparatus for transmitting wireless signals on multiple frequency channels in a frequency agile network
AU2005239262B2 (en) 2004-04-28 2008-04-24 Samsung Electronics Co., Ltd. Method and apparatus for generating preamble sequence for adaptive antenna system in Orthogonal Frequency Division Multiple Access Communication system
JP2006050573A (ja) 2004-06-28 2006-02-16 Sanyo Electric Co Ltd 送信方法および装置ならびに受信方法および装置
KR100640581B1 (ko) 2004-07-02 2006-10-31 삼성전자주식회사 상향 링크 통신시 엑세스 사용자의 주파수 옵셋을제어하는 직교 주파수 분할 다중 접속 시스템 및 주파수옵셋 제어 방법
CA2572271C (en) 2005-06-09 2012-09-25 Samsung Electronics Co., Ltd. Method and apparatus for transmitting and receiving legacy format data in high throughput wireless network
TW200705901A (en) 2005-06-09 2007-02-01 Samsung Electronics Co Ltd Method and apparatus for receiving data with down compatibility in high throughput wireless network
US7711061B2 (en) 2005-08-24 2010-05-04 Broadcom Corporation Preamble formats supporting high-throughput MIMO WLAN and auto-detection
US8027306B2 (en) 2006-02-17 2011-09-27 Lg Electronics Inc. Miscellaneous improvements on the HRPD system
WO2008107972A1 (ja) * 2007-03-06 2008-09-12 Mitsubishi Electric Corporation 通信装置および通信システム
CN101483626B (zh) 2008-01-09 2012-11-28 中兴通讯股份有限公司 前导序列的发送、接收、及传输方法
EP2281357B1 (en) 2008-05-15 2012-12-26 Marvell World Trade Ltd. Efficient physical layer preamble format
US8982889B2 (en) * 2008-07-18 2015-03-17 Marvell World Trade Ltd. Preamble designs for sub-1GHz frequency bands
US20100290449A1 (en) * 2008-08-20 2010-11-18 Qualcomm Incorporated Preamble extensions
JP5077181B2 (ja) 2008-10-14 2012-11-21 ソニー株式会社 情報受信装置、情報送信装置および情報通信システム
US8989106B2 (en) * 2009-02-27 2015-03-24 Qualcomm Incorporated Methods and apparatuses for scheduling uplink request spatial division multiple access (RSDMA) messages in an SDMA capable wireless LAN
WO2010118383A1 (en) * 2009-04-10 2010-10-14 Marvell World Trade Ltd. Signaling for multi-dimension wireless resource allocation
US9655002B2 (en) 2009-04-13 2017-05-16 Marvell World Trade Ltd. Physical layer frame format for WLAN
US8599804B2 (en) 2009-08-07 2013-12-03 Broadcom Corporation Distributed signal field for communications within multiple user, multiple access, and/or MIMO wireless communications
US8238316B2 (en) 2009-12-22 2012-08-07 Intel Corporation 802.11 very high throughput preamble signaling field with legacy compatibility
KR101621103B1 (ko) * 2010-02-26 2016-05-16 엘지전자 주식회사 무선랜 시스템에서 전송 채널 할당 방법 및 장치
CN101788330B (zh) 2010-02-26 2011-11-23 南京海克医疗设备有限公司 测量高强度聚焦超声功率的吸收靶
US8559323B2 (en) 2010-03-10 2013-10-15 Cisco Technology, Inc. Downlink OFDMA for service sets with mixed client types
BR112012022749B1 (pt) 2010-03-12 2021-09-14 Electronics And Telecommunications Research Institute Método e equipamento para transmitir e receber dados em rede local sem fio
EP2548316B1 (en) 2010-03-15 2018-12-19 LG Electronics Inc. Method and apparatus for transmitting frame in wlan system
US9025428B2 (en) 2010-04-14 2015-05-05 Qualcomm Incorporated Allocating and receiving tones for a frame
US8867574B2 (en) * 2010-06-02 2014-10-21 Qualcomm Incorporated Format of VHT-SIG-B and service fields in IEEE 802.11AC
CN102714648B (zh) 2010-07-09 2015-07-15 联发科技(新加坡)私人有限公司 无线局域网设备及其传送、接收方法
US8934572B2 (en) 2010-08-31 2015-01-13 Broadcom Corporation Phase rotation for preambles within multiple user, multiple access, and/or MIMO wireless communications
US9119110B2 (en) 2010-09-22 2015-08-25 Qualcomm, Incorporated Request to send (RTS) and clear to send (CTS) for multichannel operations
US20120163292A1 (en) 2010-12-23 2012-06-28 Nokia Corporation Frame Header in Wireless Communication System
EP3091796B1 (en) 2011-01-16 2017-12-13 LG Electronics, Inc. Method for communication based on indentifying information assignment and apparatus for the same
US9674317B2 (en) 2011-02-10 2017-06-06 Marvell World Trade Ltd. Multi-clock PHY preamble design and detection
US9160503B2 (en) 2011-03-04 2015-10-13 Qualcomm Incorporated Method and apparatus supporting improved wide bandwidth transmissions
US8934413B2 (en) 2011-05-13 2015-01-13 Qualcomm Incorporated Systems and methods for wireless communication of packets having a plurality of formats
US9385911B2 (en) 2011-05-13 2016-07-05 Sameer Vermani Systems and methods for wireless communication of packets having a plurality of formats
JP6014948B2 (ja) 2011-05-26 2016-10-26 マーベル ワールド トレード リミテッド 長距離wlanのサウンディングパケット形式
US9203586B2 (en) 2011-06-15 2015-12-01 Lg Electronics Inc. Method for transmitting and receiving data unit based on uplink multiple user multiple input multiple output transmission and apparatus for the same
CN102223346B (zh) 2011-07-29 2013-06-05 哈尔滨工业大学 基于加权分数傅立叶变换的多域联合多址方法
KR101883892B1 (ko) 2011-10-13 2018-08-01 한국전자통신연구원 통신 시스템에서 데이터 송수신 장치 및 방법
WO2013109089A1 (ko) 2012-01-18 2013-07-25 엘지전자 주식회사 화이트 스페이스 대역에서 동작 채널 설정 방법 및 이를 위한 장치
US9480104B2 (en) * 2012-01-30 2016-10-25 Marvell World Trade Ltd. Systems and methods for generating preamble symbols in communication systems
KR20150013640A (ko) * 2012-04-30 2015-02-05 인터디지탈 패튼 홀딩스, 인크 협력형 직교 블록 기반 자원 할당(cobra) 동작을 지원하는 방법 및 장치
US10439773B2 (en) 2013-04-15 2019-10-08 Qualcomm Incorporated Systems and methods for backwards-compatible preamble formats for multiple access wireless communication
US9729285B2 (en) 2013-06-13 2017-08-08 Avago Technologies General Ip (Singapore) Pte. Ltd Flexible OFDMA packet structure for wireless communications

Also Published As

Publication number Publication date
SG11201506975WA (en) 2015-10-29
BR112015026003A2 (pt) 2017-07-25
KR101797570B1 (ko) 2017-11-15
HUE035213T2 (en) 2018-05-02
KR101727999B1 (ko) 2017-05-02
DK2987288T3 (en) 2017-08-21
UA115593C2 (uk) 2017-11-27
SG11201507119SA (en) 2015-10-29
TWI583158B (zh) 2017-05-11
PH12015502268B1 (en) 2016-02-01
US20140307612A1 (en) 2014-10-16
JP2016521052A (ja) 2016-07-14
CN105432051A8 (zh) 2016-08-10
TWI527413B (zh) 2016-03-21
US10439773B2 (en) 2019-10-08
AU2014272164A1 (en) 2015-10-22
RU2015148666A (ru) 2017-05-22
BR112015026195A2 (pt) 2017-07-25
EP2987289A1 (en) 2016-02-24
ES2634633T3 (es) 2017-09-28
JP2016519909A (ja) 2016-07-07
TW201445951A (zh) 2014-12-01
CN105432051B (zh) 2019-07-26
AU2014254272A1 (en) 2015-10-29
CN105379216A (zh) 2016-03-02
CA2907884C (en) 2017-05-02
US9397805B2 (en) 2016-07-19
AU2014254272B2 (en) 2018-03-22
JP6333953B2 (ja) 2018-05-30
CN105432050B (zh) 2018-12-07
PH12015502268A1 (en) 2016-02-01
WO2014193547A1 (en) 2014-12-04
PH12015502267A1 (en) 2016-02-01
CA2907932C (en) 2020-07-14
US20190173637A1 (en) 2019-06-06
AU2014272164B2 (en) 2017-11-02
MY168561A (en) 2018-11-13
CA2907932A1 (en) 2014-12-04
WO2014172198A1 (en) 2014-10-23
US20140307649A1 (en) 2014-10-16
CN105379216B (zh) 2017-07-25
EP2987288A1 (en) 2016-02-24
IL241087A0 (en) 2015-11-30
RU2627043C2 (ru) 2017-08-03
TWI552557B (zh) 2016-10-01
CN105432051A (zh) 2016-03-23
JP2016521051A (ja) 2016-07-14
BR112015025982A2 (pt) 2017-07-25
KR20150144327A (ko) 2015-12-24
MY172200A (en) 2019-11-15
CA2907884A1 (en) 2014-10-23
EP2987288B1 (en) 2017-05-31
KR20150143748A (ko) 2015-12-23
TW201445952A (zh) 2014-12-01
KR101728053B1 (ko) 2017-04-18
HK1219368A1 (zh) 2017-03-31
TW201445950A (zh) 2014-12-01
IL242008B (en) 2018-12-31
RU2641673C2 (ru) 2018-01-19
PH12015502267B1 (en) 2016-02-01
US9344238B2 (en) 2016-05-17
EP2987290A1 (en) 2016-02-24
WO2014172201A1 (en) 2014-10-23
IL241087B (en) 2018-08-30
HK1219584A1 (zh) 2017-04-07
CN105432050A (zh) 2016-03-23
RU2015143959A (ru) 2017-05-22
SI2987288T1 (sl) 2017-10-30
US20140307650A1 (en) 2014-10-16
JP6181287B2 (ja) 2017-08-16
UA117128C2 (uk) 2018-06-25
BR112015025982B1 (pt) 2022-12-27
PT2987288T (en) 2017-09-05
KR20150143747A (ko) 2015-12-23

Similar Documents

Publication Publication Date Title
JP6133492B2 (ja) 多元接続wlan通信システムのための後方互換性プリアンブルフォーマットを使用する装置および方法
JP2016521051A5 (ja)
JP6657236B2 (ja) 混合レートのワイヤレス通信における信号反復によるロバスト早期検出

Legal Events

Date Code Title Description
A524 Written submission of copy of amendment under article 19 pct

Free format text: JAPANESE INTERMEDIATE CODE: A524

Effective date: 20160629

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160630

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20160630

A871 Explanation of circumstances concerning accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A871

Effective date: 20160630

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20160930

A975 Report on accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A971005

Effective date: 20161006

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20161011

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20161221

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20170321

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20170419

R150 Certificate of patent or registration of utility model

Ref document number: 6133492

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250