WO2017088761A1 - 无线局域网数据传输方法和装置 - Google Patents

无线局域网数据传输方法和装置 Download PDF

Info

Publication number
WO2017088761A1
WO2017088761A1 PCT/CN2016/106941 CN2016106941W WO2017088761A1 WO 2017088761 A1 WO2017088761 A1 WO 2017088761A1 CN 2016106941 W CN2016106941 W CN 2016106941W WO 2017088761 A1 WO2017088761 A1 WO 2017088761A1
Authority
WO
WIPO (PCT)
Prior art keywords
ltf
sequence
ltf80m
bandwidth
heltf
Prior art date
Application number
PCT/CN2016/106941
Other languages
English (en)
French (fr)
Inventor
林伟
薛鑫
王宁娟
刘乐
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from CN201510854631.4A external-priority patent/CN106789761B/zh
Priority to EP19195775.2A priority Critical patent/EP3681113B1/en
Priority to BR122020009992-5A priority patent/BR122020009992B1/pt
Priority to EP21182080.8A priority patent/EP3952235A1/en
Priority to CA3006017A priority patent/CA3006017C/en
Priority to JP2018526696A priority patent/JP6591674B2/ja
Priority to KR1020187017283A priority patent/KR102109509B1/ko
Priority to EP16867984.3A priority patent/EP3370378B1/en
Priority to BR112018010247-4A priority patent/BR112018010247B1/pt
Priority to MX2018006280A priority patent/MX2018006280A/es
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to KR1020207012909A priority patent/KR102220247B1/ko
Priority to AU2016358881A priority patent/AU2016358881B2/en
Priority to RU2018121535A priority patent/RU2684640C1/ru
Priority to PL16867984T priority patent/PL3370378T3/pl
Priority to ES16867984T priority patent/ES2822833T3/es
Publication of WO2017088761A1 publication Critical patent/WO2017088761A1/zh
Priority to US15/987,174 priority patent/US10616027B2/en
Priority to US15/987,216 priority patent/US10686640B2/en
Priority to ZA2018/03521A priority patent/ZA201803521B/en
Priority to US16/870,570 priority patent/US10999119B2/en
Priority to US17/246,182 priority patent/US11677606B2/en
Priority to US18/309,575 priority patent/US20230336396A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L25/00Baseband systems
    • H04L25/02Details ; arrangements for supplying electrical power along data transmission lines
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/26Systems using multi-frequency codes
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W84/00Network topologies
    • H04W84/02Hierarchically pre-organised networks, e.g. paging networks, cellular networks, WLAN [Wireless Local Area Network] or WLL [Wireless Local Loop]
    • H04W84/10Small scale networks; Flat hierarchical networks
    • H04W84/12WLAN [Wireless Local Area Networks]

Definitions

  • the present invention relates to the field of communications, and in particular, to a method and an apparatus for constructing a service message. .
  • Wireless Local Area Networks is a data transmission system that uses radio frequency (RF) technology to replace the local area network of old twisted-pair copper wires, making the wireless local area network easy to use.
  • RF radio frequency
  • the access architecture allows users to achieve information transfer through it.
  • the development and application of WLAN technology has profoundly changed the way people communicate and work, bringing unprecedented convenience. With the widespread use of smart terminals, the demand for data network traffic is growing.
  • the development of WLAN is inseparable from the formulation and promotion of its standards.
  • the IEEE802.11 series is the main standard, mainly 802.11, 802.11b/g/a, 802.11n, 802.11ac. All of the standards except 802.11 and 802.11b use Orthogonal Frequency Division Multiplexing (OFDM) technology as the core technology of the physical layer.
  • OFDM Orthogonal Frequency Division Multiplexing
  • Channel estimation is a process of estimating the channel parameters through which a transmitted signal passes under certain criteria based on the received signal.
  • the performance of a wireless communication system is largely affected by wireless channels, such as shadow fading and frequency selective fading, etc., making the propagation path between the transmitter and receiver very complex.
  • Wireless channels are not as fixed and predictable as wired channels, but are highly random. In the coherent detection of OFDM systems, the channel needs to be estimated, and the accuracy of channel estimation will directly affect the performance of the whole system.
  • the present invention provides a HE-LTF transmission method.
  • the total space-time stream number N STS determines the number of OFDM symbols included in the HE-LTF domain N HELTF ;
  • the HE-LTF mode determines the HE- LTF frequency domain sequence;
  • the HE-LTF frequency domain sequence includes but is not limited to the HE-LTF mode sequence in the 1x mode mentioned in the embodiment; according to the OFDM symbol number N HELTF and the determined HELTF frequency domain sequence Send time domain signals.
  • a HE-LTF transmission method which acquires a transmission bandwidth BW, a total space-time flow number N STS , and a HE-LTF domain mode according to information carried in a signaling field in the preamble;
  • the N STS determines the number of OFDM symbols included in the HE-LTF field N HELTF ;
  • the corresponding HE-LTF frequency domain sequence is determined by the transmission bandwidth and the mode of the HE-LTF domain, including but not limited to the implementation manner
  • the HE-LTF mode sequence in the 1x mode mentioned; the channel estimation value of the corresponding subcarrier position is obtained from the received HE-LTF domain and the determined frequency domain sequence.
  • the HE-LTF mode sequence in the 1x mode in the embodiment of the present invention is a system having a very low PAPR value.
  • FIG. 1 is a simplified schematic diagram of a format of an HE PPDU
  • FIG. 2 is a schematic diagram of a subcarrier pattern in a 20 MHz bandwidth
  • 3 is a schematic diagram of a subcarrier pattern in a 40 MHz bandwidth
  • 4 is a schematic diagram of a subcarrier pattern in an 80 MHz bandwidth
  • 5 is a simplified comparison diagram of 1x, 2x, 4x OFDM symbols in the frequency domain
  • FIG. 6 is a simplified schematic diagram of a system architecture of an embodiment of the present invention.
  • FIG. 7 is a simplified schematic diagram of generation and transmission of a HE-LTF domain when transmitting a SU or a downlink DL MU MIMO packet;
  • FIG. 8 is a simplified schematic diagram of generation and transmission of a HE-LTF domain when transmitting a UL MU MIMO packet
  • 9A, 9B, and 9C are block diagrams of a data transmission device 20M 1x HE-LTF subcarrier position B transmitting end according to an embodiment of the present invention.
  • FIG. 10 is a block diagram of a data transmission apparatus 20M 1x HE-LTF subcarrier position B receiving end according to an embodiment of the present invention.
  • FIG. 11 is a simplified schematic diagram of a data transmission apparatus according to an embodiment of the present invention.
  • FIG. 6 is a schematic diagram of a applicable scenario of a pilot transmission method in a wireless local area network according to Embodiment 1 of the present invention. As shown in Figure 6, this An access station 101 and at least two sites 102 may be included in the WLAN network system.
  • An Access Point which can also be called a wireless access point or bridge or hotspot, can access a server or a communication network.
  • a station which may also be called a user equipment, may be a wireless sensor, a wireless communication terminal, or a mobile terminal, such as a mobile phone (or "cellular" phone) that supports WiFi communication function and a computer with wireless communication function.
  • a mobile terminal such as a mobile phone (or "cellular" phone) that supports WiFi communication function and a computer with wireless communication function.
  • it may be a portable, pocket-sized, handheld, computer-built, wearable, or in-vehicle wireless communication device that supports WiFi communication functions, and exchanges communication data such as voice and data with the wireless access network.
  • Those skilled in the art are aware that some communication devices may have the functions of the above-mentioned access points or sites, and are not limited herein.
  • a Long Training Sequence (LTF) that can be used for channel estimation is specified in the physical layer.
  • LTF Long Training Sequence
  • HE High Efficiency
  • PPDU Physical Layer Data Unit
  • FIG. 1 the High Efficiency (HE) Physical Layer Data Unit
  • a highly efficient long training field which may contain one or more HE-LTF symbols, each symbol being an OFDM symbol.
  • OFDMA technology is introduced in the 802.11ax standard, and the corresponding physical layer subcarrier spacing is also provided by existing Zoom out to The OFDM symbol Fourier transform period of the physical layer data portion is also Become Sometimes the subcarrier spacing becomes The formats of the above different OFDM symbols are simply referred to as 4x, 2x and 1x modes, respectively.
  • the subcarrier pattern under the bandwidth is shown in Figures 2 to 4.
  • the left 80MHz bandwidth of 160/80+80MHz and the subcarrier pattern of the right 80MHz bandwidth are the same as the subcarrier pattern under the 80MHz bandwidth.
  • the subcarrier pattern shows the possible location and size of the resource block when it is scheduled.
  • the pilot subcarrier position of 242RU (Resource Unit) is ⁇ 22, ⁇ 48, ⁇ 90, ⁇ 116;
  • the pilot subcarrier position of 484RU in 40MHz bandwidth is ⁇ 10, ⁇ 36 , ⁇ 78, ⁇ 104, ⁇ 144, ⁇ 170, ⁇ 212, ⁇ 238;
  • 996RU pilot subcarrier position at 80MHz bandwidth is ⁇ 24, ⁇ 92, ⁇ 158, ⁇ 226, ⁇ 266, ⁇ 334, ⁇ 400 , ⁇ 468.
  • the HE-LTF field needs to support the aforementioned 4x, 2x and 1x mode OFDM symbols.
  • the HE-LTF of the 4x mode is shown.
  • the subcarriers carrying the long training sequence of the symbol are located at -122, -121, ..., -3, -2, 2, 3, ..., 121, 122, and the rest are null subcarriers, and the subcarrier spacing is
  • the 2x mode HE-LTF symbol carries the long training sequence of subcarriers at -122, -120, ..., -4, -2, 2, 4, ..., 120, 122, and the rest are null subcarriers; equivalent Marking the position of the subcarrier as -64, -63, ..., -2, -1, 0, 1, 2, ..., 63, then the HE-LTF symbol of the 2x mode carries the subcarrier of the long training sequence at - 61, -60, ..., -2, -1, 1, 2, ..., 60, 61, the rest are empty subcarriers, and the subcarrier spacing is
  • the 1x mode HE-LTF symbol carries the long training sequence of subcarriers concentrated at -120, -116, ..., -8, -4, 4, 8, ..., 116, 120, and the rest are null subcarriers.
  • the position of the subcarrier can be marked as -32, -31, ..., -2, -1, 0, 1, 2, ..., 31, then the HE-LTF symbol of the 1x mode carries a long training sequence.
  • the subcarriers are located at -30, -29, ..., -2, -1, 1, 2, ..., 29, 30, and the rest are null subcarriers.
  • the subcarrier spacing is Its 20 MHz HT/VHT LTF sequence is defined as follows.
  • BB_LTF_L ⁇ +1, +1, -1, -1, +1, +1, -1, +1, -1, +1, +1, +1, +1 ⁇
  • BB_LTF_R ⁇ +1,-1,-1,+1,+1,-1,+1,-1,+1,-1,-1,-1,-1 ⁇
  • the 1xHE-LTF symbol carries the long training sequence of subcarriers at -30, -29, ..., -2, -1, 1, 2, ..., 29, 30, a total of 60 non-empty subcarriers, which cannot be directly utilized.
  • 1xHE-LTF is more applicable to OFDM than OFDMA scenarios, there is no need to consider the PAPR value of HE-LTF symbols generated when scheduling different RUs, and only need to consider the PAPR of HE-LTF symbols when performing OFDM transmission under each bandwidth.
  • BB_LTF_L means that each value in the BB_LTF_L sequence is flipped in polarity, ie 1 becomes -1 and -1 becomes 1.
  • -1*BB_LTF_R, -1*LTF left , -1*LTF right is equivalent.
  • the present invention provides a method for a sender to send a SU (single user) data packet or a DL-MU-MIMO (Down Link Multi-user Multiple In Multiple Out) data packet, including generating a HE. -
  • the total space-time stream number N STS determines the number of OFDM symbols included in the HE-LTF domain N HELTF ;
  • the HE-LTF frequency domain sequence is determined by a transmission bandwidth and an HE-LTF mode; the HE-LTF frequency domain sequence includes, but is not limited to, the sequence mentioned in the embodiment;
  • N HELTF 1
  • N HELTF 1
  • N HELTF 1
  • the orthogonal mapping matrix A degenerates to 1.
  • orthogonal mapping matrix A The definition of the orthogonal mapping matrix A is as follows.
  • K Pilot is the set of pilot subcarriers
  • P matrix is defined as
  • the antenna mapping matrix Q k of the kth subcarrier is N TX rows N STS columns.
  • the Q matrix can use the matrix defined in ⁇ 20.3.11.11.2 of the 802.11n standard.
  • the mode of the HE-LTF domain is also referred to as the mode of the HE-LTF symbol, ie the aforementioned 1x mode, 2x mode, or 4x mode.
  • the transmitting end when the transmitting end sends a UL-MU-MIMO (Up Link Multi-user Multiple In Multiple Out) data packet, the HE-LTF domain generation mode and the sending SU and the DL-
  • the MU-MIMO data packet is different in that before the non-AP station transmits the UL-MU-MIMO data packet, the AP needs to indicate the uplink scheduling information by using the trigger frame, including the identifier of the scheduled station, the transmission bandwidth, and the total space-time flow number ( Or the number of HE-LTF symbols), and the spatial stream number to which it is assigned.
  • the trigger frame including the identifier of the scheduled station, the transmission bandwidth, and the total space-time flow number ( Or the number of HE-LTF symbols), and the spatial stream number to which it is assigned.
  • the initial sequence of HELTF is ⁇ L 1 , L 2 , . . . , L m ⁇
  • the spatial stream sequence number assigned by the transmitting end is ⁇ i 1 , i 2 , i 3 ⁇
  • the mask sequence is selected as 8*8.
  • the masked HELTF sequence of the i th 1 spatial stream is
  • the orthogonal mapping matrix A used is an N HELTF row and an N HELTF column.
  • the sequence values carried by the subcarriers of each OFDM symbol of the HE-LTF domain are multiplied by the orthogonal mapping matrix A as follows.
  • the spatial stream sequence number allocated by the transmitting end (ie, the scheduled user) is ⁇ i 1 , i 2 , i 3 ⁇
  • the kth subcarrier of the nth OFDM symbol of the HE-LTF field is carried.
  • the A matrix in FIG. 7 can also be replaced with a P matrix.
  • an additional 8 subcarrier values are added based on two BB_LTF_L and two BB_LTF_R sequences to generate a 1x HE-LTF sequence.
  • the 8 subcarrier values are between ⁇ 1, -1 ⁇ . select.
  • -120:4:120 indicates -120, -116, ..., -8, -4, 0, 4, 8, ..., 116, 120 as previously described.
  • the corresponding pilot subcarrier position is ⁇ 48, ⁇ 116, that is, there are 4 pilot subcarriers.
  • the PAPR value of the 1x HE-LTF symbol generated from the sequence is only 4.1121 dB.
  • the values of PAPR caused by the inter-stream phase difference between the data subcarriers and the pilot subcarriers in the multi-spatial stream are listed.
  • the phase difference is caused by the A matrix, which is defined in section 22.3.8.3.5 of the 11ac standard.
  • the A matrix is defined in section 22.3.8.3.5 of the 11ac standard.
  • the A matrix is defined in section 22.3.8.3.5 of the 11ac standard.
  • the A matrix The A matrix.
  • the PAPR oscillation caused is only 0.2586dB
  • the worst PAPR value is 4.2136.
  • the existing 4x HE-LTF symbols and 2x HE-LTF symbols have PAPR values greater than 5 dB at 20 MHz bandwidth.
  • the PAPR value of the 1x HE-LTF symbol generated from the sequence is only 4.0821 dB.
  • the values of PAPR caused by the inter-stream phase difference between the data subcarriers and the pilot subcarriers in the multi-spatial stream are listed.
  • the phase difference is caused by the A matrix, which is defined in section 22.3.8.3.5 of the 11ac standard.
  • the A matrix is defined in section 22.3.8.3.5 of the 11ac standard.
  • the A matrix is 0.2398 dB in the multi-space stream, and the worst PAPR value is 4.3219 dB.
  • another seed carrier position pattern of the HE-LTF in the 1x mode at the 20 MHz bandwidth is -122:4:122.
  • an additional 10 subcarrier values are added based on the BB_LTF_L, BB_LTF_R, LTF left , and LTF right sequences to generate a 1x HE-LTF sequence.
  • the 10 subcarrier values are at ⁇ 1, -1. ⁇ choice.
  • -122:4:122 indicates -122, -118, ..., -6, -2, 2, 6, ..., 118, 122 as previously described.
  • the corresponding pilot subcarrier position is ⁇ 22, ⁇ 90, that is, there are 4 pilot subcarriers.
  • the PAPR value of the 1x HE-LTF symbol generated from the sequence is only 3.7071 dB.
  • the phase difference is caused by the A matrix, which is defined in section 22.3.8.3.5 of the 11ac standard.
  • the A matrix is defined in section 22.3.8.3.5 of the 11ac standard.
  • the multi-spatial stream is due to the inter-stream phase difference between the data subcarrier and the pilot subcarrier (caused by the P matrix, and the P matrix is defined in section 22.3.8.3.5 of the 11ac standard).
  • the PAPR oscillation is only 0.2657, the most The poor PAPR value is 3.9728.
  • the existing 4x HE-LTF symbols and 2x HE-LTF symbols have PAPR values greater than 5 dB at 20 MHz bandwidth.
  • the PAPR value of the 1xHE-LTF symbol generated from the sequence is only 3.8497 dB.
  • the values of the PAPR caused by the inter-stream phase difference between the data subcarriers and the pilot subcarriers in the multi-spatial stream are listed. Among them, the PAPR oscillation caused by the inter-stream phase difference between the data subcarrier and the pilot subcarrier is 0.4069 in the multi-space stream, and the worst PAPR value is 4.2566 dB.
  • CP also called GI
  • the CP sequence refers to the CP sequence obtained from the original sequence before interception (ie, the sequence LTF t ). If the transmitting end adopts 256-point IFFT, refer to FIG. 9A, which is a simple schematic diagram of the transmitting end of the 20M 1x HE-LTF subcarrier position B, and finally performs time domain windowing operation and transmits.
  • FIG. 9C is an equivalent simple schematic diagram of the transmitting end of the 20M 1x HE-LTF subcarrier position B.
  • the time sequence received by the receiving end 1x HE-LTF part is Rx_LTF tq , and the previous LCP is removed to obtain the sequence LTF tqr .
  • a 256-point FFT operation on the LTF tr is performed to obtain a received frequency domain 1x HE-LTF sequence, called 1x Rx_HE-LTF.
  • An additional 18 subcarrier values are added based on the following two sets of sequences LTF left and LTF right to generate a 1x HE-LTF sequence. To ensure implementation simplicity, the 18 subcarrier values are selected between ⁇ 1, -1 ⁇ .
  • -244:4:244 means -244, -240, ..., -8, -4, 0, 4, 8, ..., 240, 244.
  • the corresponding pilot subcarrier positions are ⁇ 36, ⁇ 104, ⁇ 144, ⁇ 212, that is, there are 8 pilot subcarriers.
  • the PAPR value of the 1x HE-LTF symbol generated from the sequence is only 4.6555 dB.
  • the values of PAPR caused by the inter-stream phase difference between the data subcarriers and the pilot subcarriers in the multi-spatial stream are listed.
  • the phase difference is caused by the A matrix, which is defined in section 22.3.8.3.5 of the 11ac standard.
  • the A matrix is defined in section 22.3.8.3.5 of the 11ac standard.
  • the A matrix is defined in section 22.3.8.3.5 of the 11ac standard.
  • the A matrix is defined in section 22.3.8.3.5 of the 11ac standard.
  • the A matrix The A matrix.
  • the PAPR oscillation caused by the inter-stream phase difference between the data subcarrier and the pilot subcarrier is only 0.5273 dB in the multi-space stream, and the worst PAPR value is 4.6555 dB.
  • the existing 4x HE-LTF symbols and 2x HE-LTF symbols have a PAPR value of more than 6 dB in the worst case at 40 MHz bandwidth.
  • -244:4:244 means -244, -240, ..., -8, -4, 0, 4, 8, ..., 240, 244.
  • the corresponding pilot subcarrier positions are ⁇ 36, ⁇ 104, ⁇ 144, ⁇ 212, that is, there are 8 pilot subcarriers.
  • the PAPR value of the 1x HE-LTF symbol generated from the sequence is only 4.6831 dB.
  • the values of PAPR caused by the inter-stream phase difference between the data subcarriers and the pilot subcarriers in the multi-spatial stream are listed.
  • the phase difference is caused by the A matrix, which is defined in section 22.3.8.3.5 of the 11ac standard.
  • the A matrix is defined in section 22.3.8.3.5 of the 11ac standard.
  • the A matrix is defined in section 22.3.8.3.5 of the 11ac standard.
  • the A matrix is defined in section 22.3.8.3.5 of the 11ac standard.
  • the A matrix The A matrix.
  • the PAPR oscillation caused by the inter-stream phase difference between the data subcarrier and the pilot subcarrier is only 0.3397 dB in the multi-space stream, and the worst PAPR value is 4.8335 dB.
  • the existing 4x HE-LTF symbols and 2x HE-LTF symbols have a PAPR value of more than 6 dB in the worst case at 40 MHz bandwidth.
  • -244:4:244 means -244, -240, ..., -8, -4, 0, 4, 8, ..., 240, 244.
  • the corresponding pilot subcarrier positions are ⁇ 36, ⁇ 104, ⁇ 144, ⁇ 212, that is, there are 8 pilot subcarriers.
  • the PAPR value of the 1x HE-LTF symbol generated from the sequence is only 5.1511 dB.
  • the values of PAPR caused by the inter-stream phase difference between the data subcarriers and the pilot subcarriers in the multi-spatial stream are listed.
  • the phase difference is caused by the A matrix, which is defined in section 22.3.8.3.5 of the 11ac standard.
  • the A matrix is defined in section 22.3.8.3.5 of the 11ac standard.
  • the A matrix is defined in section 22.3.8.3.5 of the 11ac standard.
  • the A matrix is defined in section 22.3.8.3.5 of the 11ac standard.
  • the A matrix The A matrix.
  • the PAPR oscillation caused by the inter-stream phase difference between the data subcarrier and the pilot subcarrier is only 0.1 dB in the multi-space stream, and the worst PAPR value is 5.1511 dB.
  • the existing 4x HE-LTF symbols and 2x HE-LTF symbols have a PAPR value of more than 6 dB in the worst case at 40 MHz bandwidth.
  • the PAPR value of the 1x HE-LTF symbol generated from the sequence is only 4.9848 dB.
  • the values of PAPR caused by the inter-stream phase difference between the data subcarriers and the pilot subcarriers in the multi-spatial stream are listed.
  • the phase difference is caused by the A matrix, which is defined in section 22.3.8.3.5 of the 11ac standard.
  • the A matrix is defined in section 22.3.8.3.5 of the 11ac standard.
  • the A matrix is 0.3083 dB in the multi-space stream, and the worst PAPR value is 5.2026 dB.
  • An additional 42 subcarrier values are added based on the following two sets of sequences LTF left and LTF right to generate a 1x HE-LTF sequence. To ensure implementation simplicity, the 42 subcarrier values are selected between ⁇ +1, -1 ⁇ .
  • -500:4:500 means -500, -496, ..., -8, -4, 0, 4, 8, ..., 496, 500.
  • the corresponding pilot subcarrier position is ⁇ 24, ⁇ 92, ⁇ 400, ⁇ 468, that is, there are 8 pilot subcarriers.
  • the PAPR value of the 1x HE-LTF symbol generated according to the sequence is only 4.8609 dB, and the PAPR oscillation caused by the inter-stream phase difference between the data subcarrier and the pilot subcarrier is only 0.1413 in multi-space stream. dB, the worst PAPR value is 5.022dB.
  • the existing 4x HE-LTF symbols and 2x HE-LTF symbols have a PAPR value of more than 6 dB in the worst case at 80 MHz bandwidth. It should be noted here that the optimum here means that the left and right portions of the sequence can be combined to form a set of 160M 1x HE-LTF sequences with excellent performance.
  • the sequence in the above embodiment is a sequence represented by every 4 bits, and is represented by 0 at the interval position.
  • Those skilled in the art can directly and unambiguously obtain a 1xHE-LTF sequence under the 80M bandwidth using other expressions, for example, zero values at other positions are complemented. It will be understood by those skilled in the art that the sequence is substantially the same as the aforementioned sequence, but the expression is different, and does not affect the essence of the technical solution.
  • -500:4:500 means -500, -496, ..., -8, -4, 0, 4, 8, ..., 496, 500.
  • the corresponding pilot subcarrier position is ⁇ 24, ⁇ 92, ⁇ 400, ⁇ 468, that is, there are 8 pilot subcarriers.
  • the PAPR value of the 1x HE-LTF symbol generated from the sequence is only 4.8024 dB.
  • the values of the PAPR caused by the inter-stream phase difference between the data subcarriers and the pilot subcarriers in the multi-spatial stream are listed.
  • the PAPR oscillation caused by the inter-stream phase difference between the data subcarrier and the pilot subcarrier is only 0.1324 dB in the multi-space stream, and the worst PAPR value is 4.9348 dB.
  • the existing 4x HE-LTF symbols and 2x HE-LTF symbols have a PAPR value of more than 6 dB in the worst case at 80 MHz bandwidth.
  • the PAPR value of the 1x HE-LTF symbol generated from the sequence is only 4.97 dB.
  • Table 12 lists the multi-space streams caused by the inter-stream phase difference between the data subcarriers and the pilot subcarriers.
  • the value of the PAPR The PAPR oscillation caused by the inter-stream phase difference between the data subcarrier and the pilot subcarrier is only 0.26 dB in the multi-space stream, and the worst PAPR value is 4.97 dB.
  • the PAPR value of the 1x HE-LTF symbol generated from the sequence is only 4.53 dB.
  • Table 13 lists the values of PAPR caused by the inter-stream phase difference between the data subcarriers and the pilot subcarriers in the multi-spatial stream.
  • the PAPR oscillation caused by the inter-stream phase difference between the data subcarrier and the pilot subcarrier is only 0.52 dB in the multi-space stream, and the worst PAPR value is 5.05 dB.
  • the subcarrier design of 160MHz bandwidth can be spliced by two 80MHz subcarrier designs.
  • the main 80M band and the auxiliary 80M band can be continuously spliced or separated by a certain bandwidth (for example, 100MHz interval), and the main 80M band and the auxiliary 80M band are before and after the band.
  • the position can be flexibly adjusted according to the actual situation. Therefore, we can define the 1x HE-LTF sequence of the main 80M band and the auxiliary 80M band, respectively, and adjust the polarity in units of the 80M sequence as a whole to obtain a lower PAPR according to the interval and band order.
  • L-LTF 80M_A and R-LTF 80M_A as the base sequence to generate the main 80M sequence and the auxiliary 80M sequence, respectively.
  • HE-LTF 500 [P1 * LTF 80M_Primary , BI, P2 * LTF 80M_Secondary ]; when the relationship between the two 80M channels is [auxiliary 80M, main 80M]
  • the main 80M and the auxiliary 80M channels are not adjacent, the BI can be adjusted accordingly; at the same time, the main 80M and the auxiliary 80M can be independently generated and then spliced into a 160M band.
  • the polarity adjustment coefficients of the main 80MHz bandwidth and the auxiliary 80MHz bandwidth in the two frequency bands and various frequency intervals are shown in the following table, where the primary and secondary channel spacing refers to the center frequency interval of the two 80M bands (interval 80MHz refers to It is a mosaic of two adjacent 80M channels).
  • the corresponding PAPR values in various cases are also shown in the table, where the PAPR value is the maximum value of the phase difference between the data and the pilot.
  • the primary and secondary 80M bandwidth sequences require polarity adjustment, and most of the other cases can be directly spliced.
  • the sequence in the above embodiment is a sequence represented by every 4 bits, and is 0 in the interval position.
  • the above HE-LTF 500 [P1 * LTF 80M_Primary , BI, P2 * LTF 80M_Secondary ], P1 is +1, P2 is +1 as an example, and ordinary people in the art can directly and unambiguously obtain other expressions.
  • the sequence for example, that is, the entire sequence, is in a manner that complements the value of 0 at other locations. Those skilled in the art can understand that the sequence is substantially the same as the foregoing, but the expression is different, and does not affect the essence of the technical solution:
  • HE-LTF -1012:1:1012 ⁇ LTF' 80M_Primary ,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,LTF' 80M_Secondary ⁇ ,
  • LTF' 80M_Primary ⁇ L-LTF' 80M_A , 0, R-LTF' 80M_A ⁇ ,
  • LTF' 80M_Secondary ⁇ L-LTF' 80M_A ,0,-1*R-LTF' 80M_A ⁇ ;
  • L-LTF' 80M_A ⁇ -1, 0, 0, 0, -1, 0, 0, 0, +1, 0, 0, 0, +1, 0,0,0,0,+1,0,0,0,0,+1,0,0,0,0,0,+1,0,0,0,0,-1,0,0,0,0,0,0,-1,0,0,0,0,0,-1,0,0,0,0,0,-1,0,0,0,+1,0,0,0,0,0,-1,0,0,0,+1,0 ,0,0,0,0,-1,0,0,0,0,+1,0,0,0,0,0,-1,0,0,0,0,-1,0,0,0,0,0, -1,0,0,0,0,0, -1,0,0,0,0, -1,0,0,0,0, -1,0,0,0,0, -1,0,0,0,0, -1,0
  • R-LTF' 80M_A ⁇ 0,0,-1,0,0,0,+1,0,0,0,0,+1,0,0,0,-1,0,0,0,- 1,0,0,0,+1,0,0,0,0,+1,0,0,0,0,-1,0,0,0,0,+1,0,0,0,-1,0,0,0,+1,0,0,0,0,-1,0,0,0,0,+1,0,0,0,0,-1,0,0,0,0,+1,0,0,0,+1,0,0,0,0,+1,0,0,0,0,0,+1,0,0,0,0,0,+1,0,0,0,0,0,-1,0,0,0,0,+1,0,0,0,0,+1,0,0,0,0,0,+1,0,0,0,0,-1,0,0,0,0,+1,0,0,
  • -1012:4:1012 means -1012, -1008, ..., -8, -4, 0, 4, 8, ..., 1008, 1012.
  • the corresponding pilot subcarrier positions are ⁇ 44, ⁇ 112, ⁇ 420, ⁇ 488 ⁇ 536, ⁇ 604, ⁇ 912, ⁇ 980, that is, there are 16 pilot subcarriers.
  • the PAPR value of the 1x HE-LTF symbol generated from the sequence is only 5.7413 dB.
  • Table 14 lists the values of PAPR caused by the inter-stream phase difference between the data subcarriers and the pilot subcarriers in the multi-spatial stream.
  • the PAPR oscillation due to the phase difference between the data subcarriers and the pilot subcarriers is 0.3948 dB, and the worst PAPR value is only 5.9667 dB.
  • the subcarrier design of 160MHz bandwidth can be spliced by two 80MHz subcarrier designs.
  • the main 80M band and the auxiliary 80M band can be continuously spliced or separated by a certain bandwidth (for example, 100MHz interval), and the main 80M band and the auxiliary 80M band are before and after the band.
  • the position can be flexibly adjusted according to the actual situation. Therefore, we can define the 1x HE-LTF sequence of the main 80M band and the auxiliary 80M band, respectively, and The interval and frequency band order are flexible to adjust the polarity in units of the 80M sequence as a whole to obtain a lower PAPR.
  • sub-optimal sequence and the re-optimal sequence in the fourth embodiment of the present invention as the main 80M sequence and the auxiliary 80M sequence, respectively, and splicing to obtain a new 1 ⁇ HE-LTF sequence under the 160 MHz bandwidth.
  • LTF 80M_Primary the sub-optimal sequence in the fourth embodiment of the present invention
  • LTF 80M_Secondary the re-excellent sequence in the fourth embodiment of the present invention.
  • P1 denote the polarity adjustment coefficient of the main 80M sequence
  • P2 denote the polarity adjustment coefficient of the auxiliary 80M sequence
  • HE-LTF 500 [P1 * LTF 80M_Primary , BI, P2 * LTF 80M_Secondary ]
  • HE-LTF 500 [P2 * LTF 80M_Secondary , BI, P1 * LTF 80M_Primary ].
  • BI refers to the frequency interval between two 80M channel edge subcarriers.
  • BI can be adjusted accordingly; at the same time, the main 80M and the auxiliary 80M can be separately generated and re-spliced into a 160M band.
  • the polarity adjustment coefficients of the main 80MHz bandwidth and the auxiliary 80MHz bandwidth in the two frequency bands and various frequency intervals are shown in Table 15, wherein the primary and secondary channel spacing refers to the center frequency interval of the two 80M bands (interval 80MHz refers to It is a splicing of two adjacent 80M channels).
  • PAPR value is the maximum value of the phase difference between the data and the pilot.
  • Table 15 The corresponding PAPR values in each case are also shown in Table 15, where the PAPR value is the maximum value of the phase difference between the data and the pilot.
  • the 1xHE-LTF sequence has good PAPR characteristics under different bandwidths, and the PAPR characteristics of the multi-space stream have very small fluctuations, can effectively utilize the power amplifier, and can be better in the long-distance transmission mode. Power enhancement is performed to accommodate longer distance transmissions.
  • the present invention can be applied to a wireless local area network, including but not limited to a Wi-Fi system represented by 802.11a, 802.11b, 802.11g, 802.11n, and 802.11ac, and can also be applied to a next-generation Wi-Fi system, and a next generation.
  • a wireless local area network including but not limited to a Wi-Fi system represented by 802.11a, 802.11b, 802.11g, 802.11n, and 802.11ac, and can also be applied to a next-generation Wi-Fi system, and a next generation.
  • a wireless LAN system including but not limited to a Wi-Fi system represented by 802.11a, 802.11b, 802.11g, 802.11n, and 802.11ac
  • the present invention also provides a data transmission device that can perform the aforementioned method.
  • 11 is an example of a schematic structural diagram of a data transmission apparatus provided in an embodiment of the present invention (for example, some devices in an access point, a site, or a chip, etc. are optional).
  • data transmission device 1200 can be implemented by bus 1201 as a general bus architecture.
  • bus 1201 may include any number of interconnecting buses and bridges.
  • Bus 1201 connects various circuits together, including processor 1202, storage medium 1203, and bus interface 1204.
  • the data transmission device 1200 uses the bus interface 1204 to pass the network adapter 1205 and the like via The bus 1201 is connected.
  • the network adapter 1205 can be used to implement signal processing functions of the physical layer in the wireless local area network, and transmit and receive radio frequency signals through the antenna 1207.
  • the user interface 1206 can be connected to a user terminal such as a keyboard, display, mouse, joystick, and the like.
  • the bus 1201 can also be connected to various other circuits such as timing sources, peripherals, voltage regulators, power management circuits, etc., which are well known in the art and therefore will not be described in detail.
  • the data transfer device 1200 can also be configured as a general purpose processing system including: one or more microprocessors providing processor functionality; and external memory providing at least a portion of the storage medium 1203, all through an external bus system The structure is connected to other support circuits.
  • the data transfer device 1200 can be implemented using an ASIC (application specific integrated circuit) having a processor 1202, a bus interface 1204, a user interface 1206, and at least a portion of the storage medium 1203 integrated in a single chip, or
  • the data transmission device 1200 can be implemented using one or more FPGAs (Field Programmable Gate Arrays), PLDs (Programmable Logic Devices), controllers, state machines, gate logic, discrete hardware components, any other suitable A circuit, or any combination of circuits capable of performing the various functions described throughout the present invention.
  • FPGAs Field Programmable Gate Arrays
  • PLDs Programmable Logic Devices
  • controllers state machines, gate logic, discrete hardware components, any other suitable A circuit, or any combination of circuits capable of performing the various functions described throughout the present invention.
  • the processor 1202 is responsible for managing the bus and general processing (including executing software stored on the storage medium 1203).
  • Processor 1202 can be implemented using one or more general purpose processors and/or special purpose processors. Examples of processors include microprocessors, microcontrollers, DSP processors, and other circuits capable of executing software.
  • Software should be interpreted broadly to mean instructions, data, or any combination thereof, whether referred to as software, firmware, middleware, microcode, hardware description language, or otherwise.
  • Storage medium 1203 is shown separated from processor 1202 in FIG. 11, however, those skilled in the art will readily appreciate that storage medium 1203, or any portion thereof, may be located external to data transmission device 1200.
  • storage medium 1203 can include transmission lines, carrier waveforms modulated with data, and/or computer products separate from wireless nodes, all of which can be accessed by processor 1202 through bus interface 1204.
  • storage medium 1203, or any portion thereof, can be integrated into processor 1202, for example, can be a cache and/or a general purpose register.
  • the processor 1202 can perform the above embodiments, and details are not described herein again.
  • the foregoing program may be stored in a computer readable storage medium, and the program is executed when executed.
  • the foregoing steps include the steps of the foregoing method embodiments; and the foregoing storage medium includes: a medium that can store program codes, such as a ROM, a RAM, a magnetic disk, or an optical disk.

Abstract

一种HE-LTF传输方法,总空时流数NSTS确定HE-LTF域包含的OFDM符号数NHELTF;由传输带宽和HE-LTF模式确定HE-LTF频域序列;所述HE-LTF频域序列包括但不限于实施方式中提到的1x模式下的HE-LTF模式序列;根据所述OFDM符号数NHELTF以及所述确定的HELTF频域序列发送时域信号。上述方案具有较低的PAPR值。

Description

无线局域网数据传输方法和装置
本申请要求于2015/11/30提交中国专利局、申请号为201510854631.4、发明名称为“无线局域网数据传输方法和装置”的中国专利申请的优先权,以及,要求于2015/11/23提交中国专利局、申请号为201510823977.8、发明名称为“无线局域网数据传输方法和装置”的中国专利的优先权,它们的全部内容通过引用结合在本申请中。
技术领域
本发明涉及通信领域,尤其涉及一种业务消息的构造方法和装置。。
背景技术
无线局域网络(Wireless Local Area Networks,WLAN)是一种数据传输系统,它利用无线射频(Radio Frequency,RF)技术,取代旧式双绞铜线所构成的局域网络,使得无线局域网络能利用简单的存取架构让用户透过它,达到信息传输的目地。WLAN技术的发展与应用已经深深的改变了人们的交流方式和工作方式,带给人们前所未有的便捷。随着智能终端的广泛应用,人们对数据网络流量的需求日益增长。WLAN的发展离不开其标准的制定与推广应用,其中IEEE802.11系列是主要标准,主要有802.11,802.11b/g/a,802.11n,802.11ac。其中除802.11及802.11b外其它标准均采用正交频分复用(Orthogonal Frequency Division Multiplexing,OFDM)技术作为物理层的核心技术。
信道估计,就是根据接收信号在一定准则下将发射信号所经过的信道参数估计出来的过程。无线通信系统的性能很大程度上受到无线信道的影响,如阴影衰落和频率选择性衰落等等,使得发射机和接收机之间的传播路径非常复杂。无线信道并不像有线信道固定并可预见,而是具有很大的随机性。 在OFDM系统的相干检测中需要对信道进行估计,信道估计的精度将直接影响整个系统的性能。
发明内容
为了降低无线局域网的PAPR,本发明提供了一种HE-LTF传输方法,总空时流数NSTS确定HE-LTF域包含的OFDM符号数NHELTF;由传输带宽和HE-LTF模式确定HE-LTF频域序列;所述HE-LTF频域序列包括但不限于实施方式中提到的1x模式下的HE-LTF模式序列;根据所述OFDM符号数NHELTF以及所述确定的HELTF频域序列发送时域信号。
以及,相应的,一种HE-LTF传输方法,根据前导码中信令字段承载的信息获取传输带宽BW,总空时流数NSTS,及HE-LTF域的模式;由总空时流数NSTS确定HE-LTF字段包含的OFDM符号数NHELTF;由传输带宽和HE-LTF域的模式确定对应的HE-LTF频域序列,所述HE-LTF频域序列包括但不限于实施方式中提到的1x模式下的HE-LTF模式序列;由接收到的HE-LTF域和所述确定的频域序列获得对应子载波位置的信道估计值。
通过仿真与比较,本发明实施方式中的1x模式下的HE-LTF模式序列是的系统具有非常低的PAPR值。
附图说明
为了更清楚地说明本发明实施例或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作一简单地介绍,显而易见地,下面描述中的附图是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1是HE PPDU的一种格式的简单示意图;
图2是20MHz带宽下的子载波图样示意图;
图3是40MHz带宽下的子载波图样示意图;
图4是80MHz带宽下的子载波图样示意图;
图5是1x,2x,4x OFDM符号在频域上的简单对比示意图;
图6本发明实施方式系统架构简单示意图;
图7为发送SU或者下行DL MU MIMO数据包时HE-LTF域生成及发送的简单示意图;
图8为发送UL MU MIMO数据包时HE-LTF域生成及发送的简单示意图;
图9A,9B,9C为本发明实施方式一种数据传输装置20M 1x HE-LTF子载波位置B发送端框图。
图10为本发明实施方式一种数据传输装置20M 1x HE-LTF子载波位置B接收端框图。
图11为本发明实施方式一种数据传输装置的简单示意图。
具体实施方式
为使本发明实施例的目的、技术方案和优点更加清楚,下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有作出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
本发明各实施例的方案可适用于WLAN网络系统。图6为本发明实施例一所提供的无线局域网中的导频传输方法的适用场景示意图。如图6所示,该 WLAN网络系统中可包括一个接入站101和至少两个站点102。
接入点(AP,Access Point),也可称之为无线访问接入点或桥接器或热点等,其可以接入服务器或通信网络。
站点(STA,Station),还可以称为用户设备,可以是无线传感器、无线通信终端或移动终端,如支持WiFi通讯功能的移动电话(或称为“蜂窝”电话)和具有无线通信功能的计算机。例如,可以是支持WiFi通讯功能的便携式、袖珍式、手持式、计算机内置的,可穿戴的,或者,车载的无线通信装置,它们与无线接入网交换语音、数据等通信数据。本领域技术人员知道,一些通信设备可能同时具有上述接入点或者站点的功能,在此不予限制。
在上述以OFDM技术为核心的WLAN标准中,一个共同点是在物理层中规定了可用于信道估计的长训练字段(Long Training Sequence,LTF)。例如,802.11ax标准所规定的高效率(High Efficiency,HE)物理层协议数据单元(Physical Protocol Data Unit,PPDU)格式如图1所示,其中HE-LTF字段即为用于数据部分信道估计的高效率长训练字段,该字段可以包含一个或者多个HE-LTF码元,每个码元即为一个OFDM符号。
为提高系统吞吐率,802.11ax标准中引入了OFDMA技术,相应的物理层子载波间隔也由现有的
Figure PCTCN2016106941-appb-000001
缩小为
Figure PCTCN2016106941-appb-000002
物理层数据部分的OFDM符号傅立叶变换周期也由
Figure PCTCN2016106941-appb-000003
变为
Figure PCTCN2016106941-appb-000004
有时子载波间隔变为
Figure PCTCN2016106941-appb-000005
上述不同的OFDM符号的格式分别简称为4x,2x和1x模式。
随着802.11ax标准的逐步演进,20MHz,40MHz,80MHz以及160/80+80MHz 带宽下的子载波图样如图2至图4所示。其中,160/80+80MHz的左边80MHz带宽和右边80MHz带宽的子载波图样与80MHz带宽下的子载波图样相同。子载波图样显示了资源块在被调度时可能的位置和大小。
其中,20MH自带宽下,242RU(Resource Unit,资源单位)的导频子载波位置为±22,±48,±90,±116;40MHz带宽下484RU的导频子载波位置为±10,±36,±78,±104,±144,±170,±212,±238;80MHz带宽下996RU的导频子载波位置为±24,±92,±158,±226,±266,±334,±400,±468。
为了进一步提高不同场景下的系统效率,HE-LTF字段需要支持前述4x,2x和1x模式的OFDM符号。
如图5所示,以20MHz带宽为例子,当子载波的位置标记为-128,-127,…,-2,-1,0,1,2,…,127时,4x模式的HE-LTF码元载有长训练序列的子载波位于-122,-121,…,-3,-2,2,3,…,121,122,其余为空子载波,子载波间隔为
Figure PCTCN2016106941-appb-000006
2x模式的HE-LTF码元载有长训练序列的子载波位于-122,-120,…,-4,-2,2,4,…,120,122,其余为空子载波;等效的可将子载波的位置标记为-64,-63,…,-2,-1,0,1,2,…,63,则2x模式的HE-LTF码元载有长训练序列的子载波位于-61,-60,…,-2,-1,1,2,…,60,61,其余为空子载波,此时子载波间隔为
Figure PCTCN2016106941-appb-000007
类似的,1x模式的HE-LTF码元载有长训练序列的子载波集中在位于-120,-116,…,-8,-4,4,8,…,116,120,其余为空子载波;等效的可将子载波的位置标记为-32,-31,…,-2,-1,0,1,2,…,31,则1x模式的HE-LTF码元载有长训练序列的子载波位于-30,-29,…,-2,-1,1,2,…, 29,30,其余为空子载波,此时子载波间隔为
Figure PCTCN2016106941-appb-000008
目前,仅确定了4x HE-LTF和2x HE-LTF序列,1x HE-LTF序列还未确定。如何定义1x HE-LTF序列还属于一个开放性的问题。
在11n和11ac标准中,子载波间隔为
Figure PCTCN2016106941-appb-000009
其20MHz的HT/VHT LTF序列定义如下。
BB_LTF_L={+1,+1,-1,-1,+1,+1,-1,+1,-1,+1,+1,+1,+1}
BB_LTF_R={+1,-1,-1,+1,+1,-1,+1,-1,+1,-1,-1,-1,-1}
LTFleft={BB_LTF_L,BB_LTF_L}={+1,+1,-1,-1,+1,+1,-1,+1,-1,+1,+1,+1,+1,+1,+1,-1,-1,+1,+1,-1,+1,-1,+1,+1,+1,+1}
LTFright={BB_LTF_R,-1*BB_LTF_R}={+1,-1,-1,+1,+1,-1,+1,-1,+1,-1,-1,-1,-1,-1,+1,+1,-1,-1,+1,-1,+1,-1,+1,+1,+1,+1}
VHT-LTF56(-28:28)={+1,+1,LTFleft,0,LTFright,-1,-1}
然而,1xHE-LTF码元载有长训练序列的子载波位于-30,-29,…,-2,-1,1,2,…,29,30,共60个非空子载波,无法直接利用现有11n和11ac标准中的LTF序列。其余带宽亦有类似问题。
由于1xHE-LTF会更多的应用于OFDM而非OFDMA的场景,无需考虑调度不同RU时生成的HE-LTF符号的PAPR值,仅需考虑各带宽下进行OFDM传输时的HE-LTF符号的PAPR值,例如20MHz下的242RU,又如40MHz下的484RU,又如80MHz下的996RU等。因此本发明以具备优秀PAPR性质的BB_LTF_L,BB_LTF_R,LTFleft,LTFright序列为基础,对其进行一系列扩展操作,获得了不同带宽下 具有低PAPR特性的1x HE-LTF新序列。下文中序列-1*BB_LTF_L指对BB_LTF_L序列中的每一个值均翻转极性,即1变为-1,-1变为1。-1*BB_LTF_R,-1*LTFleft,-1*LTFright等同理。
本发明提供了发送端发送SU(single user,单用户)数据包或者DL-MU-MIMO(Down Link Multi-user Multiple in Multiple out,下行多用户多输入多输出)数据包的方法,包括生成HE-LTF域的过程:
总空时流数NSTS确定HE-LTF域包含的OFDM符号数NHELTF
由传输带宽和HE-LTF模式确定HE-LTF频域序列;所述HE-LTF频域序列包括但不限于实施方式中提到的序列;
根据所述OFDM符号数NHELTF以及所述确定的HELTF频域序列发送时域信号。
具体的,在发送端:
101、由总空时流数NSTS确定HE-LTF字段包含的OFDM符号数NHELTF,下表1给出了具体的对应关系。
NSTS NHELTF
1 1
2 2
3 4
4 4
5 6
6 6
7 8
8 8
表1
102、由传输带宽和HELTF模式确定HELTF频域序列。例如传输带宽为BW=20MHz,HE-LTF域的模式为1x时,对应为实施例一中的HELTF序列。
103、如果NHELTF>1,确定使用的正交映射矩阵A为NHELTF行,NHELTF列。特别的,NHELTF=1时,正交映射矩阵A退化为1。HELTF域的每个OFDM符号的子载波承载的序列值按如下方式乘以正交映射矩阵A。如图7所示,空时流数为NSTS时,HE-LTF字段第i路空间流第n个OFDM符号第k个子载波承载的序列值乘以
Figure PCTCN2016106941-appb-000010
其中i=1,...NSTS,n=1,…NHELTF
正交映射矩阵A的定义如下所示。
Figure PCTCN2016106941-appb-000011
其中KPilot为导频子载波集合,P矩阵定义为
Figure PCTCN2016106941-appb-000012
w=exp(-j2π/6)
Figure PCTCN2016106941-appb-000013
R矩阵定义为[R]m,n=[P]1,n
104、对HE-LTF域的每个空时流应用不同的循环移位延迟。各空时流对应的循环移位值如下表2所示。
Figure PCTCN2016106941-appb-000014
表2
105、将HE-LTF域的空时流映射至发射链路。若总发射链路数为NTX,总空时流数为NSTS,则第k个子载波的天线映射矩阵Qk为NTX行NSTS列。Q矩阵可以使用802.11n标准中第20.3.11.11.2节所定义的矩阵。
106、进行反离散傅立叶变换获取HE-LTF域的时域信号并发送所述时域信号。
在接收端:
201、根据前导码中信令字段承载的信息获取传输带宽BW,总空时流数NSTS,及HE-LTF域的模式。HE-LTF域的模式也称为HE-LTF符号的模式,即前述的1x模式,2x模式,或者4x模式。
202、由总空时流数NSTS确定HE-LTF字段包含的OFDM符号数NHELTF
203、由传输带宽和HE-LTF域的模式确定对应的HE-LTF频域序列;由接 收到的HE-LTF域和所述确定的频域序列获得对应子载波位置的信道估计值。
另外一个例子中,发送端发送UL-MU-MIMO(Up Link Multi-user Multiple in Multiple out,上行多用户多输入多输出)数据包时,所述HE-LTF域生成方式和发送SU及DL-MU-MIMO数据包不同之处在于:非AP站点发送UL-MU-MIMO数据包前,AP需要通过触发帧指示上行调度信息,包含被调度站点的标识符,传输带宽,总空时流数(或者HE-LTF符号数),以及自身被分配的空间流序号。
在发送端:
301、由总空时流数NSTS确定HE-LTF域包含的OFDM符号数NHELTF。调度信令中包含HE-LTF符号数则此步骤可以省略。
302、由传输带宽和HELTF模式确定HELTF频域序列。例如传输带宽为BW=40MHz,HE-LTF域的模式为1x时,对应为实施例二中的HELTF序列。
303、用8*8的P矩阵中的发送端(即被调度用户)所分配的空间流序号对应的行序列对所述HELTF序列进行掩码(即异或)处理。例如,HELTF初始序列为{L1,L2,...,Lm},发送端被分配的空间流序号为{i1,i2,i3}时,掩码序列选择8*8的P矩阵中的第{i1,i2,i3}行,则第i1路空间流的掩码后HELTF序列为
Figure PCTCN2016106941-appb-000015
mod表示求余。同理,可以得到
Figure PCTCN2016106941-appb-000016
Figure PCTCN2016106941-appb-000017
304、确定使用的正交映射矩阵A为NHELTF行,NHELTF列。HE-LTF域的每个OFDM符号的子载波承载的序列值按如下方式乘以正交映射矩阵A。
例如,如图8所示,发送端(即被调度用户)所分配的空间流序号为{i1,i2,i3}时,HE-LTF字段的第n个OFDM符号第k个子载波承载的序列值HELTF′k乘以
Figure PCTCN2016106941-appb-000018
其中i=i1,i2,i3,n=1,…NHELTF。可选的,图7中的A矩阵还可以替换成P矩阵。
剩余步骤类似前述例子,此处不再赘述
接收端:由于是UL-MU-MIMO传输,AP自身知道相关调度信息,因此可以直接执行信道估计算法。
401、由接收到的HE-LTF域和已知频域序列获得对应子载波位置的信道估计值。
应理解,上述例子中的CSD值还有Q矩阵等仅为示例,还有可能选用其它的值,本发明各实施方式不做限定。
下面对各种带宽优选的1x模式的HE-LTF序列进行举例说明:
本发明实施例一
场景:20MHz带宽下1x HE-LTF子载波位置A
一个例子中,,以两个BB_LTF_L和两个BB_LTF_R序列为基础添加额外的8个子载波值来生成1x HE-LTF序列,为保证实现简单,所述8个子载波值在{1,-1}间选择。
一个较优序列为:HE-LTF60(-120:4:120)={BB_LTF_L,+1,-1,-1*BB_LTF_L,-1,-1,0,+1,+1,BB_LTF_R,-1,-1,BB_LTF_R},也可以表示为HE-LTF60(-120:4:120)={+1,+1,-1,-1,+1,+1,-1,+1,-1,+1,+1,+1,+1,+1,-1,-1,-1,+1,+1,-1,-1,+1,-1,+1,-1,-1,-1,-1,-1,-1,0,+1,+1,+1,-1,-1,+1,+1,-1,+1,-1,+1,-1,-1,-1,-1,-1,-1,+1,-1,-1,+1,+1,-1,+1,-1,+1,-1,-1,-1, -1},同时也包括该序列每一个值均翻转极性后所得序列(即+1变为-1,-1变为+1,0不变),其余子载波为0,即空子载波。这里,-120:4:120如前所述表示-120,-116,…,-8,-4,0,4,8,…,116,120。此时,对应的导频子载波位置为±48,±116,即有4个导频子载波。
在单空间流时,根据所述序列生成的1x HE-LTF符号的PAPR值仅为4.1121dB。
参考表3,列出了多空间流时由数据子载波和导频子载波的流间相位差引起的PAPR的值,该相位差由A矩阵引起,11ac标准中的22.3.8.3.5节定义了A矩阵。其中,引起的PAPR震荡仅为0.2586dB,最差的PAPR值为4.2136。(已有的4x HE-LTF符号和2x HE-LTF符号在20MHz带宽下的PAPR值均大于5dB。)
相位差 20MHz
1 4.1121
-1 3.9572
exp(-jπ/3) 4.2136
exp(-j2π/3) 3.9550
PAPRmax-PAPRmin 0.2586
表3
次优的,序列为:HE-LTF60(-120:4:120)={+1,-1,-1,BB_LTF_L,-1,BB_LTF_L,0,BB_LTF_R,-1,-1*BB_LTF_R,+1,+1,-1},也可以表示为HE-LTF60(-120:4:120)={+1,-1,-1,+1,+1,-1,-1,+1,+1,-1,+1, -1,+1,+1,+1,+1,-1,+1,+1,-1,-1,+1,+1,-1,+1,-1,+1,+1,+1,+1,0,+1,-1,-1,+1,+1,-1,+1,-1,+1,-1,-1,-1,-1,-1,-1,+1,+1,-1,-1,+1,-1,+1,-1,+1,+1,+1,+1,+1,+1,-1},同时也包括该序列每一个值均翻转极性后所得序列(即+1变为-1,-1变为+1,0不变),其余子载波为0。
在单空间流时,根据所述序列生成的1x HE-LTF符号的PAPR值仅为4.0821dB。
参考表4,列出了多空间流时由数据子载波和导频子载波的流间相位差引起的PAPR的值,该相位差由A矩阵引起,11ac标准中的22.3.8.3.5节定义了A矩阵。其中,多空间流时由于数据子载波和导频子载波的流间相位差引起的PAPR震荡为0.2398dB,最差的PAPR值为4.3219dB。
相位差 20MHz
1 4.0821
-1 4.2189
exp(-jπ/3) 4.3219
exp(-j2π/3) 4.1652
PAPRmax-PAPRmin 0.2398
表4
本发明实施例二
场景:20MHz带宽下1x HE-LTF子载波位置B
为了便于信道估计内插操作,20MHz带宽下1x模式下的HE-LTF另一种子载波位置图样为-122:4:122。一个例子中,,以BB_LTF_L,BB_LTF_R,LTFleft,LTFright序列为基础添加额外的10个子载波值来生成1x HE-LTF序列,为保证实现简单,所述10个子载波值在{1,-1}间选择。该较优序列为:HE-LTF62(-122:4:122)={LTFright,-1,+1,-1,-1,+1,-1,-1,-1,+1,+1,LTFleft},也可以表示为HE-LTF62(-122:4:122)={+1,-1,-1,+1,+1,-1,+1,-1,+1,-1,-1,-1,-1,-1,+1,+1,-1,-1,+1,-1,+1,-1,+1,+1,+1,+1,-1,+1,-1,-1,+1,-1,-1,-1,+1,+1,+1,+1,-1,-1,+1,+1,-1,+1,-1,+1,+1,+1,+1,+1,+1,-1,-1,+1,+1,-1,+1,-1,+1,+1,+1,+1},同时也包括该序列每一个值均翻转极性后所得序列(即+1变为-1,-1变为+1,0不变),其余子载波为0,即空子载波。这里,-122:4:122如前所述表示-122,-118,…,-6,-2,2,6,…,118,122。此时,对应的导频子载波位置为±22,±90,即有4个导频子载波。
在单空间流时,根据所述序列生成的1x HE-LTF符号的PAPR值仅为3.7071dB。
参考表5,列出了多空间流时由数据子载波和导频子载波的流间相位差引起的PAPR的值,该相位差由A矩阵引起,11ac标准中的22.3.8.3.5节定义了A矩阵。其中,多空间流时由于数据子载波和导频子载波的流间相位差(由P矩阵引起,11ac标准中的22.3.8.3.5节定义了P矩阵)引起的PAPR震荡仅为0.2657,最差的PAPR值为3.9728。已有的4x HE-LTF符号和2x HE-LTF符号在20MHz带宽下的PAPR值均大于5dB。
相位差 20MHz
1 3.7071
-1 3.9149
exp(-jπ/3) 3.9728
exp(-j2π/3) 3.8403
PAPRmax-PAPRmin 0.2657
表5
次优的,序列为:HE-LTF62(-122:4:122)={BB_LTF_L,+1,+1,-1,-1*BB_LTF_L,-1,-1,+1,-1,-1*BB_LTF_R,+1,-1,-1,-1*BB_LTF_R},也可以表示为HE-LTF62(-122:4:122)={+1,+1,-1,-1,+1,+1,-1,+1,-1,+1,+1,+1,+1,+1,+1,-1,-1,-1,+1,+1,-1,-1,+1,-1,+1,-1,-1,-1,-1,-1,-1,+1,-1,-1,+1,+1,-1,-1,+1,-1,+1,-1,+1,+1,+1,+1,+1,-1,-1,-1,+1,+1,-1,-1,+1,-1,+1,-1,+1,+1,+1,+1},同时也包括该序列每一个值均翻转极性后所得序列(即+1变为-1,-1变为+1,0不变),其余子载波为0。
在单空间流时,根据所述序列生成的1xHE-LTF符号的PAPR值仅为3.8497dB。
参考表6,列出了多空间流时由数据子载波和导频子载波的流间相位差引起的PAPR的值。其中,多空间流时由于数据子载波和导频子载波的流间相位差引起的PAPR震荡为0.4069,最差的PAPR值为4.2566dB。
相位差 20MHz
1 3.8497
-1 4.2566
exp(-jπ/3) 4.1794
exp(-j2π/3) 4.1750
PAPRmax-PAPRmin 0.4069
表6
需要指出的是,对于本发明实施例二,在20MHz带宽下1x模式的HE-LTF子载波位置B场景下,对1x HE-LTF序列进行IFFT操作之后得到时间域序列为LTFt={LTFtq,-1*LTFtq,LTFtq,-1*LTFtq},其中LTFtq为该时间域序列的前1/4,发送端可直接发送加循环前缀(CP,也可称为GI)后的LTFtq序列Tx_LTFtq。需要指出的是,该CP序列指相对截取前原始序列(即序列LTFt)得到的CP序列。若发送端采用256点IFFT,参考图9A,为20M 1x HE-LTF子载波位置B发送端的简单示意图,最后进行时域加窗操作并发送。
等效的另一个方案中,发送端可对1x HE-LTF序列进行IFFT操作之后得到时间域序列为LTFt={LTFtq,-1*LTFtq,LTFtq,-1*LTFtq},其中LTFtq为该时间域序列的前1/4。随后截取前1/4得到序列LTFtq,并针对截取后序列LTFtq得到LTFtq的CP,随后对该CP序列符号取反(即CP所有值正负取反)后加到LTFtq前面得到发送序列Tx_LTFtq,最后进行时域加窗操作并发送。若发送端采用256点IFFT,参考图9B,为20M 1x HE-LTF子载波位置B发送端的等效简单示意图。
等效的另一个方案中,发送端可对1x HE-LTF序列进行IFFT操作之后得 到时间域序列为LTFt={LTFtq,-1*LTFtq,LTFtq,-1*LTFtq},其中LTFtq为该时间域序列的前1/4。随后,针对该序列LTFt得到LTFt的CP并加到LTFt前面得到序列LTFtp。最后,截取序列LTFtp的CP和LTFt前1/4部分(即该CP和LTFtq)得到发送序列Tx_LTFtq,最终进行时域加窗操作并发送。若发送端采用256点IFFT,参考图9C,为20M 1x HE-LTF子载波位置B发送端的等效简单示意图。
相应地,令接收端收到的1x HE-LTF时间序列为Rx_LTFtqr,去掉CP后为LTFtqr,则接收端可首先将该时间序列扩展为LTFtr={LTFtqr,-1*LTFtqr,LTFtqr,-1*LTFtqr},然后对其进行FFT操作即可。若接收端采用256点FFT,参考图10,为20M 1x HE-LTF子载波位置B接收端的简单示意图。
图10中,接收端1x HE-LTF部分收到的时间序列为Rx_LTFtq,去掉前面CP后得到序列LTFtqr。随后,将LTFtqr重复四次,并分别对第2、第4次重复符号取反,得到LTFtr={LTFtqr,-1*LTFtqr,LTFtqr,-1*LTFtqr}。随后,再对LTFtr进行256点FFT操作即得到接收到的频域1x HE-LTF序列,称为1x Rx_HE-LTF。
本发明实施例三
场景:40MHz带宽
以如下两组序列LTFleft和LTFright为基础添加额外的18个子载波值来生成1x HE-LTF序列,为保证实现简单,所述18个子载波值在{1,-1}间选择。
一个例子中,,序列为:HE-LTF122(-244:4:244)={LTFright,-1,LTFright,-1,-1,-1,+1,+1,-1,-1,-1,0,+1,+1,+1,-1,-1,-1,-1,+1,-1*LTFleft,+1,LTFleft},也可以表示为HE-LTF122(244:4:244)={+1,-1,-1, +1,+1,-1,+1,-1,+1,-1,-1,-1,-1,-1,+1,+1,-1,-1,+1,-1,+1,-1,+1,+1,+1,+1,-1,+1,-1,-1,+1,+1,-1,+1,-1,+1,-1,-1,-1,-1,-1,+1,+1,-1,-1,+1,-1,+1,-1,+1,+1,+1,+1,-1,-1,-1,+1,+1,-1,-1,-1,0,+1,+1,+1,-1,-1,-1,-1,+1,-1,-1,+1,+1,-1,-1,+1,-1,+1,-1,-1,-1,-1,-1,-1,+1,+1,-1,-1,+1,-1,+1,-1,-1,-1,-1,+1,+1,+1,-1,-1,+1,+1,-1,+1,-1,+1,+1,+1,+1,+1,+1,-1,-1,+1,+1,-1,+1,-1,+1,+1,+1,+1},同时也包括该序列每一个值均翻转极性后所得序列(即1变为-1,-1变为1,0不变),其余子载波为0,即空子载波。这里,-244:4:244表示-244,-240,…,-8,-4,0,4,8,…,240,244。此时,对应的导频子载波位置为±36,±104,±144,±212,即有8个导频子载波。
在单空间流时,根据所述序列生成的1x HE-LTF符号的PAPR值仅为4.6555dB。
参考表7,列出了多空间流时由数据子载波和导频子载波的流间相位差引起的PAPR的值,该相位差由A矩阵引起,11ac标准中的22.3.8.3.5节定义了A矩阵。其中,多空间流时由于数据子载波和导频子载波的流间相位差引起的PAPR震荡仅为0.5273dB,最差的PAPR值为4.6555dB。已有的4x HE-LTF符号和2x HE-LTF符号在40MHz带宽下的PAPR值最差情况下大于6dB。
Figure PCTCN2016106941-appb-000019
Figure PCTCN2016106941-appb-000020
表7
次优的,序列为:HE-LTF122(-244:4:244)={LTFright,-1,+1,+1,+1,-1,+1,-1,-1,+1,-1*LTFleft,0,-1*LTFright,+1,-1,-1,-1,-1,+1,+1,+1,+1,-1*LTFleft},也可以表示为HE-LTF122(244:4:244)={+1,-1,-1,+1,+1,-1,+1,-1,+1,-1,-1,-1,-1,-1,+1,+1,-1,-1,+1,-1,+1,-1,+1,+1,+1,+1,-1,+1,+1,+1,-1,+1,-1,-1,+1,-1,-1,+1,+1,-1,-1,+1,-1,+1,-1,-1,-1,-1,-1,-1,+1,+1,-1,-1,+1,-1,+1,-1,-1,-1,-1,0,-1,+1,+1,-1,-1,+1,-1,+1,-1,+1,+1,+1,+1,+1,-1,-1,+1,+1,-1,+1,-1,+1,-1,-1,-1,-1,+1,-1,-1,-1,-1,+1,+1,+1,+1,-1,-1,+1,+1,-1,-1,+1,-1,+1,-1,-1,-1,-1,-1,-1,+1,+1,-1,-1,+1,-1,+1,-1,-1,-1,-1},同时也包括该序列每一个值均翻转极性后所得序列(即+1变为-1,-1变为+1,0不变),其余子载波为0,即空子载波。这里,-244:4:244表示-244,-240,…,-8,-4,0,4,8,…,240,244。此时,对应的导频子载波位置为±36,±104,±144,±212,即有8个导频子载波。
在单空间流时,根据所述序列生成的1x HE-LTF符号的PAPR值仅为4.6831dB。
参考表8,列出了多空间流时由数据子载波和导频子载波的流间相位差引起的PAPR的值,该相位差由A矩阵引起,11ac标准中的22.3.8.3.5节定义了A矩阵。其中,多空间流时由于数据子载波和导频子载波的流间相位差引起的PAPR震荡仅为0.3397dB,最差的PAPR值为4.8335dB。已有的4x HE-LTF符号和2x HE-LTF符号在40MHz带宽下的PAPR值最差情况下大于6dB。
相位差 20MHz
1 4.6831
-1 4.4938
exp(-jπ/3) 4.7504
exp(-j2π/3) 4.8335
PAPRmax-PAPRmin 0.3397
表8
再次优的,序列为:HE-LTF122(-244:4:244)={+1,+1,+1,LTFleft,+1,LTFright,+1,-1,-1,+1,-1,0,+1,-1*LTFleft,-1,-1*LTFright,-1,-1,+1,+1,-1,+1,-1},也可以表示为HE-LTF122(244:4:244)={+1,+1,+1,+1,+1,-1,-1,+1,+1,-1,+1,-1,+1,+1,+1,+1,+1,+1,-1,-1,+1,+1,-1,+1,-1,+1,+1,+1,+1,+1,+1,-1,-1,+1,+1,-1,+1,-1,+1,-1,-1,-1,-1,-1,+1,+1,-1,-1,+1,-1,+1,-1,+1,+1,+1,+1,+1,-1,-1,+1,-1,0,+1,-1,-1,+1,+1,-1,-1,+1,-1,+1,-1,-1,-1,-1,-1,-1,+1,+1,-1,-1,+1,-1,+1,-1,-1,-1,-1,-1,-1,+1,+1,-1,-1,+1,-1,+1,-1,+1,+1,+1,+1,+1,-1, -1,+1,+1,-1,+1,-1,+1,-1,-1,-1,-1,-1,-1,+1,+1,-1,+1,-1},同时也包括该序列每一个值均翻转极性后所得序列(即+1变为-1,-1变为+1,0不变),其余子载波为0,即空子载波。这里,-244:4:244表示-244,-240,…,-8,-4,0,4,8,…,240,244。此时,对应的导频子载波位置为±36,±104,±144,±212,即有8个导频子载波。
在单空间流时,根据所述序列生成的1x HE-LTF符号的PAPR值仅为5.1511dB。
参考表9,列出了多空间流时由数据子载波和导频子载波的流间相位差引起的PAPR的值,该相位差由A矩阵引起,11ac标准中的22.3.8.3.5节定义了A矩阵。其中,多空间流时由于数据子载波和导频子载波的流间相位差引起的PAPR震荡仅为0.1dB,最差的PAPR值为5.1511dB。已有的4x HE-LTF符号和2x HE-LTF符号在40MHz带宽下的PAPR值最差情况下大于6dB。
相位差 20MHz
1 5.1511
-1 5.0511
exp(-jπ/3) 5.0733
exp(-j2π/3) 5.0643
PAPRmax-PAPRmin 0.1000
表9
更次优的,序列为:HE-LTF122(-244:4:244)={+1,+1,-1,LTFleft,+1,LTFright,+1,+1,-1,+1,+1,0,-1,-1*LTFleft,-1,-1*LTFright,-1,+1, +1,+1,+1,+1,-1},也可以表示为HE-LTF122(244:4:244)={+1,+1,-1,+1,+1,-1,-1,+1,+1,-1,+1,-1,+1,+1,+1,+1,+1,+1,-1,-1,+1,+1,-1,+1,-1,+1,+1,+1,+1,+1,+1,-1,-1,+1,+1,-1,+1,-1,+1,-1,-1,-1,-1,-1,+1,+1,-1,-1,+1,-1,+1,-1,+1,+1,+1,+1,+1,+1,-1,+1,+1,0,-1,-1,-1,+1,+1,-1,-1,+1,-1,+1,-1,-1,-1,-1,-1,-1,+1,+1,-1,-1,+1,-1,+1,-1,-1,-1,-1,-1,-1,+1,+1,-1,-1,+1,-1,+1,-1,+1,+1,+1,+1,+1,-1,-1,+1,+1,-1,+1,-1,+1,-1,-1,-1,-1,-1,+1,+1,+1,+1,+1,-1},同时也包括该序列每一个值均翻转极性后所得序列(即+1变为-1,-1变为+1,0不变),其余子载波为0,即空子载波。
在单空间流时,根据所述序列生成的1x HE-LTF符号的PAPR值仅为4.9848dB。
参考表10,列出了多空间流时由数据子载波和导频子载波的流间相位差引起的PAPR的值,该相位差由A矩阵引起,11ac标准中的22.3.8.3.5节定义了A矩阵。其中,多空间流时由于数据子载波和导频子载波的流间相位差引起的PAPR震荡为0.3083dB,最差的PAPR值为5.2026dB。
Figure PCTCN2016106941-appb-000021
Figure PCTCN2016106941-appb-000022
表10
本发明实施例四
场景:80MHz带宽
以如下两组序列LTFleft和LTFright为基础添加额外的42个子载波值来生成1x HE-LTF序列,为保证实现简单,所述42个子载波值在{+1,-1}间选择。
最优的,该最优序列为:HE-LTF250(-500:4:500)={-1,-1,+1,+1,+1,+1,+1,-1,-1*LTFleft,-1*LTFright,+1,-1,-1,-1,-1,-1,-1,+1,LTFleft,-1*LTFright,+1,-1,+1,-1,-1,+0,-1,+1,+1,-1,-1,LTFleft,LTFright,-1,+1,-1,-1,+1,-1,-1,+1,LTFleft,-1*LTFright,+1,-1,+1,-1,-1,-1,+1,+1},也可以表示为HE-LTF250(-500:4:500)={-1,-1,+1,+1,+1,+1,+1,-1,-1,-1,+1,+1,-1,-1,+1,-1,+1,-1,-1,-1,-1,-1,-1,+1,+1,-1,-1,+1,-1,+1,-1,-1,-1,-1,-1,+1,+1,-1,-1,+1,-1,+1,-1,+1,+1,+1,+1,+1,-1,-1,+1,+1,-1,+1,-1,+1,-1,-1,-1,-1,+1,-1,-1,-1,-1,-1,-1,+1,+1,+1,-1,-1,+1,+1,-1,+1,-1,+1,+1,+1,+1,+1,+1,-1,-1,+1,+1,-1,+1,-1,+1,+1,+1,+1,-1,+1,+1,-1,-1,+1,-1,+1,-1,+1,+1,+1,+1,+1,-1,-1,+1,+1,-1,+1,-1,+1,-1,-1,-1,-1,+1,-1,+1,-1,-1,0,-1,+1,+1,-1,-1,+1,+1,-1,-1,+1,+1,-1,+1,-1,+1,+1,+1,+1,+1,+1,-1,-1,+1,+1,-1,+1,-1,+1,+1,+1,+1,+1, -1,-1,+1,+1,-1,+1,-1,+1,-1,-1,-1,-1,-1,+1,+1,-1,-1,+1,-1,+1,-1,+1,+1,+1,+1,-1,+1,-1,-1,+1,-1,-1,+1,+1,+1,-1,-1,+1,+1,-1,+1,-1,+1,+1,+1,+1,+1,+1,-1,-1,+1,+1,-1,+1,-1,+1,+1,+1,+1,-1,+1,+1,-1,-1,+1,-1,+1,-1,+1,+1,+1,+1,+1,-1,-1,+1,+1,-1,+1,-1,+1,-1,-1,-1,-1,+1,-1,+1,-1,-1,-1,+1,+1},同时也包括该序列每一个值均翻转极性后所得序列(即+1变为-1,-1变为+1,0不变),其余子载波为0,即空子载波。这里,-500:4:500表示-500,-496,…,-8,-4,0,4,8,…,496,500。此时,对应的导频子载波位置为±24,±92,±400,±468,即有8个导频子载波。在单空间流时,根据所述序列生成的1x HE-LTF符号的PAPR值仅为4.8609dB,多空间流时由于数据子载波和导频子载波的流间相位差引起的PAPR震荡仅为0.1413dB,最差的PAPR值为5.0022dB。已有的4x HE-LTF符号和2x HE-LTF符号在80MHz带宽下的PAPR值最差情况下大于6dB。这里要说明的是,这里的最优指的是以该序列的左右部分可组合构成一组性能优异的160M 1x HE-LTF序列。
上述实施方式中的序列是以每4个比特表示的序列,间隔位置上是0表达的。本领域普通人员可以直接无疑义的得到采用其他的表达方式的80M带宽下的1xHE-LTF序列,例如补齐了其他位置上的0值。本领域技术人员可以理解,该序列与前述序列实质相同,只是采取的表达方式不同,不影响技术方案的实质。
Figure PCTCN2016106941-appb-000023
Figure PCTCN2016106941-appb-000024
Figure PCTCN2016106941-appb-000025
较优的,该较优序列为:HE-LTF250(-500:4:500)={+1,-1,-1,+1,-1,+1,+1,-1,LTFleft,LTFright,+1,+1,-1,+1,+1,-1,-1,-1,LTFleft,-1*LTFright,+1,-1,-1,-1,-1,0,+1,+1,+1,-1,-1,LTFleft,LTFright,-1,+1,+1,+1,+1,-1,+1,-1,-1*LTFleft,LTFright,+1,+1,+1,+1,-1,-1,-1,+1},也可以表示为HE-LTF250(-500:4:500)={+1,-1,-1,+1,-1,+1,+1,-1,+1,+1,-1,-1,+1,+1,-1,+1,-1,+1,+1,+1,+1,+1,+1,-1,-1,+1,+1,-1,+1,-1,+1,+1,+1,+1,+1,-1,-1,+1,+1,-1,+1,-1,+1,-1,-1,-1,-1,-1,+1,+1,-1,-1,+1,-1,+1,-1,+1,+1,+1,+1,+1,+1,-1,+1,+1,-1,-1,-1,+1,+1,-1,-1,+1,+1,-1,+1,-1,+1,+1,+1,+1,+1,+1,-1,-1,+1,+1,-1,+1,-1,+1,+1,+1,+1,-1,+1,+1,-1,-1,+1,-1,+1,-1,+1,+1,+1,+1,+1,-1,-1,+1,+1,-1,+1,-1,+1,-1,-1,-1,-1,+1,-1,-1,-1,-1,0,+1,+1,+1,-1,-1,+1,+1,-1,-1,+1,+1,-1,+1,-1,+1,+1,+1,+1,+1,+1,-1,-1,+1,+1,-1,+1,-1,+1,+1,+1,+1,+1,-1,-1,+1,+1,-1,+1,-1,+1,-1,-1,-1,-1,-1,+1,+1,-1,-1,+1,-1,+1,-1,+1,+1,+1,+1,-1,+1,+1,+1,+1,-1,+1,-1,-1,-1,+1,+1,-1,-1,+1,-1,+1,-1,-1,-1,-1,-1,-1,+1,+1,-1,-1,+1,-1,+1,-1,-1,-1,-1,+1,-1,-1,+1,+1,-1,+1,-1,+1,-1,-1,-1,-1,-1,+1,+1,-1,-1,+1,-1,+1,-1,+1,+1,+1,+1, +1,+1,+1,+1,-1,-1,-1,+1},同时也包括该序列每一个值均翻转极性后所得序列(即+1变为-1,-1变为+1,0不变),其余子载波为0,即空子载波。这里,-500:4:500表示-500,-496,…,-8,-4,0,4,8,…,496,500。此时,对应的导频子载波位置为±24,±92,±400,±468,即有8个导频子载波。
在单空间流时,根据所述序列生成的1x HE-LTF符号的PAPR值仅为4.8024dB。
参考表11,列出了多空间流时由数据子载波和导频子载波的流间相位差引起的PAPR的值。多空间流时由于数据子载波和导频子载波的流间相位差引起的PAPR震荡仅为0.1324dB,最差的PAPR值为4.9348dB。已有的4x HE-LTF符号和2x HE-LTF符号在80MHz带宽下的PAPR值最差情况下大于6dB。
相位差 20MHz
1 4.8024
-1 4.8680
exp(-jπ/3) 4.8809
exp(-j2π/3) 4.9348
PAPRmax-PAPRmin 0.1324
表11
次优的,序列为:HE-LTF250(-500:4:500)={-1,+1,+1,+1,-1,+1,+1,+1,-1*LTFleft,-1*LTFright,+1,-1,-1,-1,-1,-1,+1,+1,LTFleft,-1*LTFright,+1,-1,+1,-1,-1,+0,+1,-1,+1,+1,+1,-1*LTFleft, -1*LTFright,+1,-1,+1,+1,-1,-1,+1,-1,-1*LTFleft,LTFright,-1,+1,+1,+1,+1,-1,-1,-1},也可以表示为HE-LTF250(-500:4:500)={-1,+1,+1,+1,-1,+1,+1,+1,-1,-1,+1,+1,-1,-1,+1,-1,+1,-1,-1,-1,-1,-1,-1,+1,+1,-1,-1,+1,-1,+1,-1,-1,-1,-1,-1,+1,+1,-1,-1,+1,-1,+1,-1,+1,+1,+1,+1,+1,-1,-1,+1,+1,-1,+1,-1,+1,-1,-1,-1,-1,+1,-1,-1,-1,-1,-1,+1,+1,+1,+1,-1,-1,+1,+1,-1,+1,-1,+1,+1,+1,+1,+1,+1,-1,-1,+1,+1,-1,+1,-1,+1,+1,+1,+1,-1,+1,+1,-1,-1,+1,-1,+1,-1,+1,+1,+1,+1,+1,-1,-1,+1,+1,-1,+1,-1,+1,-1,-1,-1,-1,+1,-1,+1,-1,-1,+0,+1,-1,+1,+1,+1,-1,-1,+1,+1,-1,-1,+1,-1,+1,-1,-1,-1,-1,-1,-1,+1,+1,-1,-1,+1,-1,+1,-1,-1,-1,-1,-1,+1,+1,-1,-1,+1,-1,+1,-1,+1,+1,+1,+1,+1,-1,-1,+1,+1,-1,+1,-1,+1,-1,-1,-1,-1,+1,-1,+1,+1,-1,-1,+1,-1,-1,-1,+1,+1,-1,-1,+1,-1,+1,-1,-1,-1,-1,-1,-1,+1,+1,-1,-1,+1,-1,+1,-1,-1,-1,-1,+1,-1,-1,+1,+1,-1,+1,-1,+1,-1,-1,-1,-1,-1,+1,+1,-1,-1,+1,-1,+1,-1,+1,+1,+1,+1,-1,+1,+1,+1,+1,-1,-1,-1},同时也包括该序列每一个值均翻转极性后所得序列(即+1变为-1,-1变为+1,0不变),其余子载波为0,即空子载波。
在单空间流时,根据所述序列生成的1x HE-LTF符号的PAPR值仅为4.97dB。
表12,列出了多空间流时由数据子载波和导频子载波的流间相位差引起 的PAPR的值。多空间流时由于数据子载波和导频子载波的流间相位差引起的PAPR震荡仅为0.26dB,最差的PAPR值为4.97dB。
相位差 20MHz
1 4.97
-1 4.71
exp(-jπ/3) 4.96
exp(-j2π/3) 4.86
PAPRmax-PAPRmin 0.26
表12
再次优的,序列为:HE-LTF250(-500:4:500)={-1,-1,-1,+1,+1,+1,+1,+1,-1*LTFleft,-1*LTFright,+1,-1,+1,-1,-1,-1,-1,-1,LTFleft,-1*LTFright,+1,-1,+1,-1,-1,+0,-1,+1,+1,-1,-1,LTFleft,LTFright,-1,+1,-1,-1,+1,-1,-1,+1,LTFleft,-1*LTFright,+1,-1,+1,-1,-1,-1,+1,+1},也可以表示为HE-LTF250(-500:4:500)={-1,-1,-1,+1,+1,+1,+1,+1,-1,-1,+1,+1,-1,-1,+1,-1,+1,-1,-1,-1,-1,-1,-1,+1,+1,-1,-1,+1,-1,+1,-1,-1,-1,-1,-1,+1,+1,-1,-1,+1,-1,+1,-1,+1,+1,+1,+1,+1,-1,-1,+1,+1,-1,+1,-1,+1,-1,-1,-1,-1,+1,-1,+1,-1,-1,-1,-1,-1,+1,+1,-1,-1,+1,+1,-1,+1,-1,+1,+1,+1,+1,+1,+1,-1,-1,+1,+1,-1,+1,-1,+1,+1,+1,+1,-1,+1,+1,-1,-1,+1,-1,+1,-1,+1,+1,+1,+1, +1,-1,-1,+1,+1,-1,+1,-1,+1,-1,-1,-1,-1,+1,-1,+1,-1,-1,+0,-1,+1,+1,-1,-1,+1,+1,-1,-1,+1,+1,-1,+1,-1,+1,+1,+1,+1,+1,+1,-1,-1,+1,+1,-1,+1,-1,+1,+1,+1,+1,+1,-1,-1,+1,+1,-1,+1,-1,+1,-1,-1,-1,-1,-1,+1,+1,-1,-1,+1,-1,+1,-1,+1,+1,+1,+1,-1,+1,-1,-1,+1,-1,-1,+1,+1,+1,-1,-1,+1,+1,-1,+1,-1,+1,+1,+1,+1,+1,+1,-1,-1,+1,+1,-1,+1,-1,+1,+1,+1,+1,-1,+1,+1,-1,-1,+1,-1,+1,-1,+1,+1,+1,+1,+1,-1,-1,+1,+1,-1,+1,-1,+1,-1,-1,-1,-1,+1,-1,+1,-1,-1,-1,+1,+1},同时也包括该序列每一个值均翻转极性后所得序列(即+1变为-1,-1变为+1,0不变),其余子载波为0,即空子载波。
在单空间流时,根据所述序列生成的1x HE-LTF符号的PAPR值仅为4.53dB。
表13,列出了多空间流时由数据子载波和导频子载波的流间相位差引起的PAPR的值。多空间流时由于数据子载波和导频子载波的流间相位差引起的PAPR震荡仅为0.52dB,最差的PAPR值为5.05dB。
Figure PCTCN2016106941-appb-000026
Figure PCTCN2016106941-appb-000027
表13
本发明实施例五
160MHz带宽方案一:
160MHz带宽的子载波设计可由两个80MHz的子载波设计拼接而得,主80M频带和辅80M频带可以连续拼接或间隔一定带宽(例如间隔100MHz),另外主80M频带和辅80M频带在频带的前后位置可根据实际情况进行灵活调整。因此,我们可分别定义主80M频带和辅80M频带的1x HE-LTF序列,并根据其间隔和频带先后顺序灵活以80M序列整体为单位调整极性以获得更低的PAPR。这里,令本发明实施例四中最优序列表示为HE-LTF80M_A,且HE-LTF80M_A(-500:4:500)={L-LTF80M_A,0,R-LTF80M_A}。我们以该序列L-LTF80M_A和R-LTF80M_A作为基础序列,分别生成主80M序列和辅80M序列。其中,主80M 1x HE-LTF序列为LTF80M_Primary={L-LTF80M_A,0,R-LTF80M_A},辅80M 1x HE-LTF序列为LTF80M_Secondary={L-LTF80M_A,0,-1*R-LTF80M_A}。
为方便描述,令P1表示主80M序列的极性调整系数,P2表示辅80M序列的极性调整系数,我们固定P1为+1,P2则可为+1或-1,则当两个80M信道放置关系为[主80M,辅80M]时,160M序列为:HE-LTF500=[P1*LTF80M_Primary,BI,P2*LTF80M_Secondary];当两个80M信道放置关系为[辅80M,主80M]时,160M序列 为:HE-LTF500=[P2*LTF80M_Secondary,BI,P1*LTF80M_Primary]。其中,BI指两个80M信道边缘子载波之间的频率间隔(即,BI为两个80M信道边缘子载波之间的子载波上承载的序列),当主80M和辅80M信道相邻时,BI={0,0,0,0,0};主80M和辅80M信道不相邻时,BI可相应进行调整;同时,也可主80M和辅80M各自独立生成再拼接为160M频带。
主80MHz带宽和辅80MHz带宽在两种频带先后顺序及各种频率间隔下的极性调整系数如下表所示,其中主辅信道间隔指的是两个80M频带的中心频率间隔(间隔80MHz指的是两个相邻80M信道拼接而成)。各种情况下相应的PAPR值也具体见表格,其中PAPR值为数据与导频4种相位差下的最大值。有下表可见,仅有少数几种情况主辅80M带宽序列需要极性调整,其余大部分情况直接拼接即可。例如,对于相邻的两个80M信道放置关系为[主80M,辅80M]时,160M序列具体为HE-LTF500(-1012:4:1012)={L-LTF80M_A,0,R-LTF80M_A,0,0,0,0,0,L-LTF80M_A,0,-1*R-LTF80M_A}。
Figure PCTCN2016106941-appb-000028
Figure PCTCN2016106941-appb-000029
另外,为了降低系统实现复杂度,也可选择牺牲一定的PAPR性能,在各种情况下直接拼接主80M序列和辅80M序列得到160M带宽下1x HE-LTF序列。
上述实施方式中的序列是以每4个比特表示的序列,间隔位置上是0。其中,以上述HE-LTF500=[P1*LTF80M_Primary,BI,P2*LTF80M_Secondary],P1为+1,P2为+1为例,本领域普通人员可以直接无疑义的得到采用其他的表达方式的序列,例如,即全部序列采用补齐了其他位置上的0值的方式。本领域技术人员可以理解,该序列与前述实质相同,只是采取的表达方式不同,不影响技术方案的实质:
HE-LTF-1012:1:1012={LTF’80M_Primary,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,LTF’80M_Secondary},
其中,LTF’80M_Primary={L-LTF’80M_A,0,R-LTF’80M_A},
LTF’80M_Secondary={L-LTF’80M_A,0,-1*R-LTF’80M_A};
从实施例四的序列可以直接无疑义的得到,L-LTF’80M_A={-1,0,0,0,-1,0,0,0,+1,0,0,0,+1,0,0,0,+1,0,0,0,+1,0,0,0,+1,0,0,0,-1,0,0,0,-1,0,0,0,-1,0,0,0,+1,0,0,0,+1,0,0,0,-1,0,0,0,-1,0,0,0,+1,0,0,0,-1,0,0,0,+1,0,0,0,-1,0,0,0,-1,0,0,0,-1,0,0,0,-1,0,0,0,-1,0,0,0,-1,0,0,0,+1,0,0,0,+1,0,0,0,-1,0,0,0,-1,0,0,0,+1,0,0,0,-1,0,0,0,+1,0,0,0,-1,0,0,0, -1,0,0,0,-1,0,0,0,-1,0,0,0,-1,0,0,0,+1,0,0,0,+1,0,0,0,-1,0,0,0,-1,0,0,0,+1,0,0,0,-1,0,0,0,+1,0,0,0,-1,0,0,0,+1,0,0,0,+1,0,0,0,+1,0,0,0,+1,0,0,0,+1,0,0,0,-1,0,0,0,-1,0,0,0,+1,0,0,0,+1,0,0,0,-1,0,0,0,+1,0,0,0,-1,0,0,0,+1,0,0,0,-1,0,0,0,-1,0,0,0,-1,0,0,0,-1,0,0,0,+1,0,0,0,-1,0,0,0,-1,0,0,0,-1,0,0,0,-1,0,0,0,-1,0,0,0,-1,0,0,0,+1,0,0,0,+1,0,0,0,+1,0,0,0,-1,0,0,0,-1,0,0,0,+1,0,0,0,+1,0,0,0,-1,0,0,0,+1,0,0,0,-1,0,0,0,+1,0,0,0,+1,0,0,0,+1,0,0,0,+1,0,0,0,+1,0,0,0,+1,0,0,0,-1,0,0,0,-1,0,0,0,+1,0,0,0,+1,0,0,0,-1,0,0,0,+1,0,0,0,-1,0,0,0,+1,0,0,0,+1,0,0,0,+1,0,0,0,+1,0,0,0,-1,0,0,0,+1,0,0,0,+1,0,0,0,-1,0,0,0,-1,0,0,0,+1,0,0,0,-1,0,0,0,+1,0,0,0,-1,0,0,0,+1,0,0,0,+1,0,0,0,+1,0,0,0,+1,0,0,0,+1,0,0,0,-1,0,0,0,-1,0,0,0,+1,0,0,0,+1,0,0,0,-1,0,0,0,+1,0,0,0,-1,0,0,0,+1,0,0,0,-1,0,0,0,-1,0,0,0,-1,0,0,0,-1,0,0,0,+1,0,0,0,-1,0,0,0,+1,0,0,0,-1,0,0,0,-1,0,0,0}
R-LTF’80M_A={0,0,0,-1,0,0,0,+1,0,0,0,+1,0,0,0,-1,0,0,0,-1,0,0,0,+1,0,0,0,+1,0,0,0,-1,0,0,0,-1,0,0,0,+1,0,0,0,+1,0,0,0,-1,0,0,0,+1,0,0,0,-1,0,0,0,+1,0,0,0,+1,0,0,0,+1,0,0,0,+1,0,0,0,+1,0,0,0,+1,0,0,0,-1,0,0,0,-1,0,0,0,+1,0,0,0,+1,0,0,0,-1,0,0,0,+1,0,0,0,-1,0,0,0,+1,0,0,0,+1,0,0,0,+1,0,0,0,+1,0,0,0,+1,0,0,0,-1,0,0,0,-1,0,0,0, +1,0,0,0,+1,0,0,0,-1,0,0,0,+1,0,0,0,-1,0,0,0,+1,0,0,0,-1,0,0,0,-1,0,0,0,-1,0,0,0,-1,0,0,0,-1,0,0,0,+1,0,0,0,+1,0,0,0,-1,0,0,0,-1,0,0,0,+1,0,0,0,-1,0,0,0,+1,0,0,0,-1,0,0,0,+1,0,0,0,+1,0,0,0,+1,0,0,0,+1,0,0,0,-1,0,0,0,+1,0,0,0,-1,0,0,0,-1,0,0,0,+1,0,0,0,-1,0,0,0,-1,0,0,0,+1,0,0,0,+1,0,0,0,+1,0,0,0,-1,0,0,0,-1,0,0,0,+1,0,0,0,+1,0,0,0,-1,0,0,0,+1,0,0,0,-1,0,0,0,+1,0,0,0,+1,0,0,0,+1,0,0,0,+1,0,0,0,+1,0,0,0,+1,0,0,0,-1,0,0,0,-1,0,0,0,+1,0,0,0,+1,0,0,0,-1,0,0,0,+1,0,0,0,-1,0,0,0,+1,0,0,0,+1,0,0,0,+1,0,0,0,+1,0,0,0,-1,0,0,0,+1,0,0,0,+1,0,0,0,-1,0,0,0,-1,0,0,0,+1,0,0,0,-1,0,0,0,+1,0,0,0,-1,0,0,0,+1,0,0,0,+1,0,0,0,+1,0,0,0,+1,0,0,0,+1,0,0,0,-1,0,0,0,-1,0,0,0,+1,0,0,0,+1,0,0,0,-1,0,0,0,+1,0,0,0,-1,0,0,0,+1,0,0,0,-1,0,0,0,-1,0,0,0,-1,0,0,0,-1,0,0,0,+1,0,0,0,-1,0,0,0,+1,0,0,0,-1,0,0,0,-1,0,0,0,-1,0,0,0,+1,0,0,0,+1}。
160MHz带宽下的方案二:
由于160MHz带宽的子载波设计是将80MHz的子载波设计重复后直接拼接,因此以实施例四所述80M带宽下1x HE-LTF较优序列为基础生成160M带宽下1x HE-LTF序列,为方便描述,我们称该较优序列为HE-LTF80M,且HE-LTF80M(-500:4:500)={L-LTF80M,0,R-LTF80M}。160MHz带宽方案一下序列为:HE-LTF500(-1012:4:1012)={L-LTF80M,0,R-LTF80M,0,0,0,0,0, -1*L-LTF80M,0,R-LTF80M},其余子载波为0,即空子载波。这里,-1012:4:1012表示-1012,-1008,…,-8,-4,0,4,8,…,1008,1012。此时,对应的导频子载波位置为±44,±112,±420,±488±536,±604,±912,±980,即有16个导频子载波。
在单空间流时,根据所述序列生成的1x HE-LTF符号的PAPR值仅为5.7413dB。
表14,列出了多空间流时由数据子载波和导频子载波的流间相位差引起的PAPR的值。多空间流时,由于数据子载波和导频子载波的流间相位差引起的PAPR震荡为0.3948dB,最差的PAPR值仅为5.9667dB。
相位差 20MHz
1 5.7413
-1 5.5883
exp(-jπ/3) 5.9485
exp(-j2π/3) 5.9667
PAPRmax-PAPRmin 0.2254
表14
160MHz带宽下的另一个方案:
160MHz带宽的子载波设计可由两个80MHz的子载波设计拼接而得,主80M频带和辅80M频带可以连续拼接或间隔一定带宽(例如间隔100MHz),另外主80M频带和辅80M频带在频带的前后位置可根据实际情况进行灵活调整。因此,我们可分别定义主80M频带和辅80M频带的1x HE-LTF序列,并根据其间 隔和频带先后顺序灵活以80M序列整体为单位调整极性以获得更低的PAPR。
这里,我们分别以本发明实施例四中次优序列和再次优序列作为主80M序列和辅80M序列,并进行拼接得到新的160MHz带宽下1x HE-LTF序列。
为方便描述,我们称本发明实施例四中次优序列为LTF80M_Primary,称本发明实施例四中再次优序列为LTF80M_Secondary。令P1表示主80M序列的极性调整系数,P2表示辅80M序列的极性调整系数,我们固定P1为+1,P2则可为+1或-1,则当两个80M信道放置关系为[主80M,辅80M]时,160M序列为:HE-LTF500=[P1*LTF80M_Primary,BI,P2*LTF80M_Secondary];当两个80M信道放置关系为[辅80M,主80M]时,160M序列为:HE-LTF500=[P2*LTF80M_Secondary,BI,P1*LTF80M_Primary]。其中,BI指两个80M信道边缘子载波之间的频率间隔,当主80M和辅80M信道相邻时,BI={0,0,0,0,0};主80M和辅80M信道不相邻时,BI可相应进行调整;同时,也可主80M和辅80M各自独立生成再拼接为160M频带。
主80MHz带宽和辅80MHz带宽在两种频带先后顺序及各种频率间隔下的极性调整系数如下表15所示,其中主辅信道间隔指的是两个80M频带的中心频率间隔(间隔80MHz指的是两个相邻80M信道拼接而成)。
各种情况下相应的PAPR值也具体见表15,其中PAPR值为数据与导频4种相位差下的最大值。有下表可见,仅有少数几种情况主辅80M带宽序列需要极性调整,其余大部分情况直接拼接即可。
Figure PCTCN2016106941-appb-000030
Figure PCTCN2016106941-appb-000031
表15
另外,为了降低系统实现复杂度,也可选择牺牲一定的PAPR性能,在各种情况下直接拼接主80M序列和辅80M序列得到160M带宽下1x HE-LTF序列。
本发明各实施方式下1xHE-LTF序列在不同带宽下均具有良好的PAPR特性,且多空间流时PAPR特性起伏非常小,能有效的利用功率放大器,且在长距离传输模式下能更好的进行功率增强以适应更远距离的传输。
本发明可应用于无线局域网中,包括但不限于以802.11a,802.11b,802.11g,802.11n,802.11ac为代表的Wi-Fi系统中,也可应用与下一代Wi-Fi系统、下一代无线局域网系统中。
本发明还提供了可以执行前述方法的数据传输装置。图11为本发明实施方式中所提供的数据传输装置的结构示意图的举例(例如接入点,站点,或者芯片等图中部分器件为可选)。如图11所示,数据传输装置1200可以由总线1201作一般性的总线体系结构来实现。根据数据传输装置1200的具体应用和整体设计约束条件,总线1201可以包括任意数量的互连总线和桥接。总线1201将各种电路连接在一起,这些电路包括处理器1202、存储介质1203和总线接口1204。数据传输装置1200使用总线接口1204将网络适配器1205等经由 总线1201连接。网络适配器1205可用于实现无线局域网中物理层的信号处理功能,并通过天线1207实现射频信号的发送和接收。用户接口1206可以连接用户终端,例如:键盘、显示器、鼠标、操纵杆等。总线1201还可以连接各种其它电路,如定时源、外围设备、电压调节器、功率管理电路等,这些电路是本领域所熟知的,因此不再详述。
数据传输装置1200也可配置成通用处理系统,该通用处理系统包括:提供处理器功能的一个或多个微处理器;以及提供存储介质1203的至少一部分的外部存储器,所有这些都通过外部总线体系结构与其它支持电路连接在一起。
可替换地,数据传输装置1200可以使用下述来实现:具有处理器1202、总线接口1204、用户接口1206的ASIC(专用集成电路);以及集成在单个芯片中的存储介质1203的至少一部分,或者,数据传输装置1200可以使用下述来实现:一个或多个FPGA(现场可编程门阵列)、PLD(可编程逻辑器件)、控制器、状态机、门逻辑、分立硬件部件、任何其它适合的电路、或者能够执行本发明通篇所描述的各种功能的电路的任意组合。
处理器1202负责管理总线和一般处理(包括执行存储在存储介质1203上的软件)。处理器1202可以使用一个或多个通用处理器和/或专用处理器来实现。处理器的例子包括微处理器、微控制器、DSP处理器和能够执行软件的其它电路。应当将软件广义地解释为表示指令、数据或其任意组合,而不论是将其称作为软件、固件、中间件、微代码、硬件描述语言还是其它。
在图11中存储介质1203被示为与处理器1202分离,然而,本领域技术人员很容易明白,存储介质1203或其任意部分可位于数据传输装置1200之外。举例来说,存储介质1203可以包括传输线、用数据调制的载波波形、和/或与无线节点分离开的计算机制品,这些介质均可以由处理器1202通过总线接口1204来访问。可替换地,存储介质1203或其任意部分可以集成到处理器1202中,例如,可以是高速缓存和/或通用寄存器。
处理器1202可执行上述实施例,在此不再赘述。
本领域普通技术人员可以理解:实现上述方法实施例的全部或部分步骤可以通过程序指令相关的硬件来完成,前述的程序可以存储于一计算机可读取存储介质中,该程序在执行时,执行包括上述方法实施例的步骤;而前述的存储介质包括:ROM、RAM、磁碟或者光盘等各种可以存储程序代码的介质。

Claims (10)

  1. 一种通信系统中的信道估计信息传输方法,其特征在于,
    根据总空时流数NSTS确定高效率长训练字段HE-LTF域包含的OFDM符号数NHELTF
    由传输带宽和HE-LTF模式确定HE-LTF频域序列;其中,80MHz带宽下的1x HE-LTF模式下的HE-LTF频域序列表示为:HE-LTF250(-500:4:500)={-1,-1,+1,+1,+1,+1,+1,-1,-1,-1,+1,+1,-1,-1,+1,-1,+1,-1,-1,-1,-1,-1,-1,+1,+1,-1,-1,+1,-1,+1,-1,-1,-1,-1,-1,+1,+1,-1,-1,+1,-1,+1,-1,+1,+1,+1,+1,+1,-1,-1,+1,+1,-1,+1,-1,+1,-1,-1,-1,-1,+1,-1,-1,-1,-1,-1,-1,+1,+1,+1,-1,-1,+1,+1,-1,+1,-1,+1,+1,+1,+1,+1,+1,-1,-1,+1,+1,-1,+1,-1,+1,+1,+1,+1,-1,+1,+1,-1,-1,+1,-1,+1,-1,+1,+1,+1,+1,+1,-1,-1,+1,+1,-1,+1,-1,+1,-1,-1,-1,-1,+1,-1,+1,-1,-1,0,-1,+1,+1,-1,-1,+1,+1,-1,-1,+1,+1,-1,+1,-1,+1,+1,+1,+1,+1,+1,-1,-1,+1,+1,-1,+1,-1,+1,+1,+1,+1,+1,-1,-1,+1,+1,-1,+1,-1,+1,-1,-1,-1,-1,-1,+1,+1,-1,-1,+1,-1,+1,-1,+1,+1,+1,+1,-1,+1,-1,-1,+1,-1,-1,+1,+1,+1,-1,-1,+1,+1,-1,+1,-1,+1,+1,+1,+1,+1,+1,-1,-1,+1,+1,-1,+1,-1,+1,+1,+1,+1,-1,+1,+1,-1,-1,+1,-1,+1,-1,+1,+1,+1,+1,+1,-1,-1,+1,+1,-1,+1,-1,+1,-1,-1,-1,-1,+1,-1,+1,-1,-1,-1,+1,+1};其中,-500:4:500表示子载波编号为-500,-496,…,-8,-4,0,4,8,…,496,500上的 值依次为上述值,其余的子载波上的的值为0;
    根据所述OFDM符号数NHELTF以及所述确定的HELTF频域序列发送时域信号。
  2. 一种通信系统中的信道估计信息传输方法,其特征在于,
    根据前导码中信令字段承载的信息获取传输带宽BW,总空时流数NSTS,及高效率长训练字段HE-LTF域的模式;
    由总空时流数NSTS确定HE-LTF字段包含的OFDM符号数NHELTF
    由传输带宽和HE-LTF域的模式确定对应的HE-LTF频域序列,其中,80MHz带宽下的1x HE-LTF模式下的HE-LTF频域序列表示为:HE-LTF250(-500:4:500)={-1,-1,+1,+1,+1,+1,+1,-1,-1,-1,+1,+1,-1,-1,+1,-1,+1,-1,-1,-1,-1,-1,-1,+1,+1,-1,-1,+1,-1,+1,-1,-1,-1,-1,-1,+1,+1,-1,-1,+1,-1,+1,-1,+1,+1,+1,+1,+1,-1,-1,+1,+1,-1,+1,-1,+1,-1,-1,-1,-1,+1,-1,-1,-1,-1,-1,-1,+1,+1,+1,-1,-1,+1,+1,-1,+1,-1,+1,+1,+1,+1,+1,+1,-1,-1,+1,+1,-1,+1,-1,+1,+1,+1,+1,-1,+1,+1,-1,-1,+1,-1,+1,-1,+1,+1,+1,+1,+1,-1,-1,+1,+1,-1,+1,-1,+1,-1,-1,-1,-1,+1,-1,+1,-1,-1,0,-1,+1,+1,-1,-1,+1,+1,-1,-1,+1,+1,-1,+1,-1,+1,+1,+1,+1,+1,+1,-1,-1,+1,+1,-1,+1,-1,+1,+1,+1,+1,+1,-1,-1,+1,+1,-1,+1,-1,+1,-1,-1,-1,-1,-1,+1,+1,-1,-1,+1,-1,+1,-1,+1,+1,+1,+1,-1,+1,-1,-1,+1,-1,-1,+1,+1,+1,-1,-1,+1,+1,-1,+1,-1,+1,+1,+1, +1,+1,+1,-1,-1,+1,+1,-1,+1,-1,+1,+1,+1,+1,-1,+1,+1,-1,-1,+1,-1,+1,-1,+1,+1,+1,+1,+1,-1,-1,+1,+1,-1,+1,-1,+1,-1,-1,-1,-1,+1,-1,+1,-1,-1,-1,+1,+1};其中,-500:4:500表示子载波编号为-500,-496,…,-8,-4,0,4,8,…,496,500上的值依次为上述值,其余的子载波上的的值为0;
    由接收到的HE-LTF域和所述确定的频域序列获得对应子载波位置的信道估计值。
  3. 一种通信系统中的信道估计信息传输方法,其特征在于,
    根据总空时流数NSTS确定高效率长训练字段HE-LTF域包含的OFDM符号数NHELTF
    由传输带宽和HE-LTF模式确定HE-LTF频域序列;其中,160M带宽下的1xHE-LTF模式的HE-LTF频域序列表示为:HE-LTF500=[P1*LTF80M_Primary,BI,P2*LTF80M_Secondary],上述公式中,P1为+1,P2为+1或-1;并且,LTF80M_Primary={L-LTF80M_A,0,R-LTF80M_A},LTF80M_Secondary={L-LTF80M_A,0,-1*R-LTF80M_A};并且,{L-LTF80M_A,0,
    R-LTF80M_A}=HE-LTF250(-500:4:500),HE-LTF250(-500:4:500)={-1,-1,+1,+1,+1,+1,+1,-1,-1,-1,+1,+1,-1,-1,+1,-1,+1,-1,-1,-1,-1,-1,-1,+1,+1,-1,-1,+1,-1,+1,-1,-1,-1,-1,-1,+1,+1,-1,-1,+1,-1,+1,-1,+1,+1,+1,+1,+1,-1,-1,+1,+1,-1,+1,-1,+1,-1,-1,-1,-1,+1,-1,-1,-1,-1,-1,-1,+1,+1,+1,-1,-1,+1,+1,-1,+1,-1,+1,+1,+1,+1,+1,+1,-1,-1,+1,+1,-1, +1,-1,+1,+1,+1,+1,-1,+1,+1,-1,-1,+1,-1,+1,-1,+1,+1,+1,+1,+1,-1,-1,+1,+1,-1,+1,-1,+1,-1,-1,-1,-1,+1,-1,+1,-1,-1,0,-1,+1,+1,-1,-1,+1,+1,-1,-1,+1,+1,-1,+1,-1,+1,+1,+1,+1,+1,+1,-1,-1,+1,+1,-1,+1,-1,+1,+1,+1,+1,+1,-1,-1,+1,+1,-1,+1,-1,+1,-1,-1,-1,-1,-1,+1,+1,-1,-1,+1,-1,+1,-1,+1,+1,+1,+1,-1,+1,-1,-1,+1,-1,-1,+1,+1,+1,-1,-1,+1,+1,-1,+1,-1,+1,+1,+1,+1,+1,+1,-1,-1,+1,+1,-1,+1,-1,+1,+1,+1,+1,-1,+1,+1,-1,-1,+1,-1,+1,-1,+1,+1,+1,+1,+1,-1,-1,+1,+1,-1,+1,-1,+1,-1,-1,-1,-1,+1,-1,+1,-1,-1,-1,+1,+1};其中,-500:4:500表示子载波编号为-500,-496,…,-8,-4,0,4,8,…,496,500上的值依次为上述值,其余的子载波上的的值为0;所述BI为两个80M信道边缘子载波之间的子载波上承载的序列;
    根据所述OFDM符号数NHELTF以及所述确定的HELTF频域序列发送时域信号。
  4. 根据权利要求3所述的方法,其特征在于,
    所述160M带宽中的主80M(LTF80M_Primary)和辅80M(LTF80M_Secondary)信道相邻时,BI={0,0,0,0,0};或者,
    所述160M带宽中的主80M(LTF80M_Primary)和辅80M(LTF80M_Secondary)信道不相邻时,BI为根据所述LTF80M_Primary和所述LTF80M_Secondary之间的边缘子载波之间的频率间隔确定的全0值。
  5. 一种通信系统中的信道估计信息传输方法,其特征在于,
    根据前导码中信令字段承载的信息获取传输带宽BW,总空时流数NSTS,及高效率长训练字段HE-LTF域的模式;
    由总空时流数NSTS确定HE-LTF字段包含的OFDM符号数NHELTF
    由传输带宽和HE-LTF域的模式确定对应的HE-LTF频域序列,其中,160M带宽下的1x HE-LTF模式的HE-LTF频域序列表示为:HE-LTF500=[P1*LTF80M_Primary,BI,P2*LTF80M_Secondary],上述公式中,P1为+1,P2为+1或-1;并且,LTF80M_Primary={L-LTF80M_A,0,R-LTF80M_A},LTF80M_Secondary={L-LTF80M_A,0,-1*R-LTF80M_A};并且,{L-LTF80M_A,0,R-LTF80M_A}=HE-LTF250(-500:4:500),HE-LTF250(-500:4:500)={-1,-1,+1,+1,+1,+1,+1,-1,-1,-1,+1,+1,-1,-1,+1,-1,+1,-1,-1,-1,-1,-1,-1,+1,+1,-1,-1,+1,-1,+1,-1,-1,-1,-1,-1,+1,+1,-1,-1,+1,-1,+1,-1,+1,+1,+1,+1,+1,-1,-1,+1,+1,-1,+1,-1,+1,-1,-1,-1,-1,+1,-1,-1,-1,-1,-1,-1,+1,+1,+1,-1,-1,+1,+1,-1,+1,-1,+1,+1,+1,+1,+1,+1,-1,-1,+1,+1,-1,+1,-1,+1,+1,+1,+1,-1,+1,+1,-1,-1,+1,-1,+1,-1,+1,+1,+1,+1,+1,-1,-1,+1,+1,-1,+1,-1,+1,-1,-1,-1,-1,+1,-1,+1,-1,-1,0,-1,+1,+1,-1,-1,+1,+1,-1,-1,+1,+1,-1,+1,-1,+1,+1,+1,+1,+1,+1,-1,-1,+1,+1,-1,+1,-1,+1,+1,+1,+1,+1,-1,-1,+1,+1,-1,+1,-1,+1,-1,-1,-1,-1,-1,+1,+1,-1,-1,+1,-1,+1,-1,+1,+1,+1,+1,-1,+1,-1,-1,+1,-1,-1, +1,+1,+1,-1,-1,+1,+1,-1,+1,-1,+1,+1,+1,+1,+1,+1,-1,-1,+1,+1,-1,+1,-1,+1,+1,+1,+1,-1,+1,+1,-1,-1,+1,-1,+1,-1,+1,+1,+1,+1,+1,-1,-1,+1,+1,-1,+1,-1,+1,-1,-1,-1,-1,+1,-1,+1,-1,-1,-1,+1,+1};其中,-500:4:500表示子载波编号为-500,-496,…,-8,-4,0,4,8,…,496,500上的值依次为上述值,其余的子载波上的的值为0;所述BI指两个80M信道边缘子载波之间的频率间隔;
    由接收到的HE-LTF域和所述确定的频域序列获得对应子载波位置的信道估计值。
  6. 根据权利要求5所述的方法,其特征在于,
    所述160M带宽中的主80M(LTF80M_Primary)和辅80M(LTF80M_Secondary)信道相邻时,BI={0,0,0,0,0};或者,
    所述160M带宽中的主80M(LTF80M_Primary)和辅80M(LTF80M_Secondary)信道不相邻时,BI为根据所述LTF80M_Primary和所述LTF80M_Secondary之间的边缘子载波之间的频率间隔确定的全0值。
  7. 一种通信系统中的信道估计信息传输装置,其特征在于,包含处理单元,被设置为用于执行如权利要求1的方法,以及接口。
  8. 一种通信系统中的信道估计信息传输装置,其特征在于,包含处理器与存储介质,所述处理器与所述存储介质被设置为用于执行如权利要求2的方法。
  9. 一种通信系统中的信道估计信息传输装置,其特征在于,包含处理器与存储介质,所述处理器与所述存储介质被设置为用于执行如权利要求3或者4的方法。
  10. 一种通信系统中的信道估计信息传输装置,其特征在于,包含处理器与存储介质,所述处理器与所述存储介质被设置为用于执行如权利要求5或者6的方法。
PCT/CN2016/106941 2015-11-23 2016-11-23 无线局域网数据传输方法和装置 WO2017088761A1 (zh)

Priority Applications (20)

Application Number Priority Date Filing Date Title
KR1020207012909A KR102220247B1 (ko) 2015-11-23 2016-11-23 무선 근거리 통신망에서의 데이터 송신 방법 및 장치
AU2016358881A AU2016358881B2 (en) 2015-11-23 2016-11-23 Data transmission method and apparatus in wireless local area network
BR122020009992-5A BR122020009992B1 (pt) 2015-11-23 2016-11-23 Método e aparelho de transmissão de dados em rede de área local sem fio
CA3006017A CA3006017C (en) 2015-11-23 2016-11-23 Data transmission method and apparatus in wireless local area network
JP2018526696A JP6591674B2 (ja) 2015-11-23 2016-11-23 無線ローカルエリアネットワークにおけるデータ送信方法および装置
KR1020187017283A KR102109509B1 (ko) 2015-11-23 2016-11-23 무선 근거리 통신망에서의 데이터 송신 방법 및 장치
EP16867984.3A EP3370378B1 (en) 2015-11-23 2016-11-23 Wireless local area network data transmission method and device
BR112018010247-4A BR112018010247B1 (pt) 2015-11-23 2016-11-23 Metodo e aparelho de transmissao de dados em rede de area local sem fio
RU2018121535A RU2684640C1 (ru) 2015-11-23 2016-11-23 Способ и устройство передачи данных в беспроводной локальной сети
EP19195775.2A EP3681113B1 (en) 2015-11-23 2016-11-23 Data transmission method and apparatus in wireless local area network
ES16867984T ES2822833T3 (es) 2015-11-23 2016-11-23 Método y dispositivo de transmisión de datos de red de área local inalámbrica
EP21182080.8A EP3952235A1 (en) 2015-11-23 2016-11-23 Data transmission method and apparatus in wireless local area network
MX2018006280A MX2018006280A (es) 2015-11-23 2016-11-23 Metodo de transmision de datos y aparato en red de area local inalambrica.
PL16867984T PL3370378T3 (pl) 2015-11-23 2016-11-23 Sposób i urządzenie do transmisji danych w bezprzewodowej sieci lokalnej
US15/987,216 US10686640B2 (en) 2015-11-23 2018-05-23 Data transmission method and apparatus in wireless local area network
US15/987,174 US10616027B2 (en) 2015-11-23 2018-05-23 Data transmission method and apparatus in wireless local area network
ZA2018/03521A ZA201803521B (en) 2015-11-23 2018-05-28 Data transmission method and apparatus in wireless local area network
US16/870,570 US10999119B2 (en) 2015-11-23 2020-05-08 Data transmission method and apparatus in wireless local area network
US17/246,182 US11677606B2 (en) 2015-11-23 2021-04-30 Data transmission method and apparatus in wireless local area network
US18/309,575 US20230336396A1 (en) 2015-11-23 2023-04-28 Data transmission method and apparatus in wireless local area network

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
CN201510823977 2015-11-23
CN201510823977.8 2015-11-23
CN201510854631.4A CN106789761B (zh) 2015-11-23 2015-11-30 无线局域网数据传输方法和装置
CN201510854631.4 2015-11-30

Related Child Applications (2)

Application Number Title Priority Date Filing Date
US15/987,216 Continuation US10686640B2 (en) 2015-11-23 2018-05-23 Data transmission method and apparatus in wireless local area network
US15/987,174 Continuation US10616027B2 (en) 2015-11-23 2018-05-23 Data transmission method and apparatus in wireless local area network

Publications (1)

Publication Number Publication Date
WO2017088761A1 true WO2017088761A1 (zh) 2017-06-01

Family

ID=58762914

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2016/106941 WO2017088761A1 (zh) 2015-11-23 2016-11-23 无线局域网数据传输方法和装置

Country Status (1)

Country Link
WO (1) WO2017088761A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2022512837A (ja) * 2018-11-08 2022-02-07 ホアウェイ・テクノロジーズ・カンパニー・リミテッド セグメントベースの基準信号

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101958739A (zh) * 2009-07-16 2011-01-26 雷凌科技股份有限公司 用于无线通信系统的设定方法及设定装置
CN102761390A (zh) * 2011-04-26 2012-10-31 英特尔公司 用于低功率无线网络的方法和装置
CN104067586A (zh) * 2012-01-30 2014-09-24 马维尔国际贸易有限公司 用于生成通信系统中的前导码符号的系统和方法
WO2014193547A1 (en) * 2013-04-15 2014-12-04 Qualcomm Incorporated Apparatus and method using backwards-compatible preamble formats for multiple access wlan communication system

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101958739A (zh) * 2009-07-16 2011-01-26 雷凌科技股份有限公司 用于无线通信系统的设定方法及设定装置
CN102761390A (zh) * 2011-04-26 2012-10-31 英特尔公司 用于低功率无线网络的方法和装置
CN104067586A (zh) * 2012-01-30 2014-09-24 马维尔国际贸易有限公司 用于生成通信系统中的前导码符号的系统和方法
WO2014193547A1 (en) * 2013-04-15 2014-12-04 Qualcomm Incorporated Apparatus and method using backwards-compatible preamble formats for multiple access wlan communication system

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2022512837A (ja) * 2018-11-08 2022-02-07 ホアウェイ・テクノロジーズ・カンパニー・リミテッド セグメントベースの基準信号
JP7164134B2 (ja) 2018-11-08 2022-11-01 ホアウェイ・テクノロジーズ・カンパニー・リミテッド セグメントベースの基準信号

Similar Documents

Publication Publication Date Title
KR102220247B1 (ko) 무선 근거리 통신망에서의 데이터 송신 방법 및 장치
WO2018108077A1 (en) System and method for dft-s-ofdm papr reduction
WO2018059157A1 (zh) 参考信号传输方法、设备及系统、存储介质
TW201743574A (zh) 傳輸資料的方法和裝置
WO2017118420A1 (zh) 无线局域网信息传输方法和装置
WO2017088761A1 (zh) 无线局域网数据传输方法和装置
WO2020052419A1 (zh) 参考信号及序列配置方法和装置
US11063721B2 (en) Method and apparatus for sending pilot, and method and apparatus for receiving pilot
WO2018228296A1 (zh) 用于进行数据传输的方法和装置
CN107005525A (zh) 无线局域网中的导频传输方法及数据传输装置
US20230171129A1 (en) Ppdu transmission method and related apparatus
US20230344688A1 (en) Method for symbol application, communication apparatus, and storage medium
KR20220031273A (ko) 무선 통신 시스템에서 위치 참조신호를 생성하는 방법 및 장치

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16867984

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 122020009992

Country of ref document: BR

Ref document number: MX/A/2018/006280

Country of ref document: MX

WWE Wipo information: entry into national phase

Ref document number: 2018526696

Country of ref document: JP

ENP Entry into the national phase

Ref document number: 3006017

Country of ref document: CA

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2016867984

Country of ref document: EP

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: 112018010247

Country of ref document: BR

ENP Entry into the national phase

Ref document number: 20187017283

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 1020187017283

Country of ref document: KR

ENP Entry into the national phase

Ref document number: 2016358881

Country of ref document: AU

Date of ref document: 20161123

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 2018121535

Country of ref document: RU

REG Reference to national code

Ref country code: BR

Ref legal event code: B01E

Ref document number: 112018010247

Country of ref document: BR

Free format text: APRESENTE A TRADUCAO SIMPLES DA FOLHA DE ROSTO DA CERTIDAO DE DEPOSITO DAS PRIORIDADES REIVINDICADAS; OU DECLARACAO DE QUE OS DADOS DO PEDIDO INTERNACIONAL ESTAO FIELMENTE CONTIDOS NAS PRIORIDADES REIVINDICADAS, CONTENDO TODOS OS DADOS IDENTIFICADORES (NUMERO DA PRIORIDADE, DATA, DEPOSITANTE E INVENTORES), CONFORME O PARAGRAFO UNICO DO ART. 25 DA RESOLUCAO 77/2013. CABE SALIENTAR NAO FOI POSSIVEL INDIVIDUALIZAR OS TITULARES DA CITADA PRIORIDADE, INFORMACAO NECESSARIA PARA O EXAME DA CESSAO DO DOCUMENTO DE PRIORIDADE, SE FOR O CASO.

ENP Entry into the national phase

Ref document number: 112018010247

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20180521