WO2017118420A1 - 无线局域网信息传输方法和装置 - Google Patents

无线局域网信息传输方法和装置 Download PDF

Info

Publication number
WO2017118420A1
WO2017118420A1 PCT/CN2017/070462 CN2017070462W WO2017118420A1 WO 2017118420 A1 WO2017118420 A1 WO 2017118420A1 CN 2017070462 W CN2017070462 W CN 2017070462W WO 2017118420 A1 WO2017118420 A1 WO 2017118420A1
Authority
WO
WIPO (PCT)
Prior art keywords
sig
bandwidth
subcarriers
mhz
sequence
Prior art date
Application number
PCT/CN2017/070462
Other languages
English (en)
French (fr)
Inventor
向铮铮
朱俊
张佳胤
庞继勇
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority to CA2997038A priority Critical patent/CA2997038C/en
Priority to RU2018108182A priority patent/RU2700193C2/ru
Priority to EP19207329.4A priority patent/EP3694133B1/en
Priority to MYPI2018700620A priority patent/MY189128A/en
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to MX2018002421A priority patent/MX2018002421A/es
Priority to EP17735858.7A priority patent/EP3340674B1/en
Priority to AU2017205032A priority patent/AU2017205032B2/en
Priority to JP2018518730A priority patent/JP6705895B2/ja
Priority to KR1020187008304A priority patent/KR102104947B1/ko
Priority to BR112018002902-5A priority patent/BR112018002902B1/pt
Publication of WO2017118420A1 publication Critical patent/WO2017118420A1/zh
Priority to ZA2018/01165A priority patent/ZA201801165B/en
Priority to US15/922,274 priority patent/US10397037B2/en
Priority to US16/381,126 priority patent/US10454737B2/en
Priority to US16/654,431 priority patent/US11128508B2/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/26Systems using multi-frequency codes
    • H04L27/2601Multicarrier modulation systems
    • H04L27/2614Peak power aspects
    • H04L27/2621Reduction thereof using phase offsets between subcarriers
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L25/00Baseband systems
    • H04L25/02Details ; arrangements for supplying electrical power along data transmission lines
    • H04L25/0202Channel estimation
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/26Systems using multi-frequency codes
    • H04L27/2601Multicarrier modulation systems
    • H04L27/2602Signal structure
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/26Systems using multi-frequency codes
    • H04L27/2601Multicarrier modulation systems
    • H04L27/2602Signal structure
    • H04L27/2603Signal structure ensuring backward compatibility with legacy system
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/26Systems using multi-frequency codes
    • H04L27/2601Multicarrier modulation systems
    • H04L27/2626Arrangements specific to the transmitter only
    • H04L27/2627Modulators
    • H04L27/2628Inverse Fourier transform modulators, e.g. inverse fast Fourier transform [IFFT] or inverse discrete Fourier transform [IDFT] modulators
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0001Arrangements for dividing the transmission path
    • H04L5/0003Two-dimensional division
    • H04L5/0005Time-frequency
    • H04L5/0007Time-frequency the frequencies being orthogonal, e.g. OFDM(A), DMT
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0048Allocation of pilot signals, i.e. of signals known to the receiver
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W28/00Network traffic management; Network resource management
    • H04W28/02Traffic management, e.g. flow control or congestion control
    • H04W28/06Optimizing the usage of the radio link, e.g. header compression, information sizing, discarding information
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W4/00Services specially adapted for wireless communication networks; Facilities therefor
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W4/00Services specially adapted for wireless communication networks; Facilities therefor
    • H04W4/20Services signaling; Auxiliary data signalling, i.e. transmitting data via a non-traffic channel
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/12Wireless traffic scheduling
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W84/00Network topologies
    • H04W84/02Hierarchically pre-organised networks, e.g. paging networks, cellular networks, WLAN [Wireless Local Area Network] or WLL [Wireless Local Loop]
    • H04W84/10Small scale networks; Flat hierarchical networks
    • H04W84/12WLAN [Wireless Local Area Networks]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W88/00Devices specially adapted for wireless communication networks, e.g. terminals, base stations or access point devices
    • H04W88/08Access point devices
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L25/00Baseband systems
    • H04L25/02Details ; arrangements for supplying electrical power along data transmission lines
    • H04L25/0202Channel estimation
    • H04L25/0224Channel estimation using sounding signals

Definitions

  • Embodiments of the present invention relate to communication technologies, and in particular, to a wireless local area network information transmission method and apparatus.
  • Wireless Local Area Networks is a data transmission system that uses radio frequency (RF) technology to replace the local area network of old twisted-pair copper wires, making the wireless local area network easy to use.
  • RF radio frequency
  • the access architecture allows users to achieve information transfer through it.
  • the development and application of WLAN technology has profoundly changed the way people communicate and work, bringing unprecedented convenience. With the widespread use of smart terminals, the demand for data network traffic is growing.
  • the development of WLAN is inseparable from the formulation and promotion of its standards.
  • the IEEE802.11 series is the main standard, mainly 802.11, 802.11b/g/a, 802.11n, 802.11ac. All of the standards except 802.11 and 802.11b use Orthogonal Frequency Division Multiplexing (OFDM) technology as the core technology of the physical layer.
  • OFDM Orthogonal Frequency Division Multiplexing
  • Channel estimation is a process of estimating the channel parameters through which a transmitted signal passes under certain criteria based on the received signal.
  • the performance of a wireless communication system is largely affected by the wireless channel. Such as shadow fading and frequency selective fading, etc., the propagation path between the transmitter and the receiver is very complicated. Wireless channels are not as fixed and predictable as wired channels, but are highly random. In the coherent detection of OFDM systems, the channel needs to be estimated, and the accuracy of channel estimation will directly affect the performance of the whole system.
  • the core transmission standard is the IEEE 802.11 series of standards, including 802.11a, 802.11n, 802.11ac, etc., and the 802.11 series of standards are backward compatible, that is, later developed.
  • the standards will be compatible with existing standards.
  • 802.11ax which is currently undergoing standardization, also needs to be backward compatible.
  • the corresponding standard needs to minimize the Peak to Average Power Ratio (PAPR) of the WLAN.
  • PAPR Peak to Average Power Ratio
  • an embodiment of the present invention provides an information transmission method in a wireless local area network, which generates a traditional signaling domain and/or repeats a traditional signaling domain L-SIG/RL-SIG, including: at a bandwidth of 20 MHz.
  • the L-SIG or RL-SIG serial number -28, -27, 27, 28 subcarriers carry -1, -1, -1, 1 in sequence;
  • the generated L-SIG/RL-SIG is transmitted.
  • -1, -1, -1, 1, other preferred values are provided in the examples.
  • the generating the L-SIG/RL-SIG includes: carrying the -1, -1, -1, 1 on the subcarriers of sequence numbers -28, -27, 27, 28.
  • the L-SIG or RL-SIG performs copying and phase rotation at each 20 MHz in the transmission bandwidth.
  • L-SIG/RL-SI may carry other preferred values provided in the embodiments.
  • a wireless local area network information transmission apparatus is characterized by comprising a processing unit configured to perform the aforementioned method, and an interface.
  • the L-SIG or RL-SIG in the embodiments of the present invention allows the system to have a very low PAPR value.
  • FIG. 1 is a simplified schematic diagram of a wireless local area network according to an embodiment of the present invention.
  • FIG. 2 is a simplified schematic diagram of a packet structure in an embodiment of the present invention (eg, 802.11ax);
  • FIG. 3 is a schematic diagram showing the structure of an L-SIG in an embodiment of the present invention.
  • 4 is a schematic diagram of subcarrier mapping of an L-SIG of 802.11ac at a bandwidth of 20 MHz;
  • Figure 5 is an illustration of the replication and phase rotation of the L-SIG at 40 MHz bandwidth of 802.11ac;
  • 6 is a transmission flow of an L-SIG of 802.11ac
  • FIG. 7 is a schematic diagram of subcarrier mapping of HE-SIGA in a 20 MHz bandwidth in an embodiment of the present invention (eg, 802.11ax);
  • 8 is a simplified schematic diagram of subcarrier mapping of a 20 MHz bandwidth L-SIG in an embodiment of the present invention (eg, 802.11ax);
  • FIG. 9 is a flowchart of a transmission process after an additional subcarrier is added to an L-SIG/RL-SIG (for example, 802.11ax) according to an embodiment of the present invention.
  • L-SIG/RL-SIG for example, 802.11ax
  • FIG. 10 is a flow chart of another embodiment of the present invention (eg, 802.11ax) L-SIG/RL-SIG after additional subcarriers are added.
  • 802.11ax another embodiment of the present invention
  • FIG. 11 is a simplified schematic diagram of an information transmission apparatus according to an embodiment of the present invention.
  • FIG. 1 is a schematic diagram of a applicable scenario of a pilot transmission method in a wireless local area network according to Embodiment 1 of the present invention.
  • the WLAN network system may include one access station 101 and at least two sites 102.
  • An Access Point which can also be called a wireless access point or bridge or hotspot, can access a server or a communication network.
  • a station which may also be called a user equipment, may be a wireless sensor, a wireless communication terminal, or a mobile terminal, such as a mobile phone (or "cellular" phone) that supports WiFi communication function and a computer with wireless communication function.
  • a mobile terminal such as a mobile phone (or "cellular" phone) that supports WiFi communication function and a computer with wireless communication function.
  • it may be a portable, pocket-sized, handheld, computer-built, wearable, or in-vehicle wireless communication device that supports WiFi communication functions, and exchanges communication data such as voice and data with the wireless access network.
  • Those skilled in the art are aware that some communication devices may have the functions of the above-mentioned access points or sites, and are not limited herein.
  • FIG. 2 shows a simple schematic diagram of the packet structure of 802.11ax, in which High Efficiency Signal Field B (HE-SIGB) exists only in downlink multi-user transport packets.
  • HE-SIGB High Efficiency Signal Field B
  • the Legacy Short Training Field (L-STF), the Legacy Long Training Field (L-LTF), and the Legacy Signal Field (L-SIG) belong to One of the functions of the traditional leading part is to use To achieve backward compatibility features.
  • the Repeated Legacy Signal Field (RL-SIG) is exactly the same as the L-SIG.
  • One of its functions is to automatically detect 802.11ax packets.
  • Figure 3 shows the schematic of the L-SIG. It can be seen that the L-SIG domain contains a total of 24 information bits and carries control information such as rate and length.
  • the L-SIG field uses a Binary Convolution Code with a code rate of 1/2 to obtain 48 coded bits, and then performs interleaving processing, followed by binary phase shift keying (Binary). Phase Shift Key, BPSK) to modulate to obtain 48 symbols.
  • Binary Convolution Code with a code rate of 1/2 to obtain 48 coded bits, and then performs interleaving processing, followed by binary phase shift keying (Binary). Phase Shift Key, BPSK) to modulate to obtain 48 symbols.
  • BPSK Binary phase shift keying
  • the number of available subcarriers is 52, numbered -26, ..., -1, 1, ..., 26.
  • the number of subcarriers used for transmitting the L-SIG is 48, and the sequence numbers of these subcarriers are -26, ...-22, -20, ..., -8, -6, ... -1, 1, ..., 6, 8, ..., 20, 22, ... 26, the remaining 4 subcarriers carry the pilot sequence.
  • the 48 symbols of the L-SIG obtained as described above are mapped to the numbers -26, ...-22, -20, ..., -8, -6, ... -1, 1, ..., 6, 8, ..., 20, 22
  • the pilot sequence is then inserted on the subcarriers with the sequence number ⁇ 7, ⁇ 21.
  • Figure 4 shows the subcarrier mapping of L-SIG at 20MHz, where the DC subcarriers are not shown, and the null subcarriers with the sequence numbers -32,...,-27,27,...,31 are also not shown.
  • the subcarriers of the pilot sequence are distinguished by dashed lines.
  • the L-SIG (including the pilot sequence) needs to be copied and rotated at each 20MHz, that is, the subcarriers with the sequence number of -26,...,-1,1,...,26 in the 20MHz case.
  • the content on the (including the pilot sequence) is copied onto each 20 MHz and a corresponding phase rotation is applied to each 20 MHz bandwidth.
  • the number of 104 available subcarriers is -58, ..., -33, -31, ..., -6, 6, ..., 31, 33, ..., 58.
  • FIG. 6 shows the transmission flow of the L-SIG in the 802.11ac standard.
  • the number of available subcarriers per 20 MHz bandwidth is 52, of which 48 subcarriers are used to carry data and the remaining 4 subcarriers are used to carry pilots.
  • the number of available subcarriers in the HE-SIGA field of the packet preamble is increased from 52 to 56 (their sequence numbers are -28, -27, -26, ..., -1, 1, ..., 26, 27, 28), wherein the number of subcarriers used to carry data is changed from 48 to 52 (their sequence numbers are -28,-27,-26,...-22,-20,...,-8,-6,...-1,1,...,6,8,...,20,22,...26,27,28),
  • the remaining 4 subcarriers still carry the pilot sequence.
  • Figure 7 shows the subcarrier mapping of the HE-SIGA field over a 20 MHz bandwidth.
  • the above sequence numbers are -28, -27, -26, ...-22, -20, ..., - Channel estimation is performed on 52 subcarriers of 8, -6, ... -1, 1, ..., 6, 8, ..., 20, 22, ..., 26, 27, 28.
  • the 48 subcarriers numbered -26,...-22,-20,...,-8,-6,...-1,1,...,6,8,...,20,22,...26 can pass L-STF and The L-LTF field is used for channel estimation.
  • L-STF and L-LTF have no values on the subcarriers of sequence numbers -28, -27, 27, 28, that is, the four subcarriers are not used, there is no way to pass L-STF and L-LTF.
  • the 802.11ax draft adds four additional sub-numbers -28, -27, 27, 28 in the L-SIG/RL-SIG field.
  • the carrier is used for channel estimation, and the subcarrier occupied by the L-SIG/RL-SIG over the 20 MHz bandwidth is shown in FIG.
  • the L-SIG transmission mode in the existing 802.11ac does not use the sub-carriers of the sequence number -28, -27, 27, 28, so how to transmit the four sub-carriers in the 802.11ax and what to carry on the four sub-carriers There is no solution for content and how to handle when the transmission bandwidth is greater than 20MHz.
  • the L-SIG/RL-SIG field is generated or processed, including, in the 20 MHz bandwidth, the number of the sequence number -28, -27, 27, 28 in the L-SIG/RL-SIG field. Carryed on the carrier The content is -1, -1, -1, 1 in order, and it is recorded as C1. Subsequent processing is then performed, such as sending the generated or processed L-SIG/RL-SIG. Under this content, the maximum PAPR of the L-SIG/RL-SIG after adding additional subcarriers at 2730 different values can be very small.
  • the L-SIG/RL-SIG field is generated or processed, including the sequence number -28, -27, 27, 28 in the L-SIG/RL-SIG field in the 20 MHz bandwidth.
  • the content carried on the subcarriers is 1,-1,-1,1 in order, and it is recorded as C2.
  • Subsequent processing is then performed, such as sending the generated or processed L-SIG/RL-SIG. Under this content, the average PAPR of the L-SIG/RL-SIG after adding additional subcarriers at 2730 different values is also very small.
  • the 802.11ac processing mode when the transmission bandwidth is greater than 20 MHz (for example, 40 MHz, 80 MHz, and 160 MHz), the 802.11ac processing mode may be referred to, and the L-SIG (including the subcarriers of the serial numbers -28, -27, 27, and 28) is Copy and phase rotation are performed at each 20 MHz.
  • the L-SIG including the subcarriers of the serial numbers -28, -27, 27, and 28
  • Figure 9 shows the transmission flow of L-SIG/RL-SIG (which can be applied to all transmission bandwidths, where the step of copying at 20 MHz is not required at 20 MHz), in this embodiment, and the 802.11ac standard
  • the constellation mapping module needs to insert the content C1 or C2 on the subcarriers with the serial number -28, -27, 27, 28 in addition to the existing standard steps of 802.11ac.
  • the maximum PAPR of the content C1 (-1, -1, -1, 1) in the 20 MHz transmission bandwidth is 10.45 dB
  • the maximum PAPR of the other content in the 20 MHz bandwidth is as high as 12.06 dB.
  • the maximum PAPR is 13.14dB in the 40MHz transmission bandwidth, and the maximum PAPR is 14.59dB in the 40MHz bandwidth under other contents
  • the maximum PAPR is 12.45dB in the 80MHz transmission bandwidth, and the maximum PAPR is as high as 80MHz in other contents. 14.28dB
  • the maximum PAPR is 13.84dB at 160MHz transmission bandwidth
  • the maximum PAPR is as high as 15.32dB under 160MHz bandwidth.
  • the average PAPR of the content C2 (1, -1, -1, 1) in the 20 MHz transmission bandwidth is 6.74 dB, and the average content of the PAPR is as high as 7.29 dB in the 20 MHz transmission bandwidth; the transmission bandwidth is 40 MHz.
  • the average PAPR is 9.56dB.
  • the average PAPR is as high as 9.97dB in the 40MHz bandwidth; the average PAPR is 8.86dB in the 80MHz transmission bandwidth, and the average PAPR is as high as 9.48dB in the 80MHz bandwidth under other contents;
  • the maximum PAPR under the transmission bandwidth is 10.27 dB. Under other contents, the maximum PAPR is as high as 11.35 dB under the 160 MHz bandwidth.
  • the second embodiment is different from the first embodiment.
  • the transmission bandwidth is greater than 20 MHz
  • for the L-SIG/RL-SIG after each 20 MHz copy and phase rotation, corresponding values are inserted on the corresponding subcarriers.
  • the content carried by the extra subcarriers on the L-SIG/RL-SIG field on different 20 MHz may be different. In this way, the maximum PAPR or average PAPR of the L-SIG/RL-SIG at 2730 different values can be further reduced.
  • FIG. 10 shows a transmission flow of the L-SIG/RL-SIG when the transmission bandwidth is greater than 20 MHz in the present embodiment.
  • the module "insert the corresponding value at the corresponding subcarrier position according to the transmission bandwidth” is specifically described as follows:
  • the contents 1, 1, 1, 1, -1, 1, -j are sequentially inserted on the subcarriers of the sequence numbers -60, -59, -5, -4, 4, 5, 59, 60. , -j, -j, j or -1, -1, 1, 1, j, -j, -j, -j, where
  • the contents 1,-1,-1,1,-j,-j,-j,j are determined according to the maximum PAPR minimization criterion, and the maximum PAPR is 12.83 dB, and the maximum PAPR of other contents is as high as 14.59 dB;
  • the contents -1, -1, 1, 1, j, -j, -j, -j are determined according to the average PAPR minimization criterion, and the average PAPR is 9.39 dB, and the average PAPR is as high as 9.97 dB in other contents.
  • the subcarriers with the sequence numbers -124, -123, -69, -68, -60, -59, -5, -4, 4, 5, 59, 60, 68, 69, 123, 124 Insert the contents 1,-1,-1,-1,-1,1,1,1,1,1,1,-1,-1,1,1,1 or 1,-1,-1, in order. 1,-1,1,1,-1,1,1,1,-1,1,-1,-1.
  • the contents 1,-1,-1,-1,1,1,1,1,1,1,-1,-1,1,1,1 are determined according to the maximum PAPR minimization criterion, Its maximum PAPR is 12.34dB, and the maximum PAPR is 14.28dB in other contents.
  • Contents 1,-1,-1,1,-1,1,1,-1,1,1,1,1,-1,1 , -1, -1 is determined according to the average PAPR minimization criterion, and its average PAPR is 8.73dB, and the average PAPR is as high as 9.48dB in other contents.
  • the content -1,-1,1,1,1,1,-1,1,1,1,-1,-1,-1,-1,1,-1,-1,- 1,1,1,1,1,-1,1,1,1,-1,1,1,1,-1 are determined according to the maximum PAPR minimization criterion, and the maximum PAPR is 13.79dB.
  • the maximum PAPR is as high as 15.32dB; content 1,-1,-1,1,-1,1,1,-1,1,-1,-1,1,1,-1,-1,1, -1,1, -1,1, -1,1, -1,1, -1,1, -1,1,-1,1,1,1,-1,-1,1,1,1,-1,-1,1,1,1,-1,-1,1,1,-1 are determined according to the average PAPR minimization criterion,
  • the average PAPR is 10.10 dB, and the average PAPR is as high as 11.38 dB in other contents.
  • the L-SIG/RL-SIG transmission method and apparatus of the present invention make the L-SIG/RL-SIG have good PAPR characteristics and are simple to implement under different bandwidth conditions.
  • the present invention can be applied to a wireless local area network, including but not limited to a Wi-Fi system represented by 802.11a, 802.11b, 802.11g, 802.11n, and 802.11ac, and can also be applied to a next-generation Wi-Fi system, and a next generation.
  • a wireless local area network including but not limited to a Wi-Fi system represented by 802.11a, 802.11b, 802.11g, 802.11n, and 802.11ac, and can also be applied to a next-generation Wi-Fi system, and a next generation.
  • a wireless LAN system including but not limited to a Wi-Fi system represented by 802.11a, 802.11b, 802.11g, 802.11n, and 802.11ac
  • the present invention also provides an information transmission apparatus that can perform the aforementioned method.
  • 11 is an example of a schematic structural diagram of an information transmission apparatus provided in an embodiment of the present invention (for example, some devices in an access point, a site, or a chip, etc. are optional).
  • the information transmission device 1200 can be implemented by the bus 1201 as a general bus architecture. Depending on the particular application of information transmission device 1200 and overall design constraints, bus 1201 may include any number of interconnecting buses and bridges. Bus 1201 connects various circuits together, including processor 1202, storage medium 1203, and bus interface 1204. The information transmission device 1200 connects the network adapter 1205 or the like via the bus interface 1204 via the bus 1201.
  • the network adapter 1205 can be used to implement signal processing functions of the physical layer in the wireless local area network, and transmit and receive radio frequency signals through the antenna 1207.
  • the user interface 1206 can be connected to a user terminal such as a keyboard, display, mouse, joystick, and the like.
  • the bus 1201 can also be connected to various other circuits such as timing sources, peripherals, voltage regulators, power management circuits, etc., which are well known in the art and therefore will not be described in detail.
  • Information transfer device 1200 can also be configured as a general purpose processing system including: one or more microprocessors providing processor functionality; and external memory providing at least a portion of storage medium 1203, all through an external bus system The structure is connected to other support circuits.
  • the information transmission device 1200 can be implemented using an ASIC (Application Specific Integrated Circuit) having a processor 1202, a bus interface 1204, a user interface 1206, and at least a portion of the storage medium 1203 integrated in a single chip, or
  • the information transmission device 1200 can be implemented using one or more FPGAs (Field Programmable Gate Arrays), PLDs (Programmable Logic Devices), controllers, state machines, gate logic, discrete hardware components, any other suitable A circuit, or any combination of circuits capable of performing the various functions described throughout the present invention.
  • FPGAs Field Programmable Gate Arrays
  • PLDs Programmable Logic Devices
  • controllers state machines, gate logic, discrete hardware components, any other suitable A circuit, or any combination of circuits capable of performing the various functions described throughout the present invention.
  • the processor 1202 is responsible for managing the bus and general processing (including executing software stored on the storage medium 1203).
  • Processor 1202 can be implemented using one or more general purpose processors and/or special purpose processors. Examples of processors include microprocessors, microcontrollers, DSP processors, and other circuits capable of executing software.
  • Software should be interpreted broadly to mean instructions, data, or any combination thereof, whether referred to as software, firmware, middleware, microcode, hardware description language, or otherwise.
  • Storage medium 1203 is shown separated from processor 1202 in FIG. 11, however, it will be readily apparent to those skilled in the art that storage medium 1203, or any portion thereof, can be located outside of information transmission device 1200.
  • storage medium 1203 can include transmission lines, carrier waveforms modulated with data, and/or computer products separate from wireless nodes, all of which can be accessed by processor 1202 through bus interface 1204.
  • storage medium 1203, or any portion thereof, can be integrated into processor 1202, for example, can be a cache and/or a general purpose register.
  • the processor 1202 can perform the above embodiments, and details are not described herein again.
  • the foregoing program may be stored in a computer readable storage medium, and the program is executed when executed.
  • the foregoing steps include the steps of the foregoing method embodiments; and the foregoing storage medium includes: a medium that can store program codes, such as a ROM, a RAM, a magnetic disk, or an optical disk.

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Discrete Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Mathematical Physics (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

一种无线局域网中的信息传输方法,生成传统信令域和/或重复传统信令域L-SIG/RL-SIG,其中包括:在20MHz带宽下的L-SIG或者RL-SIG的序号为-28,-27,27,28的子载波依次携带-1,-1,-1,1;发送所述生成的L-SIG/RL-SIG。

Description

无线局域网信息传输方法和装置
本申请要求于2016年1月7日提交中国专利局、申请号为201610011271.6、发明名称为“无线局域网信息传输方法和装置”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本发明实施例涉及通信技术,尤其涉及无线局域网信息传输方法和装置。
背景技术
无线局域网络(Wireless Local Area Networks,WLAN)是一种数据传输系统,它利用无线射频(Radio Frequency,RF)技术,取代旧式双绞铜线所构成的局域网络,使得无线局域网络能利用简单的存取架构让用户透过它,达到信息传输的目地。WLAN技术的发展与应用已经深深的改变了人们的交流方式和工作方式,带给人们前所未有的便捷。随着智能终端的广泛应用,人们对数据网络流量的需求日益增长。WLAN的发展离不开其标准的制定与推广应用,其中IEEE802.11系列是主要标准,主要有802.11,802.11b/g/a,802.11n,802.11ac。其中除802.11及802.11b外其它标准均采用正交频分复用(Orthogonal Frequency Division Multiplexing,OFDM)技术作为物理层的核心技术。
信道估计,就是根据接收信号在一定准则下将发射信号所经过的信道参数估计出来的过程。无线通信系统的性能很大程度上受到无线信道的影响, 如阴影衰落和频率选择性衰落等等,使得发射机和接收机之间的传播路径非常复杂。无线信道并不像有线信道固定并可预见,而是具有很大的随机性。在OFDM系统的相干检测中需要对信道进行估计,信道估计的精度将直接影响整个系统的性能。
WLAN技术在过去的十几年间取得了高速的发展,其中核心的传输标准是IEEE 802.11系列标准,包括802.11a,802.11n,802.11ac等,并且802.11系列标准是后向兼容的,也即后面发展的标准会兼容已有的标准。当前正在标准化进程中的802.11ax同样需要满足后向兼容的特性,其中,相应标准需要尽量降低无线局域网的峰均比(Peak to Average Power Ratio,PAPR)。
发明内容
为了降低无线局域网的PAPR,本发明实施方式提供一种无线局域网中的信息传输方法,生成传统信令域和/或重复传统信令域L-SIG/RL-SIG,其中包括:在20MHz带宽下的L-SIG或者RL-SIG的序号为-28,-27,27,28的子载波依次携带-1,-1,-1,1;
发送所述生成的L-SIG/RL-SIG。当然,除了-1,-1,-1,1之外,实施例中还提供了其他较优的值。
当传输带宽大于20MHz带宽时,所述生成L-SIG/RL-SIG包括:将在序号为-28,-27,27,28的子载波上携带所述-1,-1,-1,1的所述L-SIG或者RL-SIG在传输带宽中的各个20MHz上进行复制和相位旋转。
可以替换的,当传输带宽大于20MHz带宽时,相应的在11ax中的 L-SIG/RL-SI增加的子载波可以携带实施例中提供的其他较优值。
相应的,一种无线局域网信息传输装置,其特征在于,包含处理单元,被设置为用于执行前述的方法,以及接口。
通过仿真与比较,本发明实施方式中的L-SIG或者RL-SIG使得系统具有非常低的PAPR值。
附图说明
为了更清楚地说明本发明实施例或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作一简单地介绍,显而易见地,下面描述中的附图是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1是本发明实施方式无线局域网的一个简单示意图;
图2是本发明实施方式中(例如802.11ax)的分组结构简单示意;
图3是本发明实施方式中L-SIG结构示意简单示意图;
图4是802.11ac的L-SIG在20MHz带宽时的子载波映射示意;
图5是802.11ac的40MHz带宽下L-SIG的复制及相位旋转示意;
图6是802.11ac的的L-SIG的发送流程;
图7是本发明实施方式中(例如802.11ax)的20MHz带宽下HE-SIGA的子载波映射示意;
图8本发明实施方式中(例如802.11ax)中20MHz带宽L-SIG的子载波映射示意的简单示意图;
图9为一种本发明实施方式中(例如802.11ax)L-SIG/RL-SIG在额外增加子载波后的发送流程。
图10为另一种本发明实施方式中(例如802.11ax)L-SIG/RL-SIG在额外增加子载波后的发送流程。
图11为本发明实施方式一种信息传输装置的简单示意图。
具体实施方式
本发明各实施例的方案可适用于WLAN网络系统。图1为本发明实施例一所提供的无线局域网中的导频传输方法的适用场景示意图。如图1所示,该WLAN网络系统中可包括一个接入站101和至少两个站点102。
接入点(AP,Access Point),也可称之为无线访问接入点或桥接器或热点等,其可以接入服务器或通信网络。
站点(STA,Station),还可以称为用户设备,可以是无线传感器、无线通信终端或移动终端,如支持WiFi通讯功能的移动电话(或称为“蜂窝”电话)和具有无线通信功能的计算机。例如,可以是支持WiFi通讯功能的便携式、袖珍式、手持式、计算机内置的,可穿戴的,或者,车载的无线通信装置,它们与无线接入网交换语音、数据等通信数据。本领域技术人员知道,一些通信设备可能同时具有上述接入点或者站点的功能,在此不予限制。
图2给出了802.11ax的分组结构简单示意,其中高效信令域B(High Efficiency Signal Field B,HE-SIGB)只在下行多用户传输分组中存在。
在上述分组结构中,传统短训练域(Legacy Short Training Field,L-STF)、传统长训练域(Legacy Long Training Field,L-LTF)及传统信令域(Legacy Signal Field,L-SIG)属于传统前导部分,其作用之一是用 来实现后向兼容特性。重复传统信令域(Repeated Legacy Signal Field,RL-SIG)和L-SIG完全一样,其作用之一是用来对802.11ax分组进行自动检测。图3给出了L-SIG的示意。可以看出,L-SIG域中一共包含了24个信息比特,并且携带了速率,长度等控制信息。
在现有的802.11ac中,L-SIG字段采用码率为1/2的二进制卷积编码(Binary Convolution Code)得到48个编码后比特,然后进行交织处理,接着采用二进制相移键控(Binary Phase Shift Key,BPSK)来进行调制获得48个符号。
当传输带宽为20MHz时,1x模式下子载波数为64,其序号为-32,…,-1,0,1,…,31,相邻子载波间的频率间隔为ΔF=312.5kHz。在这64个子载波中,可用的子载波数为52,编号为-26,…,-1,1,…,26。对于所述52个子载波,用于传输L-SIG的子载波数为48,这些子载波的序号为-26,…-22,-20,…,-8,-6,…-1,1,…,6,8,…,20,22,…26,其余4个子载波承载导频序列。将前述获得的L-SIG的48个符号映射到序号为-26,…-22,-20,…,-8,-6,…-1,1,…,6,8,…,20,22,…26的子载波上,随后在序号为±7,±21的子载波上插入导频序列。
图4给出了20MHz时L-SIG的子载波映射示意,其中直流子载波未画出,以及序号为-32,…,-27,27,…,31的空子载波也为未画出,承载导频序列的子载波是用虚线加以区分。
当传输带宽大于20MHz时,需要将L-SIG(包含导频序列)在各个20MHz上进行复制及旋转,也即将20MHz情形时序号为-26,…,-1,1,…,26的子载波(包含导频序列)上的内容复制到各个20MHz上,并且对每个20MHz带宽施 加相应地相位旋转。具体地,以40MHz为例,104个可用子载波的序号为-58,…,-33,-31,…,-6,6,…,31,33,…,58。将20MHz情形时序号为-26,…,-1,1,…,26的子载波(包含导频序列)上的内容依次复制到40MHz带宽下序号为-58,…,-33,-31,…,-6的子载波上(也即40MHz带宽第一个20MHz中L-SIG字段可用的子载波)以及序号为6,…,31,33,…,58的子载波上(也即40MHz带宽第二个20MHz中L-SIG字段可用的子载波)。随后,对每个20MHz施加相位旋转,具体地,对40MHz带宽下序号为-58,…,-33,-31,…,-6的子载波上的符号乘以相位旋转因子γ(1)=1;对40MHz带宽下序号为6,…,31,33,…,58的子载波上的符号乘以相位旋转因子γ(2)=j,其中
Figure PCTCN2017070462-appb-000001
图5给出了40MHz带宽下L-SIG的复制及相位旋转示意。对于80MHz及160MHz情形也是类似进行复制和相位旋转,这里不在赘述。
接下来,进行反离散傅里叶变换(Inverse Discrete Fourier Transform,IDFT),并且对各发送链(transmit chain)及频率段(frequency segment)施加对应地循环位移延迟(Cyclic Shift Delay,CSD)。接着,插入保护间隔(Guard Interval,GI)及施加窗函数获得L-SIG的基带信号,最后,将所述基带信号经过频率搬移后通过射频端口发射。图6给出了802.11ac标准中L-SIG的发送流程。
然而,在802.11ac标准中,对于传统前导部分,每个20MHz带宽上可用子载波的个数为52,其中48个子载波用来承载数据,剩余4个子载波用来承载导频。而在最新的802.11ax标准中,分组前导部分的HE-SIGA字段的可用子载波数目从52增加到56(它们的序号为-28,-27,-26,…,-1,1,…,26,27,28),其中用于承载数据的子载波的个数由48变为52(它们的序号为 -28,-27,-26,…-22,-20,…,-8,-6,…-1,1,…,6,8,…,20,22,…26,27,28),其余4个子载波仍然承载导频序列。图7给出了在20MHz带宽上,HE-SIGA字段的子载波映射示意。
为了使得接入点(Access Point,AP)或者站点(Station,STA)能解码HE-SIGA的数据,需要对上述序号为-28,-27,-26,…-22,-20,…,-8,-6,…-1,1,…,6,8,…,20,22,…26,27,28的52个子载波进行信道估计。序号为-26,…-22,-20,…,-8,-6,…-1,1,…,6,8,…,20,22,…26的48个子载波可以通过L-STF和L-LTF字段来进行信道估计。然而,由于L-STF和L-LTF在序号为-28,-27,27,28的子载波上没有数值,也即没有使用所述4个子载波,所以没办法通过L-STF和L-LTF字段来估计序号为-28,-27,27,28的子载波的信道。为了对序号为-28,-27,27,28的子载波进行信道估计,802.11ax的草案在L-SIG/RL-SIG字段额外增加了序号为-28,-27,27,28的4个子载波来用于信道估计,此时L-SIG/RL-SIG在20MHz带宽上占据的子载波如图8所示。
已有的802.11ac中的L-SIG传输方式没有使用序号为-28,-27,27,28的子载波,因此如何传输802.11ax中所述4个子载波、所述4个子载波上该携带什么内容以及当传输带宽大于20MHz时该如何处理都没有解决方案。
实施例一
由于802.11ax中的RL-SIG和L-SIG完全一样,所以以下均以L-SIG为对象进行说明,对于RL-SIG,进行同样的处理。
一种较优的实施方式中,生成或者处理L-SIG/RL-SIG字段,包括,在20MHz带宽下,L-SIG/RL-SIG字段中序号为-28,-27,27,28的子载波上携带的 内容依次为-1,-1,-1,1,将其记为C1。然后进行后续的处理,例如发送该生成或者处理后的L-SIG/RL-SIG。在该内容下,添加额外子载波后的L-SIG/RL-SIG在2730种不同取值下的最大PAPR能够非常小。
或者,另一种较优的实施方式中,生成或者处理L-SIG/RL-SIG字段,包括,在20MHz带宽下L-SIG/RL-SIG字段中序号为-28,-27,27,28的子载波上携带的内容依次为1,-1,-1,1,将其记为C2。然后进行后续的处理,例如发送该生成或者处理后的L-SIG/RL-SIG。在该内容下,添加额外子载波后的L-SIG/RL-SIG在2730种不同取值下的平均PAPR也非常小。
在本实施方式中,当传输带宽大于20MHz时(例如40MHz、80MHz、160MHz),可以参考802.11ac处理方式,将上述L-SIG(包含序号-28,-27,27,28的子载波)在各个20MHz上进行复制及相位旋转。图9给出了L-SIG/RL-SIG的发送流程一(可以适用于所有传输带宽,其中在20MHz时不需要“在各20MHz上复制的步骤”),本实施方式中,和802.11ac标准的区别是:星座映射模块除了执行802.11ac已有的标准的步骤外,还需在序号为-28,-27,27,28的子载波上插入内容前述C1或者C2。
本实施方式中,具体的,通过仿真得到该内容C1(-1,-1,-1,1)在20MHz传输带宽下的最大PAPR为10.45dB,其他内容在20MHz带宽下最大PAPR有些高达12.06dB;在40MHz传输带宽下的最大PAPR为13.14dB,其他内容下在40MHZ带宽下最大PAPR有些高达14.59dB;在80MHz传输带宽下的最大PAPR为12.45dB,其他内容下在80MHZ带宽下最大PAPR有些高达14.28dB;在160MHz传输带宽下的最大PAPR为13.84dB,其他内容下在160MHZ带宽下最大PAPR有些高达15.32dB。
具体的,通过仿真得到该内容C2(1,-1,-1,1)在20MHz传输带宽下的平均PAPR为6.74dB,其他内容在20MHz传输带宽下平均PAPR有些高达7.29dB;在40MHz传输带宽下的平均PAPR为9.56dB,其他内容下在40MHZ带宽下平均PAPR有些高达9.97dB;在80MHz传输带宽下的平均PAPR为8.86dB,其他内容下在80MHZ带宽下平均PAPR有些高达9.48dB;在160MHz传输带宽下的最大PAPR为10.27dB,其他内容下在160MHZ带宽下最大PAPR有些高达11.35dB。
实施例二和实施例一不同,当传输带宽大于20MHz时,对于L-SIG/RL-SIG,在各20MHz复制及相位旋转后,再在相应地子载波上插入相应的数值。在这个实施方式中,此时,不同20MHz上L-SIG/RL-SIG字段上的额外子载波携带的内容可以不一样。这样,可以进一步降低L-SIG/RL-SIG在2730种不同取值下的最大PAPR或者平均PAPR。
图10示出了本实施方式中,在传输带宽大于20MHz时,L-SIG/RL-SIG的发送流程。
在图10中,对模块“根据传输带宽,在对应地子载波位置上插入对应地数值”进行具体地说明:
1)当传输带宽为40MHz时,在序号为-60,-59,-5,-4,4,5,59,60的子载波上依次插入内容1,-1,-1,1,-j,-j,-j,j或者-1,-1,1,1,j,-j,-j,-j,其中
Figure PCTCN2017070462-appb-000002
其中,内容1,-1,-1,1,-j,-j,-j,j是根据最大PAPR最小化准则确定的,其最大PAPR为12.83dB,其他内容下最大PAPR有些高达14.59dB;内容-1,-1,1,1,j,-j,-j,-j是根据平均PAPR最小化准则确定的,其平均PAPR为9.39dB,其他内 容下平均PAPR有些高达9.97dB。
2)当传输带宽为80MHz时,在序号为-124,-123,-69,-68,-60,-59,-5,-4,4,5,59,60,68,69,123,124的子载波上依次插入内容1,-1,-1,-1,-1,1,1,1,1,1,1,-1,-1,1,1,1或者1,-1,-1,1,-1,1,1,-1,1,1,1,1,-1,1,-1,-1。其中,内容1,-1,-1,-1,-1,1,1,1,1,1,1,-1,-1,1,1,1是根据最大PAPR最小化准则确定的,其最大PAPR为12.34dB,其他内容下最大PAPR有些高达14.28dB;内容1,-1,-1,1,-1,1,1,-1,1,1,1,1,-1,1,-1,-1是根据平均PAPR最小化准则确定的,其平均PAPR为8.73dB,其他内容下平均PAPR有些高达9.48dB。
3)当传输带宽为160MHz时,在序号为-252,-251,-197,-196,-188,-187,-133,-132,-124,-123,-69,-68,-60,-59,-5,-4,4,5,59,60,68,69,123,124,132,133,187,188,196,197,251,252的子载波上依次插入内容-1,-1,-1,1,1,1,1,-1,1,1,1,-1,-1,-1,-1,1,-1,-1,-1,1,1,1,1,-1,1,1,1,-1,1,1,1,-1或者1,-1,-1,1,-1,1,1,-1,1,-1,-1,1,1,-1,-1,1,-1,1,1,-1,1,-1,-1,1,-1,1,1,-1,-1,1,1,-1。其中,内容-1,-1,-1,1,1,1,1,-1,1,1,1,-1,-1,-1,-1,1,-1,-1,-1,1,1,1,1,-1,1,1,1,-1,1,1,1,-1是根据最大PAPR最小化准则确定的,其最大PAPR为13.79dB,其他内 容下最大PAPR有些高达15.32dB;内容1,-1,-1,1,-1,1,1,-1,1,-1,-1,1,1,-1,-1,1,-1,1,1,-1,1,-1,-1,1,-1,1,1,-1,-1,1,1,-1是根据平均PAPR最小化准则确定的,其平均PAPR为10.10dB,其他内容下平均PAPR有些高达11.38dB。
本发明所提的L-SIG/RL-SIG的传输方法和装置,使得L-SIG/RL-SIG具有良好的PAPR特性,并且在不同带宽条件下实施简单。
本发明可应用于无线局域网中,包括但不限于以802.11a,802.11b,802.11g,802.11n,802.11ac为代表的Wi-Fi系统中,也可应用与下一代Wi-Fi系统、下一代无线局域网系统中。
本发明还提供了可以执行前述方法的信息传输装置。图11为本发明实施方式中所提供的信息传输装置的结构示意图的举例(例如接入点,站点,或者芯片等图中部分器件为可选)。如图9所示,信息传输装置1200可以由总线1201作一般性的总线体系结构来实现。根据信息传输装置1200的具体应用和整体设计约束条件,总线1201可以包括任意数量的互连总线和桥接。总线1201将各种电路连接在一起,这些电路包括处理器1202、存储介质1203和总线接口1204。信息传输装置1200使用总线接口1204将网络适配器1205等经由总线1201连接。网络适配器1205可用于实现无线局域网中物理层的信号处理功能,并通过天线1207实现射频信号的发送和接收。用户接口1206可以连接用户终端,例如:键盘、显示器、鼠标、操纵杆等。总线1201还可以连接各种其它电路,如定时源、外围设备、电压调节器、功率管理电路等,这些电路是本领域所熟知的,因此不再详述。
信息传输装置1200也可配置成通用处理系统,该通用处理系统包括:提供处理器功能的一个或多个微处理器;以及提供存储介质1203的至少一部分的外部存储器,所有这些都通过外部总线体系结构与其它支持电路连接在一起。
可替换地,信息传输装置1200可以使用下述来实现:具有处理器1202、总线接口1204、用户接口1206的ASIC(专用集成电路);以及集成在单个芯片中的存储介质1203的至少一部分,或者,信息传输装置1200可以使用下述来实现:一个或多个FPGA(现场可编程门阵列)、PLD(可编程逻辑器件)、控制器、状态机、门逻辑、分立硬件部件、任何其它适合的电路、或者能够执行本发明通篇所描述的各种功能的电路的任意组合。
处理器1202负责管理总线和一般处理(包括执行存储在存储介质1203上的软件)。处理器1202可以使用一个或多个通用处理器和/或专用处理器来实现。处理器的例子包括微处理器、微控制器、DSP处理器和能够执行软件的其它电路。应当将软件广义地解释为表示指令、数据或其任意组合,而不论是将其称作为软件、固件、中间件、微代码、硬件描述语言还是其它。
在图11中存储介质1203被示为与处理器1202分离,然而,本领域技术人员很容易明白,存储介质1203或其任意部分可位于信息传输装置1200之外。举例来说,存储介质1203可以包括传输线、用数据调制的载波波形、和/或与无线节点分离开的计算机制品,这些介质均可以由处理器1202通过总线接口1204来访问。可替换地,存储介质1203或其任意部分可以集成到处理器1202中,例如,可以是高速缓存和/或通用寄存器。
处理器1202可执行上述实施例,在此不再赘述。
本领域普通技术人员可以理解:实现上述方法实施例的全部或部分步骤可以通过程序指令相关的硬件来完成,前述的程序可以存储于一计算机可读取存储介质中,该程序在执行时,执行包括上述方法实施例的步骤;而前述的存储介质包括:ROM、RAM、磁碟或者光盘等各种可以存储程序代码的介质。

Claims (14)

  1. 一种无线局域网中的信息传输方法,其特征在于,
    生成传统信令域L-SIG和重复传统信令域RL-SIG,其中在20MHz带宽下的所述L-SIG序号为-28,-27,27,28的子载波依次携带-1,-1,-1,1;在20MHz带宽下的所述RL-SIG的序号为-28,-27,27,28的子载波依次携带-1,-1,-1,1;
    发送所述生成的L-SIG和RL-SIG。
  2. 根据权利要求1的方法,其特征在于,
    当传输带宽大于20MHz带宽时,所述生成L-SIG和所述RL-SIG包括:将在序号为-28,-27,27,28的子载波上携带所述-1,-1,-1,1的所述L-SIG和RL-SIG在传输带宽中的各个20MHz上进行复制和相位旋转。
  3. 根据权利要求1或者2的方法,其特征在于,所述方法还包括:
    在20MHz带宽下的所述L-SIG的序号为-26,…-22,-20,…,-8,-6,…-1,1,…,6,8,…,20,22,…26的48个子载波携带遵循802.11ac标准的L-STF和L-LTF字段;和,
    在20MHz带宽下的所述RL-SIG的序号为-26,…-22,-20,…,-8,-6,…-1,1,…,6,8,…,20,22,…26的48个子载波携带遵循802.11ac标准的L-STF和L-LTF字段。
  4. 一种无线局域网中的信息传输方法,其特征在于,
    接收传统信令域L-SIG和重复传统信令域RL-SIG,
    在20MHz带宽下的所述L-SIG的序号为-28,-27,27,28的子载波根据序列-1,-1,-1,1进行信道估计;和,在20MHz带宽下的所述RL-SIG的序号为-28,-27,27,28的子载波根据序列-1,-1,-1,1进行信道估计。
  5. 根据权利要求1的方法,其特征在于,
    当传输带宽大于20MHz带宽时,所述传输带宽的各个20MHz上的序号为-28,-27,27,28的子载波根据序列-1,-1,-1,1分别进行信道估计。
  6. 根据权利要求1或者2的方法,其特征在于,
    所述方法还包括:对于20MHz带宽下的所述L-SIG的序号为-26,…-22,-20,…,-8,-6,…-1,1,…,6,8,…,20,22,…26的48个子载波,根据遵循802.11ac标准的L-STF和L-LTF字段进行信道估计;和,
    对于20MHz带宽下的所述RL-SIG的序号为-26,…-22,-20,…,-8,-6,…-1,1,…,6,8,…,20,22,…26的48个子载波,根据遵循802.11ac标准的L-STF和L-LTF字段进行信道估计。
  7. 一种无线局域网信息传输装置,其特征在于,包含处理单元,被设置为用于执行如权1-6中任意一个的方法,以及接口用于执行与外界的传输。
  8. 一种无线局域网中的信息传输方法,其特征在于,
    生成传统信令域L-SIG和重复传统信令域RL-SIG,其中在20MHz带宽下的所述L-SIG序号为-28,-27,27,28的子载波依次携带1,-1,-1,1;在20MHz带宽下的所述RL-SIG的序号为-28,-27,27,28的子载波依次携带1,-1,-1,1;
    发送所述生成的L-SIG和RL-SIG。
  9. 根据权利要求8的方法,其特征在于,
    当传输带宽大于20MHz带宽时,所述生成L-SIG和所述RL-SIG包括:将在序号为-28,-27,27,28的子载波上携带所述1,-1,-1,1的所述L-SIG和RL-SIG在传输带宽中的各个20MHz上进行复制和相位旋转。
  10. 根据权利要求8或者9的方法,其特征在于,所述方法还包括:
    在20MHz带宽下的所述L-SIG的序号为-26,…-22,-20,…,-8,-6,…-1,1,…,6,8,…,20,22,…26的48个子载波携带遵循802.11ac标准的L-STF和L-LTF字段;和,
    在20MHz带宽下的所述RL-SIG的序号为-26,…-22,-20,…,-8,-6,…-1,1,…,6,8,…,20,22,…26的48个子载波携带遵循802.11ac标准的L-STF和L-LTF字段。
  11. 一种无线局域网中的信息传输方法,其特征在于,
    接收传统信令域L-SIG和重复传统信令域RL-SIG,
    在20MHz带宽下的所述L-SIG的序号为-28,-27,27,28的子载波根据序列1,-1,-1,1进行信道估计;和,在20MHz带宽下的所述RL-SIG的序号为-28,-27,27,28的子载波根据序列1,-1,-1,1进行信道估计。
  12. 根据权利要求11的方法,其特征在于,
    当传输带宽大于20MHz带宽时,所述传输带宽的各个20MHz上的序号为-28,-27,27,28的子载波根据序列1,-1,-1,1分别进行信道估计。
  13. 根据权利要求11或者12的方法,其特征在于,
    所述方法还包括:对于20MHz带宽下的所述L-SIG的序号为-26,…-22,-20,…,-8,-6,…-1,1,…,6,8,…,20,22,…26的48个子载波,根据遵循802.11ac标准的L-STF和L-LTF字段进行信道估计;和,
    对于20MHz带宽下的所述RL-SIG的序号为-26,…-22,-20,…,-8,-6,…-1,1,…,6,8,…,20,22,…26的48个子载波,根据遵循802.11ac标准的L-STF和L-LTF字段进行信道估计。
  14. 一种无线局域网信息传输装置,其特征在于,包含处理单元,被设置为用于执行如权8-13中任意一个的方法,以及接口用于执行与外界的传输。
PCT/CN2017/070462 2016-01-07 2017-01-06 无线局域网信息传输方法和装置 WO2017118420A1 (zh)

Priority Applications (14)

Application Number Priority Date Filing Date Title
EP17735858.7A EP3340674B1 (en) 2016-01-07 2017-01-06 Information transmission method and device for wireless local area network
EP19207329.4A EP3694133B1 (en) 2016-01-07 2017-01-06 Information transmission method and apparatus in wireless local area network
MYPI2018700620A MY189128A (en) 2016-01-07 2017-01-06 Information transmission/reception method and apparatus in wireless local area network
JP2018518730A JP6705895B2 (ja) 2016-01-07 2017-01-06 ワイヤレスローカルエリアネットワークにおける情報伝送方法および装置
MX2018002421A MX2018002421A (es) 2016-01-07 2017-01-06 Metodo y aparato de transmision de informacion en red de area local inalambrica.
RU2018108182A RU2700193C2 (ru) 2016-01-07 2017-01-06 Способ и устройство передачи информации в беспроводной локальной сети
AU2017205032A AU2017205032B2 (en) 2016-01-07 2017-01-06 Information transmission method and apparatus in wireless local area network
CA2997038A CA2997038C (en) 2016-01-07 2017-01-06 Information transmission method and apparatus in wireless local area network
KR1020187008304A KR102104947B1 (ko) 2016-01-07 2017-01-06 무선 근거리 네트워크에 대한 정보 송신 방법 및 장치
BR112018002902-5A BR112018002902B1 (pt) 2016-01-07 2017-01-06 Metodo e aparelho de transmissao de informacoes em rede de area local sem fio
ZA2018/01165A ZA201801165B (en) 2016-01-07 2018-02-20 Information transmission method and device for wireless local area network
US15/922,274 US10397037B2 (en) 2016-01-07 2018-03-15 Information transmission method and apparatus in wireless local area network
US16/381,126 US10454737B2 (en) 2016-01-07 2019-04-11 Information transmission method and apparatus in wireless local area network
US16/654,431 US11128508B2 (en) 2016-01-07 2019-10-16 Information transmission method and apparatus in wireless local area network

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201610011271.6 2016-01-07
CN201610011271.6A CN106954202B (zh) 2016-01-07 2016-01-07 无线局域网信息传输方法和装置

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US15/922,274 Continuation US10397037B2 (en) 2016-01-07 2018-03-15 Information transmission method and apparatus in wireless local area network

Publications (1)

Publication Number Publication Date
WO2017118420A1 true WO2017118420A1 (zh) 2017-07-13

Family

ID=59274554

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2017/070462 WO2017118420A1 (zh) 2016-01-07 2017-01-06 无线局域网信息传输方法和装置

Country Status (15)

Country Link
US (3) US10397037B2 (zh)
EP (2) EP3694133B1 (zh)
JP (1) JP6705895B2 (zh)
KR (1) KR102104947B1 (zh)
CN (3) CN106954202B (zh)
AU (1) AU2017205032B2 (zh)
BR (1) BR112018002902B1 (zh)
CA (1) CA2997038C (zh)
ES (1) ES2904694T3 (zh)
HU (1) HUE056426T2 (zh)
MX (1) MX2018002421A (zh)
MY (1) MY189128A (zh)
RU (1) RU2700193C2 (zh)
WO (1) WO2017118420A1 (zh)
ZA (1) ZA201801165B (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20230344574A1 (en) * 2020-12-26 2023-10-26 Huawei Technologies Co., Ltd. Information transmission method and apparatus

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10863437B1 (en) * 2017-08-30 2020-12-08 Newracom, Inc. Wireless device low power wake up
CN116319228B (zh) 2018-07-27 2023-10-20 华为技术有限公司 设计短训练序列的方法和装置
CN113078987A (zh) 2020-01-03 2021-07-06 华为技术有限公司 传输物理层协议数据单元的方法和装置
US20210328745A1 (en) * 2020-04-17 2021-10-21 Lg Electronics Inc. Techniques for allocating a resource unit in a wireless communication system
US11973626B2 (en) 2020-05-26 2024-04-30 Lg Electronics Inc. Method and device for applying subcarrier-specific phase rotation to broadband in wireless LAN system

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015073437A1 (en) * 2013-11-12 2015-05-21 Huawei Technologies Co., Ltd. System and method for high efficiency wireless local area network communications
WO2015077042A1 (en) * 2013-11-19 2015-05-28 Intel IP Corporation High-efficiency wlan (hew) master station and methods to increase information bits for hew communication

Family Cites Families (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7474608B2 (en) * 2004-01-12 2009-01-06 Intel Corporation Method for signaling information by modifying modulation constellations
KR101261434B1 (ko) * 2006-01-19 2013-05-10 삼성전자주식회사 무선 광역 망 내에 무선 지역 망 형성방법 및 이를지원하는 무선통신시스템
US7616617B2 (en) * 2006-06-29 2009-11-10 Motorola, Inc. System and method for communicating beacon transmissions in wireless local area network (WLAN) systems
US7515577B2 (en) * 2006-06-29 2009-04-07 Motorola, Inc. System and method for communicating beacon transmissions in wireless local area network (WLAN) systems
US7693108B2 (en) * 2006-08-01 2010-04-06 Intel Corporation Methods and apparatus for providing a handover control system associated with a wireless communication network
US8917784B2 (en) * 2009-07-17 2014-12-23 Qualcomm Incorporated Method and apparatus for constructing very high throughput long training field sequences
US9935805B2 (en) * 2009-08-25 2018-04-03 Qualcomm Incorporated MIMO and MU-MIMO OFDM preambles
KR20110036485A (ko) 2009-10-01 2011-04-07 엘지전자 주식회사 무선랜 시스템에서의 데이터 전송방법 및 장치
TW201132074A (en) 2010-03-15 2011-09-16 Ralink Technology Corp Preamble sequence generating method and wireless local area network device
US9025428B2 (en) * 2010-04-14 2015-05-05 Qualcomm Incorporated Allocating and receiving tones for a frame
US9300511B2 (en) * 2011-01-05 2016-03-29 Qualcomm Incorporated Method and apparatus for improving throughput of 5 MHZ WLAN transmissions
CN103002448B (zh) * 2011-09-19 2018-04-17 工业和信息化部电信传输研究所 一种无线局域网信道配置方法及装置
US9813841B2 (en) * 2011-12-20 2017-11-07 Intel Corporation Wireless wide area network (WWAN) assisted proximity wireless local area network (WLAN) peer-to-peer (P2P) connection and offloading
US10158511B2 (en) * 2012-05-07 2018-12-18 Qualcomm Incorporated Systems and methods for wireless communication in sub gigahertz bands
US10194006B2 (en) * 2013-10-25 2019-01-29 Marvell World Trade Ltd. Physical layer frame format for WLAN
CN105981343B (zh) 2014-02-14 2019-08-20 华为技术有限公司 传输数据的方法和装置
JP6304788B2 (ja) * 2014-03-24 2018-04-04 インテル アイピー コーポレーション 無線ローカルエリアネットワークにおいてユーザ機器(ue)の通信をセキュアにする装置、システム及び方法

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015073437A1 (en) * 2013-11-12 2015-05-21 Huawei Technologies Co., Ltd. System and method for high efficiency wireless local area network communications
WO2015077042A1 (en) * 2013-11-19 2015-05-28 Intel IP Corporation High-efficiency wlan (hew) master station and methods to increase information bits for hew communication

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
INOUE, YASUHIKO: "IEEE 802. 11 Task Group ax January 2016 Atlanta Meeting, IEEE 802. 11-16/0096r0", IEEE P802. 11 WIRELESS LANS., 2 February 2016 (2016-02-02), XP055465506 *
See also references of EP3340674A4 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20230344574A1 (en) * 2020-12-26 2023-10-26 Huawei Technologies Co., Ltd. Information transmission method and apparatus

Also Published As

Publication number Publication date
CN114500210A (zh) 2022-05-13
RU2018108182A (ru) 2019-09-09
MY189128A (en) 2022-01-27
EP3340674B1 (en) 2019-12-25
BR112018002902A2 (zh) 2018-09-18
HUE056426T2 (hu) 2022-02-28
CN106954202A (zh) 2017-07-14
RU2018108182A3 (zh) 2019-09-09
AU2017205032B2 (en) 2019-12-19
BR112018002902B1 (pt) 2020-11-24
JP2018532335A (ja) 2018-11-01
EP3694133B1 (en) 2021-10-13
EP3694133A1 (en) 2020-08-12
US20190238378A1 (en) 2019-08-01
US20180205587A1 (en) 2018-07-19
EP3340674A4 (en) 2018-10-10
AU2017205032A1 (en) 2018-03-15
KR20180044364A (ko) 2018-05-02
US11128508B2 (en) 2021-09-21
CN108449728B (zh) 2019-07-09
CA2997038A1 (en) 2017-07-13
US10454737B2 (en) 2019-10-22
CN106954202B (zh) 2021-12-31
CA2997038C (en) 2020-07-14
JP6705895B2 (ja) 2020-06-03
MX2018002421A (es) 2018-06-13
KR102104947B1 (ko) 2020-04-27
CN108449728A (zh) 2018-08-24
US10397037B2 (en) 2019-08-27
ZA201801165B (en) 2019-08-28
US20200044903A1 (en) 2020-02-06
RU2700193C2 (ru) 2019-09-13
ES2904694T3 (es) 2022-04-05
EP3340674A1 (en) 2018-06-27

Similar Documents

Publication Publication Date Title
WO2017118420A1 (zh) 无线局域网信息传输方法和装置
US11665656B2 (en) Information transmission method and information transmission apparatus
RU2684640C1 (ru) Способ и устройство передачи данных в беспроводной локальной сети
WO2016176877A1 (zh) 物理层协议数据单元的传输方法和装置
WO2017059719A1 (zh) 传输数据的方法和设备
WO2017148189A1 (zh) 生成ofdm时域信号的方法和装置
JP2022539907A (ja) データ送信及び受信方法並びに装置
CN110890946B (zh) 解调参考信号的传输方法、网络侧设备及用户设备
WO2016070395A1 (zh) 传输信息的方法、接入点和用户设备
WO2020253749A1 (zh) 参考信号的发送方法、终端及网络侧设备
EP3907954B1 (en) Signal transmission and reception method and device
WO2017088761A1 (zh) 无线局域网数据传输方法和装置
WO2022161224A1 (zh) 数据发送方法、数据接收方法及相关装置
WO2022042618A1 (zh) 传输信号的方法和通信装置
WO2022052073A1 (zh) 信道估计的方法、装置、通信设备及存储介质
CN116545596A (zh) 一种数据处理方法、装置及相关设备
WO2018058345A1 (zh) 传输解调参考信号的方法、网络设备和终端设备

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17735858

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: MX/A/2018/002421

Country of ref document: MX

ENP Entry into the national phase

Ref document number: 2997038

Country of ref document: CA

WWE Wipo information: entry into national phase

Ref document number: 2018108182

Country of ref document: RU

ENP Entry into the national phase

Ref document number: 2017205032

Country of ref document: AU

Date of ref document: 20170106

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 20187008304

Country of ref document: KR

Kind code of ref document: A

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: 112018002902

Country of ref document: BR

WWE Wipo information: entry into national phase

Ref document number: 2018518730

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 112018002902

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20180215