WO2020253749A1 - 参考信号的发送方法、终端及网络侧设备 - Google Patents

参考信号的发送方法、终端及网络侧设备 Download PDF

Info

Publication number
WO2020253749A1
WO2020253749A1 PCT/CN2020/096664 CN2020096664W WO2020253749A1 WO 2020253749 A1 WO2020253749 A1 WO 2020253749A1 CN 2020096664 W CN2020096664 W CN 2020096664W WO 2020253749 A1 WO2020253749 A1 WO 2020253749A1
Authority
WO
WIPO (PCT)
Prior art keywords
reference signal
dmrs
symbol
sent
side device
Prior art date
Application number
PCT/CN2020/096664
Other languages
English (en)
French (fr)
Inventor
王森
韩双锋
Original Assignee
中国移动通信有限公司研究院
中国移动通信集团有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中国移动通信有限公司研究院, 中国移动通信集团有限公司 filed Critical 中国移动通信有限公司研究院
Publication of WO2020253749A1 publication Critical patent/WO2020253749A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0048Allocation of pilot signals, i.e. of signals known to the receiver
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L25/00Baseband systems
    • H04L25/02Details ; arrangements for supplying electrical power along data transmission lines
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L25/00Baseband systems
    • H04L25/02Details ; arrangements for supplying electrical power along data transmission lines
    • H04L25/0202Channel estimation
    • H04L25/0224Channel estimation using sounding signals
    • H04L25/0228Channel estimation using sounding signals with direct estimation from sounding signals
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L25/00Baseband systems
    • H04L25/02Details ; arrangements for supplying electrical power along data transmission lines
    • H04L25/03Shaping networks in transmitter or receiver, e.g. adaptive shaping networks
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/02Channels characterised by the type of signal
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/004Arrangements for detecting or preventing errors in the information received by using forward error control
    • H04L1/0056Systems characterized by the type of code used
    • H04L1/0071Use of interleaving
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L25/00Baseband systems
    • H04L25/02Details ; arrangements for supplying electrical power along data transmission lines
    • H04L25/03Shaping networks in transmitter or receiver, e.g. adaptive shaping networks
    • H04L25/03828Arrangements for spectral shaping; Arrangements for providing signals with specified spectral properties
    • H04L25/03866Arrangements for spectral shaping; Arrangements for providing signals with specified spectral properties using scrambling

Definitions

  • the present disclosure relates to the field of wireless technology, and in particular to a method for sending a reference signal, a terminal, and a network side device.
  • the demodulation reference signal (Demodulation Reference Signal, DMRS) of the physical uplink shared channel includes Type-1 and Type-2.
  • the Type-1 DMRS can transmit reference signals of 8 orthogonal ports at most; the DMRS of Type-2 format can transmit reference signals of 12 orthogonal ports at most.
  • Non-Orthogonal Multiple Access Non-Orthogonal Multiple Access
  • NOMA non-orthogonal Multiple Access
  • the use of NOMA technology can support multi-user superimposed transmission on the same time-frequency resource. Therefore, this technology requires more reference numbers to meet the reliability of transmission when more users are simultaneously transmitting data.
  • the technical solution of the present disclosure aims to provide a reference signal sending method, terminal and network side equipment, which can increase the number of sent reference signals compared to related technologies.
  • the embodiment of the present disclosure provides a method for sending a reference signal, which is applied to a terminal, where the method includes:
  • the performing symbol-level mapping operation processing on part of the reference signal of the demodulation reference signal DMRS to be sent to the network-side device includes:
  • the method when the symbol-level mapping operation is performed on part of the reference signal of the demodulation reference signal DMRS to be transmitted to the network-side device, the method further includes:
  • the reference signal for symbol-level mapping operation processing of the demodulation reference signal DMRS to be sent to the network side device is processed by the first code division multiplexing CDM sequence;
  • the demodulation reference signal DMRS to be sent to the target terminal is processed by using the second CDM sequence for the reference signal that has not undergone symbol mapping operation processing;
  • the first CDM and the second CDM have a preset corresponding relationship.
  • the preset correspondence relationship is a reverse order relationship.
  • the method when performing symbol-level mapping operation processing on part of the reference signal of the demodulation reference signal DMRS to be sent to the network side device, the method further includes:
  • the DMRS that belong to the same antenna port and are not adjacent in frequency domain are processed by the CDM sequence in the same code division multiplexing CDM group.
  • the performing symbol-level interleaving or symbol-level scrambling processing on part of the reference signals of the DMRS to be sent to the network-side device includes:
  • a part of the reference signal of the DMRS to be sent to the network-side device is subjected to symbol-level scrambling.
  • the embodiment of the present disclosure also provides a method for sending a reference signal, which is applied to a network side device, wherein the method includes:
  • part of the reference signals of the DMRS are signals subjected to symbol-level mapping operation processing.
  • a part of the reference signal of the DMRS is a signal subjected to symbol-level interleaving or symbol-level scrambling.
  • the reference signal of the DMRS for symbol-level mapping operation processing has a first code division multiplexing CDM sequence
  • the reference signal of the DMRS that has not been subjected to symbol-level mapping operation processing has a second code division multiplexing CDM sequence
  • the first CDM and the second CDM have a preset corresponding relationship.
  • the preset correspondence relationship is a reverse order relationship.
  • the method after receiving the demodulation reference signal DMRS sent by the terminal, the method further includes:
  • a second channel estimation result of performing channel estimation on the reference signal subjected to the symbol-level mapping operation processing in the DMRS is determined.
  • the method for transmitting the reference signal wherein the method further includes:
  • the channel estimation verification result is compared with the second channel estimation result to determine a sequence used for symbol-level mapping operation processing on part of the reference signal of the DMRS.
  • the embodiment of the present disclosure also provides a terminal, including a transceiver and a processor, wherein:
  • the processor is configured to perform symbol-level mapping operation processing on part of the reference signal of the demodulation reference signal DMRS to be sent to the network side device to obtain the DMRS to be sent;
  • the transceiver is used to send the DMRS to be sent to the network side device.
  • the processor performs symbol-level mapping operation processing on part of the reference signal of the demodulation reference signal DMRS to be sent to the network side device, including:
  • the processor is further configured to:
  • the reference signal for symbol-level mapping operation processing of the demodulation reference signal DMRS to be sent to the network side device is processed by the first code division multiplexing CDM sequence;
  • the demodulation reference signal DMRS to be sent to the target terminal is processed by using the second CDM sequence for the reference signal that has not undergone symbol mapping operation processing;
  • the first CDM and the second CDM have a preset corresponding relationship.
  • the preset correspondence relationship is a reverse order relationship.
  • the processor is further configured to:
  • the DMRS that belong to the same antenna port and are not adjacent in frequency domain are processed by the CDM sequence in the same code division multiplexing CDM group.
  • the processor performs symbol-level interleaving or symbol-level scrambling processing on part of the reference signal of the DMRS to be sent to the network-side device, which is specifically configured to:
  • a part of the reference signal of the DMRS to be sent to the network-side device is subjected to symbol-level scrambling.
  • the embodiment of the present disclosure also provides a network side device, including a processor and a transceiver, wherein the transceiver is used for:
  • part of the reference signals of the DMRS are signals subjected to symbol-level mapping operation processing.
  • the part of the reference signal of the DMRS is a signal subjected to symbol-level interleaving or symbol-level scrambling.
  • the reference signal of the DMRS for symbol-level mapping operation processing has a first code division multiplexing CDM sequence
  • the reference signal of the DMRS that has not been subjected to symbol-level mapping operation processing has a second code division multiplexing CDM sequence
  • the first CDM and the second CDM have a preset corresponding relationship.
  • the preset correspondence relationship is a reverse order relationship.
  • the processor is configured to:
  • a second channel estimation result of performing channel estimation on the reference signal subjected to the symbol-level mapping operation processing in the DMRS is determined.
  • the processor is further configured to:
  • the channel estimation verification result is compared with the second channel estimation result to determine a sequence used for symbol-level mapping operation processing on part of the reference signal of the DMRS.
  • the embodiments of the present disclosure also provide a terminal, including a memory, a processor, and a computer program stored on the memory and capable of running on the processor; wherein the processor executes any of the above The reference signal transmission method described in the item.
  • the embodiments of the present disclosure also provide a network-side device, including a memory, a processor, and a computer program stored on the memory and capable of running on the processor; wherein, when the processor executes the program, the implementation is as follows The reference signal transmission method described in any one of the preceding items.
  • the embodiments of the present disclosure also provide a computer-readable storage medium on which a computer program is stored, where the program is executed by a processor to implement the steps in the method for sending a reference signal as described in any one of the above, or implement Steps in the reference signal transmission method described in any one of the preceding items.
  • the reference signal transmission method in the embodiment of the present disclosure achieves the purpose of increasing the number of reference signals by performing symbol-level mapping operation processing on part of the reference signals of the DMRS that needs to be transmitted, and some reference signals are not subjected to symbol-level mapping operation processing.
  • the transmission of the related technology DMRS cannot meet the application requirements of NOMA technology.
  • FIG. 1 is a schematic structural diagram of a system architecture applied by the reference signal transmission method of the present disclosure
  • FIG. 2 is a schematic flowchart of one implementation manner of a method for sending a reference signal according to an embodiment of the disclosure
  • Figure 3 is a schematic diagram of the structure of a reference signal
  • FIG. 4 is a schematic flowchart of another implementation manner of a method for sending a reference signal according to an embodiment of the disclosure
  • FIG. 5 is a schematic structural diagram of one implementation manner of a terminal according to an embodiment of the disclosure.
  • FIG. 6 is a schematic structural diagram of one implementation manner of the network side device according to the embodiment of the disclosure.
  • FIG. 7 is a schematic structural diagram of another implementation manner of a terminal according to an embodiment of the disclosure.
  • FIG. 8 is a schematic structural diagram of another implementation manner of a network side device according to an embodiment of the disclosure.
  • the wireless communication system may be a 5G system, or an evolved Long Term Evolution (eLTE) system, or a subsequent evolved communication system.
  • FIG. 1 is a schematic structural diagram of a wireless communication system provided by an embodiment of the present disclosure.
  • the wireless communication system may include: network side equipment and user equipment (or terminal).
  • the terminal is denoted as UE 20
  • the network side device may be denoted as base station 10
  • UE 20 can be connected to base station 10.
  • the connection between the above-mentioned various devices may be a wireless connection.
  • a solid line is used in FIG. 1 to indicate.
  • the base station 10 provided in the embodiment of the present disclosure may be a commonly used base station, an evolved node base station (eNB), or a network side device in a 5G system (for example, next generation node base station).
  • eNB evolved node base station
  • gNB next generation node base station
  • TRP transmission and reception point
  • the user equipment may be a mobile phone, a tablet computer, a notebook computer, an Ultra-Mobile Personal Computer (UMPC), a netbook, or a Personal Digital Assistant (PDA), etc.
  • UMPC Ultra-Mobile Personal Computer
  • PDA Personal Digital Assistant
  • the embodiments of the present disclosure provide a method for sending reference signals.
  • Part of the reference signals of the DMRS are subjected to symbol-level mapping operations to achieve the purpose of increasing the number of reference signals and solve the problem that the transmission of the related technology DMRS cannot meet the application requirements of the NOMA technology.
  • the reference signal sending method described in one of the embodiments of the present disclosure is applied to a terminal. As shown in FIG. 2, the method includes:
  • S210 Perform symbol-level mapping operation processing on part of the reference signal of the demodulation reference signal DMRS to be sent to the network side device to obtain the DMRS to be sent;
  • S220 Send the DMRS to be sent to the network side device.
  • step S210 only a part of the reference signal of the DMRS to be sent to the network side device is subjected to symbol-level mapping operation processing, and the other part of the DMRS to be sent to the network side device is not subjected to symbol-level mapping operation processing.
  • step S210 performing symbol-level mapping operation processing on part of the reference signal of the demodulation reference signal DMRS to be sent to the target terminal includes:
  • part of the reference signal has undergone symbol-level interleaving or symbol-level scrambling processing, and part of the reference signal has not undergone symbol-level interleaving or symbol-level scrambling processing.
  • the DMRS sent to the network side device can be superimposed, while the DMRS of different terminals It can be distinguished by different orthogonal codes.
  • the terminal performs symbol-level interleaving or symbol-level scrambling processing on part of the reference signals sent to the network side device, and the other part of the reference signals does not perform symbol-level interleaving or
  • the symbol-level scrambling process enables the DMRS sent by different terminals to be distinguished from each other in this way, thereby increasing the number of reference signals to meet the needs of more terminals for simultaneous data transmission.
  • step 210 when performing symbol-level mapping operations on part of the reference signal of the demodulation reference signal DMRS to be sent to the network side device, the method further includes:
  • CDM sequence processing in the same Code Division Multiplexing (CDM) group is used.
  • DMRS 1 and DMRS 2 belong to two DMRSs with the same antenna port and non-adjacent frequency domain positions. Therefore, the two DMRSs use CDM sequences in the same CDM group.
  • the time-frequency resource location when the terminal sends the DMRS can be determined according to the usual method, which is not described in detail here.
  • step S210 when performing symbol-level mapping operations on part of the reference signal of the demodulation reference signal DMRS to be sent to the network-side device, the method further includes:
  • the reference signal for symbol-level mapping operation processing of the demodulation reference signal DMRS to be sent to the network side device is processed by the first code division multiplexing CDM sequence;
  • the demodulation reference signal DMRS to be sent to the network side device is processed by using the second CDM sequence for the reference signal that has not been processed by the symbol-level mapping operation;
  • the first CDM and the second CDM have a preset corresponding relationship.
  • the preset correspondence relationship is a reverse order relationship.
  • preset correspondence relationship is not limited to only the reverse order relationship, and may also be other correspondence relationships, as long as the correspondence relationship meets the preset rule.
  • the network side device can effectively estimate the channel of the part of the reference signal that performs symbol-level interleaving or symbol-level scrambling in the DMRS when performing channel estimation. .
  • step S210 performing symbol-level interleaving or symbol-level scrambling processing on part of the reference signal of the DMRS to be sent to the network-side device includes:
  • a part of the reference signal of the DMRS to be sent to the network-side device is subjected to symbol-level scrambling.
  • a pre-configured interleaving sequence can be obtained; by adding the symbol sequence of the partial reference signal of the DMRS to be sent to the network side device.
  • a pre-configured scrambling sequence can be obtained.
  • the pre-configured scrambling sequence can be generated based on an m sequence.
  • a polynomial can be generated based on the m sequence:
  • the required complex scrambling sequence can be obtained as:
  • f 1 (x) and f 2 (x) are respectively expressed as: a polynomial generated according to the m sequence;
  • x, x 2 , ... x n are expressed as: parameter terms in polynomials f 1 (x) and f 2 (x);
  • S c (i) is the scrambling sequence calculated based on the m sequence.
  • the reference signal transmission method described in the embodiments of the present disclosure can increase the number of reference signals by performing symbol-level mapping operations on part of the reference signals of the DMRS that need to be transmitted, and solve the problem that the transmission of related technologies DMRS cannot meet the application requirements of NOMA technology. problem.
  • the embodiment of the present disclosure also provides a method for sending a reference signal, which is applied to a network side device. As shown in FIG. 4, the method includes:
  • part of the reference signals of the DMRS are signals subjected to symbol-level mapping operation processing.
  • the part of the reference signal of the DMRS received by the network side device is a signal that has undergone symbol-level mapping operation processing, and the part of the DMRS that needs to be transmitted is processed by the symbol-level mapping operation.
  • part of the reference signal of the DMRS is a signal subjected to symbol-level interleaving or symbol-level scrambling.
  • a part of the reference signal of the DMRS for symbol mapping operation processing has a first code division multiplexing CDM sequence
  • the part of the reference signal of the DMRS that has not been subjected to symbol mapping operation processing has a second code division multiplexing CDM sequence
  • the first CDM and the second CDM have a preset corresponding relationship.
  • the preset correspondence relationship is a reverse order relationship.
  • the network side device can support the chain under Grant-Free (GF) transmission with lower blind detection complexity when performing channel estimation. Road adaptive.
  • GF Grant-Free
  • the method further includes:
  • a second channel estimation result of performing channel estimation on the reference signal subjected to the symbol-level mapping operation processing in the DMRS is determined.
  • the first channel estimation result obtained by performing channel estimation based on the reference signal that has not undergone symbol-level mapping operation processing can determine the second channel estimation result of the reference signal that has undergone symbol-level mapping operation processing for channel estimation.
  • the method further includes:
  • the channel estimation verification result is compared with the second channel estimation result to determine a sequence used for symbol-level mapping operation processing on part of the reference signal of the DMRS.
  • the part of the reference signal of the DMRS that is processed by the symbol mapping operation has the first code division multiplexing CDM sequence; the part of the reference signal of the DMRS that is not processed by the symbol mapping operation has the second code Multiplexing the CDM sequence; moreover, the first CDM and the second CDM have a preset correspondence relationship, using the preset correspondence relationship between the first CDM and the second CDM, according to the preset sequence, the DMRS
  • the channel estimation is performed on the reference signal processed by the symbol-level mapping operation, the channel at the position of the symbol-level interleaving pattern or the symbol-level scrambling reference signal can be correctly estimated, so that lower blind detection complexity can be adopted. Support Grant-Free, link adaptation under transmission.
  • the terminal 500 includes a transceiver 510 and a processor 520, wherein:
  • the processor 520 is configured to perform symbol-level mapping operations on part of the reference signal of the demodulation reference signal DMRS to be sent to the network side device to obtain the DMRS to be sent;
  • the transceiver 510 is configured to send the DMRS to be sent to the network side device.
  • the processor 520 performs symbol-level mapping operations on part of the reference signal of the demodulation reference signal DMRS to be sent to the network side device, including:
  • the processor 520 is further configured to:
  • the reference signal for symbol-level mapping operation processing of the demodulation reference signal DMRS to be sent to the network side device is processed by the first code division multiplexing CDM sequence;
  • the demodulation reference signal DMRS to be sent to the target terminal is processed by using the second CDM sequence for the reference signal that has not undergone symbol mapping operation processing;
  • the first CDM and the second CDM have a preset corresponding relationship.
  • the preset correspondence relationship is a reverse order relationship.
  • the processor 520 is further configured to:
  • the CDM sequence in the same code division multiplexing CDM group is used for processing.
  • the processor 520 performs symbol-level interleaving or symbol-level scrambling processing on part of the reference signal of the DMRS to be sent to the network side device, which is specifically configured to:
  • a part of the reference signal of the DMRS to be sent to the network-side device is subjected to symbol-level scrambling.
  • the network side device 600 includes a transceiver 610 and a processor 620, wherein the transceiver 610 is used for:
  • part of the reference signals of the DMRS are signals subjected to symbol-level mapping operation processing.
  • the part of the reference signal of the DMRS is a signal subjected to symbol-level interleaving or symbol-level scrambling.
  • the reference signal of the DMRS for symbol-level mapping operation processing has a first code division multiplexing CDM sequence
  • the reference signal of the DMRS that has not been subjected to symbol-level mapping operation processing has a second code division multiplexing CDM sequence
  • the first CDM and the second CDM have a preset corresponding relationship.
  • the preset correspondence relationship is a reverse order relationship.
  • the processor 620 is configured to:
  • a second channel estimation result of performing channel estimation on the reference signal subjected to the symbol-level mapping operation processing in the DMRS is determined.
  • the processor 620 is further configured to:
  • the channel estimation verification result is compared with the second channel estimation result to determine a sequence used for symbol-level mapping operation processing on part of the reference signal of the DMRS.
  • FIG. 7 Another aspect of the embodiments of the present disclosure also provides a terminal, as shown in FIG. 7, comprising: a processor 701; and a memory 703 connected to the processor 701 through a bus interface 702, and the memory 703 is used for storing For the programs and data used by the processor 701 when performing operations, the processor 701 calls and executes the programs and data stored in the memory 703.
  • the transceiver 704 is connected to the bus interface 702, and is used to receive and send data under the control of the processor 701. Specifically, the processor 701 is used to read a program in the memory 703 and execute the following process:
  • the processor 701 performs symbol-level mapping operations on part of the reference signal of the demodulation reference signal DMRS to be sent to the network side device, including:
  • the processor 701 is further configured to perform symbol-level mapping operation processing on part of the reference signal of the demodulation reference signal DMRS to be sent to the network side device:
  • the reference signal for symbol-level mapping operation processing of the demodulation reference signal DMRS to be sent to the network side device is processed by the first code division multiplexing CDM sequence;
  • the demodulation reference signal DMRS to be sent to the target terminal is processed by using the second CDM sequence for the reference signal that has not undergone symbol mapping operation processing;
  • the first CDM and the second CDM have a preset corresponding relationship.
  • the preset correspondence relationship is a reverse order relationship.
  • the processor 701 is further configured to perform symbol-level mapping operation processing on part of the reference signal of the demodulation reference signal DMRS to be sent to the network side device:
  • the DMRS that belong to the same antenna port and are not adjacent in frequency domain are processed by the CDM sequence in the same code division multiplexing CDM group.
  • the processor 701 performs symbol-level interleaving or symbol-level scrambling on a part of the reference signal of the DMRS to be sent to the network side device, including:
  • a part of the reference signal of the DMRS to be sent to the network-side device is subjected to symbol-level scrambling.
  • the bus architecture may include any number of interconnected buses and bridges. Specifically, one or more processors represented by the processor 701 and various circuits of the memory represented by the memory 703 are linked together.
  • the bus architecture can also link various other circuits such as peripherals, voltage regulators, power management circuits, etc., which are all known in the art, and therefore, no further descriptions are provided herein.
  • the bus interface provides the interface.
  • the transceiver 704 may be a plurality of elements, that is, including a transmitter and a receiver, and provide a unit for communicating with various other devices on the transmission medium.
  • the user interface 705 may also be an interface capable of connecting externally and internally with required equipment.
  • the connected equipment includes but not limited to a keypad, a display, a speaker, a microphone, a joystick, and the like.
  • the processor 701 is responsible for managing the bus architecture and general processing, and the memory 703 can store data used by the processor 701 when performing operations.
  • Embodiments of the present disclosure also provide a network side device, as shown in FIG. 8, including a transceiver 801, a memory 802, a processor 800, and a program stored on the memory 802 and running on the processor 800;
  • the processor 800 calls and executes the programs and data stored in the memory 802.
  • the transceiver 801 receives and sends data under the control of the processor 800.
  • the processor 800 is configured to read a program in the memory 802 and execute the following process:
  • part of the reference signals of the DMRS are signals subjected to symbol-level mapping operation processing.
  • the part of the reference signal of the DMRS is a signal subjected to symbol-level interleaving or symbol-level scrambling.
  • the reference signal of the DMRS for symbol-level mapping operation processing has a first code division multiplexing CDM sequence
  • the reference signal of the DMRS that has not been subjected to symbol-level mapping operation processing has a second code division multiplexing CDM sequence
  • the first CDM and the second CDM have a preset corresponding relationship.
  • the preset correspondence relationship is a reverse order relationship.
  • the processor 800 is further configured to:
  • a second channel estimation result of performing channel estimation on the reference signal subjected to the symbol-level mapping operation processing in the DMRS is determined.
  • the processor 800 is further configured to:
  • the channel estimation verification result is compared with the second channel estimation result to determine a sequence used for symbol-level mapping operation processing on part of the reference signal of the DMRS.
  • the bus architecture may include any number of interconnected buses and bridges. Specifically, one or more processors represented by the processor 800 and various circuits of the memory represented by the memory 802 are linked together.
  • the bus architecture can also link various other circuits such as peripherals, voltage regulators, power management circuits, etc., which are all known in the art, and therefore, no further descriptions are provided herein.
  • the bus interface provides the interface.
  • the transceiver 801 may be a plurality of elements, that is, including a transmitter and a receiver, and provide a unit for communicating with various other devices on a transmission medium.
  • the processor 800 is responsible for managing the bus architecture and general processing, and the memory 802 can store data used by the processor 800 when performing operations.
  • the disclosed method and device can be implemented in other ways.
  • the device embodiments described above are only illustrative.
  • the division of the units is only a logical function division, and there may be other divisions in actual implementation, for example, multiple units or components can be combined or It can be integrated into another system, or some features can be ignored or not implemented.
  • the displayed or discussed mutual coupling or direct coupling or communication connection may be indirect coupling or communication connection through some interfaces, devices or units, and may be in electrical, mechanical or other forms.
  • the functional units in the various embodiments of the present disclosure may be integrated into one processing unit, or each unit may be separately physically included, or two or more units may be integrated into one unit.
  • the above-mentioned integrated unit may be implemented in the form of hardware, or may be implemented in the form of hardware plus software functional units.
  • the above-mentioned integrated unit implemented in the form of a software functional unit may be stored in a computer readable storage medium.
  • the above-mentioned software function unit is stored in a storage medium, and includes several instructions to enable a computer device (which may be a personal computer, a server, or a network device, etc.) to execute part of the steps of the transceiver method described in each embodiment of the present disclosure.
  • the aforementioned storage media include: U disk, mobile hard disk, read-only memory (Read-Only Memory, ROM), random access memory (Random Access Memory, RAM), magnetic disk or optical disk and other media that can store program code .
  • the embodiments described in the embodiments of the present disclosure may be implemented by hardware, software, firmware, middleware, microcode, or a combination thereof.
  • units, modules, sub-units and sub-modules can be implemented in one or more application specific integrated circuits (ASIC), digital signal processors (Digital Signal Processing, DSP), and digital signal processing equipment (DSP Device).
  • ASIC application specific integrated circuits
  • DSP digital signal processors
  • DSP Device digital signal processing equipment
  • DSPD Digital Signal Processing
  • PLD Programmable Logic Device
  • FPGA Field-Programmable Gate Array
  • general-purpose processors controllers, microcontrollers, microprocessors, and Disclosure of the described functions in other electronic units or combinations thereof.
  • the technology described in the embodiments of the present disclosure can be implemented through modules (for example, procedures, functions, etc.) that perform the functions described in the embodiments of the present disclosure.
  • the software codes can be stored in the memory and executed by the processor.
  • the memory can be implemented in the processor or external to the processor.

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Power Engineering (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本公开提供一种参考信号的发送方法、终端及网络侧设备。该方法包括:对待发送至网络侧设备的解调参考信号DMRS的部分参考信号进行符号级映射运算处理,获得待发送DMRS;将所述待发送DMRS发送至网络侧设备。

Description

参考信号的发送方法、终端及网络侧设备
相关申请的交叉引用
本申请主张在2019年6月17日在中国提交的中国专利申请No.201910521886.7的优先权,其全部内容通过引用包含于此。
技术领域
本公开涉及无线技术领域,尤其是指一种参考信号的发送方法、终端及网络侧设备。
背景技术
在相关技术中的无线通信技术中,物理上行共享信道(Physical Uplink Share Channel,PUSCH)的解调参考信号(Demodulation Reference Signal,DMRS)包括Type-1和Type-2两种。其中,在一个传输单元,采用Type-1形式的DMRS最多传输8个正交端口的参考信号;采用Type-2形式的DMRS最多传输12个正交端口的参考信号。
另外,相关技术通信标准中还引入了非正交多址(Non-Orthogonal Multiple Access,NOMA)技术。采用NOMA技术可以支持多用户在相同时频资源上的叠加传输,因此该技术需要更多的参考数号数量的支持,以满足更多用户同时进行数据传输时传输的可靠性。
相关技术中的DMRS的传输,由于最多支持12个正交端口的参考信号,远不能够满足NOMA技术的应用需求,因此需要设计更多的参考信号数量。
发明内容
本公开技术方案的目的在于提供一种参考信号的发送方法、终端及网络侧设备,相较于相关技术,能够增加所发送参考信号的数量。
本公开实施例提供一种参考信号的发送方法,应用于终端,其中,所述方法包括:
对待发送至网络侧设备的解调参考信号DMRS的部分参考信号进行符号 级映射运算处理,获得待发送DMRS;
将所述待发送DMRS发送至网络侧设备。
可选地,所述的参考信号的发送方法,其中,所述对待发送至网络侧设备的解调参考信号DMRS的部分参考信号进行符号级映射运算处理,包括:
对待发送至网络侧设备的DMRS的部分参考信号进行符号级交织或者符号级加扰处理。
可选地,所述的参考信号的发送方法,其中,所述在对待发送至网络侧设备的解调参考信号DMRS的部分参考信号进行符号级映射运算处理时,所述方法还包括:
对待发送至网络侧设备的解调参考信号DMRS的进行符号级映射运算处理的参考信号,采用第一码分多路复用CDM序列处理;
对待发送至目标终端的解调参考信号DMRS的未进行符号映射运算处理的参考信号,采用第二CDM序列处理;
其中,第一CDM与第二CDM具有预先设定的对应关系。
可选地,所述的参考信号的发送方法,其中,所述预先设定的对应关系为倒序关系。
可选地,所述的参考信号的发送方法,其中,在对待发送至网络侧设备的解调参考信号DMRS的部分参考信号进行符号级映射运算处理时,所述方法还包括:
对属于相同天线端口,且频域位置不相邻的DMRS采用相同码分多路复用CDM组中的CDM序列处理。
可选地,所述的参考信号的发送方法,其中,所述对待发送至网络侧设备的DMRS的部分参考信号进行符号级交织或者符号级加扰处理,包括:
根据预先配置的交织序列,对待发送至网络侧设备的DMRS的部分参考信号进行符号级交织处理;或者
根据预先配置的加扰序列,对待发送至网络侧设备的DMRS的部分参考信号进行符号级加扰处理。
本公开实施例还提供一种参考信号的发送方法,应用于网络侧设备,其中,所述方法包括:
接收终端发送的解调参考信号DMRS;
其中,所述DMRS的部分参考信号为进行符号级映射运算处理的信号。
可选地,所述的参考信号的发送方法,其中,所述DMRS的部分参考信号为进行符号级交织或者符号级加扰处理的信号。
可选地,所述的参考信号的发送方法,其中,所述DMRS的进行符号级映射运算处理的参考信号具有第一码分多路复用CDM序列;
所述DMRS的未进行符号级映射运算处理的参考信号具有第二码分多路复用CDM序列;
其中,第一CDM与第二CDM具有预先设定的对应关系。
可选地,所述的参考信号的发送方法,其中,所述预先设定的对应关系为倒序关系。
可选地,所述的参考信号的发送方法,其中,在接收终端发送的解调参考信号DMRS之后,所述方法还包括:
对所述DMRS中未进行过符号级映射运算处理的参考信号进行信道估计,获得第一信道估计结果;
根据所述第一信道估计结果,确定对所述DMRS中进行过符号级映射运算处理的参考信号进行信道估计的第二信道估计结果。
可选地,所述的参考信号的发送方法,其中,所述方法还包括:
根据进行符号级映射运算的预先配置序列,对所述DMRS中进行过符号级映射运算处理的参考信号进行信道估计,获得信道估计验证结果;
将所述信道估计验证结果与所述第二信道估计结果进行比较,确定对DMRS的部分参考信号进行符号级映射运算处理所采用的序列。
本公开实施例还提供一种终端,包括收发器和处理器,其中:
所述处理器用于,对待发送至网络侧设备的解调参考信号DMRS的部分参考信号进行符号级映射运算处理,获得待发送DMRS;
所述收发器用于,将所述待发送DMRS发送至网络侧设备。
可选地,所述的终端,其中,所述处理器对待发送至网络侧设备的解调参考信号DMRS的部分参考信号进行符号级映射运算处理,包括:
对待发送至网络侧设备的DMRS的部分参考信号进行符号级交织或者符 号级加扰处理。
可选地,所述的终端,其中,处理器还用于:
对待发送至网络侧设备的解调参考信号DMRS的进行符号级映射运算处理的参考信号,采用第一码分多路复用CDM序列处理;
对待发送至目标终端的解调参考信号DMRS的未进行符号映射运算处理的参考信号,采用第二CDM序列处理;
其中,第一CDM与第二CDM具有预先设定的对应关系。
可选地,所述的终端,其中,所述预先设定的对应关系为倒序关系。
可选地,所述的终端,其中,所述处理器还用于:
对属于相同天线端口,且频域位置不相邻的DMRS采用相同码分多路复用CDM组中的CDM序列处理。
可选地,所述的终端,其中,所述处理器对待发送至网络侧设备的DMRS的部分参考信号进行符号级交织或者符号级加扰处理,具体用于:
根据预先配置的交织序列,对待发送至网络侧设备的DMRS的部分参考信号进行符号级交织处理;或者
根据预先配置的加扰序列,对待发送至网络侧设备的DMRS的部分参考信号进行符号级加扰处理。
本公开实施例还提供一种网络侧设备,包括处理器和收发器,其中,所述收发器用于:
接收终端发送的解调参考信号DMRS;
其中,所述DMRS的部分参考信号为进行符号级映射运算处理的信号。
可选地,所述的网络侧设备,其中,所述DMRS的部分参考信号为进行符号级交织或者符号级加扰处理的信号。
可选地,所述的网络侧设备,其中,所述DMRS的进行符号级映射运算处理的参考信号具有第一码分多路复用CDM序列;
所述DMRS的未进行符号级映射运算处理的参考信号具有第二码分多路复用CDM序列;
其中,第一CDM与第二CDM具有预先设定的对应关系。
可选地,所述的网络侧设备,其中,所述预先设定的对应关系为倒序关 系。
可选地,所述的网络侧设备,其中,在所述收发器接收终端发送的解调参考信号DMRS之后,所述处理器用于:
对所述DMRS中未进行过符号级映射运算处理的参考信号进行信道估计,获得第一信道估计结果;
根据所述第一信道估计结果,确定对所述DMRS中进行过符号级映射运算处理的参考信号进行信道估计的第二信道估计结果。
可选地,所述的网络侧设备,其中,所述处理器还用于:
根据进行符号级映射运算的预先配置序列,对所述DMRS中进行过符号级映射运算处理的参考信号进行信道估计,获得信道估计验证结果;
将所述信道估计验证结果与所述第二信道估计结果进行比较,确定对DMRS的部分参考信号进行符号级映射运算处理所采用的序列。
本公开实施例还提供一种终端,包括存储器、处理器及存储在所述存储器上并可在所述处理器上运行的计算机程序;其中,所述处理器执行所述程序时实现如上任一项所述的参考信号的发送方法。
本公开实施例还提供一种网络侧设备,包括存储器、处理器及存储在所述存储器上并可在所述处理器上运行的计算机程序;其中,所述处理器执行所述程序时实现如上任一项所述的参考信号的发送方法。
本公开实施例还提供一种计算机可读存储介质,其上存储有计算机程序,其中,该程序被处理器执行时实现如上任一项所述的参考信号的发送方法中的步骤,或者实现如上任一项所述的参考信号的发送方法中的步骤。
本公开上述技术方案中的至少一个具有以下有益效果:
本公开实施例所述参考信号的发送方法,通过对所需要发送的DMRS的部分参考信号进行符号级映射运算处理,部分参考信号未进行符号级映射运算处理,达到增加参考信号数量的目的,解决相关技术DMRS的传输不能够满足NOMA技术应用需求的问题。
附图说明
图1为本公开所述参考信号的发送方法所应用系统架构的结构示意图;
图2为本公开实施例所述参考信号的发送方法的其中一实施方式的流程示意图;
图3为参考信号的结构示意图;
图4为本公开实施例所述参考信号的发送方法的另一实施方式的流程示意图;
图5为本公开实施例所述终端的其中一实施方式的结构示意图;
图6为本公开实施例所述网络侧设备的其中一实施方式的结构示意图;
图7为本公开实施例所述终端的另一实施方式的结构示意图;
图8为本公开实施例所述网络侧设备的另一实施方式的结构示意图。
具体实施方式
为使本公开要解决的技术问题、技术方案和优点更加清楚,下面将结合附图及具体实施例进行详细描述。
本公开实施例所述参考信号的发送方法,应用于无线通信系统中,该无线通信系统可以为5G系统,或者演进型长期演进(Evolved Long Term Evolution,eLTE)系统,或者后续演进通信系统。参阅图1,为本公开实施例提供的一种无线通信系统的架构示意图。如图1所示,该无线通信系统可以包括:网络侧设备和用户设备(或终端)。例如终端记做UE 20,网络侧设备可以记为基站10,UE 20可以与基站10连接。在实际应用中上述各个设备之间的连接可以为无线连接,为了方便直观地表示各个设备之间的连接关系,图1中采用实线示意。
本公开实施例提供的基站10可以为通常所用的基站,也可以为演进型基站(evolved node base station,eNB),还可以为5G系统中的网络侧设备(例如下一代基站(next generation node base station,gNB)或发送和接收点(transmission and reception point,TRP))或者小区cell等设备。
本公开实施例提供的用户设备可以为手机、平板电脑、笔记本电脑、超级移动个人计算机(Ultra-Mobile Personal Computer,UMPC)、上网本或者个人数字助理(Personal Digital Assistant,PDA)等。
为解决相关技术DMRS的传输,由于最多支持12个正交端口的参考信 号,不能够满足NOMA技术的应用需求的问题,本公开实施例提供一种参考信号的发送方法,通过对所需要发送的DMRS的部分参考信号进行符号级映射运算处理,达到增加参考信号数量的目的,解决相关技术DMRS的传输不能够满足NOMA技术应用需求的问题。
本公开其中一实施例所述参考信号的发送方法,应用于终端,如图2所示,所述方法包括:
S210,对待发送至网络侧设备的解调参考信号DMRS的部分参考信号进行符号级映射运算处理,获得待发送DMRS;
S220,将所述待发送DMRS发送至网络侧设备。
需要说明的是,在步骤S210,仅对待发送至网络侧设备的DMRS的部分参考信号进行符号级映射运算处理,对待发送至网络侧设备的DMRS的另一部分参考信号不进行符号级映射运算处理。
可选地,在步骤S210,对待发送至目标终端的解调参考信号DMRS的部分参考信号进行符号级映射运算处理,包括:
对待发送至网络侧设备的DMRS的部分参考信号进行符号级交织或者符号级加扰处理。
采用该方式,发送至网络侧设备的该待发送DMRS,部分的参考信号进行过符号级交织或者符号级加扰处理,部分的参考信号未进行过符号级交织或者符号级加扰处理。
结合图3所示,以Type-2形式的DMRS的传输为例,非正交多址传输技术中,在相同时频资源上,发送至网络侧设备的DMRS可以进行叠加,而不同终端的DMRS可以通过不同正交码区分。
举例说明,图3中,对于终端K发送的DMRS 1,DMRS 1中的第一部分参考信号11未进行过符号级交织或者符号级加扰处理,DMRS 1中的第二部分参考信号12进行过符号级交织或者符号级加扰处理;同理,对于其他终端发送的DMRS,部分参考信号未进行过符号级交织或者符号级加扰处理,另一部分参考信号进行过符号级交织或者符号级加扰处理。
参阅图3所示,采用上述方式,在相同时频资源上,终端通过对发送至网络侧设备的部分参考信号进行符号级交织或者符号级加扰处理,另一部分 参考信号不进行符号级交织或者符号级加扰处理,使得不同终端发送的DMRS可以采用该方式相互区分,从而使参考信号数量增加,以能够满足更多终端同时进行数据传输的需求。
本公开实施例中,在步骤210,在对待发送至网络侧设备的解调参考信号DMRS的部分参考信号进行符号级映射运算处理时,所述方法还包括:
对属于相同天线端口,且频域位置不相邻的DMRS采用相同码分多路复用(Code Division Multiplexing,CDM)组中的CDM序列处理。
结合图3所示,DMRS 1和DMRS 2属于相同天线端口且频域位置不相邻的两个DMRS,因此该两个DMRS采用相同CDM组中的CDM序列。
本公开实施例中,终端发送DMRS时的时频资源位置,可以根据通常方式确定,在此不详细说明。
另外,本公开实施例中,可选地,在步骤S210,对待发送至网络侧设备的解调参考信号DMRS的部分参考信号进行符号级映射运算处理时,所述方法还包括:
对待发送至网络侧设备的解调参考信号DMRS的进行符号级映射运算处理的参考信号,采用第一码分多路复用CDM序列处理;
对待发送至网络侧设备的解调参考信号DMRS的未进行符号级映射运算处理的参考信号,采用第二CDM序列处理;
其中,第一CDM与第二CDM具有预先设定的对应关系。
可选地,所述预先设定的对应关系为倒序关系。
需要说明的是,预先设定的对应关系不限于仅能够为倒序关系,也可以为其他对应关系,只要该对应关系符合预设规则即可。
利用上述第一CDM与第二CDM之间预先设定的对应关系,使得网络侧设备在进行信道估计时,能够有效估计出DMRS中进行符号级交织或者符号级加扰处理的部分参考信号的信道。
另外,本公开实施例中,在步骤S210,对待发送至网络侧设备的DMRS的部分参考信号进行符号级交织或者符号级加扰处理,包括:
根据预先配置的交织序列,对待发送至网络侧设备的DMRS的部分参考信号进行符号级交织处理;或者
根据预先配置的加扰序列,对待发送至网络侧设备的DMRS的部分参考信号进行符号级加扰处理。
可选地,通过对待发送至网络侧设备的DMRS的部分参考信号的符号序列进行重排序,可以获得预先配置的交织序列;通过对待发送至网络侧设备的DMRS的部分参考信号的符号序列增加加扰信息,可以获得预先配置的加扰序列。
举例说明,预先配置的加扰序列可以基于一m序列生成。具体地,基于该m序列可以生成多项式:
Figure PCTCN2020096664-appb-000001
Figure PCTCN2020096664-appb-000002
由上述的f 1(x)和f 1(x),可以获得到m序列的特征多项式m I(i)和m Q(i);
根据m I(i)和m Q(i),可以获得所需要的复数加扰序列为:
Figure PCTCN2020096664-appb-000003
其中,f 1(x)和f 2(x)分别表示为:根据m序列所生成的多项式;
x、x 2、……x n表示为:多项式f 1(x)和f 2(x)中的参数项;
Figure PCTCN2020096664-appb-000004
表示为:多项式f 1(x)中的系数项;
Figure PCTCN2020096664-appb-000005
表示为:多项式f 2(x)中的系数项;
S c(i)为根据m序列计算的加扰序列。
可以理解的是,交织序列和加扰序列确定的方式,并不限于仅包括上述的举例说明,在此不再对每种可能实施方式举例说明。
本公开实施例所述参考信号的发送方法,通过对所需要发送的DMRS的部分参考信号进行符号级映射运算处理,能够增加参考信号数量,解决相关技术DMRS的传输不能够满足NOMA技术应用需求的问题。
本公开实施例还提供一种参考信号的发送方法,应用于网络侧设备,如图4所示,所述方法包括:
S410,接收终端发送的解调参考信号DMRS;
其中,所述DMRS的部分参考信号为进行符号级映射运算处理的信号。
本公开实施例所述参考信号的发送方法,网络侧设备接收的DMRS的部分参考信号为进行过符号级映射运算处理的信号,通过对所需要发送的DMRS的部分参考信号进行符号级映射运算处理,达到增加参考信号数量的目的,解决相关技术DMRS的传输不能够满足NOMA技术应用需求的问题。
可选地,所述DMRS的部分参考信号为进行符号级交织或者符号级加扰处理的信号。
可选地,所述DMRS的进行符号映射运算处理的部分参考信号具有第一码分多路复用CDM序列;
所述DMRS的未进行符号映射运算处理的部分参考信号具有第二码分多路复用CDM序列;
其中,第一CDM与第二CDM具有预先设定的对应关系。
可选地,所述预先设定的对应关系为倒序关系。
通过使第一CDM与第二CDM具有预先设定的对应关系,使得网络侧设备在进行信道估计时,能够以更低的盲检复杂度支持免授权(Grant-Free,GF)传输下的链路自适应。
可选地,在接收网络侧设备发送的解调参考信号DMRS之后,所述方法还包括:
对所述DMRS中未进行过符号级映射运算处理的参考信号进行信道估计,获得第一信道估计结果;
根据所述第一信道估计结果,确定对所述DMRS中进行过符号级映射运算处理的参考信号进行信道估计的第二信道估计结果。
可以理解的是,由于终端通过一天线端口发送的DMRS中,未进行过未进行过符号级映射运算处理的参考信号和进行过符号级映射运算处理的参考信号,采用相同的时域资源位置,因此根据未进行过符号级映射运算处理的参考信号进行信道估计所获得的第一信道估计结果,能够确定出进行过符号级映射运算处理的参考信号进行信道估计时的第二信道估计结果。
另外,可选地,所述方法还包括:
根据进行符号级映射运算的预先配置序列,对所述DMRS中进行过符号 级映射运算处理的参考信号进行信道估计,获得信道估计验证结果;
将所述信道估计验证结果与所述第二信道估计结果进行比较,确定对DMRS的部分参考信号进行符号级映射运算处理所采用的序列。
本公开实施例中,由于所述DMRS的进行符号映射运算处理的部分参考信号具有第一码分多路复用CDM序列;所述DMRS的未进行符号映射运算处理的部分参考信号具有第二码分多路复用CDM序列;而且,第一CDM与第二CDM具有预先设定的对应关系,利用第一CDM与第二CDM之间预先设定的对应关系,在根据预先配置序列,对DMRS中进行过符号级映射运算处理的参考信号进行信道估计时,以保证能够正确估计出符号级交织图样或者符号级加扰处理的参考信号位置上的信道,以能够采用更低的盲检复杂度支持Grant-Free,传输下的链路自适应。
本公开实施例还提供一种终端,如图5所示,该终端500包括收发器510和处理器520,其中:
所述处理器520用于,对待发送至网络侧设备的解调参考信号DMRS的部分参考信号进行符号级映射运算处理,获得待发送DMRS;
所述收发器510用于,将所述待发送DMRS发送至网络侧设备。
可选地,所述的终端,其中,所述处理器520对待发送至网络侧设备的解调参考信号DMRS的部分参考信号进行符号级映射运算处理,包括:
对待发送至网络侧设备的DMRS的部分参考信号进行符号级交织或者符号级加扰处理。
可选地,所述的终端,其中,处理器520还用于:
对待发送至网络侧设备的解调参考信号DMRS的进行符号级映射运算处理的参考信号,采用第一码分多路复用CDM序列处理;
对待发送至目标终端的解调参考信号DMRS的未进行符号映射运算处理的参考信号,采用第二CDM序列处理;
其中,第一CDM与第二CDM具有预先设定的对应关系。
可选地,所述的终端,其中,所述预先设定的对应关系为倒序关系。
可选地,所述的终端,其中,所述处理器520还用于:
对属于相同天线端口,且频域位置不相邻的DMRS采用相同码分多路复 用CDM组中的CDM序列处理。
可选地,所述的终端,其中,所述处理器520对待发送至网络侧设备的DMRS的部分参考信号进行符号级交织或者符号级加扰处理,具体用于:
根据预先配置的交织序列,对待发送至网络侧设备的DMRS的部分参考信号进行符号级交织处理;或者
根据预先配置的加扰序列,对待发送至网络侧设备的DMRS的部分参考信号进行符号级加扰处理。
本公开实施例还提供一种网络侧设备,如图6所示,该网络侧设备600包括收发器610和处理器620,其中,所述收发器610用于:
接收终端发送的解调参考信号DMRS;
其中,所述DMRS的部分参考信号为进行符号级映射运算处理的信号。
可选地,所述的网络侧设备,其中,所述DMRS的部分参考信号为进行符号级交织或者符号级加扰处理的信号。
可选地,所述的网络侧设备,其中,所述DMRS的进行符号级映射运算处理的参考信号具有第一码分多路复用CDM序列;
所述DMRS的未进行符号级映射运算处理的参考信号具有第二码分多路复用CDM序列;
其中,第一CDM与第二CDM具有预先设定的对应关系。
可选地,所述的网络侧设备,其中,所述预先设定的对应关系为倒序关系。
可选地,所述的网络侧设备,其中,在所述收发器610接收终端发送的解调参考信号DMRS之后,所述处理器620用于:
对所述DMRS中未进行过符号级映射运算处理的参考信号进行信道估计,获得第一信道估计结果;
根据所述第一信道估计结果,确定对所述DMRS中进行过符号级映射运算处理的参考信号进行信道估计的第二信道估计结果。
可选地,所述的网络侧设备,其中,所述处理器620还用于:
根据进行符号级映射运算的预先配置序列,对所述DMRS中进行过符号级映射运算处理的参考信号进行信道估计,获得信道估计验证结果;
将所述信道估计验证结果与所述第二信道估计结果进行比较,确定对DMRS的部分参考信号进行符号级映射运算处理所采用的序列。
本公开实施例另一方面还提供一种终端,如图7所示,包括:处理器701;以及通过总线接口702与所述处理器701相连接的存储器703,所述存储器703用于存储所述处理器701在执行操作时所使用的程序和数据,处理器701调用并执行所述存储器703中所存储的程序和数据。
其中,收发机704与总线接口702连接,用于在处理器701的控制下接收和发送数据,具体地,处理器701用于读取存储器703中的程序,执行下列过程:
对待发送至网络侧设备的解调参考信号DMRS的部分参考信号进行符号级映射运算处理,获得待发送DMRS;
将所述待发送DMRS发送至网络侧设备。
可选地,所述的终端,其中,所述处理器701对待发送至网络侧设备的解调参考信号DMRS的部分参考信号进行符号级映射运算处理,包括:
对待发送至网络侧设备的DMRS的部分参考信号进行符号级交织或者符号级加扰处理。
可选地,所述的终端,其中,所述处理器701在对待发送至网络侧设备的解调参考信号DMRS的部分参考信号进行符号级映射运算处理时,还用于:
对待发送至网络侧设备的解调参考信号DMRS的进行符号级映射运算处理的参考信号,采用第一码分多路复用CDM序列处理;
对待发送至目标终端的解调参考信号DMRS的未进行符号映射运算处理的参考信号,采用第二CDM序列处理;
其中,第一CDM与第二CDM具有预先设定的对应关系。
可选地,所述的终端,其中,所述预先设定的对应关系为倒序关系。
可选地,所述的终端,其中,所述处理器701在对待发送至网络侧设备的解调参考信号DMRS的部分参考信号进行符号级映射运算处理时,还用于:
对属于相同天线端口,且频域位置不相邻的DMRS采用相同码分多路复用CDM组中的CDM序列处理。
可选地,所述的终端,所述处理器701对待发送至网络侧设备的DMRS 的部分参考信号进行符号级交织或者符号级加扰处理,包括:
根据预先配置的交织序列,对待发送至网络侧设备的DMRS的部分参考信号进行符号级交织处理;或者
根据预先配置的加扰序列,对待发送至网络侧设备的DMRS的部分参考信号进行符号级加扰处理。
需要说明的是,在图7中,总线架构可以包括任意数量的互联的总线和桥,具体由处理器701代表的一个或多个处理器和存储器703代表的存储器的各种电路链接在一起。总线架构还可以将诸如外围设备、稳压器和功率管理电路等之类的各种其他电路链接在一起,这些都是本领域所公知的,因此,本文不再对其进行进一步描述。总线接口提供接口。收发机704可以是多个元件,即包括发送器和接收器,提供用于在传输介质上与各种其他装置通信的单元。针对不同的终端,用户接口705还可以是能够外接内接需要设备的接口,连接的设备包括但不限于小键盘、显示器、扬声器、麦克风、操纵杆等。处理器701负责管理总线架构和通常的处理,存储器703可以存储处理器701在执行操作时所使用的数据。
本领域技术人员可以理解,实现上述实施例的全部或者部分步骤可以通过硬件来完成,也可以通过程序来指示相关的硬件来完成,所述程序包括执行上述方法的部分或者全部步骤的指令;且该程序可以存储于一可读存储介质中,存储介质可以是任何形式的存储介质。
本公开实施例还提供一种网络侧设备,如图8所示,包括收发机801、存储器802、处理器800及存储在所述存储器802上并可在所述处理器800上运行的程序;处理器800调用并执行存储器802中所存储的程序和数据。
收发机801在处理器800的控制下接收和发送数据,具体地,处理器800用于读取存储器802中的程序,执行下列过程:
接收终端发送的解调参考信号DMRS;
其中,所述DMRS的部分参考信号为进行符号级映射运算处理的信号。
可选地,所述的网络侧设备,其中,所述DMRS的部分参考信号为进行符号级交织或者符号级加扰处理的信号。
可选地,所述的网络侧设备,其中,所述DMRS的进行符号级映射运算 处理的参考信号具有第一码分多路复用CDM序列;
所述DMRS的未进行符号级映射运算处理的参考信号具有第二码分多路复用CDM序列;
其中,第一CDM与第二CDM具有预先设定的对应关系。
可选地,所述的网络侧设备,其中,所述预先设定的对应关系为倒序关系。
可选地,所述的网络侧设备,其中,在接收终端发送的解调参考信号DMRS之后,所述处理器800还用于:
对所述DMRS中未进行过符号级映射运算处理的参考信号进行信道估计,获得第一信道估计结果;
根据所述第一信道估计结果,确定对所述DMRS中进行过符号级映射运算处理的参考信号进行信道估计的第二信道估计结果。
可选地,所述的网络侧设备,其中,所述处理器800还用于:
根据进行符号级映射运算的预先配置序列,对所述DMRS中进行过符号级映射运算处理的参考信号进行信道估计,获得信道估计验证结果;
将所述信道估计验证结果与所述第二信道估计结果进行比较,确定对DMRS的部分参考信号进行符号级映射运算处理所采用的序列。
其中,在图8中,总线架构可以包括任意数量的互联的总线和桥,具体由处理器800代表的一个或多个处理器和存储器802代表的存储器的各种电路链接在一起。总线架构还可以将诸如外围设备、稳压器和功率管理电路等之类的各种其他电路链接在一起,这些都是本领域所公知的,因此,本文不再对其进行进一步描述。总线接口提供接口。收发机801可以是多个元件,即包括发送器和接收器,提供用于在传输介质上与各种其他装置通信的单元。处理器800负责管理总线架构和通常的处理,存储器802可以存储处理器800在执行操作时所使用的数据。
本领域技术人员可以理解,实现上述实施例的全部或者部分步骤可以通过硬件来完成,也可以通过程序来指示相关的硬件来完成,所述程序包括执行上述方法的部分或者全部步骤的指令;且该程序可以存储于一可读存储介质中,存储介质可以是任何形式的存储介质。
另外,本公开具体实施例还提供一种计算机可读存储介质,其上存储有计算机程序,其中,该程序被处理器执行时实现如上中任一项所述参考信号的发送方法中的步骤。
在本申请所提供的几个实施例中,应该理解到,所揭露方法和装置,可以通过其它的方式实现。例如,以上所描述的装置实施例仅仅是示意性的,例如,所述单元的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,例如多个单元或组件可以结合或者可以集成到另一个系统,或一些特征可以忽略,或不执行。另一点,所显示或讨论的相互之间的耦合或直接耦合或通信连接可以是通过一些接口,装置或单元的间接耦合或通信连接,可以是电性,机械或其它的形式。
另外,在本公开各个实施例中的各功能单元可以集成在一个处理单元中,也可以是各个单元单独物理包括,也可以两个或两个以上单元集成在一个单元中。上述集成的单元既可以采用硬件的形式实现,也可以采用硬件加软件功能单元的形式实现。
上述以软件功能单元的形式实现的集成的单元,可以存储在一个计算机可读取存储介质中。上述软件功能单元存储在一个存储介质中,包括若干指令用使得一台计算机设备(可以是个人计算机,服务器,或者网络设备等)执行本公开各个实施例所述收发方法的部分步骤。而前述的存储介质包括:U盘、移动硬盘、只读存储器(Read-Only Memory,ROM)、随机存取存储器(Random Access Memory,RAM)、磁碟或者光盘等各种可以存储程序代码的介质。
可以理解的是,本公开实施例描述的这些实施例可以用硬件、软件、固件、中间件、微码或其组合来实现。对于硬件实现,单元、模块、子单元和子模块可以实现在一个或多个专用集成电路(Application Specific Integrated Circuits,ASIC)、数字信号处理器(Digital Signal Processing,DSP)、数字信号处理设备(DSP Device,DSPD)、可编程逻辑设备(Programmable Logic Device,PLD)、现场可编程门阵列(Field-Programmable Gate Array,FPGA)、通用处理器、控制器、微控制器、微处理器、用于执行本公开所述功能的其它电子单元或其组合中。
对于软件实现,可通过执行本公开实施例所述功能的模块(例如过程、函数等)来实现本公开实施例所述的技术。软件代码可存储在存储器中并通过处理器执行。存储器可以在处理器中或在处理器外部实现。
以上所述的是本公开的可选的实施方式,应当指出对于本技术领域的普通人员来说,在不脱离本公开所述原理前提下,还可以作出若干改进和润饰,这些改进和润饰也应视为本公开的保护范围。

Claims (27)

  1. 一种参考信号的发送方法,应用于终端,包括:
    对待发送至网络侧设备的解调参考信号DMRS的部分参考信号进行符号级映射运算处理,获得待发送DMRS;
    将所述待发送DMRS发送至网络侧设备。
  2. 根据权利要求1所述的参考信号的发送方法,其中,所述对待发送至网络侧设备的解调参考信号DMRS的部分参考信号进行符号级映射运算处理,包括:
    对待发送至网络侧设备的DMRS的部分参考信号进行符号级交织或者符号级加扰处理。
  3. 根据权利要求1所述的参考信号的发送方法,其中,在对待发送至网络侧设备的解调参考信号DMRS的部分参考信号进行符号级映射运算处理时,所述方法还包括:
    对待发送至网络侧设备的解调参考信号DMRS的进行符号级映射运算处理的参考信号,采用第一码分多路复用CDM序列处理;
    对待发送至目标终端的解调参考信号DMRS的未进行符号映射运算处理的参考信号,采用第二CDM序列处理;
    其中,第一CDM与第二CDM具有预先设定的对应关系。
  4. 根据权利要求3所述的参考信号的发送方法,其中,所述预先设定的对应关系为倒序关系。
  5. 根据权利要求1所述的参考信号的发送方法,其中,在对待发送至网络侧设备的解调参考信号DMRS的部分参考信号进行符号级映射运算处理时,所述方法还包括:
    对属于相同天线端口,且频域位置不相邻的DMRS采用相同码分多路复用CDM组中的CDM序列处理。
  6. 根据权利要求2所述的参考信号的发送方法,其中,所述对待发送至网络侧设备的DMRS的部分参考信号进行符号级交织或者符号级加扰处理,包括:
    根据预先配置的交织序列,对待发送至网络侧设备的DMRS的部分参考信号进行符号级交织处理;或者
    根据预先配置的加扰序列,对待发送至网络侧设备的DMRS的部分参考信号进行符号级加扰处理。
  7. 一种参考信号的发送方法,应用于网络侧设备,包括:
    接收终端发送的解调参考信号DMRS;
    其中,所述DMRS的部分参考信号为进行符号级映射运算处理的信号。
  8. 根据权利要求7所述的参考信号的发送方法,其中,所述DMRS的部分参考信号为进行符号级交织或者符号级加扰处理的信号。
  9. 根据权利要求7所述的参考信号的发送方法,其中,所述DMRS的进行符号级映射运算处理的参考信号具有第一码分多路复用CDM序列;
    所述DMRS的未进行符号级映射运算处理的参考信号具有第二码分多路复用CDM序列;
    其中,第一CDM与第二CDM具有预先设定的对应关系。
  10. 根据权利要求9所述的参考信号的发送方法,其中,所述预先设定的对应关系为倒序关系。
  11. 根据权利要求7所述的参考信号的发送方法,其中,在接收终端发送的解调参考信号DMRS之后,所述方法还包括:
    对所述DMRS中未进行过符号级映射运算处理的参考信号进行信道估计,获得第一信道估计结果;
    根据所述第一信道估计结果,确定对所述DMRS中进行过符号级映射运算处理的参考信号进行信道估计的第二信道估计结果。
  12. 根据权利要求11所述的参考信号的发送方法,还包括:
    根据进行符号级映射运算的预先配置序列,对所述DMRS中进行过符号级映射运算处理的参考信号进行信道估计,获得信道估计验证结果;
    将所述信道估计验证结果与所述第二信道估计结果进行比较,确定对DMRS的部分参考信号进行符号级映射运算处理所采用的序列。
  13. 一种终端,包括收发器和处理器,其中:
    所述处理器用于,对待发送至网络侧设备的解调参考信号DMRS的部分 参考信号进行符号级映射运算处理,获得待发送DMRS;
    所述收发器用于,将所述待发送DMRS发送至网络侧设备。
  14. 根据权利要求13所述的终端,其中,所述处理器对待发送至网络侧设备的解调参考信号DMRS的部分参考信号进行符号级映射运算处理,包括:
    对待发送至网络侧设备的DMRS的部分参考信号进行符号级交织或者符号级加扰处理。
  15. 根据权利要求13所述的终端,其中,处理器还用于:
    对待发送至网络侧设备的解调参考信号DMRS的进行符号级映射运算处理的参考信号,采用第一码分多路复用CDM序列处理;
    对待发送至目标终端的解调参考信号DMRS的未进行符号映射运算处理的参考信号,采用第二CDM序列处理;
    其中,第一CDM与第二CDM具有预先设定的对应关系。
  16. 根据权利要求15所述的终端,其中,所述预先设定的对应关系为倒序关系。
  17. 根据权利要求13所述的终端,其中,所述处理器还用于:
    对属于相同天线端口,且频域位置不相邻的DMRS采用相同码分多路复用CDM组中的CDM序列处理。
  18. 根据权利要求14所述的终端,其中,所述处理器对待发送至网络侧设备的DMRS的部分参考信号进行符号级交织或者符号级加扰处理,具体用于:
    根据预先配置的交织序列,对待发送至网络侧设备的DMRS的部分参考信号进行符号级交织处理;或者
    根据预先配置的加扰序列,对待发送至网络侧设备的DMRS的部分参考信号进行符号级加扰处理。
  19. 一种网络侧设备,包括处理器和收发器,其中,所述收发器用于:
    接收终端发送的解调参考信号DMRS;
    其中,所述DMRS的部分参考信号为进行符号级映射运算处理的信号。
  20. 根据权利要求19所述的网络侧设备,其中,所述DMRS的部分参考信号为进行符号级交织或者符号级加扰处理的信号。
  21. 根据权利要求19所述的网络侧设备,其中,所述DMRS的进行符号级映射运算处理的参考信号具有第一码分多路复用CDM序列;
    所述DMRS的未进行符号级映射运算处理的参考信号具有第二码分多路复用CDM序列;
    其中,第一CDM与第二CDM具有预先设定的对应关系。
  22. 根据权利要求21所述的网络侧设备,其中,所述预先设定的对应关系为倒序关系。
  23. 根据权利要求19所述的网络侧设备,其中,在所述收发器接收终端发送的解调参考信号DMRS之后,所述处理器用于:
    对所述DMRS中未进行过符号级映射运算处理的参考信号进行信道估计,获得第一信道估计结果;
    根据所述第一信道估计结果,确定对所述DMRS中进行过符号级映射运算处理的参考信号进行信道估计的第二信道估计结果。
  24. 根据权利要求23所述的网络侧设备,其中,所述处理器还用于:
    根据进行符号级映射运算的预先配置序列,对所述DMRS中进行过符号级映射运算处理的参考信号进行信道估计,获得信道估计验证结果;
    将所述信道估计验证结果与所述第二信道估计结果进行比较,确定对DMRS的部分参考信号进行符号级映射运算处理所采用的序列。
  25. 一种终端,包括存储器、处理器及存储在所述存储器上并可在所述处理器上运行的计算机程序;其中,所述处理器执行所述程序时实现如权利要求1至6任一项所述的参考信号的发送方法。
  26. 一种网络侧设备,包括存储器、处理器及存储在所述存储器上并可在所述处理器上运行的计算机程序;其中,所述处理器执行所述程序时实现如权利要求7至12任一项所述的参考信号的发送方法。
  27. 一种计算机可读存储介质,其上存储有计算机程序,其中,该程序被处理器执行时实现如权利要求1至6任一项所述的参考信号的发送方法中的步骤,或者实现如权利要求7至12任一项所述的参考信号的发送方法中的步骤。
PCT/CN2020/096664 2019-06-17 2020-06-17 参考信号的发送方法、终端及网络侧设备 WO2020253749A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201910521886.7 2019-06-17
CN201910521886.7A CN112104444B (zh) 2019-06-17 2019-06-17 参考信号的发送方法、终端及网络侧设备

Publications (1)

Publication Number Publication Date
WO2020253749A1 true WO2020253749A1 (zh) 2020-12-24

Family

ID=73748833

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/096664 WO2020253749A1 (zh) 2019-06-17 2020-06-17 参考信号的发送方法、终端及网络侧设备

Country Status (2)

Country Link
CN (1) CN112104444B (zh)
WO (1) WO2020253749A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023186158A1 (zh) * 2022-04-02 2023-10-05 维沃移动通信有限公司 解调参考信号传输方法、装置、终端及网络侧设备

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102202027A (zh) * 2010-03-26 2011-09-28 中兴通讯股份有限公司 一种导频序列的产生方法和装置
CN106559363A (zh) * 2015-09-25 2017-04-05 电信科学技术研究院 一种解调参考信号传输方法、信道估计方法及装置
EP3468061A1 (en) * 2017-10-03 2019-04-10 Panasonic Intellectual Property Corporation of America Signaling aspects for indication of co-scheduled dmrs ports in mu-mimo

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102158319B (zh) * 2010-02-12 2015-12-16 中兴通讯股份有限公司 一种基于混合复用解调参考符号的预编码方法及装置
CN102271109B (zh) * 2010-06-07 2015-08-12 中兴通讯股份有限公司 一种解调参考符号的映射方法及系统
CN103037514B (zh) * 2011-09-30 2017-02-22 上海贝尔股份有限公司 一种通信网络中用于传输解调参考信号的方法和装置
EP2975895A1 (en) * 2013-03-13 2016-01-20 Sharp Kabushiki Kaisha Base station, terminal, communication system, communication method and integrated circuit
CN107425947B (zh) * 2016-05-24 2021-02-12 北京三星通信技术研究有限公司 参考信号与多址接入资源的映射方法和设备
CN109756315B (zh) * 2017-11-06 2023-10-10 北京三星通信技术研究有限公司 配置参考信号的方法、数据传输的方法及设备
CN109474407B (zh) * 2017-09-08 2021-10-22 维沃移动通信有限公司 物理下行链路控制信道的处理方法、终端和网络侧设备
CN109842471B (zh) * 2017-11-24 2021-06-29 维沃移动通信有限公司 解调参考信号dmrs的传输方法、网络设备及终端
US10952196B2 (en) * 2018-02-16 2021-03-16 Qualcomm Incorporated DMRS indication for transmissions scheduled by fallback DCI in NR
US11212786B2 (en) * 2018-05-09 2021-12-28 Qualcomm Incorporated Service and format indication techniques for downlink control information

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102202027A (zh) * 2010-03-26 2011-09-28 中兴通讯股份有限公司 一种导频序列的产生方法和装置
CN106559363A (zh) * 2015-09-25 2017-04-05 电信科学技术研究院 一种解调参考信号传输方法、信道估计方法及装置
EP3468061A1 (en) * 2017-10-03 2019-04-10 Panasonic Intellectual Property Corporation of America Signaling aspects for indication of co-scheduled dmrs ports in mu-mimo

Also Published As

Publication number Publication date
CN112104444B (zh) 2022-04-08
CN112104444A (zh) 2020-12-18

Similar Documents

Publication Publication Date Title
US11736250B2 (en) Method for transmitting reference signal, and communication device
WO2018133650A1 (zh) 一种边带信息的发送方法、接收方法、发送端和接收端
WO2018086016A1 (zh) 传输上行数据的方法、终端设备和网络设备
WO2019137058A1 (zh) 资源指示方法、终端设备和网络设备
CA3050339A1 (en) Method for transmitting downlink control information, terminal device and network device
WO2018219011A1 (zh) 一种数据传输方法及通信设备
KR102104947B1 (ko) 무선 근거리 네트워크에 대한 정보 송신 방법 및 장치
EP3621385A1 (en) Method and device for information transmission
US11172394B2 (en) Method for channel state information CSI measurement, terminal device and network device
CN110890948B (zh) 解调参考信号的传输方法、网络侧设备及用户设备
CN108809877B (zh) 一种解调参考信号的传输方法、装置、基站及终端
CN109150460B (zh) 传输信息的方法和装置
US20200068543A1 (en) Data Transmission Method And Device
CN111867038A (zh) 一种通信方法及装置
WO2019136717A1 (zh) 用于功率控制的方法、终端设备和网络设备
WO2020088636A1 (zh) 信号的发送方法及终端
US20190305902A1 (en) Reference signal transmission method and apparatus
WO2020253749A1 (zh) 参考信号的发送方法、终端及网络侧设备
WO2021164477A1 (zh) 传输方法、装置、设备及计算机可读存储介质
JP2023547873A (ja) 同期信号ブロックの伝送方法、装置、機器及び記憶媒体
WO2018184513A1 (zh) 一种数据处理方法,基站以及接收设备
CN111181887B (zh) 一种序列的生成及处理方法和装置
CN108418662B (zh) 一种参考信号的发送方法、接收方法及相关设备
WO2016070395A1 (zh) 传输信息的方法、接入点和用户设备
WO2018177216A1 (zh) 传输信号的方法和装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20827692

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20827692

Country of ref document: EP

Kind code of ref document: A1