WO2016074209A1 - 无线局域网中的用于自动增益控制的方法和通信设备 - Google Patents

无线局域网中的用于自动增益控制的方法和通信设备 Download PDF

Info

Publication number
WO2016074209A1
WO2016074209A1 PCT/CN2014/091068 CN2014091068W WO2016074209A1 WO 2016074209 A1 WO2016074209 A1 WO 2016074209A1 CN 2014091068 W CN2014091068 W CN 2014091068W WO 2016074209 A1 WO2016074209 A1 WO 2016074209A1
Authority
WO
WIPO (PCT)
Prior art keywords
microseconds
symbols
length
long training
symbol
Prior art date
Application number
PCT/CN2014/091068
Other languages
English (en)
French (fr)
Inventor
刘亚林
刘晟
颜敏
薛鑫
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to PCT/CN2014/091068 priority Critical patent/WO2016074209A1/zh
Priority to EP14905877.8A priority patent/EP3214812B1/en
Priority to CN201480083400.1A priority patent/CN107078984B/zh
Publication of WO2016074209A1 publication Critical patent/WO2016074209A1/zh
Priority to US15/594,192 priority patent/US10375658B2/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/26Systems using multi-frequency codes
    • H04L27/2601Multicarrier modulation systems
    • H04L27/2602Signal structure
    • H04L27/261Details of reference signals
    • H04L27/2613Structure of the reference signals
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03GCONTROL OF AMPLIFICATION
    • H03G3/00Gain control in amplifiers or frequency changers
    • H03G3/20Automatic control
    • H03G3/30Automatic control in amplifiers having semiconductor devices
    • H03G3/3052Automatic control in amplifiers having semiconductor devices in bandpass amplifiers (H.F. or I.F.) or in frequency-changers used in a (super)heterodyne receiver
    • H03G3/3078Circuits generating control signals for digitally modulated signals
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B17/00Monitoring; Testing
    • H04B17/30Monitoring; Testing of propagation channels
    • H04B17/309Measuring or estimating channel quality parameters
    • H04B17/318Received signal strength
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/26Systems using multi-frequency codes
    • H04L27/2601Multicarrier modulation systems
    • H04L27/2602Signal structure
    • H04L27/2605Symbol extensions, e.g. Zero Tail, Unique Word [UW]
    • H04L27/2607Cyclic extensions
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/26Systems using multi-frequency codes
    • H04L27/2601Multicarrier modulation systems
    • H04L27/2647Arrangements specific to the receiver only
    • H04L27/2655Synchronisation arrangements
    • H04L27/2668Details of algorithms
    • H04L27/2673Details of algorithms characterised by synchronisation parameters
    • H04L27/2676Blind, i.e. without using known symbols
    • H04L27/2678Blind, i.e. without using known symbols using cyclostationarities, e.g. cyclic prefix or postfix
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L69/00Network arrangements, protocols or services independent of the application payload and not provided for in the other groups of this subclass
    • H04L69/22Parsing or analysis of headers
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/04TPC
    • H04W52/52TPC using AGC [Automatic Gain Control] circuits or amplifiers
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L69/00Network arrangements, protocols or services independent of the application payload and not provided for in the other groups of this subclass
    • H04L69/30Definitions, standards or architectural aspects of layered protocol stacks
    • H04L69/32Architecture of open systems interconnection [OSI] 7-layer type protocol stacks, e.g. the interfaces between the data link level and the physical level
    • H04L69/322Intralayer communication protocols among peer entities or protocol data unit [PDU] definitions
    • H04L69/323Intralayer communication protocols among peer entities or protocol data unit [PDU] definitions in the physical layer [OSI layer 1]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W84/00Network topologies
    • H04W84/02Hierarchically pre-organised networks, e.g. paging networks, cellular networks, WLAN [Wireless Local Area Network] or WLL [Wireless Local Loop]
    • H04W84/10Small scale networks; Flat hierarchical networks
    • H04W84/12WLAN [Wireless Local Area Networks]

Definitions

  • Embodiments of the present invention relate to the field of communications, and, more particularly, to a method and communication device for automatic gain control in a wireless local area network.
  • the signal strength received by the receiver is in a large dynamic range due to factors such as transmission distance and Doppler shift. Strong signals tend to saturate the receiver, and weak signals are not easily detected by the demodulator.
  • the method of automatic gain control (English: Automatic Gain Control, abbreviation: AGC) can adjust the signal of strong and weak disparity to the appropriate range, so that the signal to noise ratio of the signal output to the baseband (English: Signal to Noise Ratio , abbreviation: SNR) is optimal.
  • a receiver in a wireless local area network receives a signal, it first adjusts the power gain of the received signal so that the signal enters the analog-to-digital converter at an appropriate power.
  • the analog signal is thereby converted to a digital signal for further digital processing of the received signal.
  • the traditional short training area Legacy Short Training Field, L-STF
  • the high throughput short training field English: High Throughput Short Training Field, HT-STF
  • the received signal is AGC estimated using the L-STF in the preamble and the Very High Throughput Short Training Field (VHT-STF).
  • VHT-STF Very High Throughput Short Training Field
  • the system overhead is large. While ensuring a good AGC effect, the system overhead can be further reduced.
  • Embodiments of the present invention provide a method and a communication device for automatic gain control in a wireless local area network, which can reduce system overhead.
  • an embodiment of the present invention provides a method for automatic gain control, including:
  • the physical layer grouping includes an efficient long training domain, and the efficient long training domain includes N
  • the length of the cyclic prefix CP of the first symbol of the N symbols is greater than or equal to the minimum length required by the receiving device for automatic gain control AGC estimation, and N is a positive integer;
  • a physical layer packet is sent to the recipient device.
  • the length of the CP of the first symbol of the N symbols of the efficient long training domain is greater than the length of the CP of the remaining symbols of the N symbols.
  • the length of the CP of the first symbol of the N symbols of the efficient long training domain is 1.6 microseconds, 2.4 microseconds, 3.2. Microseconds or 4.0 microseconds.
  • the CP of the Nth symbol to the Nth symbol of the N symbols of the high effective training field is efficiently efficiently
  • the length is 0.8 microseconds, 1.6 microseconds, 2.4 microseconds or 3.2 microseconds.
  • the length of the CP of the first symbol of the N symbols of the high-efficiency long training domain is 4.0 microseconds
  • the effective long training domain is The length of the CP of the remaining symbols in the N symbols is 3.2 microseconds.
  • the length of the CP of the first symbol of the N symbols of the high-efficiency long training domain is 3.2 microseconds, and the length of the training field is high.
  • the length of the CP of the remaining symbols in the N symbols is 0.8 microseconds.
  • the length of the CP of the first symbol of the N symbols of the high efficiency long training domain is equal to the CP of the remaining symbols of the N symbols.
  • the length of the CP of the first symbol of the N symbols of the efficient long training field is 1.6 microseconds, 2.4 microseconds or 3.2 microseconds.
  • the physical layer grouping does not include an efficient short training domain.
  • the physical layer grouping includes an efficient short training domain, and the length of the efficient short training domain is 2.4 microseconds, 3.2 microseconds, and 4.8 microseconds. 6.4 microseconds or 12.8 microseconds.
  • an embodiment of the present invention provides a method for automatic gain control in a wireless local area network, including:
  • the physical layer packet includes an efficient long training domain, and the efficient long training domain includes N symbols, and the length of the cyclic prefix CP of the first symbol of the N symbols is greater than or equal to that of the receiving device.
  • Gain control AGC estimates the minimum length required, N is positive Integer
  • the AGC estimation is performed based on the CP of the first symbol of the N symbols of the efficient long training domain.
  • the length of the CP of the first symbol of the N symbols of the efficient long training domain is greater than the length of the CP of the remaining symbols of the N symbols.
  • the length of the CP of the first symbol of the N symbols of the high efficiency long training domain is 1.6 microseconds, 2.4 microseconds, 3.2. Microseconds or 4.0 microseconds.
  • the CP of the Nth symbol to the Nth symbol of the N symbols of the high effective training field is efficiently efficiently
  • the length is 0.8 microseconds, 1.6 microseconds, 2.4 microseconds or 3.2 microseconds.
  • the length of the CP of the first symbol of the N symbols of the high-efficiency long training domain is 4.0 microseconds
  • the effective long training domain is The length of the CP of the remaining symbols in the N symbols.
  • the length of the CP of the first symbol of the N symbols of the high-efficiency long training domain is 3.2 microseconds
  • the effective long training domain is The length of the CP of the remaining symbols in the N symbols.
  • the length of the CP of the first symbol of the N symbols of the high efficiency long training domain is equal to the CP of the remaining symbols of the N symbols.
  • the length of the CP of the first symbol of the N symbols of the efficient long training field is 1.6 microseconds, 2.4 microseconds or 3.2 microseconds.
  • the physical layer grouping does not include an efficient short training domain.
  • the physical layer grouping includes an efficient short training domain, and the length of the efficient short training domain is 2.4 microseconds, 3.2 microseconds, and 4.8 microseconds. 6.4 microseconds or 12.8 microseconds.
  • the method further includes:
  • Fine AGC estimation is performed based on some or all of the CPs of the first symbol of the N symbols of the efficient long training field.
  • the physical layer grouping includes a traditional short training domain, and before the AGC estimation is performed on the CP of the first symbol of the N symbols based on the efficient long training domain, the method further includes:
  • AGC estimation is performed based on the traditional short training domain.
  • an embodiment of the present invention provides a communications device, including:
  • a generating unit configured to generate a physical layer group, the physical layer grouping includes a high-efficiency long training field, and the high-efficiency long training field includes N symbols, and a length of a cyclic prefix CP of the first symbol of the N symbols is greater than or equal to a receiving device
  • Automatic gain control AGC estimates the minimum length required, N is a positive integer
  • a sending unit configured to send a physical layer packet to the receiver device.
  • the length of the CP of the first symbol of the N symbols of the efficient long training domain is greater than the length of the CP of the remaining symbols of the N symbols.
  • the length of the CP of the first symbol of the N symbols of the high-efficiency long training domain is 1.6 microseconds, 2.4 microseconds, 3.2. Microseconds or 4.0 microseconds.
  • the CP of the Nth symbol to the Nth symbol of the N symbols of the high effective training domain is efficiently
  • the length is 0.8 microseconds, 1.6 microseconds, 2.4 microseconds or 3.2 microseconds.
  • the length of the CP of the first symbol of the N symbols of the high-efficiency long training domain is 4.0 microseconds
  • the effective long training domain is The length of the CP of the remaining symbols in the N symbols is 3.2 microseconds.
  • the length of the CP of the first symbol of the N symbols of the high-efficiency long training domain is 3.2 microseconds, and the length of the training field is high.
  • the length of the CP of the remaining symbols in the N symbols is 0.8 microseconds.
  • the length of the CP of the first symbol of the N symbols of the efficient long training domain is equal to the CP of the remaining symbols of the N symbols.
  • the length of the CP of the first symbol of the N symbols of the efficient long training field is 1.6 microseconds, 2.4 microseconds or 3.2 microseconds.
  • the physical layer grouping does not include an efficient short training domain.
  • the physical layer grouping includes an efficient short training domain, and the high efficiency short training domain is used by the receiving device to perform AGC estimation,
  • the length of the efficient short training field is 2.4 microseconds, 3.2 microseconds, 4.8 microseconds, 6.4 microseconds, or 12.8 microseconds.
  • an embodiment of the present invention provides a communications device, including:
  • a receiving unit configured to receive a physical layer packet from a sender device, where the physical layer packet includes a high-efficiency long training domain, the high-efficiency long training domain includes N symbols, and a length of a cyclic prefix CP of the first symbol of the N symbols is greater than or equal to
  • N is a positive integer
  • a processing unit configured to perform AGC estimation based on the CP of the first symbol of the N symbols of the efficient long training domain.
  • the length of the CP of the first symbol of the N symbols of the high efficiency long training domain is greater than the length of the CP of the remaining symbols of the N symbols.
  • the length of the CP of the first symbol of the N symbols of the high efficiency long training domain is 1.6 microseconds, 2.4 microseconds, 3.2. Microseconds or 4.0 microseconds.
  • the CP of the Nth symbol to the Nth symbol of the N symbols of the high effective training field is efficiently efficiently
  • the length is 0.8 microseconds, 1.6 microseconds, 2.4 microseconds or 3.2 microseconds.
  • the length of the CP of the first symbol of the N symbols of the high-efficiency long training domain is 4.0 microseconds
  • the effective long training domain is The length of the CP of the remaining symbols in the N symbols.
  • the length of the CP of the first symbol of the N symbols of the high-efficiency long training domain is 3.2 microseconds, and the length of the training field is high.
  • the length of the CP of the remaining symbols in the N symbols is 0.8 microseconds.
  • the length of the CP of the first symbol of the N symbols of the high efficiency long training domain is equal to the CP of the remaining symbols of the N symbols.
  • the length of the CP of the first symbol of the N symbols of the efficient long training field is 1.6 microseconds, 2.4 microseconds or 3.2 microseconds.
  • the physical layer grouping does not include an efficient short training domain.
  • the physical layer grouping includes an efficient short training domain, and the high efficiency short training domain is used by the receiving device to perform AGC estimation, and the length of the effective short training domain is It is 2.4 microseconds, 3.2 microseconds, 4.8 microseconds, 6.4 microseconds or 12.8 microseconds.
  • the processing unit is further configured to perform part or all of the N symbols of the N symbols in the high efficiency long training field. Fine AGC estimation.
  • the physical layer grouping includes a traditional short training domain
  • the processing unit is further configured to perform AGC estimation based on the traditional short training domain.
  • the CP of the first symbol of the efficient long training field of the physical layer grouping not only functions to prevent inter-code crosstalk, but also has the function of performing AGC estimation for the receiving device. In this way, under the same AGC accuracy requirement, the length of the preamble of the physical layer grouping can be reduced, thereby reducing the system overhead.
  • FIG. 1 is a schematic structural diagram of a communication system to which an embodiment of the present invention is applicable.
  • FIG. 2 is a schematic flow chart of a method for automatic gain control in a wireless local area network according to an embodiment of the present invention.
  • FIG. 3 is a schematic diagram of physical layer grouping in accordance with an embodiment of the present invention.
  • FIG. 4 is a schematic flow chart of a method for automatic gain control in a wireless local area network according to another embodiment of the present invention.
  • FIG. 5 is a schematic flow chart of an AGC according to an embodiment of the present invention.
  • Figure 6 is a schematic block diagram of a communication device in accordance with one embodiment of the present invention.
  • Figure 7 is a schematic block diagram of a communication device in accordance with another embodiment of the present invention.
  • FIG. 8 is a schematic block diagram of a communication device according to another embodiment of the present invention.
  • FIG. 9 is a schematic block diagram of a communication device according to another embodiment of the present invention.
  • the access point AP can convert the wired network into a wireless network, and provide wireless access services for the station STA.
  • the STA can be a user equipment (English: User Equipment, referred to as "UE"), a terminal (English: Terminal), a mobile station (English: Mobile Station, referred to as "MS"), a mobile terminal (English: Mobile Terminal), etc. .
  • UE User Equipment
  • MS Mobile Station
  • the STA may be a mobile phone (or "cellular" phone), a computer with a mobile terminal, or the like.
  • the STA can also be a portable, pocket, handheld, computer built-in or in-vehicle mobile device.
  • FIG. 1 is a schematic structural diagram of a communication system to which an embodiment of the present invention is applicable.
  • the communication system in FIG. 1 is a WLAN system, and an AP 102 with a coverage of 101 is taken as an example for description. It should be understood that the embodiment of the present invention does not limit the number of APs in the WLAN system.
  • the STA (103a, 103b, 103c) falls within the coverage 101 of the AP 102 and accesses the AP 102 for communication. It is assumed that in the process in which the STA 103a communicates with the AP 102, the AP 102 is a sender device, and transmits a physical layer packet (also referred to as a physical layer packet) to the STA 103a.
  • the receiver of the STA 103a needs to adjust the power gain of the received signal in the process of receiving the physical layer packet, so that the signal enters the analog to digital converter with appropriate power. The analog signal is thereby converted to a digital signal for further digital processing of the received signal.
  • the principle of the automatic gain control is similar in the process of the STA communicating with the STA or the AP communicating with the AP. To avoid repetition, no further details are provided herein.
  • L-STF and HT-STF or L-STF and VHT-STF are used to perform AGC estimation on the received signal, and then adjust the gain of the receiver, the system overhead is large.
  • Embodiments of the present invention provide a method and a communication device for automatic gain control, which can reduce system overhead. It should be understood that the foregoing communication system is only an example, and the scope of protection of the embodiments of the present invention is not limited thereto.
  • the embodiments of the present invention can be applied to a next-generation Wi-Fi system, such as the HEW system of the IEEE802.11ax standard, and can also be applied to other wireless local area network systems, and can also be applied to a cellular network.
  • the embodiments of the present invention can also be applied to dense user scenarios such as office areas, stadiums, and railway stations.
  • FIG. 2 is a schematic flow chart of a method for automatic gain control in a wireless local area network according to an embodiment of the present invention.
  • the method of Figure 2 can be performed by a sender device.
  • the physical layer group includes a high-efficiency long training field, and the high-efficiency long training field includes N symbols, and the length of the cyclic prefix CP of the first symbol of the N symbols is greater than or equal to the automatic gain control of the receiving device.
  • the AGC estimates the minimum length required, N being a positive integer.
  • physical layer packets include both preamble and data.
  • the preamble includes traditional preambles and efficient preambles.
  • Traditional preambles include the traditional short training domain L-STF, the traditional long training domain L-LTF, and the traditional signaling domain L-SIG.
  • Efficient preambles include the efficient signaling domain HE-SIG-1 (also known as HEW-SIG-1 or HEW-SIG-A) and the efficient long training domain HE-LTF (also known as HEW-LTF).
  • the HE-LTF includes N symbols HE-LTF1, HE-LTF2, ..., HE-LTFN.
  • the cyclic prefix (English: Cyclic Prefix, CP for short) of the first symbol HE-LTF1 of the N symbols is used by the receiving device for automatic gain control AGC estimation.
  • the physical layer packet may also include other portions, such as the efficient short training domain HE-STF (also referred to as HEW-STF).
  • the physical layer grouping may not include one or more of the foregoing conventional preambles, or the plurality of domains may use different names.
  • the efficient long training field including N symbols can also be described as efficient long training fields including N sequences.
  • the minimum length required by the receiving device to perform automatic gain control AGC estimation is related to the AGC accuracy requirement.
  • the minimum length required for AGC estimation can be determined based on the threshold required for AGC accuracy. Then, the minimum length is set on the sender device side so that the sender device generates a physical layer packet based on the minimum length value.
  • the CP of the first symbol of the efficient long training field of the physical layer grouping not only functions to prevent inter-code crosstalk, but also has the function of performing AGC estimation for the receiving device. In this way, under the same AGC accuracy requirement, the length of the preamble of the physical layer grouping can be reduced, thereby reducing the system overhead.
  • the length of the CP of the first symbol of the N symbols of the efficient long training domain is greater than the length of the CP of the remaining symbols of the N symbols.
  • the length of the CP of the first symbol in the efficient long training field is extended to be greater than the length of the CP of the remaining symbols.
  • the receiver device performs AGC estimation according to the length of the CP of the first symbol, and performs AGC.
  • the embodiment of the present invention can also drop Inter-code crosstalk of low HE-LTF1.
  • the length of the CP of the first symbol of the N symbols of the efficient long training domain is 1.6 microseconds, 2.4 microseconds, 3.2 microseconds, or 4.0 microseconds.
  • the length of the CP of the second symbol to the Nth symbol of the N symbols of the efficient long training domain is 0.8 microseconds, 1.6 microseconds, 2.4. Microseconds or 3.2 microseconds.
  • the length of the CP of the first symbol of the N symbols of the efficient long training domain is 4.0 microseconds, and the length of the CP of the remaining symbols of the N symbols of the efficient long training domain is 3.2. Microseconds.
  • the length of the CP of the first symbol of the N symbols of the efficient long training domain is 3.2 microseconds, and the length of the CP of the remaining symbols of the N symbols of the efficient long training domain is 0.8. Microseconds.
  • the length of the CP of the first symbol of the N symbols of the high-efficiency long training domain is 3.2 microseconds
  • the length of the CP of the remaining symbols of the N symbols of the efficient long training domain is 1.6. Microseconds.
  • the length of the CP of the first symbol of the N symbols of the high-efficiency long training field is equal to the length of the CP of the remaining symbols of the N symbols, and the N symbols of the high-efficiency long training field are
  • the length of a symbolic CP is 1.6 microseconds, 2.4 microseconds, or 3.2 microseconds.
  • the physical layer grouping does not include an efficient short training domain HE-STF (which may also be referred to as HEW-STF). In this way, the power consumption of the transmitting device can be reduced.
  • HE-STF efficient short training domain
  • the physical layer grouping includes an efficient short training domain.
  • the high-efficiency short training domain can be used for the receiver device to perform functions such as AGC estimation or synchronization, and the present invention is not limited.
  • the length of the efficient short training field is 2.4 microseconds, 3.2 microseconds, 4.8 microseconds, 6.4 microseconds, or 12.8 microseconds.
  • part or all of the N symbols of the N symbols of the high-efficiency long training field are used for the receiver device to perform fine AGC estimation.
  • the physical layer grouping includes a traditional short training domain, and the traditional short training domain is used by the receiving device for AGC estimation.
  • Embodiment 1 is a diagrammatic representation of Embodiment 1:
  • the efficient short training field is not transmitted.
  • the first symbol of the efficient long training field (HE-LTF1) uses a longer CP, which is used by the receiving device for automatic gain control.
  • the physical layer grouping is specifically designed as follows: HE of the HE-LTF1 is 3.2 us (microseconds), and the cyclic prefix of HE-LTF2 to HE-LTFn is 0.8 us.
  • HE-LTF1 and HE-LTF2 ⁇ HE-LTFn have the same subcarrier spacing and number of subcarriers. For example, in the bandwidth of 20 MHz, there are 256 subcarriers (or 64 subcarriers).
  • the present invention is not limited to the specific number of subcarriers and subcarrier spacing.
  • the CP length of the data portion of the physical layer packet is generally equal to the length of the CP of the HE-LTF2 to the HE-LTFn, which is not limited in the embodiment of the present invention.
  • HE-LTF1 can use a 3.2us CP
  • the data portion can use a 0.8us CP.
  • HE-LTF1 can use a 3.2us CP
  • HE-LTF2 can use a 0.8us CP
  • the data part can also use a 0.8us CP.
  • the cyclic prefix of HE-LTF1 is 4.0us, 2.4us or 1.6us
  • the cyclic prefix of HE-LTF2 ⁇ HE-LTFn is 0.8us.
  • Embodiment 1 can be applied to a WLAN system in an indoor scene.
  • VHT-STF occupies 4 us
  • the cyclic prefix of VHT-LTF1 occupies 0.8 us.
  • the HE-STF does not transmit the HE-STF
  • the cyclic prefix of the HE-LTF1 occupies 3.2 us. Therefore, the preamble of the data packet can save 1.6 us.
  • Embodiment 2 is a diagrammatic representation of Embodiment 1:
  • the efficient short training field is not transmitted.
  • the physical layer grouping is specifically designed as follows: the cyclic prefix of HE-LTF1 is 3.2us, and the cyclic prefix of HE-LTF2 ⁇ HE-LTFn is 1.6us or 2.4us.
  • HE-LTF1 and HE-LTF2 ⁇ HE-LTFn have the same subcarrier spacing and number of subcarriers. For example, in the bandwidth of 20 MHz, there are 256 subcarriers (or 64 subcarriers).
  • the present invention is not limited to the specific number of subcarriers and subcarrier spacing.
  • the CP length of the data portion of the physical layer group is usually longer than the CP of HE-LTF2 to HE-LTFn.
  • the embodiments are not limited in this embodiment of the present invention.
  • HE-LTF1 can use a 3.2us CP, and the data portion can use a 1.6us CP.
  • the high-efficiency long training field has two symbols HE-LTF1 to HE-LTF2
  • HE-LTF1 can use a 3.2us CP
  • HE-LTF2 can use a 1.6us CP
  • the data part can also use a 1.6us CP.
  • cyclic prefix of HE-LTF1 is 4.0us, 2.4us or 1.6us
  • cyclic prefix of HE-LTF2 ⁇ HE-LTFn is 1.6us or 2.4us.
  • Embodiment 2 can be applied to a WLAN system in an outdoor scenario.
  • the outdoor scenario if the HE-STF occupies 4us, the cyclic prefix of the HE-LTF1 occupies 3.2us.
  • the HE-STF does not transmit the HE-STF, and the cyclic prefix of the HE-LTF1 occupies 3.2 us, and is used both at the receiving end for resisting inter-code interference and for AGC estimation. Therefore, the preamble of the packet can save 4us.
  • Embodiment 3 is a diagrammatic representation of Embodiment 3
  • the efficient short training field is not transmitted.
  • the cyclic prefix of HE-LTF1 is 4.0us
  • the cyclic prefix of HE-LTF2 ⁇ HE-LTFn is 3.2us.
  • HE-LTF1 and HE-LTF2 ⁇ HE-LTFn have the same subcarrier spacing and number of subcarriers. For example, in the bandwidth of 20 MHz, there are 256 subcarriers (or 64 subcarriers).
  • the present invention is not limited to the specific number of subcarriers and subcarrier spacing.
  • Embodiment 3 can be applied to a WLAN system in an outdoor scene.
  • FIG. 4 is a schematic flow chart of a method for automatic gain control in a wireless local area network according to another embodiment of the present invention.
  • the method of Figure 4 can be performed by a recipient device.
  • 401 Receive a physical layer packet from a sender device, where the physical layer packet includes a high efficiency long training domain, and the high efficiency long training domain includes N symbols, and a length of a cyclic prefix CP of the first symbol of the N symbols is greater than or equal to a receiver device.
  • the minimum length required for automatic gain control AGC estimation, N is a positive integer.
  • physical layer packets include both preamble and data.
  • the preamble includes traditional preambles and efficient preambles.
  • Traditional predecessors include traditional short training domain L-STF, transmission The commander training domain L-LTF and the traditional signaling domain L-SIG.
  • Efficient preambles include the efficient signaling domain HE-SIG-1 (also known as HEW-SIG-1 or HEW-SIG-A) and the efficient long training domain HE-LTF (also known as HEW-LTF).
  • the HE-LTF includes N symbols HE-LTF1, HE-LTF2, ..., HE-LTFN.
  • the cyclic prefix (English: Cyclic Prefix, CP for short) of the first symbol HE-LTF1 of the N symbols is used by the receiving device for automatic gain control AGC estimation.
  • the physical layer packet may also include other portions, such as the efficient short training domain HE-STF (also referred to as HEW-STF).
  • the physical layer grouping may not include one or more of the foregoing conventional preambles, or the plurality of domains may use different names.
  • the efficient long training field including N symbols can also be described as efficient long training fields including N sequences.
  • the minimum length required by the receiving device to perform automatic gain control AGC estimation is related to the AGC accuracy requirement.
  • the minimum length required for AGC estimation can be determined based on the threshold required for AGC accuracy. Then, the minimum length is set on the sender device side so that the sender device generates a physical layer packet based on the minimum length value.
  • FIG. 5 is a schematic flow chart of an AGC according to an embodiment of the present invention.
  • the AGC module of the receiver is mainly composed of an estimation module and a gain adjustment module.
  • the basic principle of the AGC is that the received signal (such as the CP of the first symbol) is amplified by the amplifier VGA to obtain the amplified analog signal r(t), which is then converted into a digital signal x(i) by an analog-to-digital converter ADC.
  • the estimation module uses x(i) to calculate the gain of the VGA, ie the gain G next , and feed it back to the VGA.
  • the gain adjustment module controls the VGA to adjust its own gain according to the information fed back by the estimation module.
  • the gain G next can be estimated according to the following method.
  • the energy (or power) of the M sample points of x(i) is calculated to estimate the gain G next .
  • x(i) represents the sample signal after the i-th ADC conversion
  • M represents the length of the AGC control period. Then, the estimated signal energy in the time of M samples can be used to obtain the energy estimate P est :
  • the gain G next can be estimated according to formula (2):
  • G next represents the amplifier VGA gain during the next N period
  • G p represents the current gain of the amplifier VGA
  • P ref represents the desired signal energy value
  • the above method performs the AGC according to the power estimation of the sampling point, and can also perform the AGC according to the amplitude estimation of the sampling point.
  • the principle is similar to the power estimation, and will not be described herein. Estimating amplitude is faster and easier than estimating with power.
  • the CP of the first symbol of the efficient long training field of the physical layer grouping not only functions to prevent inter-code crosstalk, but also has the function of performing AGC estimation for the receiving device. In this way, under the same AGC accuracy requirement, the length of the preamble of the physical layer grouping can be reduced, thereby reducing the system overhead.
  • the length of the CP of the first symbol of the N symbols of the efficient long training domain is greater than the length of the CP of the remaining symbols of the N symbols.
  • the length of the CP of the first symbol in the efficient long training field is extended to be greater than the length of the CP of the remaining symbols.
  • the receiver device performs AGC estimation according to the length of the CP of the first symbol, and performs AGC.
  • the embodiment of the present invention can also reduce the inter-code crosstalk of the HE-LTF1.
  • the length of the CP of the first symbol of the N symbols of the efficient long training domain is 1.6 microseconds, 2.4 microseconds, 3.2 microseconds, or 4.0 microseconds.
  • the length of the CP of the second symbol to the Nth symbol of the N symbols of the efficient long training domain is 0.8 microseconds, 1.6 microseconds, 2.4. Microseconds or 3.2 microseconds.
  • the length of the CP of the first symbol of the N symbols of the efficient long training domain is 4.0 microseconds, and the length of the CP of the remaining symbols of the N symbols of the efficient long training domain is 3.2. Microseconds.
  • the length of the CP of the first symbol of the N symbols of the efficient long training domain is 3.2 microseconds, and the length of the CP of the remaining symbols of the N symbols of the efficient long training domain is 0.8. Microseconds.
  • the length of the CP of the first symbol of the N symbols of the high-efficiency long training domain is 3.2 microseconds
  • the length of the CP of the remaining symbols of the N symbols of the efficient long training domain is 1.6. Microseconds.
  • the length of the CP of the first symbol of the N symbols of the high-efficiency long training field is equal to the length of the CP of the remaining symbols of the N symbols, and the N symbols of the high-efficiency long training field are
  • the length of a symbolic CP is 1.6 microseconds, 2.4 microseconds, or 3.2 microseconds.
  • the physical layer grouping does not include an efficient short training domain. In this way, the power consumption of the transmitting device can be reduced.
  • the physical layer grouping includes an efficient short training domain.
  • the high-efficiency short training domain can be used for the receiver device to perform functions such as AGC estimation or synchronization, and the present invention is not limited.
  • the length of the efficient short training field is 2.4 microseconds, 3.2 microseconds, 4.8 microseconds, 6.4 microseconds, or 12.8 microseconds.
  • the CP of the first symbol based on the N symbols of the high efficiency long training domain is used. Part or all of the detailed AGC estimation.
  • the physical layer grouping includes a traditional short training domain.
  • the AGC estimation is performed based on the conventional short training domain before the AGC estimation based on the CP of the first symbol among the N symbols of the efficient long training domain.
  • FIG. 6 is a schematic block diagram of a communication device in accordance with one embodiment of the present invention.
  • the communication device 60 is a sender device, such as the AP 102 or STA (103a, 103b, 103c) shown in FIG.
  • the communication device 60 includes a generating unit 601 and a transmitting unit 602.
  • the generating unit 601 is configured to generate a physical layer packet, where the physical layer packet includes a high efficiency long training domain, and the high efficiency long training domain includes N symbols, and the length of the cyclic prefix CP of the first symbol of the N symbols is greater than or equal to the receiving device.
  • the minimum length required for automatic gain control AGC estimation, N is a positive integer.
  • physical layer packets include both preamble and data.
  • the preamble includes traditional preambles and efficient preambles.
  • Traditional preambles include the traditional short training domain L-STF, the traditional long training domain L-LTF, and the traditional signaling domain L-SIG.
  • Efficient preambles include the efficient signaling domain HE-SIG-1 (also known as HEW-SIG-1 or HEW-SIG-A) and the efficient long training domain HE-LTF (also known as HEW-LTF).
  • the HE-LTF includes N symbols HE-LTF1, HE-LTF2, ..., HE-LTFN.
  • the cyclic prefix (English: Cyclic Prefix, CP for short) of the first symbol HE-LTF1 of the N symbols is used by the receiving device for automatic gain control AGC estimation.
  • the physical layer packet may also include other portions, such as the efficient short training domain HE-STF (also referred to as HEW-STF).
  • the physical layer grouping may not include one or more of the foregoing conventional preambles, or the plurality of domains may use different names.
  • the efficient long training field including N symbols can also be described as efficient long training fields including N sequences.
  • the minimum length required by the receiving device to perform automatic gain control AGC estimation is related to the AGC accuracy requirement.
  • the minimum length required for AGC estimation can be determined based on the threshold required for AGC accuracy. Then, the minimum length is set on the sender device side so that the sender device generates a physical layer packet based on the minimum length value.
  • the sending unit 602 is configured to send a physical layer packet to the receiver device.
  • the CP of the first symbol of the efficient long training field of the physical layer grouping not only functions to prevent inter-code crosstalk, but also has the function of performing AGC estimation for the receiving device. In this way, under the same AGC accuracy requirement, the length of the preamble of the physical layer grouping can be reduced, thereby reducing the system overhead.
  • the length of the CP of the first symbol of the N symbols of the efficient long training domain is greater than the length of the CP of the remaining symbols of the N symbols.
  • the length of the CP of the first symbol in the efficient long training field is extended to be greater than the length of the CP of the remaining symbols.
  • the receiver device performs AGC estimation according to the length of the CP of the first symbol, and performs AGC.
  • the embodiment of the present invention can also reduce the inter-code crosstalk of the HE-LTF1.
  • the length of the CP of the first symbol of the N symbols of the efficient long training domain is 1.6 microseconds, 2.4 microseconds, 3.2 microseconds, or 4.0 microseconds.
  • the length of the CP of the second symbol to the Nth symbol of the N symbols of the efficient long training domain is 0.8 microseconds, 1.6 microseconds, 2.4. Microseconds or 3.2 microseconds.
  • the length of the CP of the first symbol of the N symbols of the efficient long training domain is 4.0 microseconds, and the length of the CP of the remaining symbols of the N symbols of the efficient long training domain is 3.2. Microseconds.
  • the length of the CP of the first symbol of the N symbols of the efficient long training domain is 3.2 microseconds, and the length of the CP of the remaining symbols of the N symbols of the efficient long training domain is 0.8. Microseconds.
  • the first symbol of the N symbols of the efficient long training domain The length of the CP is 3.2 microseconds, and the length of the CP of the remaining symbols in the N symbols of the efficient long training field is 1.6 microseconds.
  • the length of the CP of the first symbol of the N symbols of the high-efficiency long training field is equal to the length of the CP of the remaining symbols of the N symbols, and the N symbols of the high-efficiency long training field are
  • the length of a symbolic CP is 1.6 microseconds, 2.4 microseconds, or 3.2 microseconds.
  • the physical layer grouping does not include an efficient short training domain. In this way, the power consumption of the transmitting device can be reduced.
  • the physical layer grouping includes an efficient short training domain.
  • the high-efficiency short training domain can be used for the receiver device to perform functions such as AGC estimation or synchronization, and the present invention is not limited.
  • the length of the efficient short training field is 2.4 microseconds, 3.2 microseconds, 4.8 microseconds, 6.4 microseconds, or 12.8 microseconds.
  • part or all of the N symbols of the N symbols of the high-efficiency long training field are used for the receiver device to perform fine AGC estimation.
  • the physical layer grouping includes a traditional short training domain, and the traditional short training domain is used by the receiving device for AGC estimation.
  • FIG. 7 is a schematic block diagram of a communication device in accordance with another embodiment of the present invention.
  • Communication device 60 is a recipient device, such as AP 102 or STA (103a, 103b, 103c) as shown in FIG.
  • the communication device 70 includes a receiving unit 701 and a processing unit 702.
  • the receiving unit 701 is configured to receive a physical layer packet from the sender device, where the physical layer packet includes a high efficiency long training domain, and the high efficiency long training domain includes N symbols, and the length of the cyclic prefix CP of the first symbol of the N symbols is greater than or It is equal to the minimum length required by the receiver device for automatic gain control AGC estimation, and N is a positive integer.
  • physical layer packets include both preamble and data.
  • the preamble includes traditional preambles and efficient preambles.
  • Traditional preambles include the traditional short training domain L-STF, the traditional long training domain L-LTF, and the traditional signaling domain L-SIG.
  • Efficient preambles include the efficient signaling domain HE-SIG-1 (also known as HEW-SIG-1 or HEW-SIG-A) and the efficient long training domain HE-LTF (also known as HEW-LTF).
  • the HE-LTF includes N symbols HE-LTF1, HE-LTF2, ..., HE-LTFN.
  • the cyclic prefix (English: Cyclic Prefix, CP for short) of the first symbol HE-LTF1 of the N symbols is used by the receiving device for automatic gain control AGC estimation.
  • the physical grouping shown in FIG. 3 is only an example of the present invention, and the scope of protection of the embodiments of the present invention is not limited thereto.
  • the physical layer grouping can also include other parts, such as efficient short training.
  • Domain HE-STF also known as HEW-STF.
  • the physical layer grouping may not include one or more of the foregoing conventional preambles, or the plurality of domains may use different names.
  • the efficient long training field including N symbols can also be described as efficient long training fields including N sequences.
  • the minimum length required by the receiving device to perform automatic gain control AGC estimation is related to the AGC accuracy requirement.
  • the minimum length required for AGC estimation can be determined based on the threshold required for AGC accuracy. Then, the minimum length is set on the sender device side so that the sender device generates a physical layer packet based on the minimum length value.
  • the processing unit 702 is configured to perform AGC estimation based on the CP of the first symbol of the N symbols of the high efficiency long training domain.
  • the method for performing the AGC estimation by the processing unit 702 based on the CP of the first symbol may refer to the description in FIG. 5 above. To avoid repetition, details are not described herein again.
  • the CP of the first symbol of the efficient long training field of the physical layer grouping not only functions to prevent inter-code crosstalk, but also has the function of performing AGC estimation for the receiving device. In this way, under the same AGC accuracy requirement, the length of the preamble of the physical layer grouping can be reduced, thereby reducing the system overhead.
  • the length of the CP of the first symbol of the N symbols of the efficient long training domain is greater than the length of the CP of the remaining symbols of the N symbols.
  • the length of the CP of the first symbol in the efficient long training field is extended to be greater than the length of the CP of the remaining symbols.
  • the receiver device performs AGC estimation according to the length of the CP of the first symbol, and performs AGC.
  • the embodiment of the present invention can also reduce the inter-code crosstalk of the HE-LTF1.
  • the length of the CP of the first symbol of the N symbols of the efficient long training domain is 1.6 microseconds, 2.4 microseconds, 3.2 microseconds, or 4.0 microseconds.
  • the length of the CP of the second symbol to the Nth symbol of the N symbols of the efficient long training domain is 0.8 microseconds, 1.6 microseconds, 2.4. Microseconds or 3.2 microseconds.
  • the length of the CP of the first symbol of the N symbols of the efficient long training domain is 4.0 microseconds, and the length of the CP of the remaining symbols of the N symbols of the efficient long training domain is 3.2. Microseconds.
  • the length of the CP of the first symbol of the N symbols of the high-efficiency long training domain is 3.2 microseconds
  • the length of the CP of the remaining symbols of the N symbols of the efficient long training domain is 0.8 microseconds.
  • the length of the CP of the first symbol of the N symbols of the high-efficiency long training domain is 3.2 microseconds
  • the length of the CP of the remaining symbols of the N symbols of the efficient long training domain is 1.6. Microseconds.
  • the length of the CP of the first symbol of the N symbols of the high-efficiency long training field is equal to the length of the CP of the remaining symbols of the N symbols, and the N symbols of the high-efficiency long training field are
  • the length of a symbolic CP is 1.6 microseconds, 2.4 microseconds, or 3.2 microseconds.
  • the physical layer grouping does not include an efficient short training domain. In this way, the power consumption of the transmitting device can be reduced.
  • the physical layer grouping includes an efficient short training domain.
  • the high-efficiency short training domain can be used for the receiver device to perform functions such as AGC estimation or synchronization, and the present invention is not limited.
  • the length of the efficient short training field is 2.4 microseconds, 3.2 microseconds, 4.8 microseconds, 6.4 microseconds, or 12.8 microseconds.
  • the processing unit 702 is further configured to perform fine AGC estimation based on part or all of the CPs of the first symbols of the N symbols of the high efficiency long training domain. In this way, the accuracy of the AGC can be further improved.
  • the physical layer grouping includes a traditional short training domain.
  • the processing unit 702 is further configured to perform AGC estimation based on the conventional short training domain.
  • FIG. 8 is a schematic block diagram of a communication device according to another embodiment of the present invention.
  • the communication device 80 of FIG. 8 can be used to implement the steps and methods in the above method embodiments.
  • communication device 80 includes an antenna 801, a transmitter 802, a receiver 803, a processor 804, and a memory 805.
  • Processor 804 controls the operation of communication device 80 and can be used to process signals.
  • Memory 805 can include read only memory and random access memory and provides instructions and data to processor 804.
  • Transmitter 802 and receiver 803 can be coupled to antenna 801.
  • the various components of communication device 80 are coupled together by a bus system 806, which in addition to the data bus includes a power bus, a control bus, and a status signal bus. However, for clarity of description, various buses are labeled as bus system 806 in the figure.
  • communication device 80 is a recipient device, such as AP 102 or STA (103a, 103b, 103c) as shown in FIG.
  • memory 805 can store instructions that cause processor 804 to perform the following process:
  • the physical layer grouping includes a high-efficiency long training field, and the high-efficiency long training field includes N symbols, and the length of the cyclic prefix CP of the first symbol of the N symbols is greater than or equal to the automatic gain control AGC estimation of the receiving device.
  • the minimum length required, N is a positive integer;
  • a physical layer packet is sent to the recipient device.
  • the CP of the first symbol of the efficient long training field of the physical layer grouping not only functions to prevent inter-code crosstalk, but also has the function of performing AGC estimation for the receiving device. In this way, under the same AGC accuracy requirement, the length of the preamble of the physical layer grouping can be reduced, thereby reducing the system overhead.
  • the minimum length required for the receiver device to perform automatic gain control AGC estimation is related to the AGC accuracy requirement.
  • the minimum length required for AGC estimation can be determined based on the threshold required for AGC accuracy. Then, the minimum length is set on the sender device side so that the sender device generates a physical layer packet based on the minimum length value.
  • the memory 805 may also store instructions that cause the processor 804 to perform the following process:
  • the length of the CP of the first symbol of the N symbols of the efficient long training domain is greater than the length of the CP of the remaining symbols of the N symbols.
  • the embodiment of the present invention can also reduce the inter-code crosstalk of the HE-LTF1.
  • the memory 805 may also store instructions that cause the processor 804 to perform the following process:
  • the length of the CP of the first symbol of the N symbols of the efficient long training field is 1.6 microseconds, 2.4 microseconds, 3.2 microseconds, or 4.0 microseconds.
  • the memory 805 may also store instructions that cause the processor 804 to perform the following process:
  • the length of the CP of the second symbol to the Nth symbol of the N symbols of the efficient long training domain is 0.8 microseconds, 1.6 microseconds, 2.4 microseconds, or 3.2 microseconds.
  • the memory 805 may also store instructions that cause the processor 804 to perform the following process:
  • the length of the CP of the first symbol of the N symbols of the efficient long training domain is 4.0 microseconds, and the length of the CP of the remaining symbols of the N symbols of the efficient long training domain is 3.2 microseconds.
  • the memory 805 may also store instructions that cause the processor 804 to perform the following process:
  • the length of the CP of the first symbol of the N symbols of the efficient long training domain is 3.2 microseconds, and the length of the CP of the remaining symbols of the N symbols of the efficient long training domain is 0.8 microseconds.
  • the memory 805 may also be stored such that the processor 804 performs Instructions for the next process:
  • the length of the CP of the first symbol of the N symbols of the efficient long training domain is equal to the length of the CP of the remaining symbols of the N symbols, and the length of the CP of the first symbol of the N symbols of the efficient long training domain is 1.6 micro. Seconds, 2.4 microseconds or 3.2 microseconds.
  • the memory 805 may also store instructions that cause the processor 804 to perform the following process:
  • the physical layer grouping does not include an efficient short training domain.
  • the memory 805 may also store instructions that cause the processor 804 to perform the following process:
  • the physical layer grouping includes an efficient short training field, and the length of the efficient short training field is 2.4 microseconds, 3.2 microseconds, 4.8 microseconds, 6.4 microseconds, or 12.8 microseconds.
  • FIG. 9 is a schematic block diagram of a communication device according to another embodiment of the present invention.
  • the communication device 90 of FIG. 9 can be used to implement the steps and methods of the above method embodiments.
  • communication device 90 includes an antenna 901, a transmitter 902, a receiver 903, a processor 904, and a memory 905.
  • Processor 904 controls the operation of communication device 90 and can be used to process signals.
  • Memory 905 can include read only memory and random access memory and provides instructions and data to processor 904.
  • Transmitter 902 and receiver 903 can be coupled to antenna 901.
  • the various components of communication device 90 are coupled together by a bus system 906, which in addition to the data bus includes a power bus, a control bus, and a status signal bus. However, for clarity of description, various buses are labeled as bus system 906 in the figure.
  • communication device 90 is a recipient device, such as AP 102 or STA (103a, 103b, 103c) as shown in FIG.
  • memory 905 can store instructions that cause processor 904 to perform the following process:
  • the physical layer packet includes an efficient long training domain, and the efficient long training domain includes N symbols, and the length of the cyclic prefix CP of the first symbol of the N symbols is greater than or equal to that of the receiving device.
  • Gain control AGC estimates the minimum length required, N is a positive integer;
  • the AGC estimation is performed based on the CP of the first symbol of the N symbols of the efficient long training domain.
  • the CP of the first symbol of the efficient long training field of the physical layer grouping not only functions to prevent inter-code crosstalk, but also has the function of performing AGC estimation for the receiving device.
  • the physical layer grouping can be reduced.
  • the length of the guide which in turn reduces system overhead.
  • the minimum length required for the receiver device to perform automatic gain control AGC estimation is related to the AGC accuracy requirement.
  • the minimum length required for AGC estimation can be determined based on the threshold required for AGC accuracy. Then, the minimum length is set on the sender device side so that the sender device generates a physical layer packet based on the minimum length value.
  • the memory 905 may also store instructions that cause the processor 904 to perform the following process:
  • the length of the CP of the first symbol of the N symbols of the efficient long training domain is greater than the length of the CP of the remaining symbols of the N symbols.
  • the embodiment of the present invention can also reduce the inter-code crosstalk of the HE-LTF1.
  • the memory 905 may also store instructions that cause the processor 904 to perform the following process:
  • the length of the CP of the first symbol of the N symbols of the efficient long training field is 1.6 microseconds, 2.4 microseconds, 3.2 microseconds, or 4.0 microseconds.
  • the memory 905 may also store instructions that cause the processor 904 to perform the following process:
  • the length of the CP of the second symbol to the Nth symbol of the N symbols of the efficient long training domain is 0.8 microseconds, 1.6 microseconds, 2.4 microseconds, or 3.2 microseconds.
  • the memory 905 may also store instructions that cause the processor 904 to perform the following process:
  • the length of the CP of the first symbol of the N symbols of the efficient long training domain is 4.0 microseconds, and the length of the CP of the remaining symbols of the N symbols of the efficient long training domain is 3.2 microseconds.
  • the memory 905 may also store instructions that cause the processor 904 to perform the following process:
  • the length of the CP of the first symbol of the N symbols of the efficient long training domain is 3.2 microseconds, and the length of the CP of the remaining symbols of the N symbols of the efficient long training domain is 0.8 microseconds.
  • the memory 905 may also store instructions that cause the processor 904 to perform the following process:
  • the length of the CP of the first symbol of the N symbols of the efficient long training domain is equal to the length of the CP of the remaining symbols of the N symbols, and the length of the CP of the first symbol of the N symbols of the efficient long training domain is 1.6 micro. Seconds, 2.4 microseconds or 3.2 microseconds.
  • the memory 905 may also store instructions that cause the processor 904 to perform the following process:
  • the physical layer grouping does not include an efficient short training field. In this way, the power consumption of the transmitting device can be reduced.
  • the memory 905 may also store instructions that cause the processor 904 to perform the following process:
  • the physical layer grouping includes an efficient short training field, and the length of the efficient short training field is 2.4 microseconds, 3.2 microseconds, 4.8 microseconds, 6.4 microseconds, or 12.8 microseconds.
  • the memory 905 may also store instructions that cause the processor 904 to perform the following process:
  • fine AGC estimation is performed based on part or all of the CPs of the first symbols among the N symbols of the efficient long training domain. In this way, the accuracy of the AGC can be further improved.
  • the memory 905 may also store instructions that cause the processor 904 to perform the following process:
  • the physical layer grouping includes a conventional short training domain, and the AGC estimation is performed based on the conventional short training domain before the AGC estimation based on the CP of the first symbol among the N symbols of the efficient long training domain.
  • the size of the sequence numbers of the above processes does not mean the order of execution, and the order of execution of each process should be determined by its function and internal logic, and should not be taken to the embodiments of the present invention.
  • the implementation process constitutes any limitation.
  • the disclosed systems, devices, and methods may be implemented in other manners.
  • the device embodiments described above are merely illustrative
  • the division of the unit is only a logical function division, and the actual implementation may have another division manner, for example, multiple units or components may be combined or may be integrated into another system, or some features may be Ignore, or not execute.
  • the mutual coupling or direct coupling or communication connection shown or discussed may be an indirect coupling or communication connection through some interface, device or unit, or an electrical, mechanical or other form of connection.
  • the units described as separate components may or may not be physically separated, and the components displayed as units may or may not be physical units, that is, may be located in one place, or may be distributed to multiple network units. Some or all of the units may be selected according to actual needs to achieve the objectives of the embodiments of the present invention.
  • each functional unit in each embodiment of the present invention may be integrated into one processing unit, or each unit may exist physically separately, or two or more units may be integrated into one unit.
  • the above integrated unit can be implemented in the form of hardware or in the form of a software functional unit.
  • the integrated unit if implemented in the form of a software functional unit and sold or used as a standalone product, may be stored in a computer readable storage medium.
  • the technical solution of the present invention contributes in essence or to the prior art, or all or part of the technical solution may be embodied in the form of a software product stored in a storage medium.
  • a number of instructions are included to cause a computer device (which may be a personal computer, server, or network device, etc.) to perform all or part of the steps of the methods described in various embodiments of the present invention.
  • the foregoing storage medium includes: a U disk, a mobile hard disk, a read only memory (English: Read-Only Memory, abbreviated as: ROM), a random access memory (English: Random Access Memory, abbreviated as: RAM), a magnetic disk or an optical disk, and the like.
  • ROM Read-Only Memory
  • RAM Random Access Memory

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Quality & Reliability (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Computer Security & Cryptography (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本发明公开了一种无线局域网中的用于自动增益控制的方法和通信设备。该方法包括:生成物理层分组,物理层分组包括高效长训练域,高效长训练域包括N个符号,N个符号中的第一个符号的循环前缀CP的长度大于或等于接收方设备进行自动增益控制AGC估计所需要的最小长度,N为正整数;向接收方设备发送物理层分组。本发明实施例能够降低系统开销。

Description

无线局域网中的用于自动增益控制的方法和通信设备 技术领域
本发明实施例涉及通信领域,并且更具体地,涉及一种无线局域网中的用于自动增益控制的方法和通信设备。
背景技术
在无线通信系统中,由于传输距离及多普勒频移等因素的影响,接收机接收到的信号强度处于很大的动态范围。强信号容易使接收机达到饱和,弱信号因解调器检测不到容易丢失。目前采用自动增益控制(英文:Automatic Gain Control,简称:AGC)的方法,可以把强弱悬殊的信号调整到合适的范围内,使得输出到基带的信号的信噪比(英文:Signal to Noise Ratio,简称:SNR)最优。
例如,无线局域网(英文:Wireless Local Area Network,简称:WLAN)中的接收机接收信号时,先调整接收信号的功率增益,使信号以合适的功率进入模数转换器。从而将模拟信号转化为数字信号,以便进一步对接收到的信号进行数字处理。在IEEE 802.11n标准中,使用前导码的传统短训练区域(英文:Legacy Short Training Field,简称:L-STF)和高吞吐量短训练区域(英文:High Throughput Short Training Field,简称:HT-STF)对接收信号进行AGC估计。在IEEE 802.11ac标准中,使用前导码中的L-STF和很高吞吐量短训练区域(英文:Very High Throughput Short Training Field,简称:VHT-STF)对接收信号进行AGC估计。
然而,在根据前述方法使用L-STF与HT-STF或L-STF与VHT-STF对接收到的信号进行AGC估计时,系统开销较大。在保证较好的AGC效果的同时,还可以进一步降低系统开销。
发明内容
本发明实施例提供了一种无线局域网中的用于自动增益控制的方法和通信设备,能够降低系统开销。
第一方面,本发明实施例提供了一种用于自动增益控制的方法,包括:
生成物理层分组,物理层分组包括高效长训练域,高效长训练域包括N 个符号,N个符号中的第一个符号的循环前缀CP的长度大于或等于接收方设备进行自动增益控制AGC估计所需要的最小长度,N为正整数;
向接收方设备发送物理层分组。
结合第一方面,在第一方面的第一种实现方式中,高效长训练域的N个符号中的第一个符号的CP的长度大于N个符号中其余符号的CP的长度。
结合第一方面及其上述实现方式,在第一方面的第二种实现方式中,高效长训练域的N个符号中的第一个符号的CP的长度为1.6微秒、2.4微秒、3.2微秒或4.0微秒。
结合第一方面及其上述实现方式,在第一方面的第三种实现方式中,当N大于或等于2时,高效长训练域的N个符号中第二个符号至第N个符号的CP的长度为0.8微秒、1.6微秒、2.4微秒或3.2微秒。
结合第一方面及其上述实现方式,在第一方面的第四种实现方式中,高效长训练域的N个符号中的第一个符号的CP的长度为4.0微秒,高效长训练域的N个符号中其余符号的CP的长度为3.2微秒。
结合第一方面及其上述实现方式,在第一方面的第五种实现方式中,高效长训练域的N个符号中的第一个符号的CP的长度为3.2微秒,高效长训练域的N个符号中其余符号的CP的长度为0.8微秒。
结合第一方面及其上述实现方式,在第一方面的第六种实现方式中,高效长训练域的N个符号中的第一个符号的CP的长度等于N个符号中其余符号的CP的长度,高效长训练域的N个符号中第一个符号的CP的长度为1.6微秒、2.4微秒或3.2微秒。
结合第一方面及其上述实现方式,在第一方面的第七种实现方式中,物理层分组不包括高效短训练域。
结合第一方面及其上述实现方式,在第一方面的第八种实现方式中,物理层分组包括高效短训练域,高效短训练域的长度为2.4微秒、3.2微秒、4.8微秒、6.4微秒或12.8微秒。
第二方面,本发明实施例提供了一种无线局域网中的用于自动增益控制的方法,包括:
从发送方设备接收物理层分组,物理层分组包括高效长训练域,高效长训练域包括N个符号,N个符号中的第一个符号的循环前缀CP的长度大于或等于接收方设备进行自动增益控制AGC估计所需要的最小长度,N为正 整数;
基于高效长训练域的N个符号中的第一个符号的CP进行AGC估计。
结合第二方面,在第二方面的第一种实现方式中,高效长训练域的N个符号中的第一个符号的CP的长度大于N个符号中其余符号的CP的长度。
结合第二方面及其上述实现方式,在第二方面的第二种实现方式中,高效长训练域的N个符号中的第一个符号的CP的长度为1.6微秒、2.4微秒、3.2微秒或4.0微秒。
结合第二方面及其上述实现方式,在第二方面的第三种实现方式中,当N大于或等于2时,高效长训练域的N个符号中第二个符号至第N个符号的CP的长度为0.8微秒、1.6微秒、2.4微秒或3.2微秒。
结合第二方面及其上述实现方式,在第二方面的第四种实现方式中,高效长训练域的N个符号中的第一个符号的CP的长度为4.0微秒,高效长训练域的N个符号中其余符号的CP的长度为3.2微秒。
结合第二方面及其上述实现方式,在第二方面的第五种实现方式中,高效长训练域的N个符号中的第一个符号的CP的长度为3.2微秒,高效长训练域的N个符号中其余符号的CP的长度为0.8微秒。
结合第二方面及其上述实现方式,在第二方面的第六种实现方式中,高效长训练域的N个符号中的第一个符号的CP的长度等于N个符号中其余符号的CP的长度,高效长训练域的N个符号中第一个符号的CP的长度为1.6微秒、2.4微秒或3.2微秒。
结合第二方面及其上述实现方式,在第二方面的第七种实现方式中,物理层分组不包括高效短训练域。
结合第二方面及其上述实现方式,在第二方面的第八种实现方式中,物理层分组包括高效短训练域,高效短训练域的长度为2.4微秒、3.2微秒、4.8微秒、6.4微秒或12.8微秒。
结合第二方面及其上述实现方式,在第二方面的第九种实现方式中,在基于高效长训练域的N个符号中的第一个符号的CP进行AGC估计之后,该方法还包括:
基于高效长训练域的N个符号中第一个符号的CP以外的部分或全部进行精细的AGC估计。
结合第二方面及其上述实现方式,在第二方面的第十种实现方式中,物 理层分组包括传统短训练域,在基于高效长训练域的N个符号中的第一个符号的CP进行AGC估计之前,该方法还包括:
基于传统短训练域进行AGC估计。
第三方面,本发明实施例提供了一种通信设备,包括:
生成单元,用于生成物理层分组,物理层分组包括高效长训练域,高效长训练域包括N个符号,N个符号中的第一个符号的循环前缀CP的长度大于或等于接收方设备进行自动增益控制AGC估计所需要的最小长度,N为正整数;
发送单元,用于向接收方设备发送物理层分组。
结合第三方面,在第三方面的第一种实现方式中,高效长训练域的N个符号中的第一个符号的CP的长度大于N个符号中其余符号的CP的长度。
结合第三方面及其上述实现方式,在第三方面的第二种实现方式中,高效长训练域的N个符号中的第一个符号的CP的长度为1.6微秒、2.4微秒、3.2微秒或4.0微秒。
结合第三方面及其上述实现方式,在第三方面的第三种实现方式中,当N大于或等于2时,高效长训练域的N个符号中第二个符号至第N个符号的CP的长度为0.8微秒、1.6微秒、2.4微秒或3.2微秒。
结合第三方面及其上述实现方式,在第三方面的第四种实现方式中,高效长训练域的N个符号中的第一个符号的CP的长度为4.0微秒,高效长训练域的N个符号中其余符号的CP的长度为3.2微秒。
结合第三方面及其上述实现方式,在第三方面的第五种实现方式中,高效长训练域的N个符号中的第一个符号的CP的长度为3.2微秒,高效长训练域的N个符号中其余符号的CP的长度为0.8微秒。
结合第三方面及其上述实现方式,在第三方面的第六种实现方式中,高效长训练域的N个符号中的第一个符号的CP的长度等于N个符号中其余符号的CP的长度,高效长训练域的N个符号中第一个符号的CP的长度为1.6微秒、2.4微秒或3.2微秒。
结合第三方面及其上述实现方式,在第三方面的第七种实现方式中,物理层分组不包括高效短训练域。
结合第三方面及其上述实现方式,在第三方面的第八种实现方式中,物理层分组包括高效短训练域,高效短训练域用于接收方设备进行AGC估计, 高效短训练域的长度为2.4微秒、3.2微秒、4.8微秒、6.4微秒或12.8微秒。
第四方面,本发明实施例提供了一种通信设备,包括:
接收单元,用于从发送方设备接收物理层分组,物理层分组包括高效长训练域,高效长训练域包括N个符号,N个符号中的第一个符号的循环前缀CP的长度大于或等于接收方设备进行自动增益控制AGC估计所需要的最小长度,N为正整数;
处理单元,用于基于高效长训练域的N个符号中的第一个符号的CP进行AGC估计。
结合第四方面,在第四方面的第一种实现方式中,高效长训练域的N个符号中的第一个符号的CP的长度大于N个符号中其余符号的CP的长度。
结合第四方面及其上述实现方式,在第四方面的第二种实现方式中,高效长训练域的N个符号中的第一个符号的CP的长度为1.6微秒、2.4微秒、3.2微秒或4.0微秒。
结合第四方面及其上述实现方式,在第四方面的第三种实现方式中,当N大于或等于2时,高效长训练域的N个符号中第二个符号至第N个符号的CP的长度为0.8微秒、1.6微秒、2.4微秒或3.2微秒。
结合第四方面及其上述实现方式,在第四方面的第四种实现方式中,高效长训练域的N个符号中的第一个符号的CP的长度为4.0微秒,高效长训练域的N个符号中其余符号的CP的长度为3.2微秒。
结合第四方面及其上述实现方式,在第四方面的第五种实现方式中,高效长训练域的N个符号中的第一个符号的CP的长度为3.2微秒,高效长训练域的N个符号中其余符号的CP的长度为0.8微秒。
结合第四方面及其上述实现方式,在第四方面的第六种实现方式中,高效长训练域的N个符号中的第一个符号的CP的长度等于N个符号中其余符号的CP的长度,高效长训练域的N个符号中第一个符号的CP的长度为1.6微秒、2.4微秒或3.2微秒。
结合第四方面及其上述实现方式,在第四方面的第七种实现方式中,物理层分组不包括高效短训练域。
结合第四方面及其上述实现方式,在第四方面的第八种实现方式中,物理层分组包括高效短训练域,高效短训练域用于接收方设备进行AGC估计,高效短训练域的长度为2.4微秒、3.2微秒、4.8微秒、6.4微秒或12.8微秒。
结合第四方面及其上述实现方式,在第四方面的第九种实现方式中,处理单元还用于,基于高效长训练域的N个符号中第一个符号的CP以外的部分或全部进行精细的AGC估计。
结合第四方面及其上述实现方式,在第四方面的第二种实现方式中,物理层分组包括传统短训练域,处理单元还用于基于传统短训练域进行AGC估计。
基于上述技术方案,物理层分组的高效长训练域的第一个符号的CP除了能够起到防止码间串扰的作用外,还同时具备用于接收方设备进行AGC估计的作用。这样,在相同的AGC精度要求下,可以减小物理层分组的前导的长度,进而能够降低系统开销。
附图说明
为了更清楚地说明本发明实施例的技术方案,下面将对本发明实施例中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1是本发明实施例可应用的通信系统的示意性架构图。
图2是本发明一个实施例的无线局域网中的用于自动增益控制的方法的示意性流程图。
图3是本发明一个实施例的物理层分组的示意图。
图4是本发明另一实施例的无线局域网中的用于自动增益控制的方法的示意性流程图。
图5是本发明一个实施例的AGC的示意性流程图。
图6是本发明一个实施例的通信设备的示意性框图。
图7是本发明另一实施例的通信设备的示意性框图。
图8是本发明另一实施例的通信设备的示意性框图。
图9是本发明另一实施例的通信设备的示意性框图。
具体实施方式
下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例是本发明的一部分实施例,而不 是全部实施例。基于本发明中的实施例,本领域普通技术人员在没有作出创造性劳动的前提下所获得的所有其他实施例,都应属于本发明保护的范围。
应理解,本发明实施例的技术方案可以应用于WLAN系统中。在本发明实施例中,接入点AP可以将有线网络转化为无线网络,为站点STA提供无线接入服务。站点STA可以为用户设备(英文:User Equipment,简称为“UE”)、终端(英文:Terminal)、移动台(英文:Mobile Station,简称为“MS”)、移动终端(英文:Mobile Terminal)等。例如,STA可以是移动电话(或称为“蜂窝”电话)、具有移动终端的计算机等。又如,STA还可以是便携式、袖珍式、手持式、计算机内置的或者车载的移动装置。
为描述方便,下述实施例将以接入点AP和站点STA为例进行说明。
图1是本发明实施例可应用的通信系统的示意性架构图。图1中的通信系统为WLAN系统,这里以覆盖范围为101的AP 102为例进行描述。应理解,本发明实施例对WLAN系统中AP的数量不作限定。
STA(103a,103b,103c)落在AP 102的覆盖范围101内,并且接入至AP 102进行通信。假设在STA 103a与AP 102通信的过程中,AP 102为发送方设备,向STA 103a发送物理层分组(也称为物理层数据包)。STA 103a的接收机在接收该物理层分组的过程中,需要调整接收信号的功率增益,使信号以合适的功率进入模数转换器。从而将模拟信号转化为数字信号,以便进一步对接收到的信号进行数字处理。在STA与STA通信,或者AP与AP通信的过程中,自动增益控制的原理相似,为避免重复,在此不再赘述。
如果使用L-STF与HT-STF或者L-STF与VHT-STF对接收到的信号进行AGC估计,进而调整接收机的增益,系统开销较大。
本发明实施例提供了一种用于自动增益控制的方法和通信设备,能够降低系统开销。应理解,上述通信系统仅是一个示例,本发明实施例的保护范围并不限于此。本发明实施例可以应用于下一代Wi-Fi系统中,比如IEEE802.11ax标准的HEW系统,也可以应用于以其他无线局域网系统,还可以应用于蜂窝网络。本发明实施例还可以应用于办公区、体育场、火车站等密集用户场景。
图2是本发明一个实施例的无线局域网中的用于自动增益控制的方法的示意性流程图。图2的方法可以由发送方设备执行。如图1中示出的AP 102或STA(103a,103b,103c)。更具体地,本方法可以由发送方设备的发射 机执行。
201,生成物理层分组,物理层分组包括高效长训练域,高效长训练域包括N个符号,N个符号中的第一个符号的循环前缀CP的长度大于或等于接收方设备进行自动增益控制AGC估计所需要的最小长度,N为正整数。
图3是本发明一个实施例的物理层分组的示意图。如图3所示,物理层分组(也称为物理层数据包)包括前导和数据两部分。前导包括传统前导和高效前导。传统前导包括传统短训练域L-STF、传统长训练域L-LTF和传统信令域L-SIG。高效前导包括高效信令域HE-SIG-1(也可称为HEW-SIG-1或HEW-SIG-A)、高效长训练域HE-LTF(也可称为HEW-LTF)。
其中,HE-LTF包括N个符号HE-LTF1,HE-LTF2,…,HE-LTFN。其中,N个符号中的第一个符号HE-LTF1的循环前缀(英文:Cyclic Prefix,简称:CP)用于接收方设备进行自动增益控制AGC估计。
应理解,图3所示的物理分组仅是本发明的一个示例,本发明实施例的保护范围不限于此。例如,物理层分组还可以包括其它部分,如高效短训练域HE-STF(也可称为HEW-STF)。又如,物理层分组也可以不包括前述传统前导中的一个或多个域,或者前述多个域可以使用不同的名称。也应理解,高效长训练域包括N个符号也可描述为高效长训练域包括N个序列。
也应理解,接收方设备进行自动增益控制AGC估计所需要的最小长度与AGC精度要求有关。例如,可以根据AGC精度要求的门限值,确定AGC估计所需要的最小长度。然后,将该最小长度设置在发送方设备侧,以便发送方设备根据此最小长度值生成物理层分组。
202,向接收方设备发送物理层分组。
基于上述技术方案,物理层分组的高效长训练域的第一个符号的CP除了能够起到防止码间串扰的作用外,还同时具备用于接收方设备进行AGC估计的作用。这样,在相同的AGC精度要求下,可以减小物理层分组的前导的长度,进而能够降低系统开销。
可选地,作为一个实施例,高效长训练域的N个符号中的第一个符号的CP的长度大于N个符号中其余符号的CP的长度。
例如,延长高效长训练域中第一个符号的CP的长度,使其大于其余符号的CP的长度。接收方设备在接收物理层分组的过程中,根据第一个符号的CP的长度进行AGC估计,并进行AGC。同时,本发明实施例还可以降 低HE-LTF1的码间串扰。
可选地,作为另一实施例,高效长训练域的N个符号中的第一个符号的CP的长度为1.6微秒、2.4微秒、3.2微秒或4.0微秒。
可选地,作为另一实施例,当N大于或等于2时,高效长训练域的N个符号中第二个符号至第N个符号的CP的长度为0.8微秒、1.6微秒、2.4微秒或3.2微秒。
可选地,作为另一实施例,高效长训练域的N个符号中的第一个符号的CP的长度为4.0微秒,高效长训练域的N个符号中其余符号的CP的长度为3.2微秒。
可选地,作为另一实施例,高效长训练域的N个符号中的第一个符号的CP的长度为3.2微秒,高效长训练域的N个符号中其余符号的CP的长度为0.8微秒。
可选地,作为另一实施例,高效长训练域的N个符号中的第一个符号的CP的长度为3.2微秒,高效长训练域的N个符号中其余符号的CP的长度为1.6微秒。
可选地,作为另一实施例,高效长训练域的N个符号中的第一个符号的CP的长度等于N个符号中其余符号的CP的长度,高效长训练域的N个符号中第一个符号的CP的长度为1.6微秒、2.4微秒或3.2微秒。
可选地,作为另一实施例,物理层分组不包括高效短训练域HE-STF(也可称为HEW-STF)。这样,可以降低发送端设备的能耗。
可选地,作为另一实施例,物理层分组包括高效短训练域。高效短训练域可以用于接收方设备进行AGC估计或者同步等功能,本发明不做限制。高效短训练域的长度为2.4微秒、3.2微秒、4.8微秒、6.4微秒或12.8微秒。
可选地,作为另一实施例,高效长训练域的N个符号中的第一个符号的CP以外的部分或全部用于接收方设备进行精细的AGC估计。
可选地,作为另一实施例,物理层分组包括传统短训练域,传统短训练域用于接收方设备进行AGC估计。
下面将结合具体的例子详细描述本发明实施例。应注意,这些例子只是为了帮助本领域技术人员更好地理解本发明实施例,而非限制本发明实施例的范围。
实施方式一:
在传统前导(L-STF+L-LTF+L-SIG)后,或者说在传统前导码和HE-SIG-1后,不发送高效短训练域。高效长训练域的第一个符号(HE-LTF1)使用更长的CP,接收方设备使用该CP做自动增益控制。
物理层分组具体设计为:HE-LTF1的CP为3.2us(微秒),HE-LTF2~HE-LTFn的循环前缀为0.8us。在频域上,HE-LTF1和HE-LTF2~HE-LTFn有一样的子载波间隔和子载波数,比如,20MHz的带宽中,有256个子载波(或者64个子载波)。对于具体的子载波数目和子载波间隔,本发明不做限制。同时,在发送HE-LTF1时,需要使用正确的时间窗函数,以避免对其他符号的干扰。
物理层分组的数据部分的CP长度通常与HE-LTF2~HE-LTFn的CP的长度相等,本发明实施例对此不作限制。例如,在室内场景下,如果高效长训练域只有1个符号HE-LTF1,HE-LTF1可以使用3.2us的CP,数据部分可以使用0.8us的CP。或者,如果高效长训练域有2个符号HE-LTF1~HE-LTF2,HE-LTF1可以使用3.2us的CP,HE-LTF2可以使用0.8us的CP,数据部分也可以使用0.8us的CP。以上仅是本发明实施例的几种实现方式,本发明实施例的保护范围不限于此。
可选地,HE-LTF1的循环前缀为4.0us、2.4us或1.6us,HE-LTF2~HE-LTFn的循环前缀为0.8us。
实施方式一可以应用于室内场景中的WLAN系统。在室内场景中,比如IEEE 802.11ac标准,VHT-STF占用4us,VHT-LTF1的循环前缀占用0.8us。根据本发明实施例,不发送HE-STF,HE-LTF1的循环前缀占用3.2us,因此,在数据包的前导码可以节约1.6us。
实施方式二:
与实施方式一类似地,在传统前导(L-STF+L-LTF+L-SIG)后,或者说在传统前导码和HE-SIG-1后,不发送高效短训练域。物理层分组具体设计为:HE-LTF1的循环前缀为3.2us,HE-LTF2~HE-LTFn的循环前缀为1.6us或2.4us。在频域上,HE-LTF1和HE-LTF2~HE-LTFn有一样的子载波间隔和子载波数,比如,20MHz的带宽中,有256个子载波(或者64个子载波)。对于具体的子载波数目和子载波间隔,本发明不做限制。同时,在发送HE-LTF1时,需要使用正确的时间窗函数,以避免对其他符号的干扰。
物理层分组的数据部分的CP长度通常与HE-LTF2~HE-LTFn的CP的长 度相等,本发明实施例对此不作限制。例如,在室外场景下,如果高效长训练域只有1个符号HE-LTF1,HE-LTF1可以使用3.2us的CP,数据部分可以使用1.6us的CP。或者,如果高效长训练域有2个符号HE-LTF1~HE-LTF2,HE-LTF1可以使用3.2us的CP,HE-LTF2可以使用1.6us的CP,数据部分也可以使用1.6us的CP。以上仅是本发明实施例的几种实现方式,本发明实施例的保护范围不限于此。
可选的,另外一种设计是,HE-LTF1的循环前缀为4.0us、2.4us或1.6us,HE-LTF2~HE-LTFn的循环前缀为1.6us或者2.4us。
实施方式二可以应用于室外场景中的WLAN系统。在室外场景中,如果HE-STF占用4us,HE-LTF1的循环前缀占用3.2us。根据本发明实施例,不发送HE-STF,HE-LTF1的循环前缀占用3.2us,在接收端既用于抵抗码间干扰,又用于AGC估计。因此,在数据包的前导码可以节约4us。
实施方式三:
与实施方式一类似地,在传统前导(L-STF+L-LTF+L-SIG)后,或者说在传统前导码和HE-SIG-1后,不发送高效短训练域。HE-LTF1的循环前缀为4.0us,HE-LTF2~HE-LTFn的循环前缀为3.2us。在频域上,HE-LTF1和HE-LTF2~HE-LTFn有一样的子载波间隔和子载波数,比如,20MHz的带宽中,有256个子载波(或者64个子载波)。对于具体的子载波数目和子载波间隔,本发明不做限制。同时,在发送HE-LTF1时,需要使用正确的时间窗函数,以避免对其他符号的干扰。
实施方式三可以应用于室外场景中的WLAN系统。
图4是本发明另一实施例的无线局域网中的用于自动增益控制的方法的示意性流程图。图4的方法可以由接收方设备执行。如图1中示出的AP 102或STA(103a,103b,103c)。更具体地,本方法可以由接收方设备的接收机执行。
401,从发送方设备接收物理层分组,物理层分组包括高效长训练域,高效长训练域包括N个符号,N个符号中的第一个符号的循环前缀CP的长度大于或等于接收方设备进行自动增益控制AGC估计所需要的最小长度,N为正整数。
如图3所示,物理层分组(也称为物理层数据包)包括前导和数据两部分。前导包括传统前导和高效前导。传统前导包括传统短训练域L-STF、传 统长训练域L-LTF和传统信令域L-SIG。高效前导包括高效信令域HE-SIG-1(也可称为HEW-SIG-1或HEW-SIG-A)、高效长训练域HE-LTF(也可称为HEW-LTF)。
其中,HE-LTF包括N个符号HE-LTF1,HE-LTF2,…,HE-LTFN。其中,N个符号中的第一个符号HE-LTF1的循环前缀(英文:Cyclic Prefix,简称:CP)用于接收方设备进行自动增益控制AGC估计。
应理解,图3所示的物理分组仅是本发明的一个示例,本发明实施例的保护范围不限于此。例如,物理层分组还可以包括其它部分,如高效短训练域HE-STF(也可称为HEW-STF)。又如,物理层分组也可以不包括前述传统前导中的一个或多个域,或者前述多个域可以使用不同的名称。也应理解,高效长训练域包括N个符号也可描述为高效长训练域包括N个序列。
也应理解,接收方设备进行自动增益控制AGC估计所需要的最小长度与AGC精度要求有关。例如,可以根据AGC精度要求的门限值,确定AGC估计所需要的最小长度。然后,将该最小长度设置在发送方设备侧,以便发送方设备根据此最小长度值生成物理层分组。
402,基于高效长训练域的N个符号中的第一个符号的CP进行AGC估计。
图5是本发明一个实施例的AGC的示意性流程图。接收机的AGC模块主要由估计模块和增益调节模块两部分构成。AGC的基本原理是:接收信号(如第一个符号的CP)经放大器VGA放大后得到放大后的模拟信号r(t),再经过模数转换器ADC转换为数字信号x(i)。估计模块利用x(i)来计算VGA的增益大小,即增益Gnext,并将其反馈给VGA。这样,增益调节模块根据估计模块反馈过来的信息,控制VGA调整自身的增益。具体地,可以根据以下方法估计增益Gnext
计算x(i)的M个采样点的能量(或者功率)来估计增益Gnext。x(i)表示第i个ADC变换之后的样值信号,M代表AGC控制周期长度。那么,在M个样值的时间内估计的信号能量可以以此得到能量估计值Pest
Figure PCTCN2014091068-appb-000001
这样,可以根据公式(2)估计增益Gnext
Figure PCTCN2014091068-appb-000002
其中,Gnext表示下一个N期间的放大器VGA增益,Gp表示放大器VGA当前的增益,Pref表示期望的信号能量值。
上述方法是根据采样点的功率估计进行AGC,也可以根据采样点的幅度估计进行AGC,其原理与功率估计类似,在此不再赘述。用幅度估计比用功率估计更快更简单。
基于上述技术方案,物理层分组的高效长训练域的第一个符号的CP除了能够起到防止码间串扰的作用外,还同时具备用于接收方设备进行AGC估计的作用。这样,在相同的AGC精度要求下,可以减小物理层分组的前导的长度,进而能够降低系统开销。
可选地,作为一个实施例,高效长训练域的N个符号中的第一个符号的CP的长度大于N个符号中其余符号的CP的长度。
例如,延长高效长训练域中第一个符号的CP的长度,使其大于其余符号的CP的长度。接收方设备在接收物理层分组的过程中,根据第一个符号的CP的长度进行AGC估计,并进行AGC。同时,本发明实施例还可以降低HE-LTF1的码间串扰。
可选地,作为另一实施例,高效长训练域的N个符号中的第一个符号的CP的长度为1.6微秒、2.4微秒、3.2微秒或4.0微秒。
可选地,作为另一实施例,当N大于或等于2时,高效长训练域的N个符号中第二个符号至第N个符号的CP的长度为0.8微秒、1.6微秒、2.4微秒或3.2微秒。
可选地,作为另一实施例,高效长训练域的N个符号中的第一个符号的CP的长度为4.0微秒,高效长训练域的N个符号中其余符号的CP的长度为3.2微秒。
可选地,作为另一实施例,高效长训练域的N个符号中的第一个符号的CP的长度为3.2微秒,高效长训练域的N个符号中其余符号的CP的长度为0.8微秒。
可选地,作为另一实施例,高效长训练域的N个符号中的第一个符号的CP的长度为3.2微秒,高效长训练域的N个符号中其余符号的CP的长度为1.6微秒。
可选地,作为另一实施例,高效长训练域的N个符号中的第一个符号的CP的长度等于N个符号中其余符号的CP的长度,高效长训练域的N个符号中第一个符号的CP的长度为1.6微秒、2.4微秒或3.2微秒。
可选地,作为另一实施例,物理层分组不包括高效短训练域。这样,可以降低发送端设备的能耗。
可选地,作为另一实施例,物理层分组包括高效短训练域。高效短训练域可以用于接收方设备进行AGC估计或者同步等功能,本发明不做限制。高效短训练域的长度为2.4微秒、3.2微秒、4.8微秒、6.4微秒或12.8微秒。
可选地,作为另一实施例,在基于高效长训练域的N个符号中的第一个符号的CP进行AGC估计之后,基于高效长训练域的N个符号中第一个符号的CP以外的部分或全部进行精细的AGC估计。
这样,可以进一步提升AGC的精度。
可选地,作为另一实施例,物理层分组包括传统短训练域。在基于高效长训练域的N个符号中的第一个符号的CP进行AGC估计之前,基于传统短训练域进行AGC估计。
图6是本发明一个实施例的通信设备的示意性框图。通信设备60为发送方设备,如图1中示出的AP 102或STA(103a,103b,103c)。通信设备60包括生成单元601和发送单元602。
生成单元601,用于生成物理层分组,物理层分组包括高效长训练域,高效长训练域包括N个符号,N个符号中的第一个符号的循环前缀CP的长度大于或等于接收方设备进行自动增益控制AGC估计所需要的最小长度,N为正整数。
如图3所示,物理层分组(也称为物理层数据包)包括前导和数据两部分。前导包括传统前导和高效前导。传统前导包括传统短训练域L-STF、传统长训练域L-LTF和传统信令域L-SIG。高效前导包括高效信令域HE-SIG-1(也可称为HEW-SIG-1或HEW-SIG-A)、高效长训练域HE-LTF(也可称为HEW-LTF)。
其中,HE-LTF包括N个符号HE-LTF1,HE-LTF2,…,HE-LTFN。其中,N个符号中的第一个符号HE-LTF1的循环前缀(英文:Cyclic Prefix,简称:CP)用于接收方设备进行自动增益控制AGC估计。
应理解,图3所示的物理分组仅是本发明的一个示例,本发明实施例的 保护范围不限于此。例如,物理层分组还可以包括其它部分,如高效短训练域HE-STF(也可称为HEW-STF)。又如,物理层分组也可以不包括前述传统前导中的一个或多个域,或者前述多个域可以使用不同的名称。也应理解,高效长训练域包括N个符号也可描述为高效长训练域包括N个序列。
也应理解,接收方设备进行自动增益控制AGC估计所需要的最小长度与AGC精度要求有关。例如,可以根据AGC精度要求的门限值,确定AGC估计所需要的最小长度。然后,将该最小长度设置在发送方设备侧,以便发送方设备根据此最小长度值生成物理层分组。
发送单元602,用于向接收方设备发送物理层分组。
基于上述技术方案,物理层分组的高效长训练域的第一个符号的CP除了能够起到防止码间串扰的作用外,还同时具备用于接收方设备进行AGC估计的作用。这样,在相同的AGC精度要求下,可以减小物理层分组的前导的长度,进而能够降低系统开销。
可选地,作为一个实施例,高效长训练域的N个符号中的第一个符号的CP的长度大于N个符号中其余符号的CP的长度。
例如,延长高效长训练域中第一个符号的CP的长度,使其大于其余符号的CP的长度。接收方设备在接收物理层分组的过程中,根据第一个符号的CP的长度进行AGC估计,并进行AGC。同时,本发明实施例还可以降低HE-LTF1的码间串扰。
可选地,作为另一实施例,高效长训练域的N个符号中的第一个符号的CP的长度为1.6微秒、2.4微秒、3.2微秒或4.0微秒。
可选地,作为另一实施例,当N大于或等于2时,高效长训练域的N个符号中第二个符号至第N个符号的CP的长度为0.8微秒、1.6微秒、2.4微秒或3.2微秒。
可选地,作为另一实施例,高效长训练域的N个符号中的第一个符号的CP的长度为4.0微秒,高效长训练域的N个符号中其余符号的CP的长度为3.2微秒。
可选地,作为另一实施例,高效长训练域的N个符号中的第一个符号的CP的长度为3.2微秒,高效长训练域的N个符号中其余符号的CP的长度为0.8微秒。
可选地,作为另一实施例,高效长训练域的N个符号中的第一个符号的 CP的长度为3.2微秒,高效长训练域的N个符号中其余符号的CP的长度为1.6微秒。
可选地,作为另一实施例,高效长训练域的N个符号中的第一个符号的CP的长度等于N个符号中其余符号的CP的长度,高效长训练域的N个符号中第一个符号的CP的长度为1.6微秒、2.4微秒或3.2微秒。
可选地,作为另一实施例,物理层分组不包括高效短训练域。这样,可以降低发送端设备的能耗。
可选地,作为另一实施例,物理层分组包括高效短训练域。高效短训练域可以用于接收方设备进行AGC估计或者同步等功能,本发明不做限制。高效短训练域的长度为2.4微秒、3.2微秒、4.8微秒、6.4微秒或12.8微秒。
可选地,作为另一实施例,高效长训练域的N个符号中的第一个符号的CP以外的部分或全部用于接收方设备进行精细的AGC估计。
可选地,作为另一实施例,物理层分组包括传统短训练域,传统短训练域用于接收方设备进行AGC估计。
图7是本发明另一实施例的通信设备的示意性框图。通信设备60为接收方设备,如图1中示出的AP 102或STA(103a,103b,103c)。通信设备70包括接收单元701和处理单元702。
接收单元701,用于从发送方设备接收物理层分组,物理层分组包括高效长训练域,高效长训练域包括N个符号,N个符号中的第一个符号的循环前缀CP的长度大于或等于接收方设备进行自动增益控制AGC估计所需要的最小长度,N为正整数。
如图3所示,物理层分组(也称为物理层数据包)包括前导和数据两部分。前导包括传统前导和高效前导。传统前导包括传统短训练域L-STF、传统长训练域L-LTF和传统信令域L-SIG。高效前导包括高效信令域HE-SIG-1(也可称为HEW-SIG-1或HEW-SIG-A)、高效长训练域HE-LTF(也可称为HEW-LTF)。
其中,HE-LTF包括N个符号HE-LTF1,HE-LTF2,…,HE-LTFN。其中,N个符号中的第一个符号HE-LTF1的循环前缀(英文:Cyclic Prefix,简称:CP)用于接收方设备进行自动增益控制AGC估计。
应理解,图3所示的物理分组仅是本发明的一个示例,本发明实施例的保护范围不限于此。例如,物理层分组还可以包括其它部分,如高效短训练 域HE-STF(也可称为HEW-STF)。又如,物理层分组也可以不包括前述传统前导中的一个或多个域,或者前述多个域可以使用不同的名称。也应理解,高效长训练域包括N个符号也可描述为高效长训练域包括N个序列。
也应理解,接收方设备进行自动增益控制AGC估计所需要的最小长度与AGC精度要求有关。例如,可以根据AGC精度要求的门限值,确定AGC估计所需要的最小长度。然后,将该最小长度设置在发送方设备侧,以便发送方设备根据此最小长度值生成物理层分组。
处理单元702,用于基于高效长训练域的N个符号中的第一个符号的CP进行AGC估计。
其中,处理单元702基于第一个符号的CP进行AGC估计的方法可以参考前文图5的描述,为避免重复,在此不再赘述。
基于上述技术方案,物理层分组的高效长训练域的第一个符号的CP除了能够起到防止码间串扰的作用外,还同时具备用于接收方设备进行AGC估计的作用。这样,在相同的AGC精度要求下,可以减小物理层分组的前导的长度,进而能够降低系统开销。
可选地,作为一个实施例,高效长训练域的N个符号中的第一个符号的CP的长度大于N个符号中其余符号的CP的长度。
例如,延长高效长训练域中第一个符号的CP的长度,使其大于其余符号的CP的长度。接收方设备在接收物理层分组的过程中,根据第一个符号的CP的长度进行AGC估计,并进行AGC。同时,本发明实施例还可以降低HE-LTF1的码间串扰。
可选地,作为另一实施例,高效长训练域的N个符号中的第一个符号的CP的长度为1.6微秒、2.4微秒、3.2微秒或4.0微秒。
可选地,作为另一实施例,当N大于或等于2时,高效长训练域的N个符号中第二个符号至第N个符号的CP的长度为0.8微秒、1.6微秒、2.4微秒或3.2微秒。
可选地,作为另一实施例,高效长训练域的N个符号中的第一个符号的CP的长度为4.0微秒,高效长训练域的N个符号中其余符号的CP的长度为3.2微秒。
可选地,作为另一实施例,高效长训练域的N个符号中的第一个符号的CP的长度为3.2微秒,高效长训练域的N个符号中其余符号的CP的长度为 0.8微秒。
可选地,作为另一实施例,高效长训练域的N个符号中的第一个符号的CP的长度为3.2微秒,高效长训练域的N个符号中其余符号的CP的长度为1.6微秒。
可选地,作为另一实施例,高效长训练域的N个符号中的第一个符号的CP的长度等于N个符号中其余符号的CP的长度,高效长训练域的N个符号中第一个符号的CP的长度为1.6微秒、2.4微秒或3.2微秒。
可选地,作为另一实施例,物理层分组不包括高效短训练域。这样,可以降低发送端设备的能耗。
可选地,作为另一实施例,物理层分组包括高效短训练域。高效短训练域可以用于接收方设备进行AGC估计或者同步等功能,本发明不做限制。高效短训练域的长度为2.4微秒、3.2微秒、4.8微秒、6.4微秒或12.8微秒。
可选地,作为另一实施例,处理单元702还用于,基于高效长训练域的N个符号中第一个符号的CP以外的部分或全部进行精细的AGC估计。这样,可以进一步提升AGC的精度。
可选地,作为另一实施例,物理层分组包括传统短训练域。这种情况下,处理单元702还用于基于传统短训练域进行AGC估计。
图8是本发明另一实施例的通信设备的示意性框图。
图8的通信设备80可用于实现上述方法实施例中各步骤及方法。图8的实施例中,通信设备80包括天线801、发射机802、接收机803、处理器804和存储器805。处理器804控制通信设备80的操作,并可用于处理信号。存储器805可以包括只读存储器和随机存取存储器,并向处理器804提供指令和数据。发射机802和接收机803可以耦合到天线801。通信设备80的各个组件通过总线系统806耦合在一起,其中总线系统806除包括数据总线之外,还包括电源总线、控制总线和状态信号总线。但是为了清楚说明起见,在图中将各种总线都标为总线系统806。例如,通信设备80为接收方设备,如图1中示出的AP 102或STA(103a,103b,103c)。
具体地,存储器805可存储使得处理器804执行以下过程的指令:
生成物理层分组,物理层分组包括高效长训练域,高效长训练域包括N个符号,N个符号中的第一个符号的循环前缀CP的长度大于或等于接收方设备进行自动增益控制AGC估计所需要的最小长度,N为正整数;
向接收方设备发送物理层分组。
基于上述技术方案,物理层分组的高效长训练域的第一个符号的CP除了能够起到防止码间串扰的作用外,还同时具备用于接收方设备进行AGC估计的作用。这样,在相同的AGC精度要求下,可以减小物理层分组的前导的长度,进而能够降低系统开销。
应理解,接收方设备进行自动增益控制AGC估计所需要的最小长度与AGC精度要求有关。例如,可以根据AGC精度要求的门限值,确定AGC估计所需要的最小长度。然后,将该最小长度设置在发送方设备侧,以便发送方设备根据此最小长度值生成物理层分组。
可选地,作为一个实施例,存储器805还可存储使得处理器804执行以下过程的指令:
高效长训练域的N个符号中的第一个符号的CP的长度大于N个符号中其余符号的CP的长度。
这样,本发明实施例还可以降低HE-LTF1的码间串扰。
可选地,作为一个实施例,存储器805还可存储使得处理器804执行以下过程的指令:
高效长训练域的N个符号中的第一个符号的CP的长度为1.6微秒、2.4微秒、3.2微秒或4.0微秒。
可选地,作为一个实施例,存储器805还可存储使得处理器804执行以下过程的指令:
当N大于或等于2时,高效长训练域的N个符号中第二个符号至第N个符号的CP的长度为0.8微秒、1.6微秒、2.4微秒或3.2微秒。
可选地,作为一个实施例,存储器805还可存储使得处理器804执行以下过程的指令:
高效长训练域的N个符号中的第一个符号的CP的长度为4.0微秒,高效长训练域的N个符号中其余符号的CP的长度为3.2微秒。
可选地,作为一个实施例,存储器805还可存储使得处理器804执行以下过程的指令:
高效长训练域的N个符号中的第一个符号的CP的长度为3.2微秒,高效长训练域的N个符号中其余符号的CP的长度为0.8微秒。
可选地,作为一个实施例,存储器805还可存储使得处理器804执行以 下过程的指令:
高效长训练域的N个符号中的第一个符号的CP的长度等于N个符号中其余符号的CP的长度,高效长训练域的N个符号中第一个符号的CP的长度为1.6微秒、2.4微秒或3.2微秒。
可选地,作为一个实施例,存储器805还可存储使得处理器804执行以下过程的指令:
物理层分组不包括高效短训练域。
这样,可以降低发送端设备的能耗。
可选地,作为一个实施例,存储器805还可存储使得处理器804执行以下过程的指令:
物理层分组包括高效短训练域,高效短训练域的长度为2.4微秒、3.2微秒、4.8微秒、6.4微秒或12.8微秒。
图9是本发明另一实施例的通信设备的示意性框图。
图9的通信设备90可用于实现上述方法实施例中各步骤及方法。图9的实施例中,通信设备90包括天线901、发射机902、接收机903、处理器904和存储器905。处理器904控制通信设备90的操作,并可用于处理信号。存储器905可以包括只读存储器和随机存取存储器,并向处理器904提供指令和数据。发射机902和接收机903可以耦合到天线901。通信设备90的各个组件通过总线系统906耦合在一起,其中总线系统906除包括数据总线之外,还包括电源总线、控制总线和状态信号总线。但是为了清楚说明起见,在图中将各种总线都标为总线系统906。例如,通信设备90为接收方设备,如图1中示出的AP 102或STA(103a,103b,103c)。
具体地,存储器905可存储使得处理器904执行以下过程的指令:
从发送方设备接收物理层分组,物理层分组包括高效长训练域,高效长训练域包括N个符号,N个符号中的第一个符号的循环前缀CP的长度大于或等于接收方设备进行自动增益控制AGC估计所需要的最小长度,N为正整数;
基于高效长训练域的N个符号中的第一个符号的CP进行AGC估计。
基于上述技术方案,物理层分组的高效长训练域的第一个符号的CP除了能够起到防止码间串扰的作用外,还同时具备用于接收方设备进行AGC估计的作用。这样,在相同的AGC精度要求下,可以减小物理层分组的前 导的长度,进而能够降低系统开销。
应理解,接收方设备进行自动增益控制AGC估计所需要的最小长度与AGC精度要求有关。例如,可以根据AGC精度要求的门限值,确定AGC估计所需要的最小长度。然后,将该最小长度设置在发送方设备侧,以便发送方设备根据此最小长度值生成物理层分组。
可选地,作为一个实施例,存储器905还可存储使得处理器904执行以下过程的指令:
高效长训练域的N个符号中的第一个符号的CP的长度大于N个符号中其余符号的CP的长度。
这样,本发明实施例还可以降低HE-LTF1的码间串扰。
可选地,作为另一实施例,存储器905还可存储使得处理器904执行以下过程的指令:
高效长训练域的N个符号中的第一个符号的CP的长度为1.6微秒、2.4微秒、3.2微秒或4.0微秒。
可选地,作为另一实施例,存储器905还可存储使得处理器904执行以下过程的指令:
当N大于或等于2时,高效长训练域的N个符号中第二个符号至第N个符号的CP的长度为0.8微秒、1.6微秒、2.4微秒或3.2微秒。
可选地,作为另一实施例,存储器905还可存储使得处理器904执行以下过程的指令:
高效长训练域的N个符号中的第一个符号的CP的长度为4.0微秒,高效长训练域的N个符号中其余符号的CP的长度为3.2微秒。
可选地,作为另一实施例,存储器905还可存储使得处理器904执行以下过程的指令:
高效长训练域的N个符号中的第一个符号的CP的长度为3.2微秒,高效长训练域的N个符号中其余符号的CP的长度为0.8微秒。
可选地,作为另一实施例,存储器905还可存储使得处理器904执行以下过程的指令:
高效长训练域的N个符号中的第一个符号的CP的长度等于N个符号中其余符号的CP的长度,高效长训练域的N个符号中第一个符号的CP的长度为1.6微秒、2.4微秒或3.2微秒。
可选地,作为另一实施例,存储器905还可存储使得处理器904执行以下过程的指令:
物理层分组不包括高效短训练域。这样,可以降低发送端设备的能耗。
可选地,作为另一实施例,存储器905还可存储使得处理器904执行以下过程的指令:
物理层分组包括高效短训练域,高效短训练域的长度为2.4微秒、3.2微秒、4.8微秒、6.4微秒或12.8微秒。
可选地,作为另一实施例,存储器905还可存储使得处理器904执行以下过程的指令:
在基于高效长训练域的N个符号中的第一个符号的CP进行AGC估计之后,基于高效长训练域的N个符号中第一个符号的CP以外的部分或全部进行精细的AGC估计。这样,可以进一步提升AGC的精度。
可选地,作为另一实施例,存储器905还可存储使得处理器904执行以下过程的指令:
物理层分组包括传统短训练域,在基于高效长训练域的N个符号中的第一个符号的CP进行AGC估计之前,基于传统短训练域进行AGC估计。
应理解,在本发明的各种实施例中,上述各过程的序号的大小并不意味着执行顺序的先后,各过程的执行顺序应以其功能和内在逻辑确定,而不应对本发明实施例的实施过程构成任何限定。
本领域普通技术人员可以意识到,结合本文中所公开的实施例描述的各示例的单元及算法步骤,能够以电子硬件、计算机软件或者二者的结合来实现,为了清楚地说明硬件和软件的可互换性,在上述说明中已经按照功能一般性地描述了各示例的组成及步骤。这些功能究竟以硬件还是软件方式来执行,取决于技术方案的特定应用和设计约束条件。专业技术人员可以对每个特定的应用来使用不同方法来实现所描述的功能,但是这种实现不应认为超出本发明的范围。
所属领域的技术人员可以清楚地了解到,为了描述的方便和简洁,上述描述的系统、装置和单元的具体工作过程,可以参考前述方法实施例中的对应过程,在此不再赘述。
在本申请所提供的几个实施例中,应该理解到,所揭露的系统、装置和方法,可以通过其它的方式实现。例如,以上所描述的装置实施例仅仅是示 意性的,例如,所述单元的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,例如多个单元或组件可以结合或者可以集成到另一个系统,或一些特征可以忽略,或不执行。另外,所显示或讨论的相互之间的耦合或直接耦合或通信连接可以是通过一些接口、装置或单元的间接耦合或通信连接,也可以是电的,机械的或其它的形式连接。
所述作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部单元来实现本发明实施例方案的目的。
另外,在本发明各个实施例中的各功能单元可以集成在一个处理单元中,也可以是各个单元单独物理存在,也可以是两个或两个以上单元集成在一个单元中。上述集成的单元既可以采用硬件的形式实现,也可以采用软件功能单元的形式实现。
所述集成的单元如果以软件功能单元的形式实现并作为独立的产品销售或使用时,可以存储在一个计算机可读取存储介质中。基于这样的理解,本发明的技术方案本质上或者说对现有技术做出贡献的部分,或者该技术方案的全部或部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质中,包括若干指令用以使得一台计算机设备(可以是个人计算机,服务器,或者网络设备等)执行本发明各个实施例所述方法的全部或部分步骤。而前述的存储介质包括:U盘、移动硬盘、只读存储器(英文:Read-Only Memory,简称:ROM)、随机存取存储器(英文:Random Access Memory,简称:RAM)、磁碟或者光盘等各种可以存储程序代码的介质。
以上所述,仅为本发明的具体实施方式,但本发明的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本发明揭露的技术范围内,可轻易想到各种等效的修改或替换,这些修改或替换都应涵盖在本发明的保护范围之内。因此,本发明的保护范围应以权利要求的保护范围为准。

Claims (36)

  1. 一种无线局域网中的用于自动增益控制的方法,其特征在于,包括:
    生成物理层分组,所述物理层分组包括高效长训练域,所述高效长训练域包括N个符号,所述N个符号中的第一个符号的循环前缀CP的长度大于或等于接收方设备进行自动增益控制AGC估计所需要的最小长度,N为正整数;
    向所述接收方设备发送所述物理层分组。
  2. 根据权利要求1所述的方法,其特征在于,所述物理层分组不包括高效短训练域。
  3. 根据权利要求1或2所述的方法,其特征在于,所述高效长训练域的N个符号中的第一个符号的CP的长度大于所述N个符号中其余符号的CP的长度。
  4. 根据权利要求1至3中任一项所述的方法,其特征在于,所述高效长训练域的N个符号中的第一个符号的CP的长度为1.6微秒、2.4微秒、3.2微秒或4.0微秒。
  5. 根据权利要求1至4中任一项所述的方法,其特征在于,当N大于或等于2时,所述高效长训练域的N个符号中第二个符号至第N个符号的CP的长度为0.8微秒、1.6微秒、2.4微秒或3.2微秒。
  6. 根据权利要求1至3中任一项所述的方法,其特征在于,所述高效长训练域的N个符号中的第一个符号的CP的长度为3.2微秒,所述高效长训练域的N个符号中其余符号的CP的长度为0.8微秒。
  7. 根据权利要求1或2所述的方法,其特征在于,所述高效长训练域的N个符号中的第一个符号的CP的长度等于所述N个符号中其余符号的CP的长度,所述高效长训练域的N个符号中第一个符号的CP的长度为1.6微秒、2.4微秒或3.2微秒。
  8. 根据权利要求1所述的方法,其特征在于,所述物理层分组包括高效短训练域,所述高效短训练域的长度为2.4微秒、3.2微秒、4.8微秒、6.4微秒或12.8微秒。
  9. 一种无线局域网中的用于自动增益控制的方法,其特征在于,包括:
    从发送方设备接收物理层分组,所述物理层分组包括高效长训练域,所述高效长训练域包括N个符号,所述N个符号中的第一个符号的循环前缀 CP的长度大于或等于接收方设备进行自动增益控制AGC估计所需要的最小长度,N为正整数;
    基于所述高效长训练域的N个符号中的第一个符号的CP进行AGC估计。
  10. 根据权利要求9所述的方法,其特征在于,所述物理层分组不包括高效短训练域。
  11. 根据权利要求9或10所述的方法,其特征在于,所述高效长训练域的N个符号中的第一个符号的CP的长度大于所述N个符号中其余符号的CP的长度。
  12. 根据权利要求9至11中任一项所述的方法,其特征在于,所述高效长训练域的N个符号中的第一个符号的CP的长度为1.6微秒、2.4微秒、3.2微秒或4.0微秒。
  13. 根据权利要求9至12中任一项所述的方法,其特征在于,当N大于或等于2时,所述高效长训练域的N个符号中第二个符号至第N个符号的CP的长度为0.8微秒、1.6微秒、2.4微秒或3.2微秒。
  14. 根据权利要求9至11中任一项所述的方法,其特征在于,所述高效长训练域的N个符号中的第一个符号的CP的长度为3.2微秒,所述高效长训练域的N个符号中其余符号的CP的长度为0.8微秒。
  15. 根据权利要求9或10所述的方法,其特征在于,所述高效长训练域的N个符号中的第一个符号的CP的长度等于所述N个符号中其余符号的CP的长度,所述高效长训练域的N个符号中第一个符号的CP的长度为1.6微秒、2.4微秒或3.2微秒。
  16. 根据权利要求9所述的方法,其特征在于,所述物理层分组包括高效短训练域,所述高效短训练域的长度为2.4微秒、3.2微秒、4.8微秒、6.4微秒或12.8微秒。
  17. 根据权利要求9至16中任一项所述的方法,其特征在于,在所述基于所述高效长训练域的N个符号中的第一个符号的CP进行AGC估计之后,所述方法还包括:
    基于所述高效长训练域的N个符号中第一个符号的CP以外的部分或全部进行精细的AGC估计。
  18. 根据权利要求9至17中任一项所述的方法,其特征在于,所述物 理层分组包括传统短训练域,在所述基于所述高效长训练域的N个符号中的第一个符号的CP进行AGC估计之前,所述方法还包括:
    基于所述传统短训练域进行AGC估计。
  19. 一种通信设备,其特征在于,包括:
    生成单元,用于生成物理层分组,所述物理层分组包括高效长训练域,所述高效长训练域包括N个符号,所述N个符号中的第一个符号的循环前缀CP的长度大于或等于接收方设备进行自动增益控制AGC估计所需要的最小长度,N为正整数;
    发送单元,用于向所述接收方设备发送所述物理层分组。
  20. 根据权利要求19所述的通信设备,其特征在于,所述物理层分组不包括高效短训练域。
  21. 根据权利要求19或20所述的通信设备,其特征在于,所述高效长训练域的N个符号中的第一个符号的CP的长度大于所述N个符号中其余符号的CP的长度。
  22. 根据权利要求19至21中任一项所述的通信设备,其特征在于,所述高效长训练域的N个符号中的第一个符号的CP的长度为1.6微秒、2.4微秒、3.2微秒或4.0微秒。
  23. 根据权利要求19至22中任一项所述的通信设备,其特征在于,当N大于或等于2时,所述高效长训练域的N个符号中第二个符号至第N个符号的CP的长度为0.8微秒、1.6微秒、2.4微秒或3.2微秒。
  24. 根据权利要求19至21中任一项所述的通信设备,其特征在于,所述高效长训练域的N个符号中的第一个符号的CP的长度为3.2微秒,所述高效长训练域的N个符号中其余符号的CP的长度为0.8微秒。
  25. 根据权利要求19或20所述的通信设备,其特征在于,所述高效长训练域的N个符号中的第一个符号的CP的长度等于所述N个符号中其余符号的CP的长度,所述高效长训练域的N个符号中第一个符号的CP的长度为1.6微秒、2.4微秒或3.2微秒。
  26. 根据权利要求19所述的通信设备,其特征在于,所述物理层分组包括高效短训练域,所述高效短训练域用于接收方设备进行AGC估计,所述高效短训练域的长度为2.4微秒、3.2微秒、4.8微秒、6.4微秒或12.8微秒。
  27. 一种通信设备,其特征在于,包括:
    接收单元,用于从发送方设备接收物理层分组,所述物理层分组包括高效长训练域,所述高效长训练域包括N个符号,所述N个符号中的第一个符号的循环前缀CP的长度大于或等于接收方设备进行自动增益控制AGC估计所需要的最小长度,N为正整数;
    处理单元,用于基于所述高效长训练域的N个符号中的第一个符号的CP进行AGC估计。
  28. 根据权利要求27所述的通信设备,其特征在于,所述物理层分组不包括高效短训练域。
  29. 根据权利要求27或28所述的通信设备,其特征在于,所述高效长训练域的N个符号中的第一个符号的CP的长度大于所述N个符号中其余符号的CP的长度。
  30. 根据权利要求27至29中任一项所述的通信设备,其特征在于,所述高效长训练域的N个符号中的第一个符号的CP的长度为1.6微秒、2.4微秒、3.2微秒或4.0微秒。
  31. 根据权利要求27至30中任一项所述的通信设备,其特征在于,当N大于或等于2时,所述高效长训练域的N个符号中第二个符号至第N个符号的CP的长度为0.8微秒、1.6微秒、2.4微秒或3.2微秒。
  32. 根据权利要求27至29中任一项所述的通信设备,其特征在于,所述高效长训练域的N个符号中的第一个符号的CP的长度为3.2微秒,所述高效长训练域的N个符号中其余符号的CP的长度为0.8微秒。
  33. 根据权利要求27或28所述的通信设备,其特征在于,所述高效长训练域的N个符号中的第一个符号的CP的长度等于所述N个符号中其余符号的CP的长度,所述高效长训练域的N个符号中第一个符号的CP的长度为1.6微秒、2.4微秒或3.2微秒。
  34. 根据权利要求27所述的通信设备,其特征在于,所述物理层分组包括高效短训练域,所述高效短训练域用于接收方设备进行AGC估计,所述高效短训练域的长度为2.4微秒、3.2微秒、4.8微秒、6.4微秒或12.8微秒。
  35. 根据权利要求27至34中任一项所述的通信设备,其特征在于,所述处理单元还用于,基于所述高效长训练域的N个符号中第一个符号的CP 以外的部分或全部进行精细的AGC估计。
  36. 根据权利要求27至35中任一项所述的通信设备,其特征在于,所述物理层分组包括传统短训练域,所述处理单元还用于基于所述传统短训练域进行AGC估计。
PCT/CN2014/091068 2014-11-14 2014-11-14 无线局域网中的用于自动增益控制的方法和通信设备 WO2016074209A1 (zh)

Priority Applications (4)

Application Number Priority Date Filing Date Title
PCT/CN2014/091068 WO2016074209A1 (zh) 2014-11-14 2014-11-14 无线局域网中的用于自动增益控制的方法和通信设备
EP14905877.8A EP3214812B1 (en) 2014-11-14 2014-11-14 Method and communication apparatus for automatic gain control in wireless local area network
CN201480083400.1A CN107078984B (zh) 2014-11-14 2014-11-14 无线局域网中的用于自动增益控制的方法和通信设备
US15/594,192 US10375658B2 (en) 2014-11-14 2017-05-12 Automatic gain control method and communications device in wireless local area network

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2014/091068 WO2016074209A1 (zh) 2014-11-14 2014-11-14 无线局域网中的用于自动增益控制的方法和通信设备

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US15/594,192 Continuation US10375658B2 (en) 2014-11-14 2017-05-12 Automatic gain control method and communications device in wireless local area network

Publications (1)

Publication Number Publication Date
WO2016074209A1 true WO2016074209A1 (zh) 2016-05-19

Family

ID=55953602

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2014/091068 WO2016074209A1 (zh) 2014-11-14 2014-11-14 无线局域网中的用于自动增益控制的方法和通信设备

Country Status (4)

Country Link
US (1) US10375658B2 (zh)
EP (1) EP3214812B1 (zh)
CN (1) CN107078984B (zh)
WO (1) WO2016074209A1 (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11856534B2 (en) * 2021-06-25 2023-12-26 Qualcomm Incorporated Transmitting sidelink reference signals for joint channel estimation and automatic gain control
US12108371B2 (en) * 2022-01-11 2024-10-01 Qualcomm Incorporated Sidelink slots without symbols for automatic gain control

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7813436B1 (en) * 2006-09-07 2010-10-12 Marvell International Ltd. Frame synchronization method and apparatus
CN102273164A (zh) * 2009-01-28 2011-12-07 高通股份有限公司 无线通信网络中对基于ofdm的传输的自动增益控制(agc)
CN103188787A (zh) * 2011-12-31 2013-07-03 重庆重邮信科通信技术有限公司 一种自动增益控制方法及装置
US20140169326A1 (en) * 2012-12-19 2014-06-19 Broadcom Corporation Synchronization

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7444134B2 (en) 2004-02-13 2008-10-28 Broadcom Corporation Device and method for transmitting long training sequence for wireless communications
US9025428B2 (en) * 2010-04-14 2015-05-05 Qualcomm Incorporated Allocating and receiving tones for a frame
US10439773B2 (en) * 2013-04-15 2019-10-08 Qualcomm Incorporated Systems and methods for backwards-compatible preamble formats for multiple access wireless communication
US9661657B2 (en) * 2013-11-27 2017-05-23 Intel Corporation TCP traffic adaptation in wireless systems
US9877174B2 (en) * 2014-10-15 2018-01-23 Intel IP Corporation Systems, methods, and devices for extending range of wireless networks
US20160112157A1 (en) * 2014-10-15 2016-04-21 Qinghua Li Auto-Detection in Wireless Communications
US10111270B2 (en) * 2015-05-26 2018-10-23 Lg Electronics Inc. Method and apparatus for receiving signal by using resource units in a wireless local area system

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7813436B1 (en) * 2006-09-07 2010-10-12 Marvell International Ltd. Frame synchronization method and apparatus
CN102273164A (zh) * 2009-01-28 2011-12-07 高通股份有限公司 无线通信网络中对基于ofdm的传输的自动增益控制(agc)
CN103188787A (zh) * 2011-12-31 2013-07-03 重庆重邮信科通信技术有限公司 一种自动增益控制方法及装置
US20140169326A1 (en) * 2012-12-19 2014-06-19 Broadcom Corporation Synchronization

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3214812A4 *

Also Published As

Publication number Publication date
US10375658B2 (en) 2019-08-06
EP3214812B1 (en) 2021-06-30
CN107078984B (zh) 2019-12-06
US20170251439A1 (en) 2017-08-31
EP3214812A1 (en) 2017-09-06
CN107078984A (zh) 2017-08-18
EP3214812A4 (en) 2017-11-29

Similar Documents

Publication Publication Date Title
US10935664B2 (en) Null data packet (NDP) announcement frame for NDP ranging
EP3354087B1 (en) Broadcast ranging messages for wlan rtt measurements
US20170171766A1 (en) Fine timing measurement
CN108702272B (zh) 接入点(ap)、台站(sta)和用于子载波缩放的方法
WO2018018417A1 (zh) 信息传输方法和信息传输设备
WO2019032399A1 (en) MULTI-USER TELEMETRY WITH EMPTY DATA PACKETS (NDP)
CN111095991B (zh) 唤醒分组调制和解调
US10264544B1 (en) Station selection for null data packet (NDP) ranging
KR20110027533A (ko) 다중 안테나 시스템에서 제어정보 전송 방법 및 장치
CN105981343B (zh) 传输数据的方法和装置
US10928505B1 (en) Null data packet (NDP) announcement frame and trigger frame for NDP ranging
US10952097B2 (en) Frame transmission method for wireless local area network and wireless local area network apparatus
US9974056B2 (en) Method and apparatus for transmitting and receiving information in wireless distributed system
EP3202055B1 (en) Per stream and per antenna cyclic shift delay in uplink multi-user mimo
WO2017059719A1 (zh) 传输数据的方法和设备
WO2016074209A1 (zh) 无线局域网中的用于自动增益控制的方法和通信设备
EP3689051B1 (en) Device and method for use in wireless communications
KR20120091494A (ko) 무선랜 시스템에서의 신호 검출 방법 및 장치
WO2018077162A1 (zh) 一种快速应答回复方法及装置
WO2012003671A1 (zh) 同步前导码发送方法、同步方法、装置及系统
WO2018094942A1 (zh) 一种信息传输方法及站点、接入点
CN115176446B (zh) 用于基于循环前缀的时间和/或频率校正的装置和方法
WO2024032259A1 (zh) 信号识别方法及通信装置
WO2022089549A1 (zh) 前导码打孔传输方法及相关装置
US20240022459A1 (en) Non-long range preamble design for long range wireless packet and methods for processing the preamble

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14905877

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

REEP Request for entry into the european phase

Ref document number: 2014905877

Country of ref document: EP