WO2018094942A1 - 一种信息传输方法及站点、接入点 - Google Patents

一种信息传输方法及站点、接入点 Download PDF

Info

Publication number
WO2018094942A1
WO2018094942A1 PCT/CN2017/079150 CN2017079150W WO2018094942A1 WO 2018094942 A1 WO2018094942 A1 WO 2018094942A1 CN 2017079150 W CN2017079150 W CN 2017079150W WO 2018094942 A1 WO2018094942 A1 WO 2018094942A1
Authority
WO
WIPO (PCT)
Prior art keywords
wur
communication interface
sta
target device
payload
Prior art date
Application number
PCT/CN2017/079150
Other languages
English (en)
French (fr)
Inventor
李小仙
丁志明
杜振国
容志刚
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to CN201780034504.7A priority Critical patent/CN109219977A/zh
Publication of WO2018094942A1 publication Critical patent/WO2018094942A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W48/00Access restriction; Network selection; Access point selection
    • H04W48/08Access restriction or access information delivery, e.g. discovery data delivery
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02DCLIMATE CHANGE MITIGATION TECHNOLOGIES IN INFORMATION AND COMMUNICATION TECHNOLOGIES [ICT], I.E. INFORMATION AND COMMUNICATION TECHNOLOGIES AIMING AT THE REDUCTION OF THEIR OWN ENERGY USE
    • Y02D30/00Reducing energy consumption in communication networks
    • Y02D30/70Reducing energy consumption in communication networks in wireless communication networks

Definitions

  • the present invention relates to the field of communications technologies, and in particular, to an information transmission method, a station, and an access point.
  • WiFi Wireless Fidelity
  • WiFi technology is a wireless communication technology based on the IEEE802.11 series of standards.
  • Devices with WiFi interfaces can communicate data in the 2.4G/5GHz band.
  • WiFi technology has been widely used in home appliances, personal smart devices, office networks, sensor networks and other scenarios.
  • the WiFi interface of the device is enabled in the listening mode, the WiFi message in the space is continuously detected, and the received WiFi message is determined by identifying the address field of the Media Access Control (MAC) header portion of the WiFi message. Point to your own message.
  • the conventional WiFi message uses Orthogonal Frequency Division Multiplexing (OFDM), Binary Convolutional Code (BCC), or Low-density Parity Check (LDPC) at the transmitting device.
  • OFDM Orthogonal Frequency Division Multiplexing
  • BCC Binary Convolutional Code
  • LDPC Low-density Parity Check
  • the receiving device When the receiving device performs signal reception, it needs to perform complex signal processing such as Fast Fourier Transform (FFT) and Forward Error Correction (FEC) decoding, and thus the WiFi interface of the receiving device.
  • FFT Fast Fourier Transform
  • FEC Forward Error Correction
  • the WiFi interface of the receiving device When you turn on listening, it consumes more power.
  • battery-powered devices such as smart phones, tablets, wearable devices (such as bracelets, watches, glasses, Augmented Reality/Virtual Reality (AR/VR) helmets, etc.), sensor devices, etc. Limited supply and high energy requirements.
  • the transmission rate is required to be increased, the equipment is also required to save power as much as possible.
  • IEEE802.11ba proposes to add a low power (Lower Power, LP) Wake-up Radio (WUR) interface based on the configuration of the traditional WiFi interface. Since the message receiving and decoding of the WUR interface is much simpler than the traditional WiFi frame, it usually adopts a modulation method that is easy to be demodulated by the receiving device, such as On-Off Key (OOK) modulation, and the receiving device can judge by the envelope detection method. The information carried by the signal is received. Therefore, the receiving device adopts the WUR interface to reduce the power consumption when receiving the message compared to using the WiFi interface.
  • OOK On-Off Key
  • the WiFi interface of the target device is generally in a sleep state, and the WUR interface is in an awake state or an intermittent awake state to wait for receiving the wake-up message. If the WUR interface of the target device receives the wake-up message, the target device parses the wake-up message. And wake up its own WiFi interface, and then communicate with the sending device through its own WiFi interface.
  • the WiFi interface of the target receiving device is in a sleep state, there may be a part of the non-target device whose WiFi interface is in the awake state, and the non-target device of the part may be erroneously received by using the WiFi interface and adopting the provisions of the WiFi standard.
  • the parsing method parses the wake-up message that is not sent to itself until the check fails, which consumes a lot of energy and causes additional receiving power consumption.
  • the embodiments of the present invention provide an information transmission method, a station, and an access point, so as to reduce the energy loss of the non-target device and achieve the purpose of power saving.
  • the first aspect provides an information transmission method, including:
  • the station STA receives, by using the first communication interface of the STA, a physical header PHY Header in a protocol data unit WUR PPDU of the wake-up radiotelephone sent by the access point AP, where the PHY Header includes indication information, and the WUR PPDU includes the PHY Header And waking up the radio frequency payload WUR Payload, the WUR Payload carrying the wakeup radio frequency information to be sent to the target device, where the target device refers to the target receiving STA of the WUR PPDU;
  • the STA determines not to continue receiving and/or parsing the WUR Payload through the first communication interface or the second communication interface of the STA.
  • the indication information is a basic service set color BSS color; and if not, the STA determines that the first communication does not pass the STA
  • the interface or the second communication interface continues to receive and/or parse the WUR Payload, including:
  • the STA determines not to continue receiving and/or parsing through the first communication interface or the second communication interface of the STA. WUR Payload.
  • the indication information is an uplink and downlink indication parameter; if not, the STA determines not to pass the first communication interface of the STA or the first The second communication interface continues to receive and/or parse the WUR Payload, including:
  • the STA determines not to continue to receive and/or parse the WUR Payload through the first communication interface or the second communication interface of the STA.
  • the indication information is an identifier ID of the target device; if not, the STA determines not to pass the first communication interface of the STA or The second communication interface continues to receive and/or parse the WUR Payload, including:
  • the STA determines not to continue to receive and/or parse the first communication interface or the second communication interface of the STA. WUR Payload.
  • the PHY Header includes a traditional preamble L-preamble, a repetition non-high throughput signal domain RL-SIG and a high efficiency signal A domain HE-SIG-A;
  • the L-preamble includes length information, and the length information is used to indicate the duration of the WUR PPDU Or the number of bytes occupied;
  • the HE-SIG-A carries the indication information.
  • the PHY Header further includes a high efficiency signal B domain HE-SIG-B; the HE-SIG-B
  • the ID of the target device is carried in, where the ID of the target device is the ID of the first communication interface or the second communication interface of the target device of the WUR payload.
  • the sixth possible implementation of the first aspect Determining, according to the indication information, whether the WUR Payload is continuously received and/or parsed by the first communication interface or the second communication interface of the STA, and further comprising:
  • the STA continues to receive and/or parse the WUR Payload through the second communication interface of the STA.
  • the seventh possible implementation of the first aspect is a wireless fidelity WiFi interface, and the second communication interface is a WUR interface.
  • a second aspect provides an information transmission method, the method comprising:
  • the access point AP generates a protocol data unit WUR PPDU for waking up the radio, the WUR PPDU includes a physical header PHY Header and a wake-up radio frequency payload WUR Payload, the WUR Payload is transmitted after the PHY Header, and the PHY Header includes indication information,
  • the WUR Payload carries the wakeup radio frequency information to be sent to the target device, where the wakeup radio frequency information is used to indicate that the target device wakes up the first communication interface of the target device, where the target device refers to the target of the WUR Payload Receiving a STA, the indication information for indicating to the non-target device that receives the PHY Header of the WUR PPDU through its first communication interface does not need to continue through the first communication interface of the non-target device Receiving and/or parsing WUR Payload in the WUR PPDU;
  • the AP After the AP sends the PHY Header in the WUR PPDU through the first communication interface of the AP, the AP sends the foregoing in the WUR PPDU through the first communication interface or the second communication interface of the AP. WUR Payload.
  • the indication information is further used to indicate, to the device that receives the PHY Header of the WUR PPDU, that the AP is sending the PHY The WUR Payload will also be sent after the header.
  • the indication information includes a basic service set color BSS color, an uplink and downlink indication parameter, and a target device At least one of the identification IDs.
  • the indication information is a basic service set color BSS color and a first communication interface with the non-target device The BSS color of the associated BSS does not match; or the indication information is an uplink and downlink indication parameter and indicates that the WUR PPDU is an uplink PPDU; or the indication information is an ID of the target device.
  • the PHY Header includes a traditional preamble L-preamble, a repetition non-high throughput signal domain RL-SIG and a high efficiency signal A domain HE-SIG-A;
  • the L-preamble includes length information, and the length information is used to indicate the duration of the WUR PPDU Or the number of bytes occupied;
  • the HE-SIG-A carries the indication information.
  • the PHY Header further includes a high The efficiency signal B domain HE-SIG-B, where the HE-SIG-B carries the ID of the target device, wherein the ID of the target device is the first communication interface or the second communication interface of the target device of the WUR payload ID.
  • the first possible implementation of the second aspect to any one of the possible implementations of the fourth possible aspect of the second aspect, the fifth possible implementation of the second aspect
  • the first communication interface is a wireless fidelity WiFi interface
  • the second communication interface is a WUR interface.
  • the third aspect provides an STA, including:
  • a receiving unit configured to receive, by using a first communication interface of the STA, a physical header PHY Header in a protocol data unit WUR PPDU of a wake-up radio frequency, where the PHY Header includes indication information, where the WUR PPDU includes PHY Header and wake-up radio load WUR Payload, the WUR Payload carrying to be sent to the target
  • the device wakes up the radio frequency information, where the target device refers to the target receiving STA of the WUR PPDU;
  • a determining unit configured to determine, according to the indication information, whether to continue receiving and/or parsing the WUR Payload by using the first communication interface or the second communication interface of the STA;
  • a first determining unit configured to determine that the WUR Payload is not continuously received and/or parsed by the first communication interface or the second communication interface of the STA.
  • the fourth aspect provides an AP, including:
  • a generating unit configured to generate a protocol data unit WUR PPDU for waking up the radio, the WUR PPDU including a physical header PHY Header and a wake-up radio frequency payload WUR Payload, the WUR Payload being transmitted after the PHY Header, the PHY Header including indication information
  • the WUR Payload carries the wakeup radio frequency information to be sent to the target device, where the wakeup radio frequency information is used to indicate that the target device wakes up the first communication interface of the target device, where the target device refers to the WUR Payload a target receiving station STA, the indication information being used to indicate to the non-target device that receives the PHY Header of the WUR PPDU through its first communication interface, that the first communication interface does not need to pass through the non-target device Continue to receive and/or parse WUR Payload in the WUR PPDU;
  • a first sending unit configured to send, by using the first communication interface of the AP, the PHY Header in the WUR PPDU;
  • a second sending unit configured to send the WUR PPDU through the first communication interface or the second communication interface of the AP after the PHY Header in the WUR PPDU is sent through the first communication interface of the AP The WUR Payload in .
  • a fifth aspect provides a STA, the STA comprising a processor and a memory, wherein the memory stores a set of programs, and the processor is configured to call a program stored in the memory such that the device performs some or all of the methods of the first aspect.
  • a sixth aspect provides an AP, the AP comprising a processor and a memory, wherein the memory stores a set of programs, and the processor is configured to call a program stored in the memory, such that the device performs some or all of the methods of the second aspect.
  • the AP generates a WUR PPDU for waking up the radio frequency, and sends the PHY Header in the WUR PPDU through the first communication interface, and then sends the WUR Payload in the WUR PPDU through the first communication interface or the second communication interface.
  • the STA determines, according to the indication information of the PHY Header, whether to continue to receive and/or parse the WUR Payload by using the first communication interface or the second communication interface of the STA, and if not, the STA is a non-target device.
  • the non-target device Determining that the WUR Payload is not received and/or parsed by the first communication interface or the second communication interface of the STA, and the non-target device is prevented from losing energy due to receiving and/or parsing the Payload not sent to itself, and achieving non-target The power saving purpose of the device.
  • FIG. 1 is a network architecture diagram of an Infrastructure BSS according to an embodiment of the present invention
  • FIG. 2 is a schematic diagram of communication between an AP and an STA according to an embodiment of the present invention
  • 3-1 is a schematic structural diagram of an original WUR PPDU according to an embodiment of the present invention.
  • 3-2 is a schematic structural diagram of a HE SU PPDU according to an embodiment of the present invention.
  • 3-3 is a schematic structural diagram of a HE MU PPDU according to an embodiment of the present invention.
  • 3-4 is a schematic structural diagram of a HE ER SU PPDU according to an embodiment of the present invention.
  • 3-5 are schematic structural diagrams of an HE trigger-based PPDU according to an embodiment of the present disclosure
  • FIG. 3-6 are schematic structural diagrams of an improved WUR PPDU according to an embodiment of the present invention.
  • FIG. 4 is a schematic flowchart diagram of an information transmission method according to an embodiment of the present disclosure.
  • 4-1 is a schematic diagram of a first structure of an improved WUR PPDU according to an embodiment of the present invention.
  • 4-2 is a schematic diagram of a second structure of an improved WUR PPDU according to an embodiment of the present invention.
  • 4-3 is a schematic diagram of a third structure of an improved WUR PPDU according to an embodiment of the present invention.
  • FIG. 5 is a schematic diagram of a modularity of an STA according to an embodiment of the present disclosure.
  • FIG. 6 is a schematic structural diagram of a STA according to an embodiment of the present disclosure.
  • FIG. 7 is a schematic diagram of a modularity of an AP according to an embodiment of the present invention.
  • FIG. 8 is a schematic structural diagram of an AP according to an embodiment of the present invention.
  • the first communication interface involved in the present application may be a WiFi interface, and the second communication interface may be a WUR interface.
  • the WiFi interface may also be another data communication interface such as a Long Term Evolution (LTE) interface.
  • the module of the data communication can be collectively referred to as a main communication module (802.11 main radio, 802.11 main module), such as an LTE module, a WiFi module, and the present invention is described with a WiFi module and its corresponding WiFi interface for convenience of description;
  • the module for waking up the device may be collectively referred to as a wake-up radio module or a WUR module, and the corresponding device for waking up the interface is a WUR interface.
  • the names of the foregoing functional modules and corresponding interfaces are not specifically limited.
  • the sending device involved in the present application takes an access point (AP) as an example, and the receiving device is a station (Station, STA); the target device refers to the target receiving device of the WUR PPDU, that is, the receiving device is designated as the receiving device.
  • the device of the WUR PPDU, the non-target device refers to a device that does not specify to receive the WUR PPDU.
  • the target device receives the STA by the target, and the non-target device uses the non-target receiving STA as an example for description.
  • FIG. 1 is a network architecture diagram of an Infrastructure Basic Service Set (Infrastructure BSS) according to an embodiment of the present invention.
  • the network includes at least one AP and at least one STA.
  • Incoming AP1 and AP2 the stations are STA1 to STA9.
  • STA1 to STA6 belong to BSS1
  • STA5 to STA9 belong to BSS2.
  • the AP may logically include a WiFi interface (802.11 main radio, 802.11 main module) and a WUR interface.
  • the 802.11 master module is often an OFDM wideband transmitter, which can also generate a narrowband WUR wakeup signal, for example, vacating a portion of the subcarriers of the OFDM signal only in the wake up message (Wake-up Radio Physical Layer Convergence Procedure ( The PLCP) Protocol Data Unit (WUR PPDU) transmits signals on the narrowband to generate narrowband signals.
  • the PLCP Radio Physical Layer Convergence Procedure
  • WUR PPDU Protocol Data Unit
  • the AP may actually include the above two communication interfaces, or may only include the WiFi interface.
  • the STA may also include a WiFi interface and a WUR interface.
  • FIG. 2 is a schematic diagram of communication between an AP and an STA according to an embodiment of the present invention.
  • the AP includes an 802.11 main module, and it should be noted that the AP may also be implemented in a specific implementation.
  • the 802.11 main module and the wake-up radio module are implemented separately. Since the 802.11 main module and the wake-up radio module can transmit signals using the same frequency band carrier such as 2.4 GHz, the same antenna can be used for signal transmission to save cost and simplify the device structure. If the 802.11 main module and the wake-up radio module use different frequency band carriers, for example, 5 GHz and 2.4 GHz frequency bands respectively, different antennas are required for signal transmission.
  • the STA's WiFi interface is usually in a sleep state and the WUR interface is usually in an awake state or an intermittent awake state.
  • the AP sends a wakeup message WUR PPDU to the STA.
  • the WUR PPDU is used to wake up the WiFi interface of the target receiving STA.
  • FIG. 3-1 is a schematic structural diagram of an original WUR PPDU according to an embodiment of the present invention.
  • the original WUR PPDU includes a PHY Header part and a WUR Payload part, where
  • the PHY Header part includes a legacy 802.11 L-preamble, a Legacy-Short Training Field (L-STF), a Legacy-Long Training Field (L-LTF), and a pre-signaling domain ( Legacy-Signal, L-SIG) field.
  • L-STF Legacy-Short Training Field
  • L-LTF Legacy-Long Training Field
  • L-SIG pre-signaling domain
  • the target receiving STA When the target receiving STA receives the WUR Payload part through the WUR interface, it determines that the WUR Payload is a wake-up message sent to itself, and can wake up the WiFi interface that is in a dormant state, and then the STA can use the WiFi interface to perform data communication with the AP.
  • FIG. 3-2 to 3-5 are schematic structural diagrams of HE SU PPDU, HE MU PPDU, HE ER SU PPDU, and HE trigger-based PPDU, respectively.
  • the HE MU PPDU includes L-STF, L-LTF, L-SIG, Repeated Legacy-Signal (RL-SIG), and High-efficiency Signal A-domain (High).
  • 8 ⁇ s corresponding to L-STF indicates the duration of L-STF, and so on.
  • the AP1 sends the WUR PPDU through the first communication interface (assuming the STA1 is the target receiving STA). Due to the broadcast characteristics of the wireless channel, the WUR PPDU may be received by other STAs in the BSS1 other than the STA1, such as STA2 to STA6. Received by STAs in neighboring BSS2, such as STA5 to STA9.
  • the STAs that can receive the WUR PPDUs include the STAs that are configured to wake up the RF module in the dormant state and the awake state, and the STAs that are not configured to wake up the radio module.
  • a STA that is not configured with a wake-up radio module can receive the PHY Header part and the WUR Payload part through the WiFi interface because the WUR communication interface does not exist. Since the WUR Payload part adopts a different modulation and coding mechanism than the traditional WiFi, the STA fails to parse and waste. Handling resources and electricity. For the STA in the awake state that has been configured to wake up the RF module, it is also possible to receive the PHY Header part and the WUR Payload part through the WiFi interface. If the WUR PPDU is not sent to itself, the STA may use the WUR Payload part as the WiFi standard. The parsing method specified in the error parsing until the verification fails, resulting in additional receiving power consumption.
  • FIG. 3-6 is a schematic structural diagram of an improved WUR PPDU according to an embodiment of the present invention.
  • the improved WUR PPDU includes a PHY Header part and a payload (WUR Payload) part, wherein the PHY Header part may include, in addition to the legacy 802.11 L-preamble part, ie, L-STF, L-LTF, L-SIG, The RL-SIG and HE-SIG-A may further include HE-SIG-B.
  • PHY Header section for synchronization, automatic gain Automatic Gain Control (AGC), channel estimation, control information indication, etc. can be transmitted in OFDM mode on a bandwidth of 20 MHz (or an integer multiple of 20 MHz) for backward compatibility, so that the STA can judge that the current message is WiFi. The message, thereby selecting a corresponding clear channel assessment (CCA) decision threshold.
  • CCA clear channel assessment
  • the WUR Payload part carries the wake-up radio frequency information to be sent to the target device
  • the Wake-up radio frequency information may include the identification information (such as the WUR ID) or the time information of the WUR interface of the target device, and is used by the target receiving STA to wake up the WiFi interface according to the time information. Or keep the WUR module of the target STA synchronized with the AP.
  • the wakeup radio information may also include one or more of a WUR preamble, a MAC Header, a Frame Body, and a Cyclical Redundancy Check (FCS). Of course, a field different from the above name may also be used. Name the expression.
  • WUR Payload uses a different modulation scheme than the PHY Header part, such as OOK modulation or Frequency-shift keying (FSK) modulation, which can be transmitted over a narrower bandwidth than the PHY Header's transmission bandwidth, such as a 2MHz channel.
  • a narrower bandwidth such as a 2MHz channel.
  • the 4MHz channel, the 5MHz channel, etc. the traditional WiFi minimum bandwidth is 20MHz, the energy consumption of the receiving end is smaller.
  • the indication information carried by the HE-SIG-A or the HE-SIG-B in the PHY Header is used to indicate whether the STA needs to further receive or parse the WUR Payload part after the PHY Header.
  • a target receiving STA For a target receiving STA whose WiFi interface is in a dormant state, it can receive WUR Payload through the WUR interface and parse it from its WUR Payload to its own identification ID (such as unicast/multicast/broadcast address or unicast/multicast/ Broadcast ID), it is determined that the wake-up message is sent to itself, and can wake up its own WiFi interface; for the non-target receiving STA whose WiFi interface is in the awake state, the PHY Header is received through the WiFi interface, and according to the HE-SIG in the PHY Header The indication information carried by A or HE-SIG-B determines that it is not necessary to continue to receive and/or parse the WUR Payload part after the PHY Header, and can switch the WiFi interface to the sleep state in advance, and further, according to L- in the PHY Header. The length of the L-LENGTH field set in the SIG determines the sleep time, thereby achieving the power saving purpose for the non-target
  • FIG. 4 is a schematic flowchart diagram of an information transmission method according to an embodiment of the present invention. As shown in FIG. 4, the method is jointly performed by the access point AP and the station STA.
  • An information transmission method provided by an embodiment of the present invention includes: S101 to S107.
  • the AP generates a protocol data unit WUR PPDU that wakes up the radio frequency of the wake-up radio.
  • the AP generates a WUR PPDU that wakes up the radio.
  • the WUR PPDU includes a PHY Header and a WUR Payload
  • the PHY Header includes a legacy 802.11 L-preamble part such as an L-STF, an L-LTF, and an L-SIG field.
  • the RL-SIG, the HE-SIG-A may be further included, and the HE-SIG-B may further be included, where the HE-SIG-A or the HE-SIG-B carries indication information, which is used to indicate whether the STA needs further reception. Or parse the WUR Payload section after the PHY Header.
  • the WUR Payload includes the wakeup radio frequency information to be sent to the target device, where the wakeup radio frequency information is used to indicate that the target device wakes up the first communication interface of the target device, where the first communication interface is a WiFi interface corresponding to the 802.11 main module. .
  • the length information is included in the L-preamble, and the length information is used to indicate the duration of the WUR PPDU or the number of bytes occupied.
  • the AP sends the PHY header in the WUR PPDU through a first communication interface of the AP.
  • the STA receives the PHY Header in the WUR PPDU sent by the AP through the first communication interface of the STA.
  • the AP sends the PHY Header in the WUR PPDU through a first communication interface, that is, a WiFi interface.
  • a first communication interface that is, a WiFi interface.
  • STAs whose WiFi interface is in the sleep state may not receive the PHY Header, and the WiFi interface is in the awake state.
  • the PHY Header sent by the AP can be received through its own WiFi interface, and the PHY Header can be parsed to obtain indication information.
  • the STA receives and parses the PHY Header through the first communication interface of the STA to obtain indication information.
  • the AP sends the WUR Payload in the WUR PPDU through a first communication interface or a second communication interface.
  • the AP sends the WUR Payload part of the WUR PPDU through a WiFi interface or a WUR interface.
  • the WUR Payload includes the wake-up radio frequency information of the target receiving STA, and is used by the target receiving STA to receive and parse the wake-up radio frequency information, and wake up the WiFi interface.
  • the STA determines, according to the indication information, whether to continue receiving and/or parsing the WUR Payload by using the first communication interface or the second communication interface of the STA.
  • the STA may determine, according to the indication information, whether to continue to receive and/or parse the WUR Payload by using the first communication interface or the second communication interface of the STA.
  • the indication information includes at least one of a basic service set color BSS color, an uplink and downlink indication parameter, and an identifier ID of the target device.
  • FIG. 4-1 is a schematic diagram of a first structure of an improved WUR PPDU according to an embodiment of the present invention. As shown in Figure 4-1, the WUR PPDU is described by using a partial PHY Header field of the HE SU PPDU. It should be noted that, in practical applications, some or all of the PHY Header fields of the foregoing four PPDU formats may also be used, and the present invention is not limited thereto.
  • a BSS color field subfield is included, where the BSS color is used to identify the BSS of the device to which the HE SU PPDU belongs, where the BSS is a network composed of the AP and its associated STA, so the BSS Color It is also a network identifier.
  • the STA After receiving the PHY Header part of the WUR PPDU, the STA considers that the PHY Header of the HE SU PPDU is received, and further determines whether the BSS Color value in the HE-SIG-A field in the received PHY Header is related to the BSS of the network to which it belongs.
  • the color matching if not matched, indicates that the HE SU PPDU is a PPDU in another BSS, and may perform step S106. If the matching, the HE SU PPDU is a PPDU in the own BSS, and step S107 may be performed.
  • the BSS color in the PHY Header of the WUR PPDU may be set to a preset value, where the preset value may enable the non-target receiving STA after receiving the PHY Header. It is determined that the transmitting end of the PHY Header does not belong to the BSS to which it belongs, so that the WUR payload of the WUR PPDU sent by the AP is not continuously received or parsed, and the sleep state is entered, thereby achieving the power saving effect.
  • the BSS Color value can be set to a special value.
  • the BSS Color value can be set, or set to other values defined by the standard.
  • the BSS Color value can also be dynamically set to a certain value. For example, the STA listens to the WiFi message in the space, records the BSS Color value of the OBSS, and then sets any one of the BSS Color fields of the PHY Header of the WUR PPDU.
  • the recorded BSS Color value is a value different from the recorded BSS Color value of the OBSS.
  • FIG. 4-2 is a schematic diagram of a second structure of an improved WUR PPDU according to an embodiment of the present invention.
  • the WUR PPDU is described by using a partial PHY Header field of the HE SU PPDU.
  • a UL/DL field subfield is included, and the UL/DL field can be used to indicate whether the WUR PPDU is an uplink PPDU or a downlink PPDU, for example, when the AP sends the HE SU PPDU, if the UL/DL is set.
  • the STA determines not to continue to receive and/or parse the WUR Payload through the first communication interface or the second communication interface of the STA.
  • FIG. 4-3 is a schematic diagram of a third structure of an improved WUR PPDU according to an embodiment of the present invention.
  • the PHY Header of the HE MU PPDU is used as an example for the WUR PPDU.
  • the PHY Header in the HE MU PPDU may further include the HE-SIG-B.
  • the PHY Header may further include Including HE-STF and HE-LTF, wherein the HE-SIG-B includes a common domain Common Field and a plurality of user domain User Fields.
  • the ID of the target device may be An identification ID on the first communication interface assigned by the AP to the target device, such as an association identifier (AID), or an identifier ID of the target device may be an interface of the first communication interface of the target device
  • the address or its derived value, such as a MAC address or a value obtained by converting the MAC address, or the identification ID of the target device may be an identification ID of the target device on the second communication interface, for example, a WUR ID or a WUR interface address.
  • the embodiment of the present invention uses the STA-ID field in the HE-SIG-B to set the AID of the target device as an example for description.
  • the AP may refer to the method for generating the HE MU PPDU, and set the WUR Payload portion of the WUR PPDU to one or more resource units (RUs), and further, when the WUR PPDU uses the PHY Header of the HE MU PPDU.
  • the AP can set multiple narrowband WUR Payloads in multiple RUs.
  • the data content that can be placed on other devices can be placed in the RU without WUR Payload.
  • step S106 is performed. If the STA receives the PHY Header and determines that the AID set by the STA-ID field indicated in the HE-SIG-B in the PHY Header matches the AID corresponding to itself, it is confirmed that the STA is the target receiving STA, and step S107 may be performed.
  • the STA determines, according to the indication information, that the WUR Payload is not received and/or parsed.
  • the STA may be determined according to the indication information that the WUR Payload is not continuously received and/or parsed by the first communication interface or the second communication interface of the STA, and then does not continue. Receive or parse the WUR Payload sent by the AP, and switch the WiFi interface to sleep state in advance. Further, the non-target receiving STA may also determine the sleep time according to the length of the L-LENGTH field set in the L-SIG in the PHY Header, thereby achieving the power saving purpose for the non-target device.
  • the STA determines to receive and/or parse the WUR Payload according to the indication information.
  • the WUR Payload may be continuously received and/or parsed by the WUR interface, which is the second communication interface of the target receiving STA, according to the indication information, to obtain the wakeup radio information, and wake up. Its WiFi interface.
  • the AP generates a WUR PPDU, and sends the PHY Header in the WUR PPDU through the first communication interface, and then sends the WUR Payload in the WUR PPDU through the first communication interface or the second communication interface.
  • the STA receives the PHY Header through the first communication interface, and determines, according to the indication information of the PHY Header, whether to continue receiving and/or parsing the WUR Payload by using the first communication interface or the second communication interface of the STA, and if not, Declaring that the STA is a non-target device, determining that the WUR Payload is not continuously received and/or parsed by the first communication interface or the second communication interface of the STA, and the non-target device is prevented from receiving the Payload portion that is not sent to itself. / or parsing and losing energy to achieve the purpose of power saving for non-target devices. Further, the non-target device may further determine the sleep time according to the length of the L-LENGTH field set in the L-SIG in the PHY Header, thereby further saving power for the non-target device.
  • FIG. 5 is a schematic diagram of a modularity of an STA according to an embodiment of the present invention.
  • the STA1 includes: a receiving unit 11, a determining unit 12, and a first determining unit 13.
  • the receiving unit 11 is configured to receive, by using the first communication interface of the STA, a physical header PHY Header in a protocol data unit WUR PPDU of the wake-up radio frequency, where the PHY Header includes indication information, where the WUR PPDU includes The PHY Header and the wake-up radio frequency payload WUR Payload, the WUR Payload carrying the wake-up radio frequency information to be sent to the target device, where the target device refers to the target receiving STA of the WUR PPDU;
  • the determining unit 12 is configured to determine, according to the indication information, whether to continue receiving and/or parsing the WUR Payload by using the first communication interface or the second communication interface of the STA;
  • the first determining unit 13 is configured to determine that the WUR Payload is not continuously received and/or parsed by the first communication interface or the second communication interface of the STA.
  • the indication information is a basic service set color BSS color; the first determining unit 13 is specifically configured to: if the BSS color and the first communication interface of the STA belong to the BSS If the BSS color does not match, it is determined that the WUR Payload is not continuously received and/or parsed by the first communication interface or the second communication interface of the STA.
  • the indication information is an uplink and downlink indication parameter; if not, the first determining unit 13 is specifically configured to: if the uplink and downlink indication parameter indicates that the WUR PPDU is an uplink PPDU And determining to continue to receive and/or parse the WUR Payload through the first communication interface or the second communication interface of the STA.
  • the indication information is an identifier ID of the target device
  • the first determining unit 13 is specifically configured to: if the ID of the target device in the WUR PPDU does not match the ID of the STA And determining to continue to receive and/or parse the WUR Payload by the first communication interface or the second communication interface of the STA.
  • the PHY header includes a legacy preamble L-preamble, a repeated non-high throughput signal domain RL-SIG, and a high efficiency signal A domain HE-SIG-A;
  • the L-preamble includes a length Information, the length information is used to indicate the duration of the WUR PPDU or the number of bytes occupied;
  • the HE-SIG-A carries the indication information.
  • the PHY header further includes a high efficiency signal B domain HE-SIG-B; the HE-SIG-B carries an ID of the target device, where the target device ID The ID of the first communication interface or the second communication interface of the target device of the WUR payload.
  • the STA further includes a second determining unit 14; the second determining unit 14 is configured to determine to continue receiving and/or parsing the WUR Payload through the second communication interface of the STA. .
  • the first communication interface is a wireless fidelity WiFi interface
  • the second communication interface is a WUR interface
  • the STAs shown in the embodiments of the present invention may be used to perform the steps of the method embodiment shown in FIG. 4.
  • the technical effects of the STAs are described in detail in the corresponding method embodiments, and are not described herein.
  • FIG. 6 is a schematic structural diagram of a STA according to an embodiment of the present invention.
  • the STA 1000 includes a processor 1001 such as a CPU, a first communication interface 1002 such as a WiFi interface, and a second communication interface 1003 such as a WUR interface, a memory 1004, and at least one communication bus 1005.
  • the memory 1004 may include a high speed RAM memory, and may also include a non-volatile memory, such as at least one disk memory.
  • Communication bus 1005 is used to implement connection communication between these components.
  • the processor 1001 is configured to execute and save one or more programs in the memory 1004.
  • the processor 1001 is configured to invoke a program stored in the memory 1004 to perform the following operations:
  • a physical header PHY Header in a protocol data unit WUR PPDU of the wake-up radio frequency where the PHY Header includes indication information, where the WUR PPDU includes the PHY Header and wake up a radio load WUR Payload, the WUR Payload carrying wake-up radio frequency information to be sent to a target device, where the target device refers to a target receiving STA of the WUR PPDU;
  • the STA determines not to continue receiving and/or parsing the WUR Payload through the first communication interface or the second communication interface of the STA.
  • the processor 1001 invokes a program stored in the memory 1004, and the execution indication information is a basic service set color BSS color; then if not, the STA determines not to pass the STA.
  • the step of receiving and/or parsing the WUR Payload by a communication interface or a second communication interface specifically: if the BSS color does not match the BSS color of the BSS to which the first communication interface of the STA belongs, The WUR Payload is continuously received and/or parsed by the first communication interface or the second communication interface of the STA.
  • the indication information is an uplink and downlink indication parameter; the processor 1001 invokes a program stored in the memory 1004, and if not, the STA determines to not pass the first communication interface of the STA. Or the step of the second communication interface continuing to receive and/or parse the WUR Payload, if the uplink and downlink indication parameter indicates that the WUR PPDU is an uplink PPDU, determining to not pass the first communication interface of the STA or The second communication interface continues to receive and/or parse the WUR Payload.
  • the indication information is an identifier ID of the target device; the processor 1001 invokes a program stored in the memory 1004, and if not, the STA determines that the first communication does not pass through the STA The step of the interface or the second communication interface continuing to receive and/or parse the WUR Payload, specifically: if the ID of the target device in the WUR PPDU does not match the ID of the STA, the STA determines not to pass the The first communication interface or the second communication interface of the STA continues to receive and/or parse the WUR Payload.
  • the PHY header includes a legacy preamble L-preamble, a repeated non-high throughput signal domain RL-SIG, and a high efficiency signal A domain HE-SIG-A;
  • the L-preamble includes a length Information, the length information is used to indicate the duration of the WUR PPDU or the number of bytes occupied;
  • the HE-SIG-A carries the indication information.
  • the PHY header further includes a high efficiency signal B domain HE-SIG-B; the HE-SIG-B carries an ID of the target device, where the target device ID Target for the WUR payload The ID of the first communication interface or the second communication interface of the device.
  • the processor 1001 calls a program stored in the memory 1004, and performs, according to the indication information, whether to continue to receive and/or through the first communication interface or the second communication interface of the STA. Or after parsing the steps of the WUR Payload, it also performs:
  • the STA continues to receive and/or parse the WUR Payload through the second communication interface of the STA.
  • the first communication interface is a wireless fidelity WiFi interface
  • the second communication interface is a WUR interface
  • the STAs shown in the embodiments of the present invention may be used to perform the steps of the method embodiment shown in FIG. 4.
  • the technical effects of the STAs are described in detail in the corresponding method embodiments, and are not described herein.
  • FIG. 7 is a schematic diagram of a modularity of an AP1 according to an embodiment of the present invention.
  • the AP includes: a generating unit 21, a first sending unit 22, and a second sending unit 23.
  • the generating unit 21 is configured to generate a protocol data unit WUR PPDU for waking up the radio frequency, where the WUR PPDU includes a physical header PHY Header and a wake-up radio frequency payload WUR Payload, where the WUR Payload is transmitted after the PHY Header, the PHY Header includes an indication
  • the WUR Payload carries the wakeup radio frequency information to be sent to the target device, where the wakeup radio frequency information is used to indicate that the target device wakes up the first communication interface of the target device, where the target device refers to the WUR Payload a target receiving station STA, the indication information being used to indicate to the non-target device that receives the PHY Header of the WUR PPDU through its first communication interface that a first communication that does not need to pass through the non-target device is indicated
  • the interface continues to receive and/or parse the WUR Payload in the WUR PPDU;
  • the first sending unit 22 is configured to send, by using the first communication interface of the AP, the PHY Header in the WUR PPDU;
  • a second sending unit 23 configured to send, by the AP, the first communication interface or the second communication interface of the AP after the PHY Header in the WUR PPDU is sent through the first communication interface of the AP The WUR Payload in the WUR PPDU.
  • the indication information is further used to indicate to the device that receives the PHY Header of the WUR PPDU that the AP further sends the WUR Payload after sending the PHY Header.
  • the indication information includes at least one of a basic service set color BSS color, an uplink and downlink indication parameter, and an identifier ID of the target device.
  • the indication information is a basic service set color BSS color and does not match a BSS color of a BSS to which the first communication interface of the non-target device belongs; or the indication information is uplink and downlink. And indicating the parameter and indicating that the WUR PPDU is an uplink PPDU; or, the indication information is an ID of the target device.
  • the PHY header includes a legacy preamble L-preamble, a repeated non-high throughput signal domain RL-SIG, and a high efficiency signal A domain HE-SIG-A;
  • the L-preamble includes a length Information, the length information is used to indicate the duration of the WUR PPDU or the number of bytes occupied;
  • the HE-SIG-A carries the indication information.
  • the PHY header further includes a high-efficiency signal B-domain HE-SIG-B, where the HE-SIG-B carries an ID of the target device, where the ID of the target device is The ID of the first communication interface or the second communication interface of the target device of the WUR payload.
  • the first communication interface is a wireless fidelity WiFi interface
  • the second communication interface is a WUR interface
  • the AP shown in the embodiment of the present invention can be used to perform the steps of the method embodiment shown in FIG. 4.
  • the technical effects of the AP are described in the specific description of the corresponding method embodiments, and are not described herein.
  • FIG. 8 is a schematic structural diagram of a STA according to an embodiment of the present invention.
  • the AP2000 includes a processor 2001 such as a CPU, a first communication interface 2002 such as a WiFi interface, and a second communication interface 2003 such as a WUR interface, a memory 2004, and at least one communication bus 2005.
  • the memory 2004 may include a high speed RAM memory, and may also include a non-volatile memory such as at least one disk memory.
  • Communication bus 2005 is used to implement connection communication between these components.
  • the processor 2001 is configured to execute and save one or more programs in the memory 2004.
  • the processor 2001 is configured to call a program stored in the memory 2004, and performs the following operations:
  • the WUR PPDU including a physical header PHY Header and a wake-up radio frequency payload WUR Payload, the WUR Payload being transmitted after the PHY Header, the PHY Header including indication information, the WUR Payload And carrying the wake-up radio frequency information to be sent to the target device, where the wake-up radio frequency information is used to indicate that the target device wakes up the first communication interface of the target device, where the target device refers to the target receiving station STA of the WUR Payload,
  • the indication information is used to indicate to the non-target device that receives the PHY Header of the WUR PPDU through its first communication interface that the first communication interface of the non-target device does not need to continue to receive and/or Parsing the WUR Payload in the WUR PPDU;
  • the WUR Payload in the WUR PPDU is sent by using the first communication interface or the second communication interface of the AP.
  • the indication information is further used to indicate to the device that receives the PHY Header of the WUR PPDU that the AP further sends the WUR Payload after sending the PHY Header.
  • the indication information includes at least one of a basic service set color BSS color, an uplink and downlink indication parameter, and an identifier ID of the target device.
  • the indication information is a basic service set color BSS color and does not match a BSS color of a BSS to which the first communication interface of the non-target device belongs; or the indication information is an uplink and downlink indication parameter. And indicating that the WUR PPDU is an uplink PPDU; or, the indication information is an ID of the target device.
  • the PHY header includes a legacy preamble L-preamble, a repeated non-high throughput signal domain RL-SIG, and a high efficiency signal A domain HE-SIG-A;
  • the L-preamble includes a length Information, the length information is used to indicate the duration of the WUR PPDU or the number of bytes occupied;
  • the HE-SIG-A carries the indication information.
  • the PHY header further includes a high-efficiency signal B-domain HE-SIG-B, where the HE-SIG-B carries an ID of the target device, where the ID of the target device is The ID of the first communication interface or the second communication interface of the target device of the WUR payload.
  • the first communication interface is a wireless fidelity WiFi interface
  • the second communication interface is a WUR interface
  • the AP shown in the embodiment of the present invention can be used to perform the steps of the method embodiment shown in FIG. 4.
  • the technical effects of the AP are described in the specific description of the corresponding method embodiments, and are not described herein.
  • the embodiment of the present invention further provides a computer storage medium, wherein the computer storage medium can store a program, and the program includes some or all of the steps of any one of the information transmission methods described in the foregoing method embodiments.
  • the disclosed apparatus may be implemented in other ways.
  • the device embodiments described above are merely illustrative.
  • the division of the unit is only a logical function division.
  • there may be another division manner for example, multiple units or components may be combined or may be Integrate into another system, or some features can be ignored or not executed.
  • the mutual coupling or direct coupling or communication connection shown or discussed may be an indirect coupling or communication connection through some interface, device or unit, and may be electrical or otherwise.
  • the units described as separate components may or may not be physically separated, and the components displayed as units may or may not be physical units, that is, may be located in one place, or may be distributed to multiple network units. Some or all of the units may be selected according to actual needs to achieve the purpose of the solution of the embodiment.
  • each functional unit in each embodiment of the present invention may be integrated into one processing unit, or each unit may exist physically separately, or two or more units may be integrated into one unit.
  • the above integrated unit can be implemented in the form of hardware or in the form of a software functional unit.
  • the integrated unit if implemented in the form of a software functional unit and sold or used as a standalone product, may be stored in a computer readable memory. Based on such understanding, the technical solution of the present invention may contribute to the prior art or all or part of the technical solution may be embodied in the form of a software product stored in a memory. A number of instructions are included to cause a computer device (which may be a personal computer, server or network device, etc.) to perform all or part of the steps of the methods described in various embodiments of the present invention.
  • the foregoing memory includes: a U disk, a Read-Only Memory (ROM), a Random Access Memory (RAM), a removable hard disk, a magnetic disk, or an optical disk, and the like, which can store program codes.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Security & Cryptography (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

一种信息传输方法及站点、接入点,其中的方法包括:站点STA通过所述STA的第一通信接口接收接入点AP发送的唤醒射频的协议数据单元WUR PPDU中的物理头PHY Header,所述PHY Header包括指示信息,所述WUR PPDU包括所述PHY Header和唤醒射频载荷WUR Payload,所述WUR Payload携带待发送给目标设备的唤醒射频信息,所述目标设备是指所述WUR PPDU的目标接收STA;所述STA根据所述指示信息判断是否通过所述STA的所述第一通信接口或第二通信接口继续接收和/或解析所述WUR Payload;若否,所述STA确定不通过所述STA的第一通信接口或第二通信接口继续接收和/或解析所述WUR Payload。本发明实施例可通过WUR PPDU中PHY Header的指示信息判断STA是否需要接收和/或解析所述WUR Payload,从而达到非目标设备的省电目的。

Description

一种信息传输方法及站点、接入点 技术领域
本发明涉及通信技术领域,尤其涉及一种信息传输方法及站点、接入点。
背景技术
无线保真(Wireless Fidelity,WiFi)技术是一种基于IEEE802.11系列标准的无线通信技术,具备WiFi接口的设备可以在2.4G/5GHz频段进行数据通信。目前WiFi技术已经被广泛用于家居家电、个人智能设备、办公网络、传感网络等场景中。当设备的WiFi接口开启侦听模式时,会不断探测空间中的WiFi消息,并通过识别WiFi消息的媒体访问控制(Media Access Control,MAC)头部分的地址字段来判断所接收的WiFi消息是否是指向自己的消息。传统的WiFi消息由于在发送设备采用正交频分复用(Orthogonal Frequency Division Multiplexing,OFDM)、二进制卷积码(Binary Convolutional Code,BCC)/低密度奇偶校验(Low-density Parity Check,LDPC)等,接收设备进行信号接收时需要执行快速傅里叶变换(Fast Fourier Transform,FFT)、前向纠错码(Forward Error Correction,FEC)译码等复杂信号处理过程,因而在接收设备的WiFi接口开启侦听时,会消耗较多的电量。对于电池供电的设备,如智能手机、平板、可穿戴设备(如手环、手表、眼镜、增强现实/虚拟现实(Augmented Reality/Virtual Reality,AR/VR)头盔等)、传感器设备等,其电能供应有限,对能耗要求较高,在目前制定的IEEE802.11ax标准中,在要求提高传输速率的同时,也要求设备做到尽可能省电。
为了降低功耗,IEEE802.11ba提出在配置传统WiFi接口的基础上,增加一个低功耗(Lower Power,LP)唤醒射频(Wake-up Radio,WUR)接口。由于WUR接口的消息接收和译码远比传统WiFi帧简单,其通常采用易于接收设备解调的调制方式如开关键控(On-Off Key,OOK)调制,接收设备可通过包络检波法判断接收信号承载的信息,因此,接收设备采用WUR接口相比使用WiFi接口在接收消息时更能够降低功耗。采用上述配置,目标设备的WiFi接口一般会处于休眠状态,其WUR接口处于清醒状态或间歇性清醒状态以等待接收唤醒消息,若目标设备的WUR接口接收到唤醒消息,该目标设备解析该唤醒消息并唤醒其自身的WiFi接口,然后通过自身的WiFi接口与发送设备进行数据通信。然而,在目标接收设备的WiFi接口处于休眠状态的情况下,还可能存在WiFi接口处于清醒状态的部分非目标设备,该部分的非目标设备可能会采用自身WiFi接口误接收并采用WiFi标准中规定的解析方式解析非发送给自身的唤醒消息直到校验失败,从而耗费大量能量,造成额外的接收功耗。
发明内容
本发明实施例提供了一种信息传输方法及站点、接入点,以期减小非目标设备的能量损失,达到省电的目的。
第一方面提供了一种信息传输方法,包括:
站点STA通过所述STA的第一通信接口接收接入点AP发送的唤醒射频的协议数据单元WUR PPDU中的物理头PHY Header,所述PHY Header包括指示信息,所述WUR PPDU包括所述PHY Header和唤醒射频载荷WUR Payload,所述WUR Payload携带待发送给目标设备的唤醒射频信息,所述目标设备是指所述WUR PPDU的目标接收STA;
所述STA根据所述指示信息判断是否通过所述STA的所述第一通信接口或第二通信接口继续接收和/或解析所述WUR Payload;
若否,所述STA确定不通过所述STA的第一通信接口或第二通信接口继续接收和/或解析所述WUR Payload。
结合第一方面,在第一方面的第一种可能的实施方式中,所述指示信息为基本服务集颜色BSS color;则所述若否,所述STA确定不通过所述STA的第一通信接口或第二通信接口继续接收和/或解析所述WUR Payload,包括:
若所述BSS color与所述STA的第一通信接口所属的BSS的BSS color不匹配,则所述STA确定不通过所述STA的第一通信接口或第二通信接口继续接收和/或解析所述WUR Payload。
结合第一方面,在第一方面的第二种可能的实施方式中,所述指示信息为上下行指示参数;所述若否,所述STA确定不通过所述STA的第一通信接口或第二通信接口继续接收和/或解析所述WUR Payload,包括:
若所述上下行指示参数指示所述WUR PPDU为上行PPDU,则所述STA确定不通过所述STA的第一通信接口或第二通信接口继续接收和/或解析所述WUR Payload。
结合第一方面,在第一方面的第三种可能的实施方式中,所述指示信息为目标设备的标识ID;所述若否,所述STA确定不通过所述STA的第一通信接口或第二通信接口继续接收和/或解析所述WUR Payload,包括:
若所述WUR PPDU中的目标设备的ID与所述STA的ID不匹配,则所述STA确定不通过所述STA的所述第一通信接口或第二通信接口继续接收和/或解析所述WUR Payload。
结合第一方面、第一方面的第一种可能的实施方式或第一方面的第二种可能的实施方式,在第一方面的第四种可能的实施方式中,所述PHY Header包括传统前导L-preamble、重复非高吞吐率信号域RL-SIG和高效率信号A域HE-SIG-A;所述L-preamble中包括长度信息,所述长度信息用于指示所述WUR PPDU的持续时长或占用的字节数量;所述HE-SIG-A携带所述指示信息。
结合第一方面的第三种可能的实施方式,在第一方面的第五种可能的实施方式,所述PHY Header还包括高效率信号B域HE-SIG-B;所述HE-SIG-B中携带所述目标设备的ID,其中,所述目标设备的ID为所述WUR payload的目标设备的第一通信接口或第二通信接口的ID。
结合第一方面、第一方面的第一种可能的实施方式至第一方面的第五种可能的实施方式中的任意一种可能的实施方式,在第一方面的第六种可能的实施方式,所述STA根据所述指示信息判断是否通过所述STA的所述第一通信接口或第二通信接口继续接收和/或解析所述WUR Payload之后,还包括;
若是,所述STA通过所述STA的第二通信接口继续接收和/或解析所述WUR Payload。
结合第一方面、第一方面的第一种可能的实施方式至第一方面的第六种可能的实施方式中的任意一种可能的实施方式,在第一方面的第七种可能的实施方式,所述第一通信接口为无线保真WiFi接口,所述第二通信接口为WUR接口。
第二方面提供一种信息传输方法,所述方法包括:
接入点AP生成唤醒射频的协议数据单元WUR PPDU,所述WUR PPDU包括物理头PHY Header和唤醒射频载荷WUR Payload,所述WUR Payload在所述PHY Header之后传输,所述PHY Header包括指示信息,所述WUR Payload携带待发送给目标设备的唤醒射频信息,所述唤醒射频信息用于指示所述目标设备唤醒所述目标设备的第一通信接口,所述目标设备是指所述WUR Payload的目标接收站点STA,所述指示信息用于向通过自身的第一通信接口接收到所述WUR PPDU的所述PHY Header的所述非目标设备指示不需要通过所述非目标设备的第一通信接口继续接收和/或解析所述WUR PPDU中的WUR Payload;
所述AP通过所述AP的第一通信接口发送所述WUR PPDU中的所述PHY Header;
所述AP在通过所述AP的第一通信接口发送完所述WUR PPDU中的所述PHY Header后,通过所述AP的第一通信接口或第二通信接口发送所述WUR PPDU中的所述WUR Payload。
结合第二方面,在第二方面的第一种可能的实施方式中,所述指示信息还用于向接收到所述WUR PPDU的所述PHY Header的设备指示所述AP在发送完所述PHY Header之后还会发送所述WUR Payload。
结合第二方面或第二方面的第一种可能的实施方式,在第二方面的第二种可能的实施方式中,所述指示信息包括基本服务集颜色BSS color、上下行指示参数和目标设备的标识ID中的至少一种。
结合第二方面的第二种可能的实施方式,在第二方面的第三种可能的实施方式中,所述指示信息为基本服务集颜色BSS color且与所述非目标设备的第一通信接口所属的BSS的BSS color不匹配;或,所述指示信息为上下行指示参数且指示所述WUR PPDU为上行PPDU;或,所述指示信息为目标设备的ID。
结合第二方面、第二方面的第一种可能的实施方式或第二方面的第二种可能的实施方式,在第二方面的第三种可能的实施方式中,所述PHY Header包括传统前导L-preamble、重复非高吞吐率信号域RL-SIG和高效率信号A域HE-SIG-A;所述L-preamble中包括长度信息,所述长度信息用于指示所述WUR PPDU的持续时长或占用的字节数量;所述HE-SIG-A携带所述指示信息。
结合第二方面、第二方面的第一种可能的实施方式或第二方面的第二种可能的实施方式,在第二方面的第四种可能的实施方式中,所述PHY Header还包括高效率信号B域HE-SIG-B,所述HE-SIG-B中携带目标设备的ID,其中,所述目标设备的ID为所述WUR payload的目标设备的第一通信接口或第二通信接口的ID。
结合第二方面、第二方面的第一种可能的实施方式至第二方面的第四种可能的实施方式中的任意一种可能的实施方式,在第二方面的第五种可能的实施方式中,所述第一通信接口为无线保真WiFi接口,所述第二通信接口为WUR接口。
第三方面提供了一种STA,包括:
接收单元,用于通过所述STA的第一通信接口接收接入点AP发送的唤醒射频的协议数据单元WUR PPDU中的物理头PHY Header,所述PHY Header包括指示信息,所述WUR PPDU包括所述PHY Header和唤醒射频载荷WUR Payload,所述WUR Payload携带待发送给目标 设备的唤醒射频信息,所述目标设备是指所述WUR PPDU的目标接收STA;
判断单元,用于根据所述指示信息判断是否通过所述STA的所述第一通信接口或第二通信接口继续接收和/或解析所述WUR Payload;
第一确定单元,用于确定不通过所述STA的第一通信接口或第二通信接口继续接收和/或解析所述WUR Payload。
第四方面提供了一种AP,包括:
生成单元,用于生成唤醒射频的协议数据单元WUR PPDU,所述WUR PPDU包括物理头PHY Header和唤醒射频载荷WUR Payload,所述WUR Payload在所述PHY Header之后传输,所述PHY Header包括指示信息,所述WUR Payload携带待发送给目标设备的唤醒射频信息,所述唤醒射频信息用于指示所述目标设备唤醒所述目标设备的第一通信接口,所述目标设备是指所述WUR Payload的目标接收站点STA,所述指示信息用于向通过自身的第一通信接口接收到所述WUR PPDU的所述PHY Header的所述非目标设备指示不需要通过所述非目标设备的第一通信接口继续接收和/或解析所述WUR PPDU中的WUR Payload;
第一发送单元,用于通过所述AP的第一通信接口发送所述WUR PPDU中的所述PHY Header;
第二发送单元,用于在通过所述AP的第一通信接口发送完所述WUR PPDU中的所述PHY Header后,通过所述AP的第一通信接口或第二通信接口发送所述WUR PPDU中的所述WUR Payload。
第五方面提供了一种STA,STA包括处理器和存储器,其中,存储器中存储一组程序,且处理器用于调用存储器中存储的程序,使得设备执行第一方面的部分或全部方法。
第六方面提供了一种AP,AP包括处理器和存储器,其中,存储器中存储一组程序,且处理器用于调用存储器中存储的程序,使得设备执行第二方面的部分或全部方法。
本发明实施例中,AP生成唤醒射频的WUR PPDU,并通过第一通信接口发送WUR PPDU中的PHY Header,然后通过第一通信接口或第二通信接口发送所述WUR PPDU中的所述WUR Payload,STA根据PHY Header的指示信息判断是否通过所述STA的所述第一通信接口或第二通信接口继续接收和/或解析所述WUR Payload,若否,则说明所述STA为非目标设备,确定不通过STA的第一通信接口或第二通信接口继续接收和/或解析所述WUR Payload,避免非目标设备因对非发送给自身的Payload进行接收和/或解析而损失能量,达到非目标设备的省电目的。
附图说明
图1为本发明实施例提供的一种Infrastructure BSS的网络架构图;
图2为本发明实施例提供的一种AP与STA的通信示意图;
图3-1为本发明实施例提供的一种原始WUR PPDU的结构示意图;
图3-2为本发明实施例提供的一种HE SU PPDU的结构示意图;
图3-3为本发明实施例提供的一种HE MU PPDU的结构示意图;
图3-4为本发明实施例提供的一种HE ER SU PPDU的结构示意图;
图3-5为本发明实施例提供的一种HE trigger-based PPDU的结构示意图;
图3-6为本发明实施例提供的一种改进WUR PPDU的结构示意图;
图4为本发明实施例提供的一种信息传输方法的流程示意图;
图4-1为本发明实施例提供的改进WUR PPDU的第一结构示意图;
图4-2为本发明实施例提供的改进WUR PPDU的第二结构示意图;
图4-3为本发明实施例提供的改进WUR PPDU的第三结构示意图;
图5为本发明实施例提供的一种STA的模块化示意图;
图6为本发明实施例提供的一种STA的结构示意图;
图7为本发明实施例提供的一种AP的模块化示意图;
图8为本发明实施例提供的一种AP的结构示意图。
具体实施方式
本申请中所涉及的第一通信接口可以为WiFi接口,第二通信接口可以为WUR接口,其中,WiFi接口也可以是如长期演进(Long Term Evolution,LTE)接口等其它数据通信接口,用于数据通信的模块可统称为主通信接口(main radio)模块(802.11main radio,802.11主模块),如LTE模块、WiFi模块,本发明为了表述方便,以WiFi模块及其相应的WiFi接口进行说明;用于设备唤醒的模块可统称为唤醒射频模块或WUR模块,对应用于设备唤醒接口为WUR接口,需要说明的是,本申请对上述各功能模块以及对应接口的名称不作具体限定。
本申请中所涉及的发送设备以接入点(Access Point,AP)为例,接收设备以站点(Station,STA);目标设备是指所述WUR PPDU的目标接收设备,即指定作为接收所述WUR PPDU的设备,非目标设备是指非指定接收所述WUR PPDU的设备,为了表述方便,目标设备以目标接收STA,非目标设备以非目标接收STA为例进行说明。
请参见图1,图1为本发明一个实施例提供的一种基础设施基本服务集(Infrastructure Basic Service Set,Infrastructure BSS)的网络架构图,该网络中包括至少一个AP和至少一个STA,如接入点AP1和AP2,站点如STA1~STA9。其中,STA1~STA6属于BSS1,STA5~STA9属于BSS2。其中,AP从逻辑上可以包括WiFi接口(802.11main radio,802.11主模块)和WUR接口。对于802.11标准而言,802.11主模块常常为OFDM宽带发射机,其也可以产生窄带WUR唤醒信号,例如,将OFDM信号的部分子载波空置而仅在唤醒消息(Wake-up Radio Physical Layer Convergence Procedure(PLCP)Protocol Data Unit,WUR PPDU)对应的窄带上传输信号,从而产生窄带信号,因此AP实际上可以包括上述两个通信接口,也可以只包括WiFi接口。相应的,STA也可以包括WiFi接口和WUR接口。
请参见图2,图2为本发明一个实施例提供的一种AP与STA的通信示意图,如图2所示,AP包含一个802.11主模块,需要说明的是,AP在具体实现时也可以将802.11主模块和唤醒射频模块分别实现。由于802.11主模块和唤醒射频模块可使用相同的频段载波如2.4GHz进行信号传输,因此可以采用同一个天线进行信号发射,以节省成本和简化设备结构。若802.11主模块和唤醒射频模块采用不同的频带载波,例如分别采用5GHz和2.4GHz频段,则分别需要不同的天线进行信号发射。为了节省能量,STA的WiFi接口通常处于休眠状态而WUR接口通常处于清醒状态或间歇性清醒状态。AP向STA发送唤醒消息WUR PPDU,该 WUR PPDU用于唤醒目标接收STA的WiFi接口。
请参见图3-1,图3-1为本发明实施例提供的一种原始WUR PPDU的结构示意图,如图3-1所示,该原始WUR PPDU包括PHY Header部分和WUR Payload部分,其中,PHY Header部分包括传统802.11前导(L-preamble)即前短训练域(Legacy-Short Training Field,L-STF)、前长训练域(Legacy-Long Training Field,L-LTF)、前信令域(Legacy-Signal,L-SIG)字段。目标接收STA通过WUR接口接收到WUR Payload部分时,确定该WUR Payload为发送给自己的唤醒消息,可唤醒自身处于休眠状态的WiFi接口,然后该STA可采用WiFi接口与AP进行数据通信。
在IEEE802.11ax中,目前已定义了四种HE PPDU格式,包括高效率单用户物理层协议数据单元(High Efficiency Single User Physical Layer Protocol Data Unit,HE SU PPDU),高效率多用户物理层协议数据单元(High Efficiency Multi User Physical Layer Protocol Data Unit,HE MU PPDU),高效率扩展范围单用户物理层协议数据单元(High Efficiency Extended Range Single User Physical Layer Protocol Data Unit,HE ER SU PPDU)及高效率基于触发的物理层协议数据单元(High Efficiency Trigger Based Physical Layer Protocol Data Unit,HE trigger-based PPDU)。请参见图3-2~3-5,图3-2~3-5分别为HE SU PPDU、HE MU PPDU、HE ER SU PPDU和HE trigger-based PPDU的结构示意图。以图3-3为例,HE MU PPDU中包括L-STF、L-LTF、L-SIG、重复非高吞吐率信号域(Repeated Legacy-Signal,RL-SIG)、高效率信号A域(High Efficiency Signal-A,HE-SIG-A)、高效率信号B域(High Efficiency Signal-B,HE-SIG-B)、高效率短训练域(High Efficiency-Short Training Field,HE-STF)、高效率长训练域(High Efficiency-Long Training Field,HE-LTF)、数据Data和包延长(packet extendsion,PE),图中如L-STF对应的8μs表示L-STF的时长,其它以此类推。图3-2、图3-4和图3-5相应描述请参考图3-3,在此不再赘述。
AP1通过第一通信接口发送WUR PPDU(假设STA1为目标接收STA),由于无线信道的广播特性,该WUR PPDU可能会被除STA1之外的BSS1内的其它STA如STA2~STA6收到,也可以被相邻的BSS2内的STA如STA5~STA9收到。这些可收到WUR PPDU的STA中,包含已配置唤醒射频模块的处于休眠状态和清醒状态的STA以及未配置唤醒射频模块的STA。未配置唤醒射频模块的STA由于不存在WUR通信接口,其可以通过WiFi接口接收PHY Header部分以及WUR Payload部分,由于WUR Payload部分采用与传统WiFi不同的调制编码机制,因此该STA会解析失败,浪费处理资源及电量。而对于已配置唤醒射频模块的处于清醒状态的STA,也可能通过WiFi接口接收PHY Header部分和WUR Payload部分,若接受到非发送给自身的WUR PPDU,该STA可能会将WUR Payload部分以WiFi标准中规定的解析方式进行误解析直到校验失败,从而造成额外的接收功耗。
为了解决上述问题,参考图3-2~图3-5中的四种PPDU格式的部分或全部PHY Header字段,本申请对图3-1中原始WUR PPDU的结构进行了改进,设计出如图3-6所示的改进WUR PPDU。请参见图3-6,图3-6为本发明实施例中提供的一种改进WUR PPDU的结构示意图。该改进WUR PPDU包括PHY Header部分和载荷(WUR Payload)部分,其中,PHY Header部分除包括传统802.11前导(L-preamble)部分即L-STF、L-LTF、L-SIG之外,还可以包括RL-SIG和HE-SIG-A,还可以进一步包括HE-SIG-B。PHY Header部分用于同步、自动增益 控制(Automatic Gain Control,AGC)、信道估计、控制信息指示等,可以在20MHz(或20MHz的整数倍)带宽上采用OFDM方式发送,用于后向兼容,使得STA可据此判断当前消息为WiFi消息,从而选择相应的空闲信道评估(clear channel assessment,CCA)判决阈值。WUR Payload部分携带待发送给目标设备的唤醒射频信息,该唤醒射频信息可包含目标设备的WUR接口的标识信息(如WUR ID)或时间信息,用于目标接收STA根据该时间信息来唤醒WiFi接口或者使目标STA的WUR模块与AP保持同步。该唤醒射频信息还可以包含WUR preamble、MAC Header、帧体(Frame Body)、帧校验序列(Cyclical Redundancy Check,FCS)中的一种或者多种,当然也可能采用与上述命名不相同的字段命名表述。WUR Payload采用与PHY Header部分不同的调制方式,如OOK调制或者频移键控(Frequency-shift keying,FSK)调制,可以在相比PHY Header的传输带宽更窄的带宽上传输,例如2MHz信道、4MHz信道、5MHz信道等(传统WiFi最小带宽为20MHz),使得接收端的能耗更小。
本发明实施例中,PHY Header中HE-SIG-A或者HE-SIG-B所携带的指示信息用于指示STA是否需要进一步接收或解析PHY Header之后的WUR Payload部分。对于WiFi接口处于休眠状态的目标接收STA,其可通过WUR接口接收WUR Payload,并从该WUR Payload中解析到自身的标识ID(如单播/多播/广播地址或者是单播/多播/广播ID),确定该唤醒消息是发送给自己的,可唤醒自身的WiFi接口;对于WiFi接口处于清醒状态的非目标接收STA,通过WiFi接口接收到PHY Header,并根据PHY Header中HE-SIG-A或者HE-SIG-B所携带的指示信息判断不需要继续接收和/或解析PHY Header之后的WUR Payload部分,可以提前切换WiFi接口至休眠状态,进一步地,还可以根据PHY Header中的L-SIG中设置的L-LENGTH字段的长度确定休眠时间,从而达到为非目标设备的省电目的,具体请参考图4对应的实施例。
请参见图4,图4为本发明的一个实施例提供的一种信息传输方法的流程示意图。如图4所示,该方法是由接入点AP和站点STA共同执行的。本发明实施例提供的一种信息传输方法包括:S101~S107。
S101,AP生成唤醒射频的唤醒射频的协议数据单元WUR PPDU。
具体的,AP生成唤醒射频的WUR PPDU,所述WUR PPDU包括PHY Header和WUR Payload,所述PHY Header包括传统802.11前导(L-preamble)部分如L-STF、L-LTF、L-SIG字段,可包括RL-SIG、HE-SIG-A,还可进一步包括HE-SIG-B,其中,HE-SIG-A或HE-SIG-B携带指示信息,该指示信息用于指示STA是否需要进一步接收或解析PHY Header之后的WUR Payload部分。WUR Payload包括待发送给目标设备的唤醒射频信息,所述唤醒射频信息用于指示所述目标设备唤醒所述目标设备的第一通信接口,其中,第一通信接口为802.11主模块对应的WiFi接口。所述L-preamble中包括长度信息,所述长度信息用于指示所述WUR PPDU的持续时长或占用的字节数量。
S102,AP通过所述AP的第一通信接口发送所述WUR PPDU中的所述PHY Header。
相应的,STA通过所述STA的第一通信接口接收AP发送的WUR PPDU中的PHY Header。
具体的,AP通过第一通信接口即WiFi接口,发送所述WUR PPDU中的所述PHY Header。WiFi接口处于休眠状态的STA可能无法接收到PHY Header,而WiFi接口处于清醒状态的STA 能够通过自身的WiFi接口接收到AP发送的PHY Header,并解析该PHY Header以获得指示信息。
S103,STA通过所述STA的第一通信接口接收并解析PHY Header以获得指示信息。
S104,AP通过第一通信接口或第二通信接口发送所述WUR PPDU中的所述WUR Payload。
具体的,AP通过WiFi接口或WUR接口发送该WUR PPDU中的WUR Payload部分。其中,WUR Payload包括目标接收STA的唤醒射频信息,用于目标接收STA接收并解析该唤醒射频信息,并唤醒其WiFi接口。
S105,所述STA根据所述指示信息判断是否通过所述STA的所述第一通信接口或第二通信接口继续接收和/或解析所述WUR Payload。
具体的,STA可以根据所述指示信息判断是否通过所述STA的所述第一通信接口或第二通信接口继续接收和/或解析所述WUR Payload。其中,所述指示信息包括基本服务集颜色BSS color、上下行指示参数和目标设备的标识ID中的至少一种。
在一种可能的实施例中,所述指示信息为基本服务集颜色BSS color。请一并参见图4-1,图4-1为本发明实施例提供的改进WUR PPDU的第一结构示意图。如图4-1所示,WUR PPDU以使用HE SU PPDU的部分PHY Header字段为例进行说明。需要说明的是,在实际应用中,也可能使用前述的四种PPDU格式的部分或全部PHY Header字段,本发明并不以此为限。
在HE-SIG-A字段中,包含BSS color字段子域,该BSS color可用于发送该HE SU PPDU的设备所属BSS的标识,其中,BSS为AP与其关联的STA所组成的网络,故BSS Color也是网络标识。STA接收到WUR PPDU的PHY Header部分后,会认为接收到HE SU PPDU的PHY Header,并进一步判断接收到的PHY Header中的HE-SIG-A字段中的BSS Color值是否与自己所属网络的BSS Color匹配,若不匹配,则说明该HE SU PPDU是其它BSS中的PPDU,可以执行步骤S106,若匹配,则说明该HE SU PPDU是自身BSS中的PPDU,可以执行步骤S107。
本发明实施例中,当AP要发送WUR PPDU时,可以将WUR PPDU的PHY Header中的BSS color设置为一个预设值,该预设值可以使得非目标接收STA在接收到该PHY Header之后,判断该PHY Header的发送端不属于自身所属的BSS,从而不再继续接收或者解析AP后续发送的WUR PPDU的WUR payload,而进入休眠状态,从而达到省电的效果。在一种可选的实施例中,可以将BSS Color值设置为一个特殊值,例如,若BSS Color字段占用6个比特位,则可以设置BSS Color=111111,或者设置为标准定义的其他值。该BSS Color值也可以动态设置为某个值,例如,STA对空间中的WiFi消息进行侦听,并记录OBSS的BSS Color值,然后在WUR PPDU的PHY Header的BSS Color字段设置任意一个未被记录过的BSS Color值即与记录的OBSS的BSS Color值不同的值。
在一种可能的实施例中,所述指示信息为上下行指示参数。请一并参见图4-2,图4-2为本发明实施例提供的改进WUR PPDU的第二结构示意图。如图4-2所示,WUR PPDU以使用HE SU PPDU的部分PHY Header字段为例进行说明。在HE-SIG-A字段中,包含UL/DL字段子域,该UL/DL字段可用于指示该WUR PPDU为上行PPDU还是下行PPDU,例如,当AP发送HE SU PPDU时,若设置UL/DL=0,表示该HE SU PPDU为下行PPDU,若设置 UL/DL=1,表示该HE SU PPDU为上行PPDU。AP发送HE SU PPDU,若STA接收到HE SU PPDU的PHY Header,通过解析获得UL/DL=1,则判定该HE SU PPDU为上行PPDU,然而,对于STA只会接收下行PPDU,因此,STA将不再进行后续的HE SU PPDU的Payload部分的接收或者解析。即若所述上下行指示参数指示所述HE SU PPDU为上行PPDU,则所述STA确定不通过所述STA的第一通信接口或第二通信接口继续接收和/或解析所述WUR Payload。
在一种可能的实施例中,所述指示信息为目标设备的标识ID。请一并参见图4-3,图4-3为本发明实施例提供的改进WUR PPDU的第三结构示意图。如图4-3所示,以WUR PPDU使用HE MU PPDU的PHY Header为例进行说明,本发明实施例中,HE MU PPDU中的PHY Header还可以包括HE-SIG-B,进一步地,还可以包括,HE-STF和HE-LTF,其中,该HE-SIG-B中包含一段普通域Common Field和若干个用户域User Field。在各User Field域中携带所述目标设备的ID,其中,所述目标设备的ID为所述WUR payload的目标设备的第一通信接口或第二通信接口的ID,例如,目标设备的ID可以为由AP分配给所述目标设备的在第一通信接口上的标识ID,例如关联标识(Association Identifier,AID),或者,目标设备的标识ID可以为所述目标设备的第一通信接口的接口地址或者其衍生值,例如MAC地址或者由MAC地址转化而得到的值,或者,目标设备的标识ID可以为所述目标设备在第二通信接口上的标识ID,例如,WUR ID或者WUR接口地址,上述仅为本发明实施例所列举的几个示例,目标设备的ID并不以此为限。为表述方便,本发明实施例采用在HE-SIG-B中的STA-ID字段设置目标设备的AID为例进行说明。具体地,AP可以参考HE MU PPDU的生成方法,将WUR PPDU的WUR Payload部分设置于一个或者多个资源单元(resource unit,RU)中,进一步地,当WUR PPDU使用HE MU PPDU的PHY Header时,AP可以在多个RU中分别设置多个窄带的WUR Payload。在未设置WUR Payload的RU中可以放置给其他设备的数据内容。当STA接收到所述HE MU PPDU的PHY Header后,若STA接收该PHY Header并判断出该PHY Header中的HE-SIG-B中所指示的STA-ID字段设置的AID与自身相应的AID不匹配,则确认该STA为非目标接收STA,执行步骤S106。若STA接收该PHY Header并判断该PHY Header中的HE-SIG-B中所指示的STA-ID字段设置的AID与自身相应的AID匹配,则确认该STA为目标接收STA,可以执行步骤S107。
S106,所述STA根据指示信息确定不接收和/或解析所述WUR Payload。
具体的,若判断出该STA为非目标接收STA,则可以根据指示信息确定不通过所述STA的第一通信接口或第二通信接口继续接收和/或解析所述WUR Payload,则不再继续接收或者解析AP发送的WUR Payload,可以提前切换WiFi接口至休眠状态。进一步地,非目标接收STA还可以根据PHY Header中的L-SIG中设置的L-LENGTH字段的长度确定休眠时间,从而达到为非目标设备的省电目的。
S107,所述STA根据指示信息确定接收和/或解析所述WUR Payload。
具体的,若判断出该STA为目标接收STA,则可以根据指示信息通过该目标接收STA的第二通信接口即WUR接口继续接收和/或解析所述WUR Payload,以获取唤醒射频信息,并唤醒其WiFi接口。
本发明实施例中,AP生成WUR PPDU,并通过第一通信接口发送WUR PPDU中的PHY Header,然后通过第一通信接口或第二通信接口发送所述WUR PPDU中的所述WUR Payload, STA通过第一通信接口接收PHY Header,并根据PHY Header的指示信息判断是否通过所述STA的所述第一通信接口或第二通信接口继续接收和/或解析所述WUR Payload,若否,则说明所述STA为非目标设备,确定不通过STA的第一通信接口或第二通信接口继续接收和/或解析所述WUR Payload,避免非目标设备因对非发送给自身的Payload部分的接收和/或解析而损失能量,达到非目标设备的省电目的。进一步的,非目标设备还可以根据PHY Header中的L-SIG中设置的L-LENGTH字段的长度确定休眠时间,从而进一步为非目标设备省电。
请参见图5,图5为本发明实施例提供的一种STA的模块化示意图。其中,所述STA1包括:接收单元11、判断单元12和第一确定单元13。
接收单元11,用于通过所述STA的第一通信接口接收接入点AP发送的唤醒射频的协议数据单元WUR PPDU中的物理头PHY Header,所述PHY Header包括指示信息,所述WUR PPDU包括所述PHY Header和唤醒射频载荷WUR Payload,所述WUR Payload携带待发送给目标设备的唤醒射频信息,所述目标设备是指所述WUR PPDU的目标接收STA;
判断单元12,用于根据所述指示信息判断是否通过所述STA的所述第一通信接口或第二通信接口继续接收和/或解析所述WUR Payload;
第一确定单元13,用于确定不通过所述STA的第一通信接口或第二通信接口继续接收和/或解析所述WUR Payload。
在一种可能的实施例中,所述指示信息为基本服务集颜色BSS color;则所述第一确定单元13具体用于:若所述BSS color与所述STA的第一通信接口所属的BSS的BSS color不匹配,则确定不通过所述STA的第一通信接口或第二通信接口继续接收和/或解析所述WUR Payload。
在一种可能的实施例中,所述指示信息为上下行指示参数;所述若否,所述第一确定单元13具体用于:若所述上下行指示参数指示所述WUR PPDU为上行PPDU,则确定不通过所述STA的第一通信接口或第二通信接口继续接收和/或解析所述WUR Payload。
在一种可能的实施例中,所述指示信息为目标设备的标识ID;所述第一确定单元13具体用于:若所述WUR PPDU中的目标设备的ID与所述STA的ID不匹配,则确定不通过所述STA的所述第一通信接口或第二通信接口继续接收和/或解析所述WUR Payload。
在一种可能的实施例中,所述PHY Header包括传统前导L-preamble、重复非高吞吐率信号域RL-SIG和高效率信号A域HE-SIG-A;所述L-preamble中包括长度信息,所述长度信息用于指示所述WUR PPDU的持续时长或占用的字节数量;所述HE-SIG-A携带所述指示信息。
在一种可能的实施例中,所述PHY Header还包括高效率信号B域HE-SIG-B;所述HE-SIG-B中携带所述目标设备的ID,其中,所述目标设备的ID为所述WUR payload的目标设备的第一通信接口或第二通信接口的ID。
在一种可能的实施例中,所述STA还包括第二确定单元14;所述第二确定单元14,用于确定通过所述STA的第二通信接口继续接收和/或解析所述WUR Payload。
在一种可能的实施例中,所述第一通信接口为无线保真WiFi接口,所述第二通信接口为WUR接口。
本发明实施例所示的STA可用于执行图4所示方法实施例的步骤,该STA带来的技术效果参见相应方法实施例的具体描述,在此不在赘述。
请参见图6,图6为本发明实施例提供的一种STA的结构示意图。如图6所示,所述STA1000包括处理器1001如CPU,第一通信接口1002如WiFi接口,第二通信接口1003如WUR接口、存储器1004以及至少一个通信总线1005。其中,存储器1004可能包含高速RAM存储器,也可能还包括非易失性存储器(non-volatile memory),例如至少一个磁盘存储器。通信总线1005用于实现这些组件之间的连接通信。处理器1001用于执行和保存所述存储器1004中的一个或多个程序。
具体地,处理器1001用于调用存储器1004中存储的程序,执行以下操作:
通过所述STA的第一通信接口接收接入点AP发送的唤醒射频的协议数据单元WUR PPDU中的物理头PHY Header,所述PHY Header包括指示信息,所述WUR PPDU包括所述PHY Header和唤醒射频载荷WUR Payload,所述WUR Payload携带待发送给目标设备的唤醒射频信息,所述目标设备是指所述WUR PPDU的目标接收STA;
根据所述指示信息判断是否通过所述STA的所述第一通信接口或第二通信接口继续接收和/或解析所述WUR Payload;
若否,所述STA确定不通过所述STA的第一通信接口或第二通信接口继续接收和/或解析所述WUR Payload。
在一种可能的实施例中,所述处理器1001调用存储器1004中存储的程序,执行指示信息为基本服务集颜色BSS color;则所述若否,所述STA确定不通过所述STA的第一通信接口或第二通信接口继续接收和/或解析所述WUR Payload的步骤,具体执行:若所述BSS color与所述STA的第一通信接口所属的BSS的BSS color不匹配,则确定不通过所述STA的第一通信接口或第二通信接口继续接收和/或解析所述WUR Payload。
在一种可能的实施例中,所述指示信息为上下行指示参数;所述处理器1001调用存储器1004中存储的程序,执行若否,所述STA确定不通过所述STA的第一通信接口或第二通信接口继续接收和/或解析所述WUR Payload的步骤,具体执行:若所述上下行指示参数指示所述WUR PPDU为上行PPDU,则确定不通过所述STA的第一通信接口或第二通信接口继续接收和/或解析所述WUR Payload。
在一种可能的实施例中,所述指示信息为目标设备的标识ID;所述处理器1001调用存储器1004中存储的程序,执行若否,所述STA确定不通过所述STA的第一通信接口或第二通信接口继续接收和/或解析所述WUR Payload的步骤,具体执行:若所述WUR PPDU中的目标设备的ID与所述STA的ID不匹配,则所述STA确定不通过所述STA的所述第一通信接口或第二通信接口继续接收和/或解析所述WUR Payload。
在一种可能的实施例中,所述PHY Header包括传统前导L-preamble、重复非高吞吐率信号域RL-SIG和高效率信号A域HE-SIG-A;所述L-preamble中包括长度信息,所述长度信息用于指示所述WUR PPDU的持续时长或占用的字节数量;所述HE-SIG-A携带所述指示信息。
在一种可能的实施例中,所述PHY Header还包括高效率信号B域HE-SIG-B;所述HE-SIG-B中携带所述目标设备的ID,其中,所述目标设备的ID为所述WUR payload的目标 设备的第一通信接口或第二通信接口的ID。
在一种可能的实施例中,所述处理器1001调用存储器1004中存储的程序,执行根据所述指示信息判断是否通过所述STA的所述第一通信接口或第二通信接口继续接收和/或解析所述WUR Payload的步骤之后,还执行:
若是,所述STA通过所述STA的第二通信接口继续接收和/或解析所述WUR Payload。
在一种可能的实施例中,所述第一通信接口为无线保真WiFi接口,所述第二通信接口为WUR接口。
本发明实施例所示的STA可用于执行图4所示方法实施例的步骤,该STA带来的技术效果参见相应方法实施例的具体描述,在此不在赘述。
请参见图7,图7为本发明实施例提供的一种AP1的模块化示意图。其中,所述AP包括:生成单元21、第一发送单元22和第二发送单元23。
生成单元21,用于生成唤醒射频的协议数据单元WUR PPDU,所述WUR PPDU包括物理头PHY Header和唤醒射频载荷WUR Payload,所述WUR Payload在所述PHY Header之后传输,所述PHY Header包括指示信息,所述WUR Payload携带待发送给目标设备的唤醒射频信息,所述唤醒射频信息用于指示所述目标设备唤醒所述目标设备的第一通信接口,所述目标设备是指所述WUR Payload的目标接收站点STA,所述指示信息用于向通过自身的第一通信接口接收到所述WUR PPDU的所述PHY Header的所述非目标设备指示不需要通过所述非目标设备的第一通信接口继续接收和/或解析所述WUR PPDU中的WUR Payload;
第一发送单元22,用于通过所述AP的第一通信接口发送所述WUR PPDU中的所述PHY Header;
第二发送单元23,用于所述AP在通过所述AP的第一通信接口发送完所述WUR PPDU中的所述PHY Header后,通过所述AP的第一通信接口或第二通信接口发送所述WUR PPDU中的所述WUR Payload。
在一种可能的实施方式中,所述指示信息还用于向接收到所述WUR PPDU的所述PHY Header的设备指示所述AP在发送完所述PHY Header之后还会发送所述WUR Payload。
在一种可能的实施方式中,所述指示信息包括基本服务集颜色BSS color、上下行指示参数和目标设备的标识ID中的至少一种。
在一种可能的实施方式中,所述指示信息为基本服务集颜色BSS color且与所述非目标设备的第一通信接口所属的BSS的BSS color不匹配;或,所述指示信息为上下行指示参数且指示所述WUR PPDU为上行PPDU;或,所述指示信息为目标设备的ID。
在一种可能的实施方式中,所述PHY Header包括传统前导L-preamble、重复非高吞吐率信号域RL-SIG和高效率信号A域HE-SIG-A;所述L-preamble中包括长度信息,所述长度信息用于指示所述WUR PPDU的持续时长或占用的字节数量;所述HE-SIG-A携带所述指示信息。
在一种可能的实施方式中,所述PHY Header还包括高效率信号B域HE-SIG-B,所述HE-SIG-B中携带目标设备的ID,其中,所述目标设备的ID为所述WUR payload的目标设备的第一通信接口或第二通信接口的ID。
在一种可能的实施方式中,所述第一通信接口为无线保真WiFi接口,所述第二通信接口为WUR接口。
本发明实施例所示的AP可用于执行图4所示方法实施例的步骤,该AP带来的技术效果参见相应方法实施例的具体描述,在此不在赘述。
请参见图8,图8为本发明实施例提供的一种STA的结构示意图。如图8所示,所述AP2000包括处理器2001如CPU,第一通信接口2002如WiFi接口,第二通信接口2003如WUR接口、存储器2004以及至少一个通信总线2005。其中,存储器2004可能包含高速RAM存储器,也可能还包括非易失性存储器(non-volatile memory),例如至少一个磁盘存储器。通信总线2005用于实现这些组件之间的连接通信。处理器2001用于执行和保存所述存储器2004中的一个或多个程序。
具体地,处理器2001用于调用存储器2004中存储的程序,执行以下操作:
生成唤醒射频的协议数据单元WUR PPDU,所述WUR PPDU包括物理头PHY Header和唤醒射频载荷WUR Payload,所述WUR Payload在所述PHY Header之后传输,所述PHY Header包括指示信息,所述WUR Payload携带待发送给目标设备的唤醒射频信息,所述唤醒射频信息用于指示所述目标设备唤醒所述目标设备的第一通信接口,所述目标设备是指所述WUR Payload的目标接收站点STA,所述指示信息用于向通过自身的第一通信接口接收到所述WUR PPDU的所述PHY Header的所述非目标设备指示不需要通过所述非目标设备的第一通信接口继续接收和/或解析所述WUR PPDU中的WUR Payload;
通过所述AP的第一通信接口发送所述WUR PPDU中的所述PHY Header;
在通过所述AP的第一通信接口发送完所述WUR PPDU中的所述PHY Header后,通过所述AP的第一通信接口或第二通信接口发送所述WUR PPDU中的所述WUR Payload。
在一种可能的实施方式中,指示信息还用于向接收到所述WUR PPDU的所述PHY Header的设备指示所述AP在发送完所述PHY Header之后还会发送所述WUR Payload。
在一种可能的实施方式中,所述指示信息包括基本服务集颜色BSS color、上下行指示参数和目标设备的标识ID中的至少一种。
在一种可能的实施方式中,指示信息为基本服务集颜色BSS color且与所述非目标设备的第一通信接口所属的BSS的BSS color不匹配;或,所述指示信息为上下行指示参数且指示所述WUR PPDU为上行PPDU;或,所述指示信息为目标设备的ID。
在一种可能的实施方式中,所述PHY Header包括传统前导L-preamble、重复非高吞吐率信号域RL-SIG和高效率信号A域HE-SIG-A;所述L-preamble中包括长度信息,所述长度信息用于指示所述WUR PPDU的持续时长或占用的字节数量;所述HE-SIG-A携带所述指示信息。
在一种可能的实施方式中,所述PHY Header还包括高效率信号B域HE-SIG-B,所述HE-SIG-B中携带目标设备的ID,其中,所述目标设备的ID为所述WUR payload的目标设备的第一通信接口或第二通信接口的ID。
在一种可能的实施方式中,所述第一通信接口为无线保真WiFi接口,所述第二通信接口为WUR接口。
本发明实施例所示的AP可用于执行图4所示方法实施例的步骤,该AP带来的技术效果参见相应方法实施例的具体描述,在此不在赘述。
本发明实施例还提供一种计算机存储介质,其中,该计算机存储介质可存储有程序,该程序执行时包括上述方法实施例中记载的任何一种信息传输方法的部分或全部步骤。
需要说明的是,对于前述的各方法实施例,为了简单描述,故将其都表述为一系列的动作组合,但是本领域技术人员应该知悉,本发明并不受所描述的动作顺序的限制,因为依据本发明,某些步骤可以采用其他顺序或者同时进行。其次,本领域技术人员也应该知悉,说明书中所描述的实施例均属于优选实施例,所涉及的动作和模块并不一定是本发明所必须的。
在上述实施例中,对各个实施例的描述都各有侧重,某个实施例中没有详述的部分,可以参见其他实施例的相关描述。
在本申请所提供的几个实施例中,应该理解到,所揭露的装置,可通过其它的方式实现。例如,以上所描述的装置实施例仅仅是示意性的,例如所述单元的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,例如多个单元或组件可以结合或者可以集成到另一个系统,或一些特征可以忽略,或不执行。另一点,所显示或讨论的相互之间的耦合或直接耦合或通信连接可以是通过一些接口,装置或单元的间接耦合或通信连接,可以是电性或其它的形式。
所述作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部单元来实现本实施例方案的目的。
另外,在本发明各个实施例中的各功能单元可以集成在一个处理单元中,也可以是各个单元单独物理存在,也可以两个或两个以上单元集成在一个单元中。上述集成的单元既可以采用硬件的形式实现,也可以采用软件功能单元的形式实现。
所述集成的单元如果以软件功能单元的形式实现并作为独立的产品销售或使用时,可以存储在一个计算机可读取存储器中。基于这样的理解,本发明的技术方案本质上或者说对现有技术做出贡献的部分或者该技术方案的全部或部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储器中,包括若干指令用以使得一台计算机设备(可为个人计算机、服务器或者网络设备等)执行本发明各个实施例所述方法的全部或部分步骤。而前述的存储器包括:U盘、只读存储器(ROM,Read-Only Memory)、随机存取存储器(RAM,Random Access Memory)、移动硬盘、磁碟或者光盘等各种可以存储程序代码的介质。
本领域普通技术人员可以理解上述实施例的各种方法中的全部或部分步骤是可以通过程序来指令相关的硬件来完成,该程序可以存储于一计算机可读存储器中,存储器可以包括:闪存盘、只读存储器(Read-Only Memory,ROM)、随机存取器(Random Access Memory,RAM)、磁盘或光盘等。
以上对本发明实施例进行了详细介绍,本文中应用了具体实施例对本发明的原理及实施方式进行了阐述,以上实施例的说明只是用于帮助理解本发明的方法及其核心思想;同时,对于本领域的一般技术人员,依据本发明的思想,在具体实施方式及应用范围上均会有改变之处,综上上述,本说明书内容不应理解为对本发明的限制。

Claims (32)

  1. 一种信息传输方法,其特征在于,所述方法包括:
    站点STA通过所述STA的第一通信接口接收接入点AP发送的唤醒射频的协议数据单元WUR PPDU中的物理头PHY Header,所述PHY Header包括指示信息,所述WUR PPDU包括所述PHY Header和唤醒射频载荷WUR Payload,所述WUR Payload携带待发送给目标设备的唤醒射频信息,所述目标设备是指所述WUR PPDU的目标接收STA;
    所述STA根据所述指示信息判断是否通过所述STA的所述第一通信接口或第二通信接口继续接收和/或解析所述WUR Payload;
    若否,所述STA确定不通过所述STA的第一通信接口或第二通信接口继续接收和/或解析所述WUR Payload。
  2. 根据权利要求1所述的方法,其特征在于,所述指示信息为基本服务集颜色BSS color;则所述若否,所述STA确定不通过所述STA的第一通信接口或第二通信接口继续接收和/或解析所述WUR Payload,包括:
    若所述BSS color与所述STA的第一通信接口所属的BSS的BSS color不匹配,则所述STA确定不通过所述STA的第一通信接口或第二通信接口继续接收和/或解析所述WUR Payload。
  3. 根据权利要求1所述的方法,其特征在于,所述指示信息为上下行指示参数;所述若否,所述STA确定不通过所述STA的第一通信接口或第二通信接口继续接收和/或解析所述WUR Payload,包括:
    若所述上下行指示参数指示所述WUR PPDU为上行PPDU,则所述STA确定不通过所述STA的第一通信接口或第二通信接口继续接收和/或解析所述WUR Payload。
  4. 根据权利要求1所述的方法,其特征在于,所述指示信息为目标设备的标识ID;所述若否,所述STA确定不通过所述STA的第一通信接口或第二通信接口继续接收和/或解析所述WUR Payload,包括:
    若所述WUR PPDU中的目标设备的ID与所述STA的ID不匹配,则所述STA确定不通过所述STA的所述第一通信接口或第二通信接口继续接收和/或解析所述WUR Payload。
  5. 根据权利要求1-3任一项所述的方法,其特征在于,所述PHY Header包括传统前导L-preamble、重复非高吞吐率信号域RL-SIG和高效率信号A域HE-SIG-A;
    所述L-preamble中包括长度信息,所述长度信息用于指示所述WUR PPDU的持续时长或占用的字节数量;
    所述HE-SIG-A携带所述指示信息。
  6. 根据权利要求4所述的方法,其特征在于,所述PHY Header还包括高效率信号B域HE-SIG-B;所述HE-SIG-B中携带所述目标设备的ID,其中,所述目标设备的ID为所述WUR payload的目标设备的第一通信接口或第二通信接口的ID。
  7. 根据权利要求1-6任一项所述的方法,其特征在于,所述STA根据所述指示信息判断是否通过所述STA的所述第一通信接口或第二通信接口继续接收和/或解析所述WUR Payload之后,还包括;
    若是,所述STA通过所述STA的第二通信接口继续接收和/或解析所述WUR Payload。
  8. 根据权利要求1-7任一项所述的方法,其特征在于,所述第一通信接口为无线保真WiFi接口,所述第二通信接口为WUR接口。
  9. 一种信息传输方法,其特征在于,所述方法包括:
    接入点AP生成唤醒射频的协议数据单元WUR PPDU,所述WUR PPDU包括物理头PHY Header和唤醒射频载荷WUR Payload,所述WUR Payload在所述PHY Header之后传输,所述PHY Header包括指示信息,所述WUR Payload携带待发送给目标设备的唤醒射频信息,所述唤醒射频信息用于指示所述目标设备唤醒所述目标设备的第一通信接口,所述目标设备是指所述WUR Payload的目标接收站点STA,所述指示信息用于向通过自身的第一通信接口接收到所述WUR PPDU的所述PHY Header的所述非目标设备指示不需要通过所述非目标设备的第一通信接口继续接收和/或解析所述WUR PPDU中的WUR Payload;
    所述AP通过所述AP的第一通信接口发送所述WUR PPDU中的所述PHY Header;
    所述AP在通过所述AP的第一通信接口发送完所述WUR PPDU中的所述PHY Header后,通过所述AP的第一通信接口或第二通信接口发送所述WUR PPDU中的所述WUR Payload。
  10. 根据权利要求9所述的方法,其特征在于,所述指示信息还用于向接收到所述WUR PPDU的所述PHY Header的设备指示所述AP在发送完所述PHY Header之后还会发送所述WUR Payload。
  11. 根据权利要求9或10所述的方法,其特征在于,所述指示信息包括基本服务集颜色BSS color、上下行指示参数和目标设备的标识ID中的至少一种。
  12. 根据权利要求11所述的方法,其特征在于,所述指示信息为基本服务集颜色BSS color且与所述非目标设备的第一通信接口所属的BSS的BSS color不匹配;或,
    所述指示信息为上下行指示参数且指示所述WUR PPDU为上行PPDU;或,
    所述指示信息为目标设备的ID。
  13. 根据权利要求9-12任一项所述的方法,其特征在于,所述PHY Header包括传统前导L-preamble、重复非高吞吐率信号域RL-SIG和高效率信号A域HE-SIG-A;
    所述L-preamble中包括长度信息,所述长度信息用于指示所述WUR PPDU的持续时长或占用的字节数量;
    所述HE-SIG-A携带所述指示信息。
  14. 根据权利要求9-12任一项所述的方法,其特征在于,所述PHY Header还包括高效率信号B域HE-SIG-B,所述HE-SIG-B中携带目标设备的ID,其中,所述目标设备的ID为所述WUR payload的目标设备的第一通信接口或第二通信接口的ID。
  15. 根据权利要求9-14任一项所述的方法,其特征在于,所述第一通信接口为无线保真WiFi接口,所述第二通信接口为WUR接口。
  16. 一种站点STA,其特征在于,包括:
    接收单元,用于通过所述STA的第一通信接口接收接入点AP发送的唤醒射频的协议数据单元WUR PPDU中的物理头PHY Header,所述PHY Header包括指示信息,所述WUR PPDU包括所述PHY Header和唤醒射频载荷WUR Payload,所述WUR Payload携带待发送给目标设备的唤醒射频信息,所述目标设备是指所述WUR PPDU的目标接收STA;
    判断单元,用于根据所述指示信息判断是否通过所述STA的所述第一通信接口或第二通信接口继续接收和/或解析所述WUR Payload;
    第一确定单元,用于确定不通过所述STA的第一通信接口或第二通信接口继续接收和/或解析所述WUR Payload。
  17. 根据权利要求16所述的STA,其特征在于,所述指示信息为基本服务集颜色BSS color;则所述第一确定单元具体用于:
    若所述BSS color与所述STA的第一通信接口所属的BSS的BSS color不匹配,则确定不通过所述STA的第一通信接口或第二通信接口继续接收和/或解析所述WUR Payload。
  18. 根据权利要求16所述的STA,其特征在于,所述指示信息为上下行指示参数;所述若否,所述第一确定单元,具体用于:
    若所述上下行指示参数指示所述WUR PPDU为上行PPDU,则确定不通过所述STA的第一通信接口或第二通信接口继续接收和/或解析所述WUR Payload。
  19. 根据权利要求16所述的STA,其特征在于,所述指示信息为目标设备的标识ID;所述第一确定单元,具体用于:
    若所述WUR PPDU中的目标设备的ID与所述STA的ID不匹配,则确定不通过所述STA的所述第一通信接口或第二通信接口继续接收和/或解析所述WUR Payload。
  20. 根据权利要求16-18任一项所述的STA,其特征在于,所述PHY Header包括传统前导L-preamble、重复非高吞吐率信号域RL-SIG和高效率信号A域HE-SIG-A;
    所述L-preamble中包括长度信息,所述长度信息用于指示所述WUR PPDU的持续时长或占用的字节数量;
    所述HE-SIG-A携带所述指示信息。
  21. 根据权利要求19所述的STA,其特征在于,所述PHY Header还包括高效率信号B域HE-SIG-B;所述HE-SIG-B中携带所述目标设备的ID,其中,所述目标设备的ID为所述WUR payload的目标设备的第一通信接口或第二通信接口的ID。
  22. 根据权利要求16-21任一项所述的STA,其特征在于,还包括:
    第二确定单元,用于确定通过所述STA的第二通信接口继续接收和/或解析所述WUR Payload。
  23. 根据权利要求16-22任一项所述的STA,其特征在于,所述第一通信接口为无线保真WiFi接口,所述第二通信接口为WUR接口。
  24. 一种接入点AP,其特征在于,包括:
    生成单元,用于生成唤醒射频的协议数据单元WUR PPDU,所述WUR PPDU包括物理头PHY Header和唤醒射频载荷WUR Payload,所述WUR Payload在所述PHY Header之后传输,所述PHY Header包括指示信息,所述WUR Payload携带待发送给目标设备的唤醒射频信息,所述唤醒射频信息用于指示所述目标设备唤醒所述目标设备的第一通信接口,所述目标设备是指所述WUR Payload的目标接收站点STA,所述指示信息用于向通过自身的第一通信接口接收到所述WUR PPDU的所述PHY Header的所述非目标设备指示不需要通过所述非目标设备的第一通信接口继续接收和/或解析所述WUR PPDU中的WUR Payload;
    第一发送单元,用于通过所述AP的第一通信接口发送所述WUR PPDU中的所述PHY Header;
    第二发送单元,用于在通过所述AP的第一通信接口发送完所述WUR PPDU中的所述PHY Header后,通过所述AP的第一通信接口或第二通信接口发送所述WUR PPDU中的所述WUR  Payload。
  25. 根据权利要求24所述的方法,其特征在于,所述指示信息还用于向接收到所述WUR PPDU的所述PHY Header的设备指示所述AP在发送完所述PHY Header之后还会发送所述WUR Payload。
  26. 根据权利要求24或25所述的方法,其特征在于,所述指示信息包括基本服务集颜色BSS color、上下行指示参数和目标设备的标识ID中的至少一种。
  27. 根据权利要求26所述的方法,其特征在于,所述指示信息为基本服务集颜色BSS color且与所述非目标设备的第一通信接口所属的BSS的BSS color不匹配;或,
    所述指示信息为上下行指示参数且指示所述WUR PPDU为上行PPDU;或,
    所述指示信息为目标设备的ID。
  28. 根据权利要求24-27任一项所述的方法,其特征在于,所述PHY Header包括传统前导L-preamble、重复非高吞吐率信号域RL-SIG和高效率信号A域HE-SIG-A;
    所述L-preamble中包括长度信息,所述长度信息用于指示所述WUR PPDU的持续时长或占用的字节数量;
    所述HE-SIG-A携带所述指示信息。
  29. 根据权利要求24-27任一项所述的方法,其特征在于,所述PHY Header还包括高效率信号B域HE-SIG-B,所述HE-SIG-B中携带目标设备的ID,其中,所述目标设备的ID为所述WUR payload的目标设备的第一通信接口或第二通信接口的ID。
  30. 根据权利要求24-29任一项所述的方法,其特征在于,所述第一通信接口为无线保真WiFi接口,所述第二通信接口为WUR接口。
  31. 一种站点STA,其特征在于,所述STA包括处理器和存储器,其中,所述存储器中存储一组程序,且所述处理器用于调用所述存储器中存储的程序,使得所述设备执行如权利要求1-8任一所述的方法。
  32. 一种接入点AP,其特征在于,所述AP包括处理器和存储器,其中,所述存储器中存储一组程序,且所述处理器用于调用所述存储器中存储的程序,使得所述设备执行如权利要求9-15任一所述的方法。
PCT/CN2017/079150 2016-11-23 2017-03-31 一种信息传输方法及站点、接入点 WO2018094942A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201780034504.7A CN109219977A (zh) 2016-11-23 2017-03-31 一种信息传输方法及站点、接入点

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201611047707 2016-11-23
CN201611047707.3 2016-11-23

Publications (1)

Publication Number Publication Date
WO2018094942A1 true WO2018094942A1 (zh) 2018-05-31

Family

ID=62194970

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2017/079150 WO2018094942A1 (zh) 2016-11-23 2017-03-31 一种信息传输方法及站点、接入点

Country Status (2)

Country Link
CN (1) CN109219977A (zh)
WO (1) WO2018094942A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113692781A (zh) * 2020-03-10 2021-11-23 北京小米移动软件有限公司 传输数据的方法、装置、通信设备及存储介质

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1350386A (zh) * 2000-10-23 2002-05-22 阿尔卡塔尔公司 主动网络中发送消息的方法
CN103228046A (zh) * 2013-04-25 2013-07-31 中兴通讯股份有限公司 一种无线网络中站点标识的分配方法、接入点和系统
CN104412658A (zh) * 2012-07-31 2015-03-11 惠普发展公司,有限责任合伙企业 帧头中无线接入点小区id的插入
US20160337973A1 (en) * 2015-05-17 2016-11-17 Intel Corporation Apparatus, system and method of communicating a wakeup packet

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20130034004A1 (en) * 2011-08-02 2013-02-07 Qualcomm Atheros, Inc. Reference tbtt estimation algorithm for smart power saving on wlan client
US9241307B2 (en) * 2012-10-24 2016-01-19 Qualcomm Incorporated Method and apparatus using an ultra low power signal with scheduled power save modes
US9544848B2 (en) * 2012-10-24 2017-01-10 Qualcomm Incorporated Methods and apparatus for communicating short paging messages in a wireless communication network

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1350386A (zh) * 2000-10-23 2002-05-22 阿尔卡塔尔公司 主动网络中发送消息的方法
CN104412658A (zh) * 2012-07-31 2015-03-11 惠普发展公司,有限责任合伙企业 帧头中无线接入点小区id的插入
CN103228046A (zh) * 2013-04-25 2013-07-31 中兴通讯股份有限公司 一种无线网络中站点标识的分配方法、接入点和系统
US20160337973A1 (en) * 2015-05-17 2016-11-17 Intel Corporation Apparatus, system and method of communicating a wakeup packet

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113692781A (zh) * 2020-03-10 2021-11-23 北京小米移动软件有限公司 传输数据的方法、装置、通信设备及存储介质
CN113692781B (zh) * 2020-03-10 2024-03-12 北京小米移动软件有限公司 传输数据的方法、装置、通信设备及存储介质

Also Published As

Publication number Publication date
CN109219977A (zh) 2019-01-15

Similar Documents

Publication Publication Date Title
US10750451B2 (en) Methods and devices for sending and receiving wake-up frame
US9807759B2 (en) Method and apparatus for transceiving a data frame in a wireless LAN system
US10582026B2 (en) Methods and apparatus for packet acquisition in mixed-rate wireless communication networks
JP5676034B2 (ja) 無線lanシステムにおけるフレーム送信方法及び装置
EP3493603B1 (en) Method and device for waking device
EP2509235B1 (en) Method and apparatus for transmitting a frame in a wireless lan system
CN108605291B (zh) 一种发送和接收wur帧的方法及设备
JP2021510953A (ja) 低電力マルチユーザ送信のための通信装置および通信方法
US20140348148A1 (en) Method for transmitting and receiving fram in wireless local area network system and device supporting same
EP3060013A1 (en) Method for transmitting and receiving frame performed by station operating in power save mode in wireless local area network system and apparatus for the same
US20160119453A1 (en) Methods and apparatus for guard interval indication in wireless communication networks
US10171202B2 (en) Diversity repetition in mixed-rate wireless communication networks
CN108012313B (zh) 帧传输方法、设备及系统
CN107787029A (zh) 一种无线局域网中唤醒帧的传输方法及装置
US9906391B2 (en) Methods and apparatus for packet acquisition in mixed-rate wireless communication networks
JP2018533301A (ja) 無線ローカル・エリア・ネットワークにおける局間の直接通信のための方法及び関連デバイス
WO2018171591A1 (zh) 一种用来唤醒设备的方法及装置
WO2018094942A1 (zh) 一种信息传输方法及站点、接入点
CN109565749B (zh) 休眠机制的确定方法、装置及设备
CN109565354B (zh) 一种报文处理方法及装置
WO2024169801A1 (zh) 信号传输方法及通信装置
CN108123784B (zh) 信号处理的方法和设备
WO2018090741A1 (zh) 信号处理的方法和设备

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17873274

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17873274

Country of ref document: EP

Kind code of ref document: A1