JP6118291B2 - 位置制御装置及び位置制御方法 - Google Patents

位置制御装置及び位置制御方法 Download PDF

Info

Publication number
JP6118291B2
JP6118291B2 JP2014121561A JP2014121561A JP6118291B2 JP 6118291 B2 JP6118291 B2 JP 6118291B2 JP 2014121561 A JP2014121561 A JP 2014121561A JP 2014121561 A JP2014121561 A JP 2014121561A JP 6118291 B2 JP6118291 B2 JP 6118291B2
Authority
JP
Japan
Prior art keywords
signal
difference
feedback
pid control
target
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2014121561A
Other languages
English (en)
Other versions
JP2016001430A (ja
Inventor
弘二 箙瀬
弘二 箙瀬
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Asahi Kasei EMD Corp
Original Assignee
Asahi Kasei EMD Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Kasei EMD Corp filed Critical Asahi Kasei EMD Corp
Priority to JP2014121561A priority Critical patent/JP6118291B2/ja
Publication of JP2016001430A publication Critical patent/JP2016001430A/ja
Application granted granted Critical
Publication of JP6118291B2 publication Critical patent/JP6118291B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Lens Barrels (AREA)
  • Control Of Position Or Direction (AREA)

Description

本発明は、位置制御装置及び位置制御方法に関し、より詳細には、操作対象が過渡状態から定常状態に遷移するまでにオーバーシュートを抑制し、高い応答性及び安定性を可能とする位置制御装置及び位置制御方法に関する。
一般のデジタルカメラ及び携帯電話機、インターネットとの親和性が高く、パソコンの機能をベースとして作られた多機能携帯電話であるスマートフォン(smartphone)などに搭載されているカメラモジュールの多くには、オートフォーカス(AF)機能が搭載されている。このようなコンパクトなカメラに搭載されるオートフォーカス機能には、コントラスト検出方式が採用されることが多い。このコントラスト検出方式は、実際にレンズを移動させて、撮像画像内の被写体のコントラストが最大化されるレンズ位置を検出し、その位置にレンズを移動させる方式である。
このようなコントラスト検出方式は、被写体に赤外線や超音波を照射して、その反射波から被写体までの距離を測定するアクティブ方式と比較し、低コストで実現することができる。ただし、被写体のコントラストが最大化されるレンズ位置を探索するまでに時間がかかるという問題がある。ユーザがシャッターボタンを半押しした後、被写体にフォーカスを合わせるまでの処理が、短時間(例えば、1秒以内)に完了することが望まれている。
ところで、一般のデジタルカメラ及び携帯電話機などに搭載されているカメラモジュールの画素数は年々増加しており、これらコンパクトなカメラでも高精細な画像が撮影可能になってきている。高精細な画像では、ピントずれが目立ちやすくなるのでより高精度なオートフォーカス制御が求められている。
また、一般に、入力信号と、この入力信号に応じた変位とが一次関数で表されるデバイスは、線形運動デバイスと言われている。この種の線形運動デバイスには、例えば、カメラのオートフォーカスレンズなどがある。
図1は、従来の線形運動デバイスの制御装置を説明するための構成図である。図中符号1は磁気センサ、2はA/D変換回路、3はPID制御回路、4はデバイス位置指令信号発生回路、5はD/A変換回路、6は出力ドライバ、7は駆動コイル、8は移動体を示している。
磁気センサ1は、移動体8に取り付けられている磁石(図示せず)が発生する磁場を検出し、検出された磁場の値に対応する検出位置信号値Vipを出力するものである。この磁気センサ1はホール素子であることが望ましい。
また、A/D変換回路2は、磁気センサ1からの検出位置信号を増幅してA/D変換するもので、A/D変換された検出位置信号値Vipを得るものである。また、デバイス位置指令信号発生回路4は、移動体8を移動すべき目標位置を指示する目標位置信号値及びキャリブレーション実行信号を出力するもので、PID制御回路3に接続されている。
また、PID制御回路3は、移動体8の現在位置と目標補正位置信号値とにより指示される移動体8の目標位置とから、この移動体8を目標位置に移動させるための制御信号を出力するものである。このPID制御回路3からの出力信号は、D/A変換回路5によりD/A変換され、出力ドライバ6により駆動コイル7に駆動電流が供給される。
上述したような従来の線形運動デバイスの制御装置については、例えば、特許文献1に開示されている。
図2は、図1における従来の線形運動デバイスの制御装置の具体的な構成図である。図2においては、カメラモジュール30のレンズ(移動体)33の位置調整を行う制御装置20に適用した場合について説明する。この制御装置(位置制御回路)20は、例えば、IC回路として構成されている。なお、カメラモジュール30は、線形運動デバイス31と、レンズ33を移動させる駆動コイル29とで構成されている。したがって、駆動コイル29に電流を流すことにより、磁石32が移動され、その磁石32に固定されているレンズ33の位置調整が可能となる。
つまり、図2に示した線形運動デバイス31の制御装置20は、レンズ(移動体)33に取り付けられた磁石32を有する線形運動デバイス31と、この線形運動デバイス31の磁石32の近傍に配置された駆動コイル29とを備え、この駆動コイル29にコイル電流が流れることによって発生する力により磁石32を移動させるように構成されている。
図2に示した線形運動デバイス31の制御装置20は、駆動コイル29の漏れ磁場により、磁気センサ21がその漏れ磁場の影響を受けて検出誤差が生じるのを防止する対策を設けたものである。キャリブレーション演算回路24は、検出磁場を取得する直前において駆動コイル29への通電を停止する時間を有し、A/D変換回路23によりA/D変換された検出位置信号値Vipに基づいて、線形運動デバイス31のホーム位置に対応する第1の位置信号値NEGCALと、線形運動デバイス31のフル位置に対応する第2の位置信号値POSCALとから検出位置演算信号値VPROCを得る。
漏れ磁場補正回路34は、デバイス位置指令信号発生回路26およびキャリブレーション演算回路24に接続され、駆動コイル29の漏れ磁場による磁気センサ21の検出誤差を補正するものである。
図2において、PID制御回路25は、キャリブレーション演算回路24と漏れ磁場補正回路34に接続され、キャリブレーション演算回路24からの検出位置演算信号値VPROCと漏れ磁場補正回路34からの目標補正位置信号値VTARG’とを入力し、レンズ(移動体)33の現在位置と目標補正位置信号値VTARG’とにより指示されるレンズ33の目標位置とから、このレンズ33を目標位置に移動させるための制御信号を出力するものである。
PID制御とは、フィードバック制御の一種で、入力値の制御を出力値と目標値との偏差とその積分及び微分の3つの要素によって行う方法のことである。基本的なフィードバック制御として比例制御(P制御)がある。これは入力値を出力値と目標値の偏差の一次関数として制御するものである。PID制御では、この偏差に比例して入力値を変化させる動作を比例動作あるいはP動作(PはPROPORTIONALの略)という。つまり、偏差のある状態が長い時間続けばそれだけ入力値の変化を大きくして目標値に近づけようとする役目を果たす。この偏差の積分に比例して入力値を変化させる動作を積分動作あるいはI動作(IはINTEGRALの略)という。このように比例動作と積分動作を組み合わせた制御方法をPI制御という。この偏差の微分に比例して入力値を変化させる動作を微分動作あるいはD動作(DはDERIVATIVE又はDIFFERENTIALの略)という。このような比例動作と積分動作と微分動作を組み合わせた制御方法をPID制御という。
図3(a)乃至(c)は、従来からの種々のPID制御回路を示すブロック図で、図3(a)は、古典型のPID制御回路、図3(b)は、微分先行型のPID制御回路、図3(c)は、比例微分先行型のPID制御回路のブロック図である。図中符号41は微分演算部(不完全微分)、42は比例演算部、43は積分演算部、44はゲイン増幅部、45は第1の偏差演算部、46は制御出力演算部を示している。なお、これらのPID制御回路については、例えば、特許文献2及び特許文献3に開示されている。
国際公開第2013/171998号 特開2004−227432号公報 特開平6−168003号公報
しかしながら、従来のPID制御回路を用いた位置制御装置では、操作対象の目標値が大幅に変化したときに、操作量が急激に増大する。そのため、操作対象(例えば、レンズの位置)が過渡状態から定常状態に遷移するまでにオーバーシュートが生じて、過渡状態から定常状態に遷移するまでに時間がかかるという問題があった。
本発明は、このような問題に鑑みてなされたもので、その目的とするところは、小さい回路面積で操作対象が過渡状態から定常状態に遷移するまでに起こるオーバーシュートを抑制し、高い応答性及び安定性を可能とする位置制御装置及び位置制御方法を提供することにある。
本発明は、このような目的を達成するためになされたもので、請求項1に記載の発明は、磁石(32)を備えた移動体(33)の位置を磁気センサ(21)により検出して、前記移動体(33)を操作量に基づいて目標位置に駆動する位置制御装置において、前記移動体(33)の目標位置指令信号(VTARG)を生成する目標位置指令信号生成回路(26)と、前記磁気センサ(21)で検出した前記移動体の位置信号(VPROC)及び前記目標位置指令信号(VTARG)を入力とし、前記移動体(33)の操作量信号(MV)を生成するPID制御回路(25)と、を備え、前記PID制御回路(25)は、比例動作を行う比例演算部(42)と、積分動作を行う積分演算部(43)と、微分動作を行う微分演算部(41)と、前記操作量信号(MV)を前記積分演算部(43)へフィードバックする帰還部(48)と、を有し、前記PID制御回路(25)は、前記目標位置指令信号と前記位置信号との第1の差(E)と、前記帰還部の出力信号と、の差分である第2の差(F)を前記積分演算部(43)が積分するように構成され、さらに、前記PID制御回路は、前記第1の差に応じて前記帰還部の帰還量を調整することを特徴とする。(実施例1;図2,図5)
た、請求項記載の発明は、請求項に記載の発明において、前記PID制御回路(25)は、前記第1の差(E)の絶対値を演算する絶対値演算部(50)を有し、前記絶対値に応じて前記帰還部(48)の前記帰還量を調整することを特徴とする。(実施例2;図7)
また、請求項に記載の発明は、請求項に記載の発明において、前記PID制御回路(25)は、前記絶対値と、前記帰還部(48)の出力信号とを乗算器(49)の乗算により前記帰還量を調整することを特徴とする。(実施例2;図7)
また、請求項に記載の発明は、請求項1〜のいずれか一項に記載の発明において、前記PID制御回路(25)は、ローパスフィルタ回路(51)と目標値フィルタ回路(52)を有し、前記ローパスフィルタ回路を経由した前記位置信号と、前記目標値フィルタ回路を経由した前記目標位置指令信号に対して、PID制御を行うことを特徴とする。(実施例6;図12)
また、請求項に記載の発明は、請求項に記載の発明において、前記絶対値演算部は、前記目標値フィルタ回路を経由する前の前記目標位置指令信号と、ローパスフィルタ回路を経由した前記位置信号との差の絶対値を演算することを特徴とする。
また、請求項に記載の発明は、請求項1〜のいずれか一項に記載の発明において、前記PID制御回路(25)は、前記比例演算部(42)、前記積分演算部(43)、前記微分動作を行う微分演算部(41)からの出力信号を加算又は減算した信号をゲイン増幅して操作量信号として出力するゲイン増幅部をさらに有することを特徴とする。(実施例1;図2,図5)
また、請求項に記載の発明は、請求項1〜のいずれか一項に記載の発明において、前記比例演算部は、前記第1の差(E)の比例動作を行う、か、前記位置信号の比例動作を行い、前記微分演算部は、前記第1の差(E)の微分動作を行う、か、前記位置信号の微分動作を行うことを特徴とする。
また、請求項に記載の発明は、請求項1〜のいずれか一項に記載の発明において、前記移動体が、オートフォーカスレンズの線形運動デバイスであることを特徴とする。
また、請求項に記載の発明は、磁石(32)を備えた移動体(33)の位置を磁気センサ(21)により検出して、前記移動体(33)を操作量に基づいて目標位置に駆動する位置制御方法において、前記移動体(33)の目標位置指令信号(VTARG)を生成する目標位置指令信号生成ステップと、前記磁気センサ(21)で検出した前記移動体の位置信号(VPROC)及び前記目標位置指令信号(VTARG)に基づいて操作量信号(MV)を生成してPID制御するPID制御ステップと、を備え、前記PID制御ステップが、前記位置信号を微分するステップと、前記位置信号(VPROC)と前記目標位置指令信号(VTARG)との第1の差を演算するステップと、前記第1の差(E)に比例した比例値を演算するステップと、前記操作量信号から帰還信号を生成するステップと、前記第1の差(E)から前記帰還信号を減算して第2の差を演算するステップと、前記第2の差を積分するステップと、を有し、さらに、前記PID制御ステップが、前記第1の差の絶対値を演算するステップと、前記絶対値と前記帰還信号とを乗算するステップと、を有し、前記第2の差を積分するステップは、前記絶対値と前記帰還信号とを乗算した信号を積分するステップであることを特徴とする
本発明によれば、小さい回路面積で操作対象が過渡状態から定常状態に遷移するまでに起こるオーバーシュートを抑制し、高い応答性及び安定性を可能とする位置制御装置及び位置制御方法を実現することができる。
従来の線形運動デバイスの制御装置を説明するための構成図である。 図1における従来の線形運動デバイスの制御装置の具体的な構成図である。 (a)乃至(c)は、従来からの種々のPID制御回路を示すブロック図である。 (a)乃至(c)は、図3におけるPID制御回路の更なる改良点を説明するための図である。 本発明に係る位置制御装置の実施例1を説明するための回路構成図である。 (a)乃至(c)は、図5に示した実施例1における効果を説明するための図である。 本発明に係る位置制御装置の実施例2を説明するための回路構成図である。 本発明に係る位置制御装置の実施例3を説明するための回路構成図である。 本発明に係る位置制御装置の実施例4を説明するための回路構成図である。 (a)乃至(c)は、図7乃至図9に示した実施例2乃至4における効果を説明するための図である。 本発明に係る位置制御装置の実施例5を説明するための回路構成図である。 本発明に係る位置制御装置の実施例6を説明するための回路構成図である。 (a),(b)は、図12に示した実施例6における特徴的な構成を説明するための図である。 本発明に係る位置制御装置の実施例7を説明するための回路構成図である。
まず、図3(b)に基づいて本発明の前提となるPID制御回路について説明する。 図3(b)に示したPID制御回路25は、図2におけるPID制御回路25に相当し、入力信号Vip(VPROC)及び目標値VTARGもそれぞれ図2に記載の信号に対応している。
PID制御は、制御対象の入力信号VPROCと目標値VTARGとの偏差(差)Eに基づいて制御出力(操作量)MVを演算することで、入力信号VPROCを目標値VTARGに近づけ目標値に近い値に保持することを可能にしている。
また、PID制御は、比例演算部42による偏差Eに比例した比例値を出力する比例動作(P動作)と、積分演算部43による偏差Eの時間積分に比例した積分値を出力する積分動作(I動作)と、微分演算部41による入力信号VPROCの時間微分に比例した微分値を出力する微分動作(D動作)との3つの動作を組み合わせて制御を行っている。これらの動作は、それぞれパラメータを有しており、適正なパラメータを選定することで動特性の異なる様々な機器の制御が可能となる。
偏差演算部45は、目標値VTARGと磁気センサ(図2における符号21に相当)からの入力信号VPROCとの偏差Eを演算するためのものである。
比例演算部42は、偏差演算部45から出力された偏差Eに比例した比例値KPを出力するためのものであり、従来のPID制御におけるP動作に該当する。
積分演算部43は、偏差演算部45から出力された偏差Eの時間積分に比例した積分値KIを出力するためのものであり、従来のPID制御におけるI動作に該当する。
微分演算部41は、磁気センサからの入力信号VPROCの時間微分に比例した微分値KDを出力するためのものであり、従来のPID制御におけるD動作に該当する。
制御出力演算部46は、比例演算部42と積分演算部43と微分演算部41とからの出力に基づいて、ゲイン増幅器44を介して制御出力値(操作量)MVを演算するためのものである。具体的には、制御出力演算部46は、比例演算部42と積分演算部43と微分演算部41とから出力された比例値KPと、積分値KIと、微分値KDとの総和を演算(加算又は減算)して制御対象へ出力する。
図4(a)乃至(c)は、図3におけるPID制御回路の更なる改良点を説明するための図で、図4(a)は目標値、図4(b)は操作量、図4(c)は操作対象(レンズ位置)をそれぞれ示している。
図4(a)に示すように、目標値が大幅に変化したときに、図4(b)に示すように、操作量が急激に増大する。それによって、図4(c)に示すように、操作対象(レンズ位置)が過渡状態から定常状態に遷移するまでにオーバーシュートが生じて安定性が悪くなる。また、過渡状態から定常状態に遷移するまでに時間がかかり、応答性が悪いという問題がある。
以下、このような問題を解決するための各実施例について説明する。
図5は、本発明に係る位置制御装置の実施例1を説明するための回路構成図である。図中符号47は帰還演算部、48は帰還部を示している。なお、図3(b)と同じ機能を有する構成要素には同一の符号を付してある。
本実施例1の位置制御装置は、図1又は図2に示すように、磁石32(図2)を備えた移動体33の位置を磁気センサ21により検出して、移動体33を目標値に基づいて目標位置に駆動する位置制御装置である。
本実施例1の位置制御装置は、例えば、移動体の位置を検出する磁気センサからの出力信号をAD変換するA/D変換回路、A/D変換回路の出力とデバイス位置指令信号生成回路の出力に基づいてPID制御するPID制御回路、目標位置指令信号を生成する目標位置指令信号発生回路(デバイス位置指令信号生成回路)、PID制御回路の出力をDA変換して出力ドライバへ出力するD/A変換回路を有する。また、出力ドライバは、PID制御回路の操作量信号に応じて駆動コイルを駆動し、移動体の位置を駆動する。
磁気センサは、移動体に取り付けられている磁石が発生する磁場を検出し、検出された磁場の値に対応する検出位置信号値Vipを出力するものである。この磁気センサとしてはホール素子であることが望ましい。
A/D変換回路は、磁気センサからの検出位置信号を増幅してA/D変換するもので、A/D変換された検出位置信号値Vipを得るものである。
目標位置指令信号発生回路は、移動体を移動すべき目標位置を指示する目標位置信号値及びキャリブレーション実行信号をPID制御回路に出力する。
目標位置指令信号生成回路(デバイス位置指令信号生成回路)26は、移動体33の目標位置指令信号VTARGを生成する。PID制御回路25は、磁気センサ21の出力信号(PID制御回路25の入力信号)VPROC及び目標位置指令信号VTARGを入力とし、移動体33の操作量信号MVを生成する。
また、PID制御回路25は、磁気センサ21の出力信号VPROCと目標位置指令信号VTARGとの第1の偏差演算部45による第1の偏差(差)Eに比例した比例値を出力する比例動作を行う比例演算部42と、第1の偏差Eの時間積分に比例した積分値を出力する積分動作を行う積分演算部43と、出力信号VPROCの時間微分に比例した微分値を出力する微分動作を行う微分演算部41と、操作量信号MVを積分演算部43の入力側にフィードバックする帰還部48とを備えている。
また、帰還部48では操作量信号MVに対し、最も単純には、スケーリング係数を乗算した構成を採用するが、操作量信号MVを適切なフィルタや、変調、演算する構成であってもよい。
また、積分演算部43は、第1の偏差Eと帰還部48の出力信号との帰還演算部47による第2の偏差(差)Fを積分する。また、移動体33は、オートフォーカスレンズの線形運動デバイスであることを可能としている。
つまり、積分演算部43の前段に帰還演算部47を設け、ゲイン増幅器44からの制御出力値(操作量)MVを、帰還部48を介して積分演算部43の入力へフィードバックする構成により、目標値変化時の過渡的区間においてPID制御回路の制御性が向上される。それによって、安定性が向上し、さらに、応答性も向上する。
図6(a)乃至(c)は、図5に示した実施例1における効果を説明するための図で、図6(a)は目標値、図6(b)は操作量、図6(c)は操作対象(レンズ位置)をそれぞれ示している。図6(c)から明らかなように、図4(c)と比べて、操作対象(レンズ位置)が過渡状態から定常状態に遷移するまでにオーバーシュートが改善され、過渡状態から定常状態に遷移するまでに時間が短縮され、過渡状態において応答性が改善されている。また、PID制御回路内部の構成であるため、回路の小型化が可能となる。
なお、操作量信号を、積分演算部へフィードバックする形態に加えて、比例演算部、微分演算部、及び両方へフィードバックする形態であってもよい。また、操作量信号のフィードバックは、帰還部の出力信号のフィードバック、帰還部の出力と絶対値演算部の乗算結果のフィードバック、及び、それらに準じる信号をフィードバックする形態であってもよい。
図7は、本発明に係る位置制御装置の実施例2を説明するための回路構成図である。図中符号49は乗算部、50は絶対値演算部を示している。なお、図5と同じ機能を有する構成要素には同一の符号を付してある。上述した図3(b)に示した微分先行型のPID制御回路に本発明を適用した例を示している。
本実施例2の位置制御装置におけるPID制御回路25は、第1の偏差Eに応じて帰還部48の帰還量が調整されるように構成されている。また、PID制御回路25は、第1の偏差Eの絶対値を演算する絶対値演算部50を備え、第1の偏差Eの絶対値に応じて帰還部48の帰還量が調整されるように構成されている。また、PID制御回路25は、第1の偏差Eの絶対値と、帰還部48の出力信号とを乗算器49の乗算により帰還量が調整されるように構成されている。
つまり、乗算部49を帰還演算部47と帰還部48との間に設け、絶対値演算部50を、偏差演算部45の出力側と乗算部49との間に設けることにより、目標値からのずれ量とフィードバック量を演算し、目標値誤差がなくなるように構成したものである。
操作量MVのフィードバックにより目標値変化時の過渡状態においてPID制御回路の制御性が向上されるが、定常状態において操作対象を安定させるために操作量MV_Biasが必要となる。このMV_Biasがあると、積分演算入力にオフセットが残り目標値ずれが生じてしまう。しかし、本実施例2では、定常状態では目標値VTARGと入力信号VPROCとの偏差Eはほぼ0となるため、操作量信号MVのフィードバック量は0となる。したがって、操作量MVのフィードバックにより目標値変化時の過渡的区間においてPID制御回路の制御性が向上でき、かつ目標値ずれが生じない。
本実施例2は、偏差Eの絶対値と帰還部48の出力を乗算する形態であるが、偏差Eの絶対値ではなく、ある時間で正側から0に収束する信号であり、且つ、制御性を高めるような信号を帰還部48の出力に乗算する形態など、定常状態でPID制御回路内部の操作量信号のフィードバック量を0にできる構成であればよい。
図8は、本発明に係る位置制御装置の実施例3を説明するための回路構成図である。なお、図7と同じ機能を有する構成要素には同一の符号を付してある。上述した図3(a)に示した古典型のPID制御回路に本発明を適用した例を示している。
つまり、微分演算部41は、入力信号VPROCを直接演算するのではなく、A点からの偏差Eを演算するものである。
図9は、本発明に係る位置制御装置の実施例4を説明するための回路構成図である。なお、図7と同じ機能を有する構成要素には同一の符号を付してある。上述した図3(c)に示した比例微分先行型のPID制御回路に本発明を適用した例を示している。
つまり、比例演算部42は、A点からの偏差Eを演算するのではなく、入力信号VPROCを直接演算するものである。
図10(a)乃至(c)は、図7乃至図9に示した実施例2乃至4における効果を説明するための図で、図10(a)は目標値、図10(b)は操作量、図10(c)は操作対象(レンズ位置)をそれぞれ示している。
ここで、偏差Eを用いて帰還部48の出力に乗算する形態の場合、絶対値演算部50が必要となる。以下で、絶対値演算部50がなく、偏差Eが同じ符号のまま乗算器49に入力される形態を想定する。
レンズ移動方向が正方向の場合、偏差Eは正値であり、操作量信号MVも正値となる。そのため、乗算器49の出力信号は正値となり、偏差E(正値)に対して乗算器49の出力(正値)の差を演算した偏差Fが積分演算部43に入力されることで、操作量のピーク値を小さくすることができる。
一方、レンズ移動方向が負方向の場合、偏差Eは負値であり、操作量信号MVも負値となる。そのため、乗算器49の出力信号は正値となり、偏差E(負値)に対して乗算器49の出力(正値)の差を演算した偏差Fが積分演算部43に入力されると、逆に、操作量のピーク値が大きくなってしまう。
そのため、レンズ移動方向の正負に関わらず操作量のピーク値を小さくし、目標値ずれを抑制する効果を得るためには、絶対値演算部50が必要となる。レンズ移動方向が負方向の場合、偏差Eは負値であり、操作量信号MVも負値となる。しかし、絶対値演算部50があるため、乗算器49の出力信号は負値となり、偏差E(負値)に対して乗算器49の出力(負値)の差を演算した偏差Fが積分演算部43に入力されることで、操作量のピーク値を小さくすることができる。
図11は、本発明に係る位置制御装置の実施例5を説明するための回路構成図である。なお、図7と同じ機能を有する構成要素には同一の符号を付してある。
本実施例5の位置制御装置は、上述した実施例2の位置制御装置の変更例で、実施例2においては、比例演算部42は、第1の偏差演算部45の偏差Eを入力としているが、本実施例5においては、入力信号VPROCを直接入力としている。つまり、比例演算部42は、第1の偏差Eに比例した比例値を出力する比例動作を行う代わりに、磁気センサ21の出力信号VPROCに比例した比例値を出力する比例動作を行うように構成されている。このような接続関係においても、実施例2と同様な効果を奏する。
図12は、本発明に係る位置制御装置の実施例6を説明するための回路構成図である。図中符号51はローパスフィルタ(LPF;1次)回路、52は目標値フィルタ回路、53は第2の偏差演算部を示している。なお、図7と同じ機能を有する構成要素には同一の符号を付してある。
本実施例6の位置制御装置は、上述した実施例2の位置制御装置の更なる変更例で、微分演算部41の前段にLPF回路51を設けているとともに、第1の偏差演算部45の前段に目標値フィルタ回路52を設け、絶対値演算部50は、第2の偏差演算部53を介して目標値VTARGとLPF回路51の出力信号との第3の偏差(差)Gを入力としている。
つまり、本実施例6の位置制御装置におけるPID制御回路25は、微分演算部41の前段にLPF回路51を設けるとともに、第1の偏差演算部45の前段に目標値フィルタ回路52を設け、絶対値演算部50の前段に第2の偏差演算部53を設けている。
目標値フィルタ回路52があることで、PID制御回路の構成を比例微分先行型のPID制御から微分先行型のPID制御に段階的に切り替えることができる。なお、目標値フィルタ回路52としては、主に位相進み遅れ補償要素を持ったフィルタ回路である。目標値フィルタ回路52のパラメータには、位相遅れ要素の時定数τ1がPID制御回路25の積分演算部43における積分時間に比例した時定数となるような第1のパラメータと、位相進み要素の時定数τ2が位相遅れ要素の時定数τ1に比例した時定数となるような第2のパラメータと、が設定される。しかしながら、目標値VTARGの生成波形を任意に調整できるフィルタ、演算などの構成であれば、どのような形態であってもよい。
図13(a),(b)は、図12に示した実施例6における特徴的な構成を説明するための図で、図13(a)は目標値フィルタの入力信号、図13(b)は目標値フィルタの出力信号を示している。
図7に示した実施例2においては、第1の偏差演算部45と帰還演算部47の中間点Aから絶対値演算部50に偏差Eを入力しているが、本実施例6においては、目標値フィルタ回路52の入力前の信号と、LPF回路51の出力信号との差分を第2の偏差演算部53を介して第3の偏差Gを入力している。
目標値フィルタ回路52の入力信号および出力信号は、設定パラメータにより、図13(a),(b)に示したような波形となっている。目標値フィルタ回路52の出力信号ではなく、目標値フィルタ回路52の入力前の信号とLPF回路51の出力信号の差分をとることで、目標値フィルタ回路52の設定パラメータによって操作量MVのフィードバック演算に使用する偏差が変動せず、また、目標値が変更された直後に大きな偏差となる。これにより、目標値ずれを精度良く抑制することができる。なお、本実施例内で記載した手法とは異なるPID制御回路の構成でもよい。
図14は、本発明に係る位置制御装置の実施例7を説明するための回路構成図である。なお、図12と同じ機能を有する構成要素には同一の符号を付してある。
本実施例7の位置制御装置は、上述した実施例6の位置制御装置の変更例で、実施例6においては、乗算部49を帰還演算部47と帰還部48との間に設けていたが、これを取り除き、絶対値演算部50の出力信号を直接的に帰還部48に入力したものである。
つまり、絶対値演算部50の出力を乗算器49に入力する代わりに帰還部48に入力するようにしたもので、FB(フィードバック)量を直接調整するような構成としたものである。但し、以下の事が満足することが必要になる。
1)操作量MVをフィードバックすること、2)過渡状態ではフィードバック量が出力され、定常状態ではフィードバック量がゼロもしくはほぼゼロとなること、3)帰還演算部47に入力される信号は、操作量MVの符号に対して逆の符号であること、である。
以上、本発明かかる位置制御装置としては、移動体が線形に運動するように構成された線形運動デバイスの制御装置、移動体が平面内で運動するように構成された手触れ補正用制御装置などが挙げられる。特に、スマホカメラレンズのオートフォーカス制御が好適な例である。
特に、オートフォーカス制御において、レンズ位置を目標位置へ大幅に駆動後、レンズを安定させる場合においては、本実施例2の構成等が好適である。これによれば、レンズを大幅に動かす操作性に加えて、レンズを安定に保持する安定性も向上する。
以下に、本発明の位置制御方法について説明する。
本発明の位置制御方法は、磁石32を備えた移動体33の位置を磁気センサ21により検出して、移動体33を操作量に基づいて目標位置に駆動する位置制御方法である。
移動体33の目標位置指令信号VTARGを生成する目標位置指令信号生成ステップと、磁気センサ21で検出した移動体の位置信号VPROC及び目標位置指令信号VTARGに基づいて操作量信号MVを生成してPID制御するPID制御ステップと、を備えている。
また、移動体33の操作量信号MVを生成するPID制御ステップは、位置信号を微分するステップと、位置信号VPROCと目標位置指令信号VTARGとの第1の差を演算するステップと、第1の差Eに比例した比例値を演算するステップと、操作量信号から帰還信号を生成するステップと、第1の差Eから帰還信号を減算して第2の差を演算するステップと、第2の差を積分するステップと、を有している。
また、移動体33の操作量信号MVを生成するPID制御ステップは、第1の差Eの絶対値を演算するステップと、帰還部48の操作量MVに対し、最も単純にはスケーリング係数を乗算した構成、または、操作量MVを適切なフィルタや変調、演算する構成により、絶対値と帰還信号とを乗算する、または、上述した1),2),3)とを満たすステップとを有し、第2の差を積分するステップは、絶対値と帰還信号とを乗算した信号を積分するステップである。
このようにして、操作対象が過渡状態から定常状態に遷移するまでに起こるオーバーシュートを抑制し、高い応答性及び安定性を可能とする位置制御方法を実現することができる。また、この構成は非常に簡便であり、小さな回路面積で実現ができる。
1 磁気センサ
2 A/D変換回路
3 PID制御回路
4 デバイス位置(目標位置)指令信号発生回路
5 D/A変換回路
6 出力ドライバ
7 駆動コイル
8 移動体
13 PID制御装置
20 制御装置(位置制御回路)
21 磁気センサ
22 増幅器
23 A/D変換回路
24 キャリブレーション演算回路
25 PID制御回路
26 目標位置指令信号発生回路
28a,28b 出力ドライバ
29 駆動コイル
30 カメラモジュール
31 線形運動デバイス
32 磁石
33 レンズ(移動体)
34 漏れ磁場補正回路
41 微分演算部
42 比例演算部
43 積分演算部
44 ゲイン増幅部
45 第1の偏差演算部
46 制御出力演算部
47 帰還演算部
48 帰還部
49 乗算部
50 絶対値演算部
51 LPF回路
52 目標値フィルタ回路
53 第2の偏差演算部

Claims (9)

  1. 磁石を備えた移動体の位置を磁気センサにより検出して、前記移動体を操作量に基づいて目標位置に駆動する位置制御装置において、
    前記移動体の目標位置指令信号を生成する目標位置指令信号生成回路と、
    前記磁気センサで検出した前記移動体の位置信号及び前記目標位置指令信号を入力とし、前記移動体の操作量信号を生成するPID制御回路と、を備え、
    前記PID制御回路は、比例動作を行う比例演算部と、積分動作を行う積分演算部と、微分動作を行う微分演算部と、前記操作量信号をフィードバックする帰還部と、を有し、
    前記PID制御回路は、前記目標位置指令信号と前記位置信号との第1の差と、前記帰還部の出力信号と、の差分である第2の差を前記積分演算部が積分するように構成され
    さらに、前記PID制御回路は、前記第1の差に応じて前記帰還部の帰還量を調整する位置制御装置。
  2. 前記PID制御回路は、前記第1の差の絶対値を演算する絶対値演算部を有し、前記絶対値に応じて前記帰還部の前記帰還量を調整する請求項に記載の位置制御装置。
  3. 前記PID制御回路は、前記絶対値と、前記帰還部の出力信号とを乗算器の乗算により前記帰還量を調整する請求項に記載の位置制御装置。
  4. 前記PID制御回路は、ローパスフィルタ回路と目標値フィルタ回路を有し、前記ローパスフィルタ回路を経由した前記位置信号と、前記目標値フィルタ回路を経由した前記目標位置指令信号に対して、PID制御を行う請求項1〜のいずれか一項に記載の位置制御装置。
  5. 前記絶対値演算部は、前記目標値フィルタ回路を経由する前の前記目標位置指令信号と、ローパスフィルタ回路を経由した前記位置信号との差の絶対値を演算する請求項に記載の位置制御装置。
  6. 前記PID制御回路は、前記比例演算部、前記積分演算部、前記微分演算部からの出力信号を加算又は減算した信号をゲイン増幅して操作量信号として出力するゲイン増幅部をさらに有する請求項1〜のいずれか一項に記載の位置制御装置。
  7. 前記比例演算部は、前記第1の差の比例動作を行う、か、前記位置信号の比例動作を行い、
    前記微分演算部は、前記第1の差の微分動作を行う、か、前記位置信号の微分動作を行う請求項1〜のいずれか一項に記載の位置制御装置。
  8. 前記移動体が、オートフォーカスレンズの線形運動デバイスである請求項1〜のいずれか一項に記載の位置制御装置。
  9. 磁石を備えた移動体の位置を磁気センサにより検出して、前記移動体を操作量に基づいて目標位置に駆動する位置制御方法において、
    前記移動体の目標位置指令信号を生成する目標位置指令信号生成ステップと、
    前記磁気センサで検出した前記移動体の位置信号及び前記目標位置指令信号に基づいて操作量信号を生成してPID制御するPID制御ステップと、を備え、
    前記PID制御ステップが、
    前記位置信号を微分するステップと、
    前記位置信号と前記目標位置指令信号との第1の差を演算するステップと、
    前記第1の差に比例した比例値を演算するステップと、
    前記操作量信号から帰還信号を生成するステップと、
    前記第1の差から前記帰還信号を減算して第2の差を演算するステップと、
    前記第2の差を積分するステップと、を有し、
    さらに、前記PID制御ステップが、前記第1の差の絶対値を演算するステップと、前記絶対値と前記帰還信号とを乗算するステップと、を有し、
    前記第2の差を積分するステップは、前記絶対値と前記帰還信号とを乗算した信号を積分するステップである位置制御方法。
JP2014121561A 2014-06-12 2014-06-12 位置制御装置及び位置制御方法 Active JP6118291B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014121561A JP6118291B2 (ja) 2014-06-12 2014-06-12 位置制御装置及び位置制御方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014121561A JP6118291B2 (ja) 2014-06-12 2014-06-12 位置制御装置及び位置制御方法

Publications (2)

Publication Number Publication Date
JP2016001430A JP2016001430A (ja) 2016-01-07
JP6118291B2 true JP6118291B2 (ja) 2017-04-19

Family

ID=55076991

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014121561A Active JP6118291B2 (ja) 2014-06-12 2014-06-12 位置制御装置及び位置制御方法

Country Status (1)

Country Link
JP (1) JP6118291B2 (ja)

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000089829A (ja) * 1998-09-14 2000-03-31 Yaskawa Electric Corp 位置制御方法および装置
JP3869388B2 (ja) * 2002-06-26 2007-01-17 オムロン株式会社 温度調節器
JP2006141141A (ja) * 2004-11-12 2006-06-01 Konica Minolta Medical & Graphic Inc 搬送装置、画像読取装置及び画像形成装置
JP4724493B2 (ja) * 2005-08-25 2011-07-13 キヤノン株式会社 光学機器、撮像装置、及び光学機器の姿勢検知方法
JP4733172B2 (ja) * 2008-11-21 2011-07-27 本田技研工業株式会社 プラントの制御装置
JP5924290B2 (ja) * 2012-04-20 2016-05-25 三菱電機株式会社 モータ制御装置
WO2013171998A1 (ja) * 2012-05-17 2013-11-21 旭化成エレクトロニクス株式会社 線形運動デバイスの制御装置及びその制御方法

Also Published As

Publication number Publication date
JP2016001430A (ja) 2016-01-07

Similar Documents

Publication Publication Date Title
JP6360388B2 (ja) 運動デバイス制御回路
US9612600B2 (en) Controller of linear motion device and control method of the same
KR101920130B1 (ko) 카메라 모듈의 조정 방법과 렌즈 위치 제어 장치 및 선형 운동 디바이스의 제어 장치와 그 제어 방법
US8190014B2 (en) Focus control circuit for adjusting the focus by moving a lens
WO2015087533A1 (ja) 手振れ補正装置及びその調整方法、手振れ補正回路及び手振れ補正方法並びにカメラモジュール及びその光学要素の位置制御方法
US10101593B2 (en) Optical apparatus, control method thereof and storage medium
JP2008180560A (ja) 位置検出回路及びその応用装置
US8509611B2 (en) Lens controlling device and imaging apparatus using the same
WO2015015877A1 (ja) 撮像装置
JP5767786B2 (ja) フォーカス制御回路
JP2016004377A (ja) 線形運動デバイス制御回路
KR101862505B1 (ko) 광학식 이미지 안정화 모듈 및 이를 포함하는 카메라 모듈
JP2021177245A (ja) 撮像装置およびアクチュエータドライバ
JP6118291B2 (ja) 位置制御装置及び位置制御方法
JP2013238822A (ja) 線形運動デバイスの制御装置及びその制御方法
KR102029487B1 (ko) 자동 초점 조절 장치 및 그를 구비한 촬상 시스템
US7916176B2 (en) Device of offset compensation for solid-state imaging device and related method
JP2013125760A (ja) 光検出器制御回路
US20140207287A1 (en) Actuator control apparatus
TWI411871B (zh) 迴圈增益調整電路
JP5793130B2 (ja) 線形運動デバイスの制御装置及びその制御方法
JP2016136837A (ja) 線形運動デバイスの制御装置及びその制御方法
US20220146850A1 (en) System for driving actuator
JP2015055937A (ja) 線形運動デバイスの制御装置及びその制御方法
JP2014153640A (ja) カメラ装置

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20160225

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20161227

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20170104

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20170214

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20170321

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20170324

R150 Certificate of patent or registration of utility model

Ref document number: 6118291

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350