JP6117673B2 - ロボットの原点設定方法およびロボット - Google Patents

ロボットの原点設定方法およびロボット Download PDF

Info

Publication number
JP6117673B2
JP6117673B2 JP2013215430A JP2013215430A JP6117673B2 JP 6117673 B2 JP6117673 B2 JP 6117673B2 JP 2013215430 A JP2013215430 A JP 2013215430A JP 2013215430 A JP2013215430 A JP 2013215430A JP 6117673 B2 JP6117673 B2 JP 6117673B2
Authority
JP
Japan
Prior art keywords
axial
contact portion
origin
shaft member
shaft
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2013215430A
Other languages
English (en)
Other versions
JP2015077649A (ja
Inventor
健次 石塚
健次 石塚
基樹 長森
基樹 長森
賢治 上野
賢治 上野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Yamaha Motor Co Ltd
Original Assignee
Yamaha Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yamaha Motor Co Ltd filed Critical Yamaha Motor Co Ltd
Priority to JP2013215430A priority Critical patent/JP6117673B2/ja
Publication of JP2015077649A publication Critical patent/JP2015077649A/ja
Application granted granted Critical
Publication of JP6117673B2 publication Critical patent/JP6117673B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Numerical Control (AREA)
  • Manipulator (AREA)

Description

本発明は、モータにより回転駆動および昇降駆動される軸部材を備えるロボットの原点設定方法およびロボットに関するものである。
従来から、アーム(ベース)に対してロボットハンド機構が作業軸(軸部材)を介して支持され、モータの駆動力により作業軸とロボットハンド機構とが一体的に回転されるスカラ型ロボット(以下、ロボットと略す)が公知である。そして、特許文献1には、この種のロボットに関し、電源投入時などに、前記作業軸の回転方向の原点位置を、専用のセンサを用いることなく設定する方法(原点出し方法)が開示されている。その方法は、予め、ロボットハンド機構側に上向きに突出するドグ(突出部)を設ける一方、アーム側に下向きに突出するストッパを設けておき、作業軸を回転させてドグとストッパとを周方向に当接させることで、その当接位置を基準として回転方向の原点位置を設定するというものである。このようなセンサレスの原点設定方法は、ロボット構成の簡素化および低廉化を図る上で有用なものである。
特許第3268705号公報
上記ロボットとしては、ロボットハンド機構が作業軸と共に回転するのみならず、作業軸と共に上下方向に移動するものもある。このようなロボットにおいて上記方法に基づき回転方向の原点設定を行うには、予めドグとストッパとが周方向に当接可能となる高さ位置に作業軸(ロボットハンド機構)を配置した上で、当該作業軸を回転させてドグとストッパとを当接させることが必要となる。この場合、ロボット構成の簡素化および低廉化を考慮すると、回転方向の原点設定の場合と同様に、専用のセンサを用いることなく、作業軸を上記高さ位置に配置し、その上で、上記方法に従って回転方向の原点位置を設定できるのが好適である。しかし、この点に関する具体的な方法や構成は特許文献1には一切開示されていない。
本発明は、このような事情に鑑みてなされたものであり、軸方向の移動及び回転が可能な軸部材を備えたロボットに関して、専用のセンサを用いることなく良好に軸部材の原点位置設定を行うことができる技術を提供することを目的とする。
上記の課題を解決するために、本発明に係るロボットの原点設定方法は、ベース部材と、このベース部材に対して軸方向の移動および軸心回りの回転を行う軸部材と、前記軸部材の軸方向の移動に伴い互いに前記軸方向に当接可能なように、前記軸部材に備えられる第1軸方向当接部および前記ベース部材に備えられる第2軸方向当接部と、前記軸部材が前記軸方向の特定位置に配置された状態において当該軸部材が回転することにより、当該回転方向に互いに当接可能なように、前記軸部材に備えられる第1回転方向当接部および前記ベース部材に備えられる第2回転方向当接部と、を備えたロボットについて、前記第1軸方向当接部と前記第2軸方向当接部とが当接する位置を前記軸部材の軸方向原点位置として、予め当該軸方向原点位置を基準に前記特定位置を定める準備工程と、前記軸部材を移動させ、前記第1軸方向当接部と前記第2軸方向当接部とを当接させることにより前記軸方向原点位置を設定する軸方向原点設定工程と、前記軸方向原点設定工程において設定された軸方向原点位置に基づき、前記軸部材を前記軸方向に移動させて前記特定位置に配置する軸移動工程と、前記特定位置に配置した前記軸部材を回転させて前記第1回転方向当接部と前記第2回転方向当接部とを当接させることにより、当該軸部材の回転方向原点位置を設定する回転方向原点設定工程と、を含むものである。
この方法によれば、電源投入時などには、軸部材を軸方向に移動させて第1軸方向当接部と第2軸方向当接部とを当接させることにより、前記軸方向原点位置を特定(設定)することができる。そして、この軸方向原点位置を基準に予め定められている前記特定位置に軸部材を移動させた上で、軸部材を回転させるため、前記第1回転方向当接部と前記第2回転方向当接部とを適切に当接させて回転方向原点位置を設定することができる。
なお、軸部材の回転方向において第1回転方向当接部と第2回転方向当接部とが同じ位置にある状態で軸方向原点設定工程を実行すると、第1軸方向当接部と第2軸方向当接部とが当接する前に、第1回転方向当接部と第2回転方向当接部とが前記軸方向に当接してしまい、その結果、誤った位置で前記軸方向原点位置が設定されることが考えられる。このような不都合は、次のような方法により解決される。
すなわち、上記の原点設定方法において、前記軸方向原点設定工程は、前記第1軸方向当接部と前記第2軸方向当接部とが接近するように、前記軸部材を前記軸方向に移動させて当該軸部材が停止した位置を第1仮原点位置として取得する第1仮原点設定工程と、前記第1仮原点設定工程の後、前記軸部材を所定角度だけ回転させ、前記第1軸方向当接部と前記第2軸方向当接部とが接近するように、前記軸部材を前記軸方向に移動させて、当該軸部材が停止した位置を第2仮原点位置として取得する第2仮原点設定工程と、前記第1仮原点位置および前記第2仮原点位置のうち、予め定められている設定条件に基づき何れか一方の仮原点位置を軸方向原点位置として設定する本原点設定工程とを含む。
この方法によれば、回転角度が互いに異なる位置で一旦仮原点位置をそれぞれ取得しておき、予め定められている設定条件に照らし合わせて仮原点位置のうち何れが軸方向原点位置に該当するのかを判断するので、本来の軸方向原点位置とは異なる位置が誤って軸方向原点位置として設定されることを回避することが可能となる。
なお、この本来の軸方向原点位置とは異なる位置が誤って軸方向原点位置として設定されることを回避するためには、次のような方法を適用することも考えられる。
すなわち、前記軸方向原点設定工程では、前記第1軸方向当接部と前記第2軸方向当接部とが接近するように、前記軸部材を前記軸方向に移動させて当該軸部材が停止した位置を仮原点位置として取得する処理を、前記軸部材を所定角度だけ回転させながら複数回実行し、連続して取得した仮原点位置のうち、予め設定された複数の数だけ仮原点位置が同一となったときに、当該同一となる仮原点位置を軸方向原点位置として設定する。
要するに、第1回転方向当接部と第2回転方向当接部とが軸方向に当接し得る範囲(軸部材の回転方向における範囲)が限られている構造では、上記のように複数の位置で仮原点位置を取得して同一の位置となるものの数を調べることで、本来の軸方向原点位置を正確に特定する事が可能となる。よって、本来の軸方向原点位置とは異なる位置が誤って軸方向原点位置として設定されることを回避することが可能となる。
一方、本発明のロボットは、ベース部材と、このベース部材に対して軸方向の移動および軸心回りの回転を行う軸部材とを備えたロボットであって、前記軸部材の軸方向の移動に伴い互いに前記軸方向に当接可能なように、前記軸部材に備えられる第1軸方向当接部および前記ベース部材に備えられる第2軸方向当接部と、前記軸部材が前記軸方向の特定位置に配置された状態において当該軸部材が回転することにより、当該回転方向に互いに当接可能なように、前記軸部材に備えられる第1回転方向当接部および前記ベース部材に備えられる第2回転方向当接部と、前記第1軸方向当接部と前記第2軸方向当接部とが前記軸方向に当接する位置を基準として予め定められた前記特定位置を記憶する記憶手段と、
前記軸部材の前記軸方向の移動および回転を制御する制御手段と、を備え、前記制御手段は、前記軸部材を移動させ、前記第1軸方向当接部と前記第2軸方向当接部とを当接させることにより前記軸方向原点位置を設定する軸方向原点設定処理と、この軸方向原点設定処理において設定した軸方向原点位置に基づき、前記軸部材を前記特定位置に配置する軸移動処理と、前記特定位置に配置した前記軸部材を回転させて前記第1回転方向当接部と前記第2回転方向当接部とを当接させることにより、当該軸部材の回転方向原点位置を設定する回転方向原点設定処理と、を実行するものである。
この構成によれば、電源投入時などに、上述した原点設定方法に従って、軸部材の軸方向および回転方向の原点設定を自動的に実行することが可能となる。
このロボットにおいて、前記軸方向原点設定処理は、前記第1軸方向当接部と前記第2軸方向当接部とが接近するように、前記軸部材を前記軸方向に移動させて当該軸部材が停止した位置を第1仮原点位置として取得する第1仮原点設定処理と、前記第1仮原点設定処理の後、前記軸部材を所定の所定角度だけ回転させ、前記第1軸方向当接部と前記第2軸方向当接部とが接近するように、前記軸部材を前記軸方向に移動させて当該軸部材が停止した位置を第2仮原点位置として取得する第2仮原点設定処理と、前記第1仮原点位置および前記第2仮原点位置のうち、予め定められている設定条件に基づき何れか一方の仮原点位置を軸方向原点位置として設定する本原点設定処理と、を含むものであるのが好適である。
また、前記軸方向原点設定処理は、前記軸方向原点設定処理は、前記第1軸方向当接部と前記第2軸方向当接部とが接近するように、前記軸部材を前記軸方向に移動させて当該軸部材が停止した位置を仮原点位置として取得する処理を、前記軸部材を所定角度だけ回転させながら複数回実行し、連続して取得した仮原点位置のうち、予め設定された複数の数だけ仮原点位置が同一となったときに、当該同一となる仮原点位置を軸方向原点位置として設定するものであってもよい。
これらの構成によれば、軸方向原点設定処理の際に、第1回転方向当接部と第2回転方向当接部とが前記軸方向に当接し、その結果、誤った位置で前記軸方向原点位置が設定されるという不都合を回避することが可能となる。
なお、上記ロボットにおいて、前記軸部材は、前記第1軸方向当接部と前記第1回転方向当接部とが一体に備えられた鍔状の軸側当接部材を有するものであるのが好適である。
この構成によれば、第1軸方向当接部と前記第1回転方向当接部とが共通の軸側当接部材に設けられているので、軸部材の構造の簡略化および低廉化に寄与する。
また、ベース部材は、前記第2軸方向当接部と前記第2回転方向当接部とが一体に備えられたベース側当接部材を有するものであるのが好適である。
この構成によれば、第2軸方向当接部と前記第2回転方向当接部とが共通のベース側当接部材に設けられているので、ベース部材の構造の簡略化および低廉化に寄与する。
また、上記ロボットにおいて、前記軸部材は、第1端部と第2端部とを有し、前記第1軸方向当接部および前記第2軸方向当接部は、前記ベース部材のうち、前記第1端部の側に設けられ、前記第1回転方向当接部および前記第2回転方向当接部は、前記ベース部材のうち、前記第2端部の側に設けられているものであってもよい。
この構成によれば、軸方向原点設定処理の際に、第1回転方向当接部と第2回転方向当接部とが前記軸方向に当接することが構造的に無くなるため、当該軸方向原点設定処理の迅速化に寄与する。
また、上記ロボットにおいて、第1回転方向当接部および前記第2回転方向当接部のうち一方は、これら回転方向当接部同士が前記軸方向に互いに当接したときに弾性的に後退するものであってもよい。
この構成によれば、軸方向原点設定処理の際に、第1回転方向当接部と第2回転方向当接部とが前記軸方向に当接したとしても、その一方が当該当接に伴い後退することで、第1軸方向当接部と第2軸方向当接部とが確実に当接する。そのため、第1回転方向当接部と第2回転方向当接部とが前記軸方向に当接することにより、誤った位置で軸方向原点位置が設定されることを構造的に回避することが可能となる。しかも、第1回転方向当接部と第2回転方向当接部とが回転方向にずれた位置では、後退可能な回転方向当接部が弾性復帰することで本来の位置が維持される。そのため、軸部材の軸方向および回転方向の原点設定処理をより迅速に行うことが可能となる。
以上説明したように、本発明によれば、専用のセンサを用いることなく良好に軸部材の原点位置設定を行うことができる。
本発明の第1の実施形態に係るスカラ型ロボットを示す側面図である。 アーム(第2リンク)の先端部分を示す斜視図である。 スカラ型ロボットの制御系を示すブロック図である。 コントローラによる作業軸の原点設定制御を説明するフローチャートである。 (a)は、軸側ストッパの突起部がアーム側ストッパの下方に位置する状態、(b)は、軸側ストッパの突起部がアーム側ストッパの下面に当接した状態、(c)は、作業軸が軸方向原点位置に配置された状態(アーム側ストッパの下面に軸側ストッパの上面が当接した状態)それぞれ示す模式である。 コントローラによる作業軸の原点設定制御の第1変形例を説明するフローチャートである。 コントローラによる作業軸の原点設定制御の第2変形例を説明するフローチャートである。 コントローラによる作業軸の原点設定制御の第2変形例を説明するフローチャート(図7の続き)である。 本発明の第2の実施形態に係るスカラ型ロボットのアーム(第2リンク)を示す模式図である。 コントローラによる作業軸の原点設定制御を説明するフローチャートである。 (a)は、第1アーム側ストッパの下面に対して第1軸側ストッパの上面が当接した状態、(b)は、第2軸側ストッパの突出部が第2アーム側ストッパの上面に当接した状態をそれぞれ示す模式である。 本発明の第3の実施形態に係るスカラ型ロボットのアーム(第2リンク)を示す模式図である。 コントローラによる作業軸の原点設定制御を説明するフローチャートである。 (a)は、アーム側ストッパの下面に対して軸側ストッパの突起部が当接した状態、(b)は、作業軸の回転に伴い軸側ストッパの突起部がアーム側ストッパの位置から外側に逃げた状態をそれぞれ示す模式図である。 第3の実施形態に係るスカラ型ロボットの変形例を示す模式図である。
以下、添付図面を参照しながら本発明の好ましい実施の一形態について詳述する。
( 第1の実施形態 )
図1は、本発明の第1の実施形態に係るスカラ型ロボットを側面図で概略的に示している。同図に示すスカラ型ロボット1A(以下、ロボット1Aと略す)は、基台上に設置される円柱状のアーム支持台2と、このアーム支持台2に連結されるアーム3と、このアーム3の先端部に支持される作業軸4(本発明の軸部材に相当する)とを有する。なお、図1中符号5は、後述するモータ12、20及び22等の電力や制御信号送信用のケーブル等が収容される筒状案内部材であり、アーム支持台2とアーム3の第2リンク3bとに亘って接続されている。
アーム3は、前記アーム支持台2に支持されて水平方向に延びる第1リンク3aと、この第1リンク3aの先端に支持されて水平方向に延びる第2リンク3bとから構成される。
第1リンク3aは、アーム支持台2の上部に垂直軸周りに回転(旋回)可能に支持されている。この第1リンク3aは、図外の減速機構を介してアーム支持台2の内部に配置される第1アームモータ10に連結されており、この第1アームモータ10により回転駆動される。
また、第2リンク3bは、第1リンク3aの先端上部に垂直軸周りに回転(旋回)可能に支持されている。この第2リンク3bは、図外の減速機構を介して当該第2リンク3b上に搭載される第2アームモータ12に連結されており、この第2アームモータ12により回転駆動される。
前記作業軸4は、スプライン軸である。作業軸4は、第2リンク3b(本発明のベース部材に相当する)の先端部に、当該第2リンク3bを上下方向に貫通する状態で、当該第2リンク3bに対して上下方向(軸方向)の移動及び軸心回りの回転が可能となるように支持され、R軸モータ20およびZ軸モータ22で駆動されるようになっている。
より詳しくは、第2リンク3bの先端には、スプラインナット(図示省略)が内嵌されたプーリ14が回転自在に支持されている。また、第2リンク3bにおける前記プーリ14の近傍位置には、上段プーリ16a及び下段プーリ16bを一体に備えた中継プーリ16が回転可能に支持されている。そして、第2リンク3bにR軸モータ20が搭載され、このR軸モータ20の出力軸に固定されるプーリ18と前記中継プーリ16の下段プーリ16bとに亘って伝動ベルト19が装着されるとともに、前記中継プーリ16の上段プーリ16aと前記プーリ14とに亘って伝動ベルト17が装着されている。この構成により、作業軸4がR軸モータ20によって回転駆動される。
また、第2リンク3bのうち、作業軸4の側方位置には、上下方向に延び、かつ第2リンク3bに回転自在に支持されるボールねじ軸24が設けられている。このボールねじ軸24にはナット部材26が螺合装着されており、このナット部材26が、作業軸4の上端を回転自在に保持するヘッドホルダ28に組み付けられている。そして、第2リンク3bにZ軸モータ22が搭載され、このZ軸モータ22の出力軸に固定される図外のプーリとボールねじ軸40の下端部に固定される図外のプーリとに亘って伝動ベルト23が装着されている。すなわち、Z軸モータ22により伝動ベルト23等を介してボールねじ軸24が回転駆動されると、このボールねじ軸24の回転に伴い、作業軸4がヘッドホルダ28と共に第2リンク3b(スプラインナット)に対して上下方向に移動する。
前記作業軸4には、鍔状の軸側ストッパ30(本発明の軸側当接部材に相当する)が固定され、第2リンク3bの下面のうち、作業軸4の近傍位置には、アーム側ストッパ34(本発明のベース側当接部材に相当する)が固定されている。これら軸側ストッパ30およびアーム側ストッパ34は、ロボット1Aの電源投入時等に、第2リンク3b(アーム3)に対して作業軸4の軸方向(上下方向)および回転方向の原点位置を設定するための部材である。
図1及び図2に示すように、軸側ストッパ30は、上下両面が平坦な円環状の部材であり、作業軸4のうち、その先端(下端)近傍の位置に固定されている。この軸側ストッパ30は、その上面30a(本発明の第1軸方向当接部に相当する)であってその径方向外側寄りの位置に、ほぼ円柱状の突起部30b(本発明の第1回転方向当接部に相当する)を備えている。当例では、軸側ストッパ30の上面30aにボルトが螺合挿入されることにより、そのボルト頭により前記突起部30bが形成されている。
一方、アーム側ストッパ34は、作業軸4の外周面に沿うように略扇型に形成されたブロック状の部材である。このアーム側ストッパ34は、軸側ストッパ30の上面30aが当接可能な平坦な下面34a(本発明の第2軸方向当接部に相当する)と、作業軸4の径方向に延びる垂直な側面であって、作業軸4の回転に伴い、軸側ストッパ30の突起部30bが当接可能な側面34b(本発明の第2回転方向当接部に相当する)とを有している。
すなわち、このロボット1Aでは、アーム側ストッパ34の下面34aに対して軸側ストッパ30の上面30aが当接する位置が作業軸4の軸方向原点位置とされ、また、アーム側ストッパ34の側面34bに対して軸側ストッパ30の突起部30bが当接する位置が作業軸4の回転方向原点位置とされている。
アーム側ストッパ34は、上記の通り略扇型であるが、その中心角θは、軸側ストッパ30の突起部30bをアーム側ストッパ34の下面34aに当接させた状態から作業軸4を180°回転させると、常に、突起部30bがアーム側ストッパ34の外側(作業軸4の回転方向外側)に逃げるように設定されている。当例では、アーム側ストッパ34の中心角θは、ほぼ30°程度に設定されている。
なお、作業軸4のうち、軸側ストッパ30よりも先端側は作業用機器の装着領域であり、この領域には、例えばロボットアーム等の作業用機器が固定される。
前記ロボット1Aは、図3に示すようなアームコントローラ50を備えている。アームコントローラ50(以下、コントローラ50と略す)は、作業軸4を含むアーム3全体の動作を統括的に制御するものである。このコントローラ50は、周知のCPU、ROM、RAM等から構成されており、その機能構成として、主制御部52、記憶部54およびモータドライバ56等を含む。
記憶部54には、ロボット1A全体を制御するためのプログラムやデータが記憶されており、主制御部52は、前記プログラム等に基づき、モータドライバ56に制御信号を出力することで、当該モータドライバ56を介して前記各モータ11、12、20及び22を制御する。各モータ11、12、20、22にはそれぞれレゾルバ11a、12a、20a、22aが備えられており、各レゾルバ11a、12a、20a、22aにより検出される回転角度情報が主制御部52にフィードバックされる。当実施形態では、主制御部52およびモータドライバ56が本発明の制御手段に相当し、記憶部54が本発明の記憶手段に相当する。
なお、このロボット1Aには、作業軸4の原点設定のための専用のセンサ類は備えられておらず、電源投入時等などには、記憶部54に記憶されているプログラム等に従い、主制御部52の制御に基づき作業軸4の原点位置設定が行われる。
以下、このコントローラ50による作業軸4の軸方向および回転方向の原点位置設定制御について、図4のフローチャートに従って説明する。
このフローチャートに示す制御は、ロボット1Aの電源投入によりスタートする。この制御がスタートすると、アームコントローラ50は、作業軸4を、その回転角度位置を保持した状態で、自然に停止する位置まで上昇させる(ステップS1、S3)。詳しくは、作業軸4の軸側ストッパ30と第2リンク3b(アーム3)のアーム側ストッパ34とが上下方向に突き当たって作業軸4が停止する位置まで作業軸4を上昇させる。この場合、コントローラ50(主制御部52)は、レゾルバ22aから入力される回転角度情報の変化量から作業軸4が停止したか否かを検知する。つまり、上記のようにして作業軸4の上昇が停止すると、これに伴いレゾルバ22aから入力される回転角度情報の変化量がほぼ「0」となるため、これにより作業軸4が停止したことを検知することが可能となる。この場合、モータドライバからZ軸モータ22に供給される電流値の変化に基づき作業軸4が停止したか否かを検知するようにしてもよい。
作業軸4が停止したと判断すると、コントローラ50は、電源投入時を基準としてレゾルバ22a、22bから入力される回転角度情報に基づき、上下方向(軸方向)における作業軸4の停止位置を作業軸4の第1仮軸方向原点位置(Z1)として取得(記憶)し、このときの作業軸4の回転角度位置を作業軸4の第1回転角度位置(R1)として取得する(ステップS5)。
次に、コントローラ50は、作業軸4を予め記憶された所定量(例えば10mm)だけ下降させ、さらに作業軸4を180°だけ特定方向(当例では下方から見て反時計回り)に回転させた後、作業軸4を上昇させる(ステップS7〜S11)。そして、ステップS3の処理と同様に、作業軸4が停止したか否かを判別する(ステップS13)。
作業軸4が停止したと判断すると、コントローラ50は、上下方向の当該停止位置を作業軸4の第2仮軸方向原点位置(Z2)として取得するとともに、このときの作業軸4の回転角度位置を作業軸4の第2回転角度位置(R2)として取得する(ステップS15)。
次に、コントローラ50は、ステップS5で取得した第1仮軸方向原点位置(Z1)と第2仮軸方向原点位置(Z2)とを比較する。ここで、Z1>Z2の場合、つまり、第2仮軸方向原点位置(Z2)よりも第1仮軸方向原点位置(Z1)の方が高い場合には、コントローラ50は、作業軸4を若干下降させて当該作業軸4を回転させることにより、作業軸4を前記第1仮回転方向原点位置(R1)に戻す(ステップS19)。
その後、コントローラ50は、第1仮軸方向原点位置(Z1)を軸方向原点位置(Z)として設定するとともに、この第1仮軸方向原点位置(Z1)を基準にして所定の回転方向原点設定高さ位置、すなわち、作業軸4の回転に伴い、軸側ストッパ30の突起部30bをアーム側ストッパ34の側面34bに当接させることが可能な高さ位置に移動させる(ステップS21)。なお、上記記憶部54には、本来の軸方向原点位置を基準として定められた回転方向原点設定高さ位置(本発明の設定位置に相当する)を示すデータが記憶されており、ステップS21の処理では、コントローラ50は、今回設定した軸方向原点位置(Z)、つまり、第1仮軸方向原点位置(Z1)を基準として前記データに基づき作業軸4を移動させる。
そして、コントローラ50は、さらに作業軸4の回転が停止するまで、つまり、軸側ストッパ30の突起部30bがアーム側ストッパ34の側面34bに突き当たって作業軸4が停止する位置まで当該作業軸4を回転させ、作業軸4が停止したと判断すると、回転方向における当該作業軸4の停止位置を作業軸4の回転方向原点位置(R)として設定する(ステップS23〜S27)。これにより本フローチャートを終了する。なお、ステップS25の処理では、ステップS3の処理と同様に、コントローラ50は、レゾルバ20aから入力される回転角度情報の変化量から作業軸4が停止したか否かを検知する。
一方、ステップS17の処理で、Z1<Z2の場合、つまり、第1仮軸方向原点位置(Z1)よりも第2仮軸方向原点位置(Z2)の方が高いと判断した場合には、コントローラ50は、第2仮軸方向原点位置(Z2)を軸方向原点位置(Z)として設定するとともに、この第2仮軸方向原点位置(Z2)を基準として所定の回転方向原点設定高さ位置に作業軸4を移動させた後(ステップS29)、ステップS23に移行し、上記同様ステップS23〜S27の処理を実行することにより、作業軸4の回転方向原点を設定する。
また、ステップS17の処理で、Z1=Z2の場合、つまり、第1仮軸方向原点位置(Z1)と第2仮軸方向原点位置(Z2)の高さが等しいと判断した場合には、コントローラ50は、処理をステップS21に移行し、上記同様ステップ21〜S27の処理を実行することにより、作業軸4の回転方向原点を設定する。
すなわち、このロボット1Aでは、上記の通り、アーム側ストッパ34の下面34aに対して軸側ストッパ30の上面30aが当接する位置が作業軸4の軸方向原点位置(Z)である。しかし、軸側ストッパ30に突起部30bが設けられる関係上、電源投入時に作業軸4を単に軸方向に移動させるだけでは、図5(a)に示すように、アーム側ストッパ34の真下に突起部30bがある場合には、同図(b)に示すように、アーム側ストッパ34の下面34aに軸側ストッパ30の突起部30bが当接してしまい、誤った位置で軸方向原点位置(Z)が設定されることが考えられる。そこで、当例では、ステップS5、S15において、回転角度位置が互いに180°異なる位置で作業軸4を上昇させ、その停止位置を第1仮軸方向原点位置(Z1)および第2仮軸方向原点位置(Z2)として取得し、これらの位置を比較することにより何れの位置が作業軸4の真の軸方向原点位置かを判別している。具体的には、軸側ストッパ30の突起部30bがアーム側ストッパ34(下面34a)に当接している場合には、この突起部30bの高さ分だけ作業軸4の位置が本来の軸方向原点位置(図5(c))よりも低くなる。従って、ステップS17の処理では、第1仮軸方向原点位置(Z1)および第2仮軸方向原点位置(Z2)のうち、高い方を軸方向原点位置(Z)として設定している。但し、回転角度位置が互いに180°異なる位置であっても、共に、軸側ストッパ30の上面30aがアーム側ストッパ34の下面34aに当接する場合があり得るので、この場合には、第1仮軸方向原点位置(Z1)を回転軸方向原点位置(Z)として設定している。
以上のように、このロボット1Aでは、アーム側ストッパ34の下面34aに対して軸側ストッパ30の上面30aが当接する位置が作業軸4の軸方向原点位置(Z)とされ、また、アーム側ストッパ34の側面34bに対して軸側ストッパ30の突起部30bが当接する位置が作業軸4の回転方向原点位置(R)とされている。そして、電源投入時には、上記の通り、作業軸4を上下方向(軸方向)に移動させて、前記軸側ストッパ30の上面30aとアーム側ストッパ34の下面34aとを当接させることで作業軸4の軸方向原点位置(Z)を設定し、さらにこの軸方向原点位置(Z)を基準に回転方向原点設定高さ位置に移動させた上で、作業軸4を回転させてアーム側ストッパ34(側面34b)に軸側ストッパ30の突起部30bを当接させることにより、作業軸4の回転方向原点位置(R)を設定する。そのため、専用のセンサを用いることなく、モータ20a、22aに設けられるレゾルバ20a、22aからの回転角度情報のみで、作業軸4の軸方向および回転方向の原点位置を適切に設定することができる。
特に、このロボット1Aでは、軸側ストッパ30の上面30aに突起部30bが突設されている関係で、電源投入時に作業軸4を軸方向に移動させるだけでは、アーム側ストッパ34の下面34aに軸側ストッパ30の突起部30bが当接する場合がある。しかし、このロボット1Aによれば、上記のように、アーム側ストッパ34の下面34aに対して軸側ストッパ30の突起部30bを当接させた状態から作業軸4を180°回転させると、常に、突起部30bがアーム側ストッパ34の外側(回転方向外側)に逃げるように当該アーム側ストッパ34等が形成されている。その上で、回転角度位置が互いに180°異なる位置で作業軸4を上昇させて、その停止位置を第1仮軸方向原点位置(Z1)および第2仮軸方向原点位置(Z2)として取得し、これらの位置を比較することにより軸方向原点位置を設定している。そのため、上記のような軸側ストッパ30の構造を備えながらも、作業軸4の軸方向原点位置(Z)や回転方向原点位置(R)を正確に設定することができる。
なお、この実施形態においては、上記の通り、本来の軸方向原点位置を基準として定められた回転方向原点設定高さ位置を示すデータが予め記憶部54に記憶されているが、この回転方向原点設定高さ位置を定め、記憶部54に記憶させる工程が本発明の準備工程に相当する。また、図4のステップS1〜S21、S29の処理が本発明の軸方向原点設定工程(軸方向原点設定処理)に相当し、ステップS21、S29の処理が本発明の軸移動工程(軸移動処理)に相当し、ステップS25〜S27が回転方向原点設定工程(回転方向原点設定処理)に相当する。また、ステップS1〜S21、S29の処理のうち、ステップS1〜S5が本発明の第1仮原点設定工程(第1仮原点設定処理)に相当し、ステップS7〜S15が本発明の第2仮原点設定工程(第2仮原点設定処理)に相当し、ステップS17〜S21、S29が本発明の本原点設定工程(本原点設定処理)に相当する。そして、ステップS17、S21及びS29の処理において軸方向原点位置を設定する際の条件が本発明の設定条件に相当する。
< 第1変形例 >
次に、上記コントローラ50による、作業軸4の軸方向および回転方向の原点位置設定制御の第1変形例について、図6のフローチャートに従って説明する。
なお、この制御の前提として、アーム側ストッパ34の前記中心角θは、軸側ストッパ30の突起部30bをアーム側ストッパ34の下面34aに当接させた状態から作業軸4を30°回転させると、常に、突起部30bがアーム側ストッパ34の外側(回転方向外側)に逃げ得るように設定されている。
図6に示す制御では、まず、図4のフローチャートのステップS1〜S15の処理と同等のステップS31〜45の処理が実行され、これによりコントローラ50は、第1仮軸方向原点位置(Z1)と第2仮軸方向原点位置(Z2)とを取得する。但し、ステップS39(図4のステップS9の処理に相当)の処理では、コントローラ50は作業軸4を30°だけ回転させる。従って、図4の例とは異なり、第1仮軸方向原点位置(Z1)が取得されたときの作業軸4の回転角度と、第2仮軸方向原点位置(Z2)が取得されたときの作業軸4の回転角度の差は30°である。
作業軸4の第2仮軸方向原点位置(Z2)およびこのときの作業軸4の回転角度位置(R2)が取得されると、コントローラ50は、Z1=Z2か否かを判別する(ステップS47)。ここでYESと判断した場合には、図4のフローチャートのステップS21〜S27の処理と同等のステップS51〜S57の処理を実行する。すなわち、コントローラ50は、第1仮軸方向原点位置(Z1)を軸方向原点位置(Z)として設定するとともに、この第1仮軸方向原点位置(Z1)を基準にして、記憶部54に記憶されている回転方向原点設定高さ位置に作業軸4を移動させる(ステップS51)。そして、軸側ストッパ30の突起部30bがアーム側ストッパ34の側面34bに突き当たって作業軸4が停止する位置まで当該作業軸4を回転させ、作業軸4の停止位置を回転方向原点位置(R)として設定する(ステップS53〜S57)。これにより、本フローチャートを終了する。
これに対して、ステップS47の処理でNOと判断した場合には、コントローラ50は、現在の第1仮軸方向原点位置(Z1)を破棄し、現在の第2仮軸方向原点位置(Z2)を第1仮軸方向原点位置(Z1)に置き換えた後(ステップS59)、処理をステップS37に移行する。そして、ステップS37〜S47の処理を繰り返し、最終的にステップS47でYESと判断すると、ステップS51の処理に移行する。
すなわち、この第1変形例の制御では、作業軸4の回転角度位置を30°ずつずらしながら軸方向原点位置を取得し、先に取得した作業軸4の仮軸方向原点位置を第1仮軸方向原点位置(Z1)、その後に取得した作業軸4の仮軸方向原点位置を第2仮軸方向原点位置(Z2)として、第1仮軸方向原点位置(Z1)と第2仮軸方向原点位置(Z2)とが同一となった場合に、第1仮軸方向原点位置(Z1)を作業軸4の軸方向原点位置(Z)として設定する。これは、上記の通り、アーム側ストッパ34の下面34aに対して軸側ストッパ30の突起部30bが当接した状態から作業軸4を30°回転させると、常に、突起部30bがアーム側ストッパ34の外側(回転方向外側)に逃げ得るようにアーム側ストッパ34が形成されており、連続して取得した第1、第2の仮軸方向原点位置(Z1、Z2)が同一になる場合とは、要するに、何れの仮軸方向原点位置(Z1、Z2)もアーム側ストッパ34の下面34aに対して軸側ストッパ30の上面30aが当接した状態を意味する。つまり、作業軸4が本来の軸方向原点位置に配置された状態にあることを意味する。よって、上記のように第1仮軸方向原点位置(Z1)と第2仮軸方向原点位置(Z2)とが同一となったときに、第1仮軸方向原点位置(Z1)を作業軸4の軸方向原点位置(Z)として設定することで、軸方向原点位置(Z)を正確に設定することができる。
なお、図6の例では、ステップS51の処理において、第1仮軸方向原点位置(Z1)を軸方向原点位置(Z)に設定しているが、勿論、第2仮軸方向原点位置(Z2)を軸方向原点位置(Z)に設定してもよい。
なお、この実施形態においては、図6のステップS31〜S51、S59の処理が本発明の軸方向原点設定工程(軸方向原点設定処理)に相当し、ステップS51の処理が本発明の軸移動工程(軸移動処理)に相当し、ステップS53〜S57の処理が回転方向原点設定工程(回転方向原点設定処理)に相当する。
< 第2変形例 >
次に、上記コントローラ50による、作業軸4の軸方向および回転方向の原点位置設定制御の第2変形例について、図7、図8のフローチャートに従って説明する。
図7、図8に示す制御では、まず、コントローラ50は、カウンタnに「1」をセットし(ステップS61)、その後、ステップS63〜S77の処理を実行する。このステップS63〜S77の処理は、図6のフローチャートのステップS31〜S45の処理と実質的に同一であり、これにより、コントローラ50は、第n仮軸方向原点位置(Zn)および第n+1仮軸方向原点位置(Z(n+1))と、回転角度位置Rn、R(n+1)を取得する。
次に、コントローラ50は、Zn=Z(n+1)であるか否かを判別し(ステップS79)、ここでYESと判断した場合には、ステップS81〜S87の処理を実行する。この処理は、図6のステップS51〜S57に対応する。すなわち、コントローラ50は、第nmax仮軸方向原点位置(Zmax)を基準に、記憶部54に記憶されている回転方向原点設定高さ位置に作業軸4を移動させる。そして、アーム側ストッパ34の側面34bに対して軸側ストッパ30の突起部30bが突き当たって作業軸4が停止する位置まで作業軸4を回転させ、作業軸4の停止位置を回転方向原点位置(R)として設定する。
これに対して、ステップS79の処理でNOと判別した場合には、コントローラ50は、ステップS89〜S97の処理を実行することにより、第(n+2)仮軸方向原点位置(Z(n+2))をさらに取得する。ステップS89〜S97の処理は、上記ステップS69〜S77の処理と同等である。そして、既に取得している第n仮軸方向原点位置(Zn)および第n+1仮軸方向原点位置(Z(n+1))のうち、値の大きい方と、第(n+2)仮軸方向原点位置(Z(n+2))とが同じか否かを判別し(ステップS99)、ここで同じと判断した場合には、コントローラ50は、処理をステップS81に移行し、作業軸4の回転方向原点位置(R)を設定するための処理を実行する。
一方、ステップS99の処理でNOと判断した場合には、コントローラ50は、カウンタnを「1」インクリメントした後(ステップS100)、処理をステップS89に移行し、ステップS89〜S99の処理を繰り返す。そして、最終的に、第n仮軸方向原点位置(Zn)および第n+1仮軸方向原点位置(Z(n+1))のうち、値の大きいものと、第(n+2)仮軸方向原点位置(Z(n+2))とが同じになると、処理をステップS81に移行し、作業軸4の回転方向原点位置を設定するための処理を実行する。
つまり、先に説明した図6の第1変形例では、作業軸4の回転角度位置を30°ずつずらしながら互いに異なる回転角度位置で仮軸方向原点位置を取得し、連続して取得した仮軸方向原点位置が同一となったときに、先に取得した仮軸方向原点位置を軸方向原点位置(R)とするものである。これに対して、図7の第2変形例は、作業軸4の回転角度位置を30°ずつずらしながら互いに異なる回転角度位置で仮軸方向原点位置を取得するが、連続して取得した3つの仮軸方向原点位置のうち2つが同一となったときに、後から取得した第nmax仮軸方向原点位置(Zmax)を軸方向原点位置(R)とするのである。
このような第2変形例の制御も、理屈は第1変形例の制御と同じであり、第1変形例の場合と同様に、軸方向原点位置(Z)を正確に設定することができる。
なお、図7、図8の例では、ステップS81の処理において、第nmax仮軸方向原点位置(Zmax)を軸方向原点位置(Z)に設定しているが、勿論、先に取得した仮軸方向原点位置を軸方向原点位置(Z)に設定するようにしてもよい。
なお、この実施形態においては、図7,図9のステップS61〜S81及びステップS89〜S100の処理が本発明の軸方向原点設定工程(軸方向原点設定処理)に相当し、ステップS81の処理が本発明の軸移動工程(軸移動処理)に相当し、ステップS83〜S87の処理が回転方向原点設定工程(回転方向原点設定処理)に相当する。
( 第2の実施形態 )
図9は、本発明の第2の実施形態に係るスカラ型ロボットのうち、アーム(第2リンク)の部分を模式図で示している。なお、第2の実施形態に係るスカラ型ロボット1B(以下、ロボット1Bと略す)のハード的な構成は、以下に説明する点を除き、基本的には第1の実施形態のロボット1Aと同一である。
第2実施形態のロボット1Bは、作業軸4の下端(本発明の第1端部に相当する)近傍の位置に軸側ストッパ30が固定され、これに対応するアーム側ストッパ34が第2リンク3bの下面に固定される点で第1実施形態のロボット1Aと共通する。しかし、第2実施形態のロボット1Bでは、さらに軸側ストッパ30(第1軸側ストッパ30という)とは別の鍔状の軸側ストッパ31(第2軸側ストッパ31という)が作業軸4の上端(本発明の第2端部に相当する)近傍の位置に固定され、これに対応するアーム側ストッパ35(第2アーム側ストッパ35という)が第2リンク3bの上面に固定さている。
第1軸側ストッパ30(本発明の第1軸方向当接部に相当する)および第1アーム側ストッパ34(本発明の第2軸方向当接部に相当する)は、第1軸側ストッパ30に突起部30bが設けられていない点を除き、第1の実施形態の軸側ストッパ30及びアーム側ストッパ34とほぼ同等である。一方、第2アーム側ストッパ35(本発明の第2回転方向当接部に相当する)は、第2リンク3bの上面であって作業軸4の近傍位置に立設された軸状体である。また、第2軸側ストッパ31(本発明の第1回転方向当接部に相当する)は、その下面のうち径方向外側寄りの位置に、作業軸4の回転に伴い前記第2アーム側ストッパ35の側面に当接可能な突出部31aを備えている。
そして、このロボット1Bでは、第1軸側ストッパ30の上面30aと第1アーム側ストッパ34の下面34aとが当接する位置が作業軸4の軸方向原点位置とされ、第2軸側ストッパ31の突出部31aが第2アーム側ストッパ35の側面に当接する位置が、作業軸4の回転方向原点位置とされている。
次に、第2の実施形態のロボット1Bのコントローラ50による作業軸4の軸方向および回転方向の原点位置設定制御について、図10のフローチャートに従って説明する。
この制御がスタートすると、コントローラ50は、作業軸4をその回転角度位置を保持した状態で、自然に停止する位置まで上昇させる(ステップS101、S103)。そして、作業軸4が停止すると、当該停止位置を作業軸4の軸方向原点位置(Z)として設定する(ステップS105)。すなわち、第1軸側ストッパ30には回転方向原点設定用の突起部は設けられておらず、作業軸4を上昇させると、図11(a)に示すように、常に第1アーム側ストッパ34の下面34aに対して第1軸側ストッパ30の上面30aが当接する。従って、作業軸4の上記停止位置を直ちに軸方向原点位置(Z)として設定することができる。
次に、コントローラ50は、ステップS105で設定した軸方向原点位置(Z)を基準として、主制御部52に記憶されている回転方向原点設定高さ位置に向かって作業軸4の移動(下降)を開始させる(ステップS107)。そして、当該高さ位置に到達する前に作業軸4が停止したか否かを判別する(ステップS109)。
ここで、YESと判断した場合には、コントローラ50は、予め定められた回転角度だけ作業軸4を回転させた後、作業軸4をさらに下降させ(ステップS111)、作業軸4が回転方向原点設定高さ位置に到達したか否かを判別する(ステップS113)。すなわち、第2軸側ストッパ31の突出部31aと第2アーム側ストッパ35との位置関係によっては、図11(b)に示すように、第2アーム側ストッパ35の上面に第2軸側ストッパ31の突出部31aが当接し、作業軸4が原点設定高さ位置に配置されない場合がある。そこで、この場合(ステップS109でYES)には、作業軸4を回転させ、第2アーム側ストッパ35に対して第2軸側ストッパ31の突出部31aを回転方向に逃がすようにしている。従って、ステップS111における作業軸4の回転角度は、第2アーム側ストッパ35に当接した突出部31aを確実に逃がすことができる角度に設定されている。なお、コントローラ50は、前記回転方向原点設定高さ位置と、レゾルバ22aから入力される回転角度情報の変化量とに基づきステップS113の判別を行う。
ステップS113で作業軸4が原点設定高さ位置に到達したと判別した場合には、コントローラ50は、第2軸側ストッパ31の突出部31aが第2アーム側ストッパ35の側面に突き当たって作業軸4が停止する位置まで当該作業軸4を回転させ、当該停止位置を作業軸4の回転方向原点位置(R)として設定した後(ステップS115〜S119)、本フローチャートを終了する。
一方、ステップS109の処理でNOと判別した場合、すなわち、作業軸4が原点設定高さ位置に到達した場合には、コントローラ50は、ステップS111、S113の処理をスキップしてステップS115の処理に移行する。これにより、作業軸4を回転させて回転方向原点位置(R)を設定する。
以上のような第2の実施形態のロボット1Bによれば、第1の実施形態のロボット1Aと同様に、電源投入時の作業軸4の軸方向および回転方向の原点位置設定を、専用のセンサを用いること無く、適切に行うことが可能となる。特に、このロボット1Bの場合、作業軸4を上昇させると、常に第1アーム側ストッパ34の下面34aに対して第1軸側ストッパ30の上面30aが当接するので、作業軸4の軸方向原点位置(Z)の設定を速やかに行うことができる。
なお、この実施形態においては、図10のステップS101〜S107の処理が本発明の軸方向原点設定工程(軸方向原点設定処理)に相当し、ステップS107〜S113の処理が本発明の軸移動工程(軸移動処理)に相当し、ステップS115〜S119の処理が回転方向原点設定工程(回転方向原点設定処理)に相当する。
( 第3の実施形態 )
図12は、本発明の第3の実施形態に係るスカラ型ロボットのうち、アーム(第2リンク)の部分を模式図で示している。なお、第3の実施形態に係るスカラ型ロボット1C(以下、ロボット1Cと略す)のハード的な構成は、以下に説明する点を除き、基本的には第1の実施形態のロボット1Aと同一である。
第3の実施形態のロボット1Cでは、軸側ストッパ30において突起部30bが弾性的に後退可能に構成されている。詳しくは、突起部30bが軸側ストッパ30の上面30aから上方に突出した突出位置と上面30aの下方に退避した退避位置とに亘って出没可能となるように支持された上で、圧縮コイルばね等の弾性部材によって突出位置に付勢されている。この点で、ロボット1Cは、第1の実施形態のロボット1Aと構成が相違している。
次に、第3の実施形態のロボット1Cのコントローラ50による作業軸4の軸方向および回転方向の原点位置設定制御について、図13のフローチャートに従って説明する。
この制御がスタートすると、コントローラ50は、作業軸4をその回転角度位置を保持した状態で、自然に停止する位置まで上昇させる(ステップS121、S123)。そして、作業軸4が停止すると、当該停止位置を作業軸4の軸方向原点位置(Z)として設定する(ステップS125)。このロボット1Cでは、上記の通り、軸側ストッパ30の突起部30bが弾性的に後退可能であり、仮に突起部30bがアーム側ストッパ34の下方位置にあったとしても、図14(a)に示すように、アーム側ストッパ34の下面34aに当接するに伴い突起部30bが退避位置に押し下げられる。よって、作業軸4を上昇させると、常にアーム側ストッパ34の下面34aに対して軸側ストッパ30の上面30aが当接することとなり、従って、作業軸4の上記停止位置を直ちに軸方向原点位置(Z)として設定することができる。
次に、コントローラ50は、ステップS125で設定した軸方向原点位置(Z)を基準として、記憶部54に記憶されている回転方向原点設定高さ位置へ作業軸4を移動させ、その後、アーム側ストッパ34の側面に対して軸側ストッパ30の突出部31aが突き当たって作業軸4が停止する位置まで当該作業軸4を回転させる。これにより、当該停止位置を作業軸4の回転方向原点位置(R)として設定する(ステップS127〜S133)。なお、このロボット1Cでは、図14(a)に示すように突起部30bがアーム側ストッパ34の下面34aに当接して退避位置に押し下げられていれも、ステップS129の処理で作業軸4が回転してアーム側ストッパ34の下面34aから回転方向に突起部30bの位置がずれると、図14(b)に示すように、突起部30bが退避位置から突出位置に弾性復帰する。従って、作業軸4を回転させることで、常に、アーム側ストッパ34の側面34bに対して軸側ストッパ30の突起部30bを当接させることができる。
以上のような第3の実施形態のロボット1Cについても、上述の通り、第1、第2の実施形態のロボット1A、1Bと同様に、電源投入時の作業軸4の軸方向および回転方向の原点位置設定を、専用のセンサを用いること無く、適切に行うことが可能となる。
特に、この第3の実施形態のロボット1Cによれば、第1の実施形態のロボット1Aのように、2つ以上の仮軸方向原点位置を取得して真の軸方向原点位置を特定したり、第2の実施形態のロボット1Bのように、作業軸4を回転方向原点設定高さ位置に移動させる際に、その途中で一旦作業軸4を回転させるといった処理が発生することがない。そのため、第1、第2の実施形態のロボット1A、1Bと比べると、より短時間で作業軸4の軸方向および回転方向の原点位置設定を行うことが可能になるという利点がある。
なお、この実施形態においては、図10のステップS121〜S125の処理が本発明の軸方向原点設定工程(軸方向原点設定処理)に相当し、ステップS127の処理が本発明の軸移動工程(軸移動処理)に相当し、ステップS129〜S133の処理が回転方向原点設定工程(回転方向原点設定処理)に相当する。
この第3実施形態については、その変形例として、図15に示すような構成を採用することも可能である。同図に示す構成では、アーム側ストッパ34側に出没可能な突起部34c(本発明の第2回転方向当接部に相当する)が設けられ、この突起部34cが軸側ストッパ30の側面(本発明の第1回転当接部に相当する)に当接するように構成されている。このような構成によっても、図12の構成と同等の作用効果を享受することができる。
ところで、上述した第1〜第3の実施形態に係るスカラ型ロボット1A〜1Cおよびこれらスカラ型ロボット1A〜1Cによる作業軸4の原点設定制御(原点設定方法)は、本発明に係るロボットおよびその原点設定方法の好ましい実施形態の例示であって、スカラ型ロボット1A〜1Cの具体的な構成や具体的な原点設定方法は、本発明の要旨を逸脱しない範囲で適宜変更可能である。
特に、軸側ストッパ30、31、アーム側ストッパ34、35および突起部30b等の具体的な形状や配置は、必ずしも上述した実施形態のものに限定されるものではなく、作業軸4の軸方向および回転方向の原点位置を設定する際に、第2リンク3b(アーム3)に対する作業軸4の移動や回転を拘束できればよく適宜変更可能である。
また、各実施形態では、本発明をいわゆるスカラ型ロボットに適用した例について説明したが、本発明は、ベース部材に対して軸方向の移動および軸心回りの回転を行う作業軸(軸部材)を備えたロボットであれば、スカラ型ロボット以外のロボットについても勿論適用可能である。
1A、1B、1C スカラ型ロボット
2 アーム支持体
3 アーム
3a 第1リンク
3b 第2リンク
4 作業軸
30 軸側ストッパ
30a 上面
30b 突起部
34 アーム側ストッパ
34a 下面
34b 側面
50 アームコントローラ
52 主制御部
54 記憶部
56 モータドライバ

Claims (10)

  1. ベース部材と、このベース部材に対して軸方向の移動および軸心回りの回転を行う軸部材と、前記軸部材の軸方向の移動に伴い互いに前記軸方向に当接可能なように、前記軸部材に備えられる第1軸方向当接部および前記ベース部材に備えられる第2軸方向当接部と、前記軸部材が前記軸方向の特定位置に配置された状態において当該軸部材が回転することにより、当該回転方向に互いに当接可能なように、前記軸部材に備えられる第1回転方向当接部および前記ベース部材に備えられる第2回転方向当接部と、を備えたロボットについて、前記第1軸方向当接部と前記第2軸方向当接部とが当接する位置を前記軸部材の軸方向原点位置として、予め当該軸方向原点位置を基準に前記特定位置を定める準備工程と、
    前記軸部材を移動させ、前記第1軸方向当接部と前記第2軸方向当接部とを当接させることにより前記軸方向原点位置を設定する軸方向原点設定工程と、
    前記軸方向原点設定工程において設定された軸方向原点位置に基づき、前記軸部材を前記軸方向に移動させて前記特定位置に配置する軸移動工程と、
    前記特定位置に配置した前記軸部材を回転させて前記第1回転方向当接部と前記第2回転方向当接部とを当接させることにより、当該軸部材の回転方向原点位置を設定する回転方向原点設定工程と、を含むことを特徴とするロボットの原点設定方法。
  2. 請求項1に記載のロボットの原点設定方法において、
    前記軸方向原点設定工程は、前記第1軸方向当接部と前記第2軸方向当接部とが接近するように、前記軸部材を前記軸方向に移動させて当該軸部材が停止した位置を第1仮原点位置として取得する第1仮原点設定工程と、
    前記第1仮原点設定工程の後、前記軸部材を所定角度だけ回転させ、前記第1軸方向当接部と前記第2軸方向当接部とが接近するように、前記軸部材を前記軸方向に移動させて、当該軸部材が停止した位置を第2仮原点位置として取得する第2仮原点設定工程と、
    前記第1仮原点位置および前記第2仮原点位置のうち、予め定められている設定条件に基づき何れか一方の仮原点位置を軸方向原点位置として設定する本原点設定工程と、を含むことを特徴とするロボットの原点設定方法。
  3. 請求項1に記載のロボットの原点設定方法において、
    前記軸方向原点設定工程では、前記第1軸方向当接部と前記第2軸方向当接部とが接近するように、前記軸部材を前記軸方向に移動させて当該軸部材が停止した位置を仮原点位置として取得する処理を、前記軸部材を所定角度だけ回転させながら複数回実行し、連続して取得した仮原点位置のうち、予め設定された複数の数だけ仮原点位置が同一となったときに、当該同一となる仮原点位置を軸方向原点位置として設定することを特徴とするロボットの原点設定方法。
  4. ベース部材と、このベース部材に対して軸方向の移動および軸心回りの回転を行う軸部材とを備えたロボットであって、
    前記軸部材の軸方向の移動に伴い互いに前記軸方向に当接可能なように、前記軸部材に備えられる第1軸方向当接部および前記ベース部材に備えられる第2軸方向当接部と、
    前記軸部材が前記軸方向の特定位置に配置された状態において当該軸部材が回転することにより、当該回転方向に互いに当接可能なように、前記軸部材に備えられる第1回転方向当接部および前記ベース部材に備えられる第2回転方向当接部と、
    前記第1軸方向当接部と前記第2軸方向当接部とが前記軸方向に当接する位置を基準として予め定められた前記特定位置を記憶する記憶手段と、
    前記軸部材の前記軸方向の移動および回転を制御する制御手段と、を備え、
    前記制御手段は、前記軸部材を移動させ、前記第1軸方向当接部と前記第2軸方向当接部とを当接させることにより前記軸方向原点位置を設定する軸方向原点設定処理と、この軸方向原点設定処理において設定した軸方向原点位置に基づき、前記軸部材を前記特定位置に配置する軸移動処理と、前記特定位置に配置した前記軸部材を回転させて前記第1回転方向当接部と前記第2回転方向当接部とを当接させることにより、当該軸部材の回転方向原点位置を設定する回転方向原点設定処理と、を実行する、ことを特徴とするロボット。
  5. 請求項4に記載のロボットにおいて、
    前記軸方向原点設定処理は、
    前記第1軸方向当接部と前記第2軸方向当接部とが接近するように、前記軸部材を前記軸方向に移動させて当該軸部材が停止した位置を第1仮原点位置として取得する第1仮原点設定処理と、
    前記第1仮原点設定処理の後、前記軸部材を所定角度だけ回転させ、前記第1軸方向当接部と前記第2軸方向当接部とが接近するように、前記軸部材を前記軸方向に移動させて当該軸部材が停止した位置を第2仮原点位置として取得する第2仮原点設定処理と、
    前記第1仮原点位置および前記第2仮原点位置のうち、予め定められている設定条件に基づき何れか一方の仮原点位置を軸方向原点位置として設定する本原点設定処理と、を含むことを特徴とするロボット。
  6. 請求項4に記載のロボットにおいて、
    前記軸方向原点設定処理は、前記第1軸方向当接部と前記第2軸方向当接部とが接近するように、前記軸部材を前記軸方向に移動させて当該軸部材が停止した位置を仮原点位置として取得する処理を、前記軸部材を所定角度だけ回転させながら複数回実行し、連続して取得した仮原点位置のうち、予め設定された複数の数だけ仮原点位置が同一となったときに、当該同一となる仮原点位置を軸方向原点位置として設定するものである、ことを特徴とするロボット。
  7. 請求項4乃至6の何れか一項に記載のロボットにおいて、
    前記軸部材は、前記第1軸方向当接部と前記第1回転方向当接部とが一体に備えられた鍔状の軸側当接部材を有する、ことを特徴とするロボット。
  8. 請求項4乃至7の何れか一項に記載のロボットにおいて、
    前記ベース部材は、前記第2軸方向当接部と前記第2回転方向当接部とが一体に備えられたベース側当接部材を有する、ことを特徴とするロボット。
  9. 請求項4に記載のロボットにおいて、
    前記軸部材は、第1端部と第2端部とを有し、
    前記第1軸方向当接部および前記第2軸方向当接部は、前記ベース部材のうち、前記第1端部の側に設けられ、
    前記第1回転方向当接部および前記第2回転方向当接部は、前記ベース部材のうち、前記第2端部の側に設けられている、ことを特徴とするロボット。
  10. 請求項4に記載のロボットにおいて、
    第1回転方向当接部および前記第2回転方向当接部のうち一方は、これら回転方向当接部同士が前記軸方向に互いに当接したときに弾性的に後退する、ことを特徴とするロボット。
JP2013215430A 2013-10-16 2013-10-16 ロボットの原点設定方法およびロボット Active JP6117673B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013215430A JP6117673B2 (ja) 2013-10-16 2013-10-16 ロボットの原点設定方法およびロボット

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013215430A JP6117673B2 (ja) 2013-10-16 2013-10-16 ロボットの原点設定方法およびロボット

Publications (2)

Publication Number Publication Date
JP2015077649A JP2015077649A (ja) 2015-04-23
JP6117673B2 true JP6117673B2 (ja) 2017-04-19

Family

ID=53009572

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013215430A Active JP6117673B2 (ja) 2013-10-16 2013-10-16 ロボットの原点設定方法およびロボット

Country Status (1)

Country Link
JP (1) JP6117673B2 (ja)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6687581B2 (ja) 2017-11-24 2020-04-22 ファナック株式会社 水平多関節型ロボットの校正システムおよび校正方法
US10933525B2 (en) * 2018-07-04 2021-03-02 Fanuc Corporation Horizontal articulated robot
JP2020179443A (ja) * 2019-04-24 2020-11-05 ファナック株式会社 水平多関節ロボット
JP7285937B2 (ja) * 2019-09-02 2023-06-02 ヤマハ発動機株式会社 ロボットの原点出し装置及び方法
JP6952232B1 (ja) * 2020-08-07 2021-10-20 株式会社ハアーモニー 開閉体の開閉装置及びその制御方法

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62175810A (ja) * 1986-01-29 1987-08-01 Omron Tateisi Electronics Co 産業用ロボツト制御装置
JP3268705B2 (ja) * 1994-07-15 2002-03-25 キヤノン株式会社 ロボットの原点出し方法
JP3905643B2 (ja) * 1998-05-29 2007-04-18 株式会社ダイヘン 旋回装置
JP4055691B2 (ja) * 2003-10-03 2008-03-05 松下電器産業株式会社 産業用ロボット
JP5629528B2 (ja) * 2010-08-18 2014-11-19 株式会社アイエイアイ 制御装置、産業用ロボット、座標系の再現方法、及びプログラム

Also Published As

Publication number Publication date
JP2015077649A (ja) 2015-04-23

Similar Documents

Publication Publication Date Title
JP6117673B2 (ja) ロボットの原点設定方法およびロボット
JP3961408B2 (ja) 組立て方法及び装置
CN102745028B (zh) 用于安装充气轮胎的方法和装置
EP2808110B1 (en) Drilling apparatus and drilling method
CN106808464B (zh) 利用协作机器人的车辆生产系统及生产方法
US20170190515A1 (en) Automatic assembly device and its control method
EP1941970B1 (en) A method and a device for effecting automatic centering of an annular workpiece on a rotating surface
WO2021075031A1 (ja) 多関節ロボット
CN110125312B (zh) 一种自动制孔铆接控制系统及控制方法
US10500687B2 (en) Machine tool
JP6154689B2 (ja) 自動ねじ締め機
US9061555B2 (en) Method and machine for automated tire and wheel assembly
JP4822558B2 (ja) パラレルメカニズムの原点復帰方法
JP6565752B2 (ja) ロボット制御装置及びロボット制御方法
CN101239441A (zh) 在旋转表面上实现环形工件自动对中的方法和装置
KR20140062743A (ko) 서포트 용접용 스카라 로봇 시스템 및 이에 따른 용접방법
JP2019084650A (ja) ロボット装置及び組立品の製造方法
US10723023B2 (en) Control device and control method for controlling workpiece moving device and robot to operate in cooperation with each other
CN113853280B (zh) 机器人控制装置、机器人以及机器人控制方法
JP2006224218A (ja) 多関節ロボット
JP7285937B2 (ja) ロボットの原点出し装置及び方法
JP6429582B2 (ja) 表面実装機の部品保持ヘッド
CN210147390U (zh) 一种圆柱磁石组装机构
JP7118336B1 (ja) 五徳爪の被膜形成装置
JP7035369B2 (ja) 加工方法

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20160516

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20170228

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20170228

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20170323

R150 Certificate of patent or registration of utility model

Ref document number: 6117673

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250