JP6108946B2 - 撮像装置、制御方法、プログラム及び記憶媒体 - Google Patents

撮像装置、制御方法、プログラム及び記憶媒体 Download PDF

Info

Publication number
JP6108946B2
JP6108946B2 JP2013100546A JP2013100546A JP6108946B2 JP 6108946 B2 JP6108946 B2 JP 6108946B2 JP 2013100546 A JP2013100546 A JP 2013100546A JP 2013100546 A JP2013100546 A JP 2013100546A JP 6108946 B2 JP6108946 B2 JP 6108946B2
Authority
JP
Japan
Prior art keywords
flicker
imaging
timing
continuous shooting
detection
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2013100546A
Other languages
English (en)
Other versions
JP2014220763A5 (ja
JP2014220763A (ja
Inventor
尚幸 中川原
尚幸 中川原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to JP2013100546A priority Critical patent/JP6108946B2/ja
Priority to US14/268,881 priority patent/US9906731B2/en
Publication of JP2014220763A publication Critical patent/JP2014220763A/ja
Publication of JP2014220763A5 publication Critical patent/JP2014220763A5/ja
Application granted granted Critical
Publication of JP6108946B2 publication Critical patent/JP6108946B2/ja
Priority to US15/836,567 priority patent/US10708515B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N23/00Cameras or camera modules comprising electronic image sensors; Control thereof
    • H04N23/70Circuitry for compensating brightness variation in the scene
    • H04N23/745Detection of flicker frequency or suppression of flicker wherein the flicker is caused by illumination, e.g. due to fluorescent tube illumination or pulsed LED illumination
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N23/00Cameras or camera modules comprising electronic image sensors; Control thereof
    • H04N23/70Circuitry for compensating brightness variation in the scene
    • H04N23/73Circuitry for compensating brightness variation in the scene by influencing the exposure time

Landscapes

  • Engineering & Computer Science (AREA)
  • Multimedia (AREA)
  • Signal Processing (AREA)
  • Studio Devices (AREA)
  • Transforming Light Signals Into Electric Signals (AREA)

Description

本発明は、撮像装置に関し、特に蛍光灯下などの人工光源下で発生するフリッカーの影響を抑える技術に関するものである。
近年、デジタルカメラや携帯電話などの撮像装置の高感度化が進んでいる。そのため、室内のような比較的暗い環境下においても、シャッタースピードを高速にした(露光時間を短くした)撮影により、ブレを抑えた明るい画像を取得することが可能になってきている。
また、室内光源として普及している蛍光灯は商用電源周波数の影響により、周期的に照明光がゆらぐ現象であるフリッカーが生じる。このようなフリッカーが生じる光源(以下、フリッカー光源とする)下でシャッタースピードを高速にした撮影を行うと、1つの画像内で露出ムラや色ムラが発生したり、連続して撮影した複数の画像間で露出や色温度のばらつきが発生したりする場合がある。
このような問題に対して、特許文献1では、照明光のフリッカーの状態を検出し、露光時間がフリッカーの明滅周期より短い場合、露光時間の中心が照明光の光量が極大値を示すタイミングと略一致するように撮像タイミングを調節する技術が提案されている。
特開2006−222935号公報
しかしながら、特許文献1に記載された技術では、複数枚連続撮像を開始する前に検出された照明光量の極大値の位相に基づいて、複数枚連続撮像の各撮像タイミングを調節しているため、以下のような問題が生じる。
一般的に、商用電源周波数は基準となる周波数に対して±0,2Hz程度のゆらぎが生じることが知られている。つまり、フリッカー光源の明滅周期は基準となる明滅周期に対して±0,4Hz程度のゆらぎが生じる。そのため、フリッカーを検出してからの経過時間が長くなると、フリッカーの検出結果から求めたフリッカー光源の光量のピークタイミングと実際のフリッカー光源の光量のピークタイミングとがずれやすくなる。
したがって、特許文献1に記載された技術では、複数枚連続撮像において後の撮像になるほど、検出結果から求めたピークタイミングと実際のピークタイミングとがずれやすく、フリッカーの影響を抑えにくくなる。
そこで、本発明は、フリッカーが生じる光源下で撮影しても良好な画像を取得することができるようにすることを目的とする。
上記目的を達成するために、本発明に係る撮像装置は、入射光量に応じた電荷を蓄積する電荷蓄積手段と、前記電荷蓄積手段で複数回の電荷蓄積を行い得られた複数の出力信号に基づいて、フリッカーを検出する検出手段と、前記電荷蓄積手段で複数回の電荷蓄積を行い得られた複数の出力信号に基づいて、前記検出手段検出たフリッカーの特徴点のタイミングを算出する算出手段と、前記算出手段算出した前記特徴点のタイミングに基づいてフリッカーの影響を低減させた像を行うタイミングを制御する制御手段と、を有し、前記算出手段は、連続撮影を行う前に前記検出手段によりフリッカーが検出された場合、当該連続撮影におけるの合間に前記電荷蓄積手段で複数回の電荷蓄積を行い得られた複数の出力信号に基づいて前記特徴点のタイミングを算出することを特徴とする。
本発明によれば、フリッカーが生じる光源下で撮影しても良好な画像を取得することができる。
本発明の実施形態に係る撮像装置の概略構成図である。 本発明の実施形態に係る撮像装置のフリッカーの影響を低減させた撮影を行うための動作を示すフローチャート図である。 フリッカー検出用の電荷の蓄積タイミング及び画像信号の読み出しタイミングを示す図である。 垂直画素加算数と読み出し時間の関係を示す図である。 フリッカー光源の光量のピークのタイミングを算出する方法の一例を説明する図である。 フリッカー光源の光量変化とフリッカー同期信号及びシャッター開始信号の発生タイミングとの関係を示す図である。 T_ShutterWaitの値とシャッタースピードの値とを関連付けたテーブルを示す図である。 連続撮影の駒間における測光センサ108及びICPU112の動作シーケンスを示す図である。
以下に、本発明の好ましい実施の形態を、添付の図面に基づいて詳細に説明する。
図1は、本実施形態に係る撮像装置の概略構成図である。本実施形態に係る撮像装置は、カメラ本体100と、カメラ本体100に着脱可能なレンズユニット200を含む。
まず、カメラ本体100の構成について説明する。マイクロコンピュータCPU(以下、カメラマイコン)101は、カメラ本体100の各部を制御する。メモリ102は、カメラマイコン101に接続されているRAMやROM等のメモリである。
撮像素子103は、赤外カットフィルタやローパスフィルタ等を含むCCD、CMOS等の撮像素子であり、レンズユニット200を介して入射した光束を光電変換して画像信号を出力する。
シャッター104は、レンズユニット200を介して入射した光束から撮像素子103を遮光する遮光状態、及び、レンズユニット200を介して入射した光束を撮像素子103に導く退避状態となるように走行する。
ハーフミラー105は、レンズユニット200を介して入射した光束を撮像素子103へ導く位置(ミラーアップ状態)と測光センサ108へ導く位置(ミラーダウン状態)とに移動可能である。すなわち、ハーフミラー105は、撮像素子103へ導く状態と測光センサ108へ導く状態とに、レンズユニット200を介して入射した光束の光路変更を行う。また、測光センサ108へ導く位置にある場合には、レンズユニット200を介して入射した光束をピント板106に結像させる。
表示素子107は、PN液晶等を用いた表示素子であり、自動焦点調節制御(AF制御)に用いられる焦点検出領域を示す枠(AF枠)などを表示する。測光センサ108は、CCD、CMOS等の入射光量に応じた電荷を蓄積する電荷蓄積型撮像素子を使用することにより、出力される画像信号に基づいて測光だけでなく被写体の顔検出や被写体追尾、フリッカーの検出などを行うことができる。ペンタプリズム109は、ハーフミラー105で反射されたレンズユニット200を介して入射した光束を測光センサ108及び不図示の光学ファインダに導く。焦点検出回路110は、AF制御のために焦点検出を行うものであって、AFミラー111により、レンズユニット200を介して入射しハーフミラー105を通過した光束の一部が導かれる。
CPU112は、測光センサ108の駆動制御や画像処理・演算用のCPU(以下ICPUとする)であって、測光センサ108からの出力信号(画像信号)に基づいて測光、被写体の顔検出、被写体追尾、フリッカー検出などに関わる各種演算を行う。メモリ113は、ICPU112に接続されているRAMやROM等のメモリである。なお、本実施形態では、カメラマイコン101とは別にICPU112を有する構成を説明するが、ICPU112で実行する処理をカメラマイコン101で実行する構成でも構わない。
操作部114は、ユーザがカメラ本体100に撮影準備動作の開始指示や撮影動作の開始指示を行うためのレリーズボタンや、ユーザがカメラ本体100の各種設定を行うための設定ボタンなどを含む。また、操作部114は、ユーザがカメラ本体100の電源のオンオフを切り替えるための電源スイッチや、ユーザがカメラ本体100の動作モードを複数のモードの中から選択するためのモードダイヤル、タッチパネルなどを含む。
次に、レンズユニット200の構成について説明する。レンズCPU201(以下、LPUとする)は、レンズユニット200の各部、例えば、フォーカスレンズ、ズームレンズ、絞りの駆動部などを制御するものであって、レンズに関する情報をカメラマイコン101に送信する。
次に、図2を用いてフリッカーの影響を低減させた撮影を行うための動作について説明する。図2は、本実施形態に係る撮像装置のフリッカーの影響を低減させた撮影を行うための動作を示すフローチャート図である。
ユーザの電源スイッチへの操作によりカメラ本体100の電源がオン状態になると、ステップS101で測光動作を行う。測光動作では、測光センサ108による電荷の蓄積及び画像信号の読み出しを行い、得られた画像信号に基づいてICPU112が測光に関わる演算(以下、測光演算とする)を行い測光値を取得する。
なお、この測光動作は、仮にフリッカー光源下であってもフリッカー光源の光量変化に影響して測光値がばらつかないように、測光センサ108の蓄積時間をフリッカーの周期のほぼ整数倍に設定するとよい。ここで、フリッカー光源の光量が変化する周波数(以下、フリッカー周波数とする)は、商用電源周波数の2倍になることから、商用電源周波数が50Hzの地域ではフリッカー周波数100Hzとなり、その光量変化周期は10msとなる。同様に商用電源周波数が60Hzの地域ではフリッカー周波数は120Hz、光量変化周期は8,33msとなる。
この2種類のフリッカー周波数に対応するために、測光センサ108の蓄積時間を、10msと8,33msの平均値と略等しい時間、例えば9msに設定する。そうすると、商用電源周波数が50Hz、60Hzのどちらであっても測光センサ108の蓄積時間はフリッカー光源の光量変化の1周期と略等しくなり、フリッカー光源下でも安定した測光値を得ることができる。
また、得られた測光値に基づいて、カメラマイコン101は、露出制御値である絞り値Av、シャッタースピード(露光時間)Tv、ISO感度(撮影感度)Svを決定する。Av、Tv、Svの決定に際しては、カメラマイコン101は、メモリ102に予め記憶されたプログラム線図を利用して決定する。
次に、ステップS102で図3に示すようにして測光センサ108によるフリッカー検出用の複数回の電荷の蓄積及び画像信号の読み出しを行う。図3は、フリッカー検出用の電荷の蓄積タイミング及び画像信号の読み出しタイミングを示す図であり、600fps、約1,667ms周期で蓄積・読み出しを連続して12回行う。この600fpsは、予め想定されるフリッカー周波数(100Hzと120Hz)の最小公倍数と等しい値となっている。また、600fpsで12回蓄積を行うことで、全体として20msの期間で蓄積を行うことになり、商用電源周波数が50Hz、60Hzのどちらであっても、フリッカー光源の光量変化が2周期含まれることになる。
ここで、測光センサ108を600fps(1,667ms周期)で駆動させる方法について説明する。
本実施形態では、測光センサ108から出力される画像信号に基づいて、測光だけでなく被写体の顔検出や被写体追尾、フリッカーの検出などを行う。被写体の顔検出を精度よく行うためには、測光センサ108の画素数はある程度、例えばQVGA相当の画素数必要である。このような被写体の顔検出を精度よく行うことが可能な画素数を有する撮像素子の全画素信号を600fps以上のフレームレートで読み出すためには、回路構成が複雑となりコストも増大する。
そこで、被写体の顔検出を行うための画像信号については全画素信号を読み出し、フリッカー検出を行うための画像信号については画素加算読み出しや間引き読み出しをすることによってフレームレートを600fps(1,667ms周期)に調整する。
測光センサ108にCCDを用いる場合、画素信号を加算して読み出す画素加算読み出しにより、読み出しライン数を擬似的に減少させて読み出し時間を短縮させるとよい。例えば、画素配列がストライプ状のCCDで垂直画素加算を行うことで、図4に示すような読み出し時間の短縮効果がある。図4は、垂直画素加算数と読み出し時間の関係を示す図であり、画素信号を加算することなく全画素信号を読み出す(垂直画素加算数が1)場合の読み出し時間が6,25msとなるCCDを例にして説明する。図4に示す特徴を有するCCDの場合、9画素加算を行うことにより読み出し時間は1,66msとなり、フレームレートを約600fpsにすることができる。このとき読み出される画像信号は、画素信号を加算することなく読み出された画像信号と比べて垂直方向の画素数が1/9になるが、フリッカー検出においては画像信号間の測光値を比較するだけなので、垂直方向の画素数が減少した画像信号でも問題ない。
また、測光センサ108にCMOSを用いる場合、画素信号の読み出しを行う水平ラインを限定したいわゆる間引き読み出しによって、蓄積と読み出しの合計時間が約1,667ms周期となるように調整するとよい。
以上で、測光センサを約600fps(約1,667ms周期)程度で駆動させる方法についての説明を終える。
S102でフリッカー検出用の電荷の蓄積及び画像信号の読み出しを終えたら、S103でICPU112は、読み出した画像信号に基づいてフリッカー検出演算を行う。
図3(a)は、商用電源周波数が50Hzであるときの電荷の蓄積タイミング、画像信号の読み出しタイミング及び測光値の推移を示している。そして、n回目の蓄積を「蓄積n」、蓄積nの読み出しを「読み出しn」、読み出しnの結果から得られる測光値を「AE(n)」としている。なお、各蓄積により得られる測光値は1つであるが、フリッカー光源の光量は蓄積期間中も一定ではない。そこで、各蓄積により得られる測光値を、各蓄積期間中の中心時点におけるフリッカー光源の光量に対応した値とみなす。
商用電源周波数が50Hzの時のフリッカー光源の光量変化周期は約10msであり、10÷1,667≒6であるから、図3(a)に示すように、6回周期でフリッカー光源の光量が略等しいタイミングで蓄積が行われる。すなわち、AE(n)≒AE(n+6)の関係となる。
同様に、商用電源周波数が60Hzの時のフリッカー光源の光量変化周期は約8,33msであり、8,33÷1,667≒5であるから、図3(b)に示すように、5回周期でフリッカー光源の光量が略等しいタイミングで蓄積が行われる。すなわち、AE(n)≒AE(n+5)の関係となる。
一方、光量変化がない光源下であれば、nによらずAE(n)は略一定である。そこで、フリッカー検出用の蓄積を行い得られた複数の測光値に基づいて、下の式(1)、(2)を用いて評価値を算出する。
式(1)を用いて算出される評価値をF50、式(2)を用いて算出される評価値をF60として、評価値F50及び評価値F60を所定の閾値F_thと比較することで、フリッカー検出を行う。具体的には、F50<F_thかつ、F60<F_thの場合、フリッカー検出用の蓄積を行い得られた複数の測光値のすべてが略等しいといえるため、フリッカーが生じていないと判断する。F50<F_thかつ、F60≧F_thの場合、フリッカー検出用の蓄積を行い得られた複数の測光値が、6回周期で略等しい値となっていて、5回周期では略等しい値となっていないといえる。そのため、光量変化周期が10msのフリッカーが生じている(商用電源周波数が50Hzのフリッカー光源下)と判断する。
F50≧F_thかつ、F60<F_thの場合、フリッカー検出用の蓄積を行い得られた複数の測光値が、5回周期で略等しい値となっていて、6回周期では略等しい値となっていないといえる。そのため、光量変化周期が8,33msのフリッカーが生じている(商用電源周波数が60Hzのフリッカー光源下)と判断する。
なお、フリッカー検出用の蓄積を行っている間にパンニングなどの撮像装置の移動や被写体の移動が生じた場合などに、測光値が大きく変化してF50≧F_thかつ、F60≧F_thとなる場合も考えられる。その場合はF50とF60とを比較してフリッカー検出を行う。
具体的には、F50≧F_thかつ、F60≧F_thかつ、F50≦F60の場合、光量変化周期が10msのフリッカーが生じている(商用電源周波数が50Hzのフリッカー光源下)と判断する。反対に、F50≧F_thかつ、F60≧F_thかつ、F50>F60の場合、光量変化周期が8,33msのフリッカーが生じている(商用電源周波数が60Hzのフリッカー光源下)と判断する。なお、F50≧F_thかつ、F60≧F_thかつ、F50=F60の場合は、フリッカー光源の光量変化周期を判断できないため、フリッカーが生じていないあるいはフリッカーの検出不可と判断してもよい。
その他、F50≧F_thかつ、F60≧F_thの場合にフリッカー光源の光量変化周期を判断したが、F50≧F_thかつ、F60≧F_thの場合はフリッカー検出の精度が低いため、フリッカー検出用の蓄積をやり直してもよい。
さらに、ステップS103ではICPU112は、フリッカー光源下である場合は、フリッカーの特徴点のタイミングを求める。図5はフリッカーの特徴点のタイミングの一例であるフリッカー光源の光量のピークのタイミングを算出する方法の一例を説明する図である。
AE(1)〜AE(12)の中で最大値を得た点をP2(t(m),AE(m))とし、その1つ前の測光結果の点をP1(t(m−1),AE(m−1))、1つ後の測光結果の点をP3(t(m+1),AE(m+1))とする。そして、AE(m−1)とAE(m+1)の小さい方を取る点(図5の例ではP1)と点P2の2点を通る直線をL1=at+bとして求め、AE1とAE3の大きい方を取る点(図5の例ではP3)を通り、傾き−aの直線をL2とする。L1とL2の交点を求めると、フリッカー検出用の蓄積開始時を0msとしたときのピークタイミングt_peakと、ピーク時の光量に対応するピーク測光値AE_peakを算出することができる。
なお、図5では、フリッカーの特徴点のタイミングを算出する方法の一例としてフリッカーの光量変化の中で光量が最大(ピーク)となるタイミングを算出する方法を説明したが、光量が最小(ボトム)となるタイミングを算出しても構わない。
次にステップS104で、カメラマイコン101は、ステップS103で求めたフリッカー周波数と光量変化のタイミングからフリッカー同期信号を生成する。フリッカー同期信号は、図6に示したように、フリッカー光源の光量変化の1周期毎に発生させ、フリッカー光源の光量変化の所定のタイミングに同期させた信号である。図6は、フリッカー光源の光量変化とフリッカー同期信号及びシャッター開始信号の発生タイミングとの関係を示す図である。
図6において、シャッター開始信号から実際にシャッター104が走行して撮像素子103の撮像領域の最初のラインを露光し始めるまでのタイムラグをT_ShutterResponseとする。また、撮像素子103の撮像領域の最初のラインを露光し始めてから最後のラインを露光し始めるまでの時間T_Runとする。なお、撮像素子103の全撮像領域を同時に露光開始させる場合、T_Run=0とすればよい。
フリッカー同期信号の発生タイミングt_Flickerは、フリッカー検出用の蓄積開始時を0msとしたとき以下の式(3)のようになる。
t_Flicker=t_peak−T_ShutterResponse−(T_Run+TVmax)/2+T×n ・・・(3)
ここで、フリッカー光源の光量変化周期Tとフリッカー検出用の蓄積開始時を0msとしたときのピークタイミングt_peakは、ステップS103で算出されている。nは自然数、TVmaxは、フリッカーの影響を低減させるシャッター制御を行うか否かの閾値となるシャッタースピードであり、予め設定されている。
シャッタースピードが1/100秒より遅い場合は、フリッカー光源の光量変化周期の1周期分以上の期間で露光を行うため、フリッカーの影響が少なくなる。また、露光を行う期間がフリッカー光源の光量変化周期の1周期分に満たないシャッタースピードであっても、露光を行う期間がフリッカー光源の光量変化周期の1周期分に近ければ比較的フリッカーの影響が少ないと考えられる。そこで、本実施形態では、シャッタースピードが8msよりも速い場合にフリッカーの影響を低減させるシャッター制御を行うものとし、TVmax=1/125(秒)とする。
また、カメラマイコン101は、フリッカー同期信号からシャッター104の走行開始を指示するシャッター開始信号までのウェイト時間であるT_ShutterWaitを設定する。カメラマイコン101は、T_ShutterWaitをシャッタースピード毎に変更し、フリッカー光源の光量変化の少ないタイミングが撮像素子103の撮像領域の最初のラインの露光開始から最後のラインの露光終了までの時間の中心にくるように制御する。例えば、式(4)のようにT_ShutterWaitを設定する。
T_ShutterWait=(TVmax−TV)/2 ・・・(4)
(ただし、TV<1/125)
上記のようにT_ShutterWaitを設定することで、フリッカー光源の光量のピークのタイミングが撮像素子103の撮像領域の最初のラインの露光開始から最後のラインの露光終了までの時間の中心にくるように制御できる。なお、図7は、T_ShutterWaitの値とシャッタースピードの値とを関連付けたテーブルを示す図であって、図7に示すようなテーブルをメモリ102などに予め記憶しておいても構わない。
以上のように、ステップS103でフリッカー光源の光量のピークのタイミングを算出し、フリッカー同期信号の発生タイミングをフリッカー光源の光量のピークのタイミングに基づいて設定する例を説明した。しかしながら、ステップS103でフリッカー光源の光量のボトムのタイミングを算出する場合は、フリッカー同期信号の発生タイミングをフリッカー光源の光量のボトムのタイミングに基づいて設定しても構わない。
その後、ステップS105で、カメラマイコン101は、ユーザにレリーズボタンが操作されて撮影動作の開始を指示するためのスイッチSW2がONされているか否かを判断する。スイッチSW2がONされていない場合は、ステップS101に戻り、ステップS101〜S104の一連の動作を繰り返すことで、フリッカー光源の光量変化周期とフリッカー光源の光量のピークのタイミングを最新のものに更新していく。ステップS101〜S104の一連の動作を、例えば100ms周期程度で繰り返し行えば、フリッカー光源の光量変化周期のゆらぎが±0,4Hz程度あっても、100msの間における光量変化周期のずれは最大で±0,4ms程度におさまる。そのため、いつスイッチSW2がONされたとしても、精度よくフリッカーの影響を低減させるシャッター制御を行うことができる。
なお、ステップS101〜S104の動作を同じように繰り返すのではなく、ステップS101で行う測光動作とステップS102〜S104で行うフリッカー検出動作とを異なる周期で行うようにしてもよい。前述したように、フリッカー検出動作は100ms程度の周期で十分であるが、被写体の輝度変化に対する応答性をよくするために測光動作をフリッカー検出動作の周期よりも短い周期、例えば50ms程度の周期で行うようにしてもよい。
スイッチSW2がONされている場合、ステップS106へ移行する。そして、ステップS106でカメラマイコン101は、SW2がONされてから最初のフリッカー同期信号に対して、決定されているシャッタースピードに応じたT_ShutterWaitだけ遅らせてシャッター開始信号を生成する。その後、生成されたシャッター開始信号に応じてシャッター104が駆動し、撮影が行われる。
以上のように、フリッカーの影響を低減させるシャッター制御として、フリッカー同期信号に対してシャッタースピードに応じたT_ShutterWaitだけシャッター開始信号を遅らせている。そのため、図6に示すように、シャッタースピードが1/1000秒のときでも、1/200秒のときでもフリッカー光源の光量のピークのタイミングが撮像素子103の撮像領域の最初のラインの露光開始から最後のラインの露光終了までの時間の中心にくる。このように、フリッカーの特徴点のタイミングに基づいて撮影タイミングを制御することにより、フリッカーの影響による1つの画像内における露出ムラを低減することができる。撮影が終了したら、ステップS107でカメラマイコン101は、連続撮影(連写)が行われるか否かを判断する。なお、連続撮影が行われるか否かは、SW2がONされた状態が維持されているか否かに基づいて判断してもよいし、動作モードとして連続撮影モードが選択されている否かに基づいて判断してもよい。
連続撮影が行われない場合はS101に戻り、連続撮影が行われる場合はステップS108へ移行する。
ステップS108でカメラマイコン101は、フリッカーの有無を判断する。ここでは、ステップS103での判断結果を用いればよい。フリッカーがない場合はステップS109へ移行し、フリッカーがある場合はステップS110へ移行する。
ここで、連続撮影の駒間(連続撮影を行う際の撮影の合間)の動作シーケンスを図8を用いて説明する。図8は、連続撮影の駒間における測光センサ108及びICPU112の動作シーケンスを示す図であり、図8(a)はフリッカーがないとき、図8(b)はフリッカーがあるときをそれぞれ示している。ステップS109では、測光センサ108及びICPU112は図8(a)に示すように動作し、ステップS110では、測光センサ108及びICPU112は図8(a)に示すように動作する。
まず、フリッカーがないときの連続撮影の駒間における測光センサ108及びICPU112の動作シーケンスを図8(a)を用いて説明する。
撮影時に光束を撮像素子103へ導くためにミラーアップ状態となっていたハーフミラー105は、撮影後に光束を測光センサ108へ導くためにミラーダウン状態に移動する。ミラーアップ状態からミラーダウン状態に移動した直後には移動停止に伴う衝撃でハーフミラー105はバウンド(以下、ミラーバウンドとする)する。ミラーバウンドが収束しハーフミラー105が安定したミラーダウン状態になると、測光センサ108は、測光及び被写体追尾に用いる画像信号を得るための電荷の蓄積(以下、AE及び追尾用蓄積とする)及び画像信号の読み出しを行う。このAE及び追尾用蓄積に伴う画像信号の読み出しは、連続撮影の駒速(連写速度)速くするためには短い方が好ましい。そこで、測光センサ108にCCDを用いる場合には前述した画素加算読み出しを行い、CMOSを用いる場合には、前述した間引き読み出しを行う。そして、ICPU112は、得られた画像信号に基づいて被写体追尾に関わる演算(以下、追尾演算とする)及び測光演算を行う。
測光センサ108は、AE及び追尾用蓄積に伴う画像信号の読み出し後に被写体の顔検出に用いる画像信号を得るための電荷の蓄積(以下、顔検出用蓄積とする)及び画像信号の読み出しを行う。顔検出用蓄積に伴う画像信号の読み出しは、顔検出を精度よく行うために、AE及び追尾用蓄積に伴う画像信号の読み出しよりも、画素加算読み出しの画素加算数や間引き読み出しの間引きライン数を少なくする。本実施形態では、画素加算読み出しや間引き読み出しを行わず全画素読み出しを行うものとする。そして、ICPU112は、得られた画像信号に基づいて被写体の顔検出に関わる演算(以下、顔検出演算とする)を行う。顔検出演算の結果は次の追尾演算及び測光演算に用いられる。例えば、顔検出演算により検出された被写体の顔領域を追尾対象として追尾演算を行ったり、顔検出演算により検出された被写体の顔領域の重み付けを大きくして測光演算を行ったりする。
ここで、連続撮影の駒速(連写速度)を速くするために、顔検出用蓄積は、ICPU112による追尾演算及び測光演算と並行して行われることが好ましい。また、顔検出用蓄積に伴う画像信号の読み出しは、測光センサ108に光束が導かれていない状態で行ってもよいので、連続撮影の駒速(連写速度)を速くするために、ハーフミラー105をミラーアップ状態へ移動させている途中で行われることが好ましい。
そして、移動後のミラーバウンドが収束しハーフミラー105が安定したミラーアップ状態になると次の撮影(露光)を行う。
フリッカーがないときはSW2のON状態が解除されるまでこのような動作シーケンスで連続撮影を行う。すなわち、フリッカー検出用の電荷の蓄積及び画像信号の読み出し(以下、フリッカー検出用蓄積・読み出しとする)を行わず、新たにフリッカーを検出しないし、フリッカーの特徴点のタイミングを算出しない。
次に、フリッカーがあるときの連続撮影の駒間における測光センサ108及びICPU112の動作シーケンスを図8(b)を用いて説明する。
ミラーバウンドが収束しハーフミラー105が安定したミラーダウン状態になると、測光センサ108は、フリッカー検出用の電荷の蓄積及び画像信号の読み出し(以下、フリッカー検出用蓄積・読み出しとする)を行う。このフリッカー検出用蓄積・読み出しは、図2のステップS102で説明した方法と同様の方法で行う。
なお、連続撮影中に光源がフリッカー周波数の異なる別の光源に変化する可能性は低く、連続撮影中のフリッカー周波数の基準となる周波数は一定と考えてよい。そこで、フリッカー検出用の電荷の蓄積回数を、フリッカー光源の光量のピークのタイミングが算出できる回数であれば、図2のステップS102で行う回数より少なくしてもよい。例えば、フリッカー光源の光量のピークのタイミングの算出には、少なくともフリッカー光源の光量変化周期の1周期分に相当する蓄積回数があればよい。フリッカーの光量変化周期が約8,33msの場合は5回以上、約10msの場合は6回以上蓄積を行えばフリッカー光源の光量のピークのタイミングを精度よく算出することができる。以上のように、連続撮影の駒間では、フリッカー光源の光量のピークのタイミングを算出するための簡易的なフリッカー検出用蓄積を行うことで、連続撮影の駒速(連写速度)の低下を抑制できる。
そして、ICPU112は、得られた画像信号に基づいてフリッカー検出演算を行う。このフリッカー検出演算は、図2のステップS103で説明した方法と同様の方法で行う。なお、前述したように、連続撮影中のフリッカー周波数の基準となる周波数は一定と考えてよいので、ここでは、フリッカー光源の光量変化周期の判断は行わずに、フリッカー光源の光量のピークのタイミングだけ算出してもよい。このとき、検出結果のうち最新の検出結果が表すフリッカーの特徴点のタイミングを算出する。
フリッカー検出演算の終了後、カメラマイコン101は、フリッカー検出演算の検出結果に基づいてフリッカー同期信号を最新のものに更新する。すなわち、前の撮影の後に算出された最新のフリッカーの特徴点のタイミングに基づいて撮影タイミングを制御する。
測光センサ108は、フリッカー検出用蓄積・読み出しが終わるとAE及び追尾用蓄積及び画像信号の読み出しを行う。ここで、連続撮影の駒速(連写速度)を速くするために、AE及び追尾用蓄積は、ICPU112によるフリッカー検出演算と並行して行われることが好ましい。
以降に行う顔検出用蓄積や各種演算は、図8(a)を用いて説明したフリッカーがないときと同様のため説明は省略する。
測光演算の終了後、カメラマイコン101は、最新のフリッカー同期信号に対して、最新の測光演算の結果に基づいて決定されたシャッタースピードに応じたT_ShutterWaitだけ遅らせてシャッター開始信号を生成し、次の撮影を行う。
フリッカーがあるときはSW2のON状態が解除されるまでこのような動作シーケンスで連続撮影を行う。
以上のように、本発明によれば、商用電源周波数のゆらぎが多少あっても、連続撮影の駒間にフリッカー光源の光量のピークのタイミングを算出し、算出したピークのタイミングに合わせて各撮影を行うので、良好な画像を取得することができる。
なお、上記の実施形態では、ハーフミラー105を備え、連続撮影の駒間におけるハーフミラーがミラーダウン状態のときに測光センサ108による各種用途のための蓄積を行う例を説明したが、ハーフミラー105がない構成であっても構わない。その場合、測光センサ108がなくてもよく、撮像素子103で測光センサ108と同様の各種用途のための蓄積を行えばよい。
また、図8に示した測光センサ108による各種蓄積の順序は一例であり、異なる順序で各種蓄積を行ってもよい。
また、図8では、測光に用いる画像信号を得るための電荷の蓄積及び被写体追尾に用いる画像信号を得るための電荷の蓄積をまとめて1つの蓄積としているが、別々に蓄積を行う構成でも構わない。
また、被写体追尾や被写体の顔検出を行わない構成でもよく、連続撮影の駒間において、フリッカーがないときはフリッカー検出用蓄積を行わず、フリッカーがあるときはフリッカー検出用蓄積を行う構成であればよい。フリッカーがあるときはフリッカー検出用蓄積を行うため、フリッカーがないときと比べて連続撮影の駒速が低下することになるが、精度よくフリッカーの影響を低減させることができ、フリッカー光源下で撮影しても良好な画像を取得することができる。一方、フリッカーがないときはフリッカー検出用蓄積を行わないため、連続撮影の駒速を不必要に低下させることを防止できる。
また、本発明は、以下の処理を実行することによっても実現される。即ち、本実施形態の機能を実現するソフトウェア(プログラム)を、ネットワーク又は各種記憶媒体を介してシステムあるいは装置に供給し、そのシステムあるいは装置のコンピュータ(またはCPUやMPUなど)がプログラムを読み出して実行する処理である。
以上、本発明の好ましい実施形態について説明したが、本発明はこれらの実施形態に限定されず、その要旨の範囲内で種々の変形及び変更が可能である。
100 カメラ本体
101 カメラマイコン
103 撮像素子
105 ハーフミラー
108 測光センサ
112 ICPU

Claims (16)

  1. 入射光量に応じた電荷を蓄積する電荷蓄積手段と、
    前記電荷蓄積手段で複数回の電荷蓄積を行い得られた複数の出力信号に基づいて、フリッカーを検出する検出手段と、
    前記電荷蓄積手段で複数回の電荷蓄積を行い得られた複数の出力信号に基づいて、前記検出手段検出たフリッカーの特徴点のタイミングを算出する算出手段と、
    前記算出手段算出した前記特徴点のタイミングに基づいてフリッカーの影響を低減させた像を行うタイミングを制御する制御手段と、を有し、
    前記算出手段は、連続撮影を行う前に前記検出手段によりフリッカーが検出された場合、当該連続撮影におけるの合間に前記電荷蓄積手段で複数回の電荷蓄積を行い得られた複数の出力信号に基づいて前記特徴点のタイミングを算出することを特徴とする撮像装置。
  2. 前記算出手段は、連続撮影を行う前に前記検出手段によりフリッカーが検出されない場合、当該連続撮影におけるの合間に前記特徴点のタイミングを算出しないことを特徴とする請求項1に記載の撮像装置。
  3. 前記電荷蓄積手段は、連続撮影を行う前に前記検出手段によりフリッカーが検出されない場合、当該連続撮影におけるの合間に前記算出手段により前記特徴点を算出するための複数回の電荷蓄積を行わないことを特徴とする請求項2に記載の撮像装置。
  4. 前記制御手段は、連続撮影を行う前に前記検出手段によりフリッカーが検出された場合、当該連続撮影において、前記算出手段が、前の撮の後に算出した前記特徴点のタイミングに基づいて前記撮像を行うタイミングを制御することを特徴とする請求項1乃至3のいずれか1項に記載の撮像装置。
  5. 前記特徴点のタイミングは、フリッカーの光量変化の中で光量が最大となるタイミング、または、光量が最小となるタイミングであることを特徴とする請求項1乃至4のいずれか1項に記載の撮像装置。
  6. 前記検出手段は、光量の変化周期を判断することで、発生しているフリッカーを検出し、
    前記算出手段は、前記検出手段がフリッカーの検出に用いる出力信号よりも少ない数の出力信号に基づいて前記特徴点のタイミングを算出することを特徴とする請求項1乃至のいずれか1項に記の撮像装置。
  7. 前記検出手段は、連続撮影の前に前記光量の変化を判断した場合、当該連続撮影における撮像の合間には、前記光量の変化周期を判断しないことを特徴とする請求項6に記載の撮像装置。
  8. 入射光量に応じた電荷を蓄積する電荷蓄積手段を有する撮像装置の制御方法であって、前記電荷蓄積手段で複数回の電荷蓄積を行い得られた複数の出力信号に基づいて、フリッカーを検出する検出ステップと、
    前記電荷蓄積手段で複数回の電荷蓄積を行い得られた複数の出力信号に基づいて、前記検出ステップで検出されたフリッカーの特徴点のタイミングを算出する算出ステップと、前記算出ステップで算出された特徴点のタイミングに基づいてフリッカーの影響を低減させた像を行うタイミングを制御する制御ステップと、を有し、
    前記算出ステップは、連続撮影を行う前に前記検出ステップでフリッカーが検出された場合、当該連続撮影におけるの合間に前記電荷蓄積手段で複数回の電荷蓄積を行い得られた複数の出力信号に基づいて前記特徴点のタイミングを算出することを特徴とする撮像装置の制御方法。
  9. 請求項8に記載の制御方法をコンピュータに実行させるためのプログラム。
  10. コンピュータに、請求項8に記載された制御方法を実行させるためのプログラムを記憶したコンピュータにより読み取り可能な記憶媒体。
  11. 撮像手段と、
    フリッカーの特徴点のタイミングを算出する算出手段と、
    前記撮像手段を用いて被写体を撮像するタイミングを制御する制御手段と、
    を有し、
    前記算出手段は、連続撮影における第1の撮像と当該第1の撮像の次に実行される第2の撮像の間に、前記フリッカーの特徴点のタイミングを算出し、
    前記制御手段は、フリッカーが検出されている場合、前記連続撮影における前記第1の撮像と前記第2の撮像の間に、前記算出手段が算出した前記フリッカーの特徴点のタイミングに基づいて、前記第2の撮像のタイミングを制御することを特徴とする撮像装置。
  12. 前記フリッカーの特徴点のタイミングは、フリッカーの光量変化の中で光量が最大または最小となるタイミングであることを特徴とする請求項11に記載の撮像装置。
  13. 測光手段と、
    前記測光手段により複数回の電荷蓄積を行い得られた出力信号に基づいてフリッカーの光量変化の周期を検出する検出手段と、を有し、
    前記検出手段は、連続撮影の前に前記フリッカーの光量変化の周期を検出し、当該連続撮影中は前記フリッカーの光量変化の周期を検出しないことを特徴とする請求項11又は12に記載の撮像装置。
  14. 撮像手段を備えた撮像装置の制御方法であって、
    フリッカーの特徴点のタイミングを算出する算出ステップと、
    前記撮像手段を用いて被写体を撮像するタイミングを制御する制御ステップと、
    を有し、
    前記算出ステップでは、連続撮影における第1の撮像と当該第1の撮像の次に実行される第2の撮像の間に、前記フリッカーの特徴点のタイミングが算出され、
    前記制御ステップでは、フリッカーが検出されている場合、前記連続撮影における前記第1の撮像と前記第2の撮像の間に、前記算出ステップで算出された前記フリッカーの特徴点のタイミングに基づいて、前記第2の撮像のタイミングが制御されることを特徴とする撮像装置の制御方法。
  15. 請求項14に記載の制御方法をコンピュータに実行させるためのプログラム。
  16. コンピュータに、請求項14に記載された制御方法を実行させるためのプログラムを記憶したコンピュータにより読み取り可能な記憶媒体。
JP2013100546A 2013-05-10 2013-05-10 撮像装置、制御方法、プログラム及び記憶媒体 Active JP6108946B2 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2013100546A JP6108946B2 (ja) 2013-05-10 2013-05-10 撮像装置、制御方法、プログラム及び記憶媒体
US14/268,881 US9906731B2 (en) 2013-05-10 2014-05-02 Imaging apparatus, method for controlling the same, and storage medium
US15/836,567 US10708515B2 (en) 2013-05-10 2017-12-08 Imaging apparatus and method for suppressing influence of flicker occurring under an artificial light source

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013100546A JP6108946B2 (ja) 2013-05-10 2013-05-10 撮像装置、制御方法、プログラム及び記憶媒体

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2017045411A Division JP6351778B2 (ja) 2017-03-09 2017-03-09 撮像装置、制御方法、プログラム及び記憶媒体

Publications (3)

Publication Number Publication Date
JP2014220763A JP2014220763A (ja) 2014-11-20
JP2014220763A5 JP2014220763A5 (ja) 2016-06-16
JP6108946B2 true JP6108946B2 (ja) 2017-04-05

Family

ID=51864521

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013100546A Active JP6108946B2 (ja) 2013-05-10 2013-05-10 撮像装置、制御方法、プログラム及び記憶媒体

Country Status (2)

Country Link
US (2) US9906731B2 (ja)
JP (1) JP6108946B2 (ja)

Families Citing this family (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9531959B2 (en) * 2014-08-29 2016-12-27 Semiconductor Components Industries, Llc Imaging systems and methods for capturing image data at high scan rates
JP6525715B2 (ja) * 2015-05-08 2019-06-05 キヤノン株式会社 撮像装置、光量変化の検出方法及びプログラム
JP6525757B2 (ja) * 2015-06-17 2019-06-05 キヤノン株式会社 撮像装置、光量変化特性の算出方法、プログラム及び記憶媒体
JP6614853B2 (ja) * 2015-08-07 2019-12-04 キヤノン株式会社 撮像装置、その制御方法、および制御プログラム
JP6860368B2 (ja) * 2017-02-06 2021-04-14 キヤノン株式会社 電子機器、その制御方法、プログラム及び記憶媒体
JP2019212989A (ja) * 2018-05-31 2019-12-12 キヤノン株式会社 撮像装置及びその制御方法、プログラム、記憶媒体
JP7309327B2 (ja) 2018-06-22 2023-07-18 キヤノン株式会社 撮像システム、撮像装置、その方法およびプログラム
US11012634B2 (en) * 2018-06-29 2021-05-18 Canon Kabushiki Kaisha Image pickup apparatus capable of performing image pickup with reduced flicker influence, method for controlling the same, and storage medium
JP7190857B2 (ja) * 2018-10-01 2022-12-16 ローム株式会社 光センサ
CN109120863B (zh) * 2018-10-23 2021-01-01 Oppo广东移动通信有限公司 拍摄方法、装置、存储介质及移动终端
CN111246051B (zh) 2018-11-09 2021-06-29 浙江宇视科技有限公司 自动检测条纹并抑制的方法、装置、设备及存储介质
CN111355901B (zh) * 2020-03-14 2025-02-28 北京大学深圳研究生院 光电传感器、像素电路、图像传感器及光电感测方法
KR102811831B1 (ko) 2021-02-25 2025-05-23 캐논 가부시끼가이샤 피사체의 주기적인 광량변화에 의한 플리커를 검출 가능한 촬상 장치, 플리커 검출 방법 및 비일시적 컴퓨터 판독 가능한 기억매체
JP7686411B2 (ja) 2021-02-25 2025-06-02 キヤノン株式会社 撮像装置、その制御方法およびプログラム
JP7674898B2 (ja) * 2021-04-26 2025-05-12 キヤノン株式会社 撮像装置及びその制御方法、プログラム、記憶媒体
JP7713802B2 (ja) * 2021-04-28 2025-07-28 キヤノン株式会社 電子機器及びその制御方法
JP2023034920A (ja) 2021-08-31 2023-03-13 キヤノン株式会社 撮像装置、フリッカー検出方法およびプログラム
US12231780B2 (en) 2022-02-09 2025-02-18 Samsung Electronics Co., Ltd. System and method for flicker avoidance in multi-frame multi-exposure image captures
US20250088755A1 (en) * 2023-09-11 2025-03-13 Apple Inc. Flicker Mitigation for Image Capture

Family Cites Families (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3188978B2 (ja) * 1991-09-04 2001-07-16 株式会社ニコン カメラの測光装置
JP3106720B2 (ja) * 1992-09-16 2000-11-06 株式会社ニコン カメラの測光制御装置
JP2006222935A (ja) * 2005-01-13 2006-08-24 Canon Inc 電子スチルカメラ及び撮像方法及びプログラム及び記憶媒体
JP4335849B2 (ja) * 2005-06-13 2009-09-30 富士通マイクロエレクトロニクス株式会社 フリッカ検出可能な撮像装置
US7598987B2 (en) * 2005-11-29 2009-10-06 Stmicroelectronics Asia Pacific Pte. Ltd. Flicker detection gain control circuit, digital imaging system, and method
JP2007336470A (ja) 2006-06-19 2007-12-27 Sony Corp 撮像装置及び撮像方法
US7825959B2 (en) * 2006-12-15 2010-11-02 Stmicroelectronics Asia Pacific Pte. Ltd. System and method for flicker DC offset detection and correction
JP2009100275A (ja) * 2007-10-17 2009-05-07 Olympus Corp カメラ
JP2009282510A (ja) * 2008-04-23 2009-12-03 Panasonic Corp 交換レンズ、カメラ本体、及び撮像装置
JP2010114834A (ja) * 2008-11-10 2010-05-20 Olympus Imaging Corp 撮像装置
US8441551B2 (en) * 2008-11-14 2013-05-14 Ati Technologies Ulc Flicker detection circuit for imaging sensors that employ rolling shutters
KR20100091845A (ko) * 2009-02-11 2010-08-19 삼성전자주식회사 플리커 발생을 방지하는 디지털 촬영 장치, 이의 제어 방법및 상기 제어 방법을 기록한 기록 매체
JP2011091775A (ja) * 2009-10-26 2011-05-06 Toshiba Corp 固体撮像装置
US8330829B2 (en) * 2009-12-31 2012-12-11 Microsoft Corporation Photographic flicker detection and compensation
JP5523124B2 (ja) * 2010-01-26 2014-06-18 キヤノン株式会社 撮像装置
JP5482560B2 (ja) 2010-08-12 2014-05-07 株式会社ニコン 測光装置、撮像装置、およびフリッカの検出方法
JP5331766B2 (ja) * 2010-09-03 2013-10-30 株式会社日立製作所 撮像装置
US20120154628A1 (en) * 2010-12-20 2012-06-21 Samsung Electronics Co., Ltd. Imaging device and method
US8866114B2 (en) * 2011-01-20 2014-10-21 Mitutoyo Corporation Vision measuring device
US9088727B2 (en) * 2011-04-06 2015-07-21 Pelco, Inc. Spatially-varying flicker detection

Also Published As

Publication number Publication date
US10708515B2 (en) 2020-07-07
US20180103186A1 (en) 2018-04-12
JP2014220763A (ja) 2014-11-20
US20140333799A1 (en) 2014-11-13
US9906731B2 (en) 2018-02-27

Similar Documents

Publication Publication Date Title
JP6108946B2 (ja) 撮像装置、制御方法、プログラム及び記憶媒体
JP6296697B2 (ja) 撮像装置、制御方法、プログラム及び記憶媒体
KR101757654B1 (ko) 촬상장치, 그 제어 방법 및 기억매체
JP6537224B2 (ja) 撮像装置、制御方法、プログラム及び記憶媒体
JP6391352B2 (ja) 撮像装置、制御方法、プログラム及び記憶媒体
CN105323499B (zh) 摄像设备及其控制方法
JP6501463B2 (ja) 撮像装置及びその制御方法
JP6381380B2 (ja) 撮像装置、制御方法及びそのプログラム
JP6456038B2 (ja) 電子機器、光量変化特性の算出方法、プログラム及び記憶媒体
JP6598927B2 (ja) 撮像装置、制御方法、プログラム及び記憶媒体
JP6225000B2 (ja) 撮像装置及びその制御方法、プログラム、記憶媒体
JP2017216637A (ja) 撮像装置及び制御方法
JP6704946B2 (ja) 撮像装置、制御方法、プログラム及び記憶媒体
JP2016014762A (ja) 撮像装置及びその制御方法
JP6312524B2 (ja) 撮像装置、制御方法、プログラム及び記憶媒体
JP6351778B2 (ja) 撮像装置、制御方法、プログラム及び記憶媒体
JP6494829B2 (ja) 撮像装置、制御方法、プログラム及び記憶媒体
JP2017126918A (ja) 撮像装置、制御方法、プログラム及び記憶媒体
JP2016039579A (ja) 撮像装置、制御方法、プログラム及び記憶媒体
JP2016012791A (ja) 撮像装置、その制御方法、および制御プログラム
JP6478493B2 (ja) 撮像装置、制御方法、プログラム及び記憶媒体
JP2016029777A (ja) 撮像装置及びその制御方法
JP2016086206A (ja) 撮像装置

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160427

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20160427

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20170130

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20170207

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20170307

R151 Written notification of patent or utility model registration

Ref document number: 6108946

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151