JP6094948B2 - Manufacturing method of breathable member for mold - Google Patents
Manufacturing method of breathable member for mold Download PDFInfo
- Publication number
- JP6094948B2 JP6094948B2 JP2013553185A JP2013553185A JP6094948B2 JP 6094948 B2 JP6094948 B2 JP 6094948B2 JP 2013553185 A JP2013553185 A JP 2013553185A JP 2013553185 A JP2013553185 A JP 2013553185A JP 6094948 B2 JP6094948 B2 JP 6094948B2
- Authority
- JP
- Japan
- Prior art keywords
- mold
- stainless steel
- air
- breathable member
- breathable
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 238000004519 manufacturing process Methods 0.000 title claims description 27
- 239000000463 material Substances 0.000 claims description 101
- 229910001220 stainless steel Inorganic materials 0.000 claims description 61
- 239000010935 stainless steel Substances 0.000 claims description 49
- 238000003754 machining Methods 0.000 claims description 43
- 239000000843 powder Substances 0.000 claims description 29
- 239000000835 fiber Substances 0.000 claims description 28
- 238000000034 method Methods 0.000 claims description 28
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 claims description 26
- 238000012545 processing Methods 0.000 claims description 26
- 230000035699 permeability Effects 0.000 claims description 19
- 230000008569 process Effects 0.000 claims description 17
- 229910052751 metal Inorganic materials 0.000 claims description 15
- 239000002184 metal Substances 0.000 claims description 15
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 claims description 12
- 239000003822 epoxy resin Substances 0.000 claims description 12
- 239000007789 gas Substances 0.000 claims description 12
- 229920000647 polyepoxide Polymers 0.000 claims description 12
- 239000012299 nitrogen atmosphere Substances 0.000 claims description 11
- 229910052757 nitrogen Inorganic materials 0.000 claims description 10
- 230000003746 surface roughness Effects 0.000 claims description 10
- 238000009423 ventilation Methods 0.000 claims description 9
- KUNSUQLRTQLHQQ-UHFFFAOYSA-N copper tin Chemical class [Cu].[Sn] KUNSUQLRTQLHQQ-UHFFFAOYSA-N 0.000 claims description 8
- 238000010438 heat treatment Methods 0.000 claims description 8
- QGZKDVFQNNGYKY-UHFFFAOYSA-N Ammonia Chemical compound N QGZKDVFQNNGYKY-UHFFFAOYSA-N 0.000 claims description 6
- 229910001873 dinitrogen Inorganic materials 0.000 claims description 6
- 238000007664 blowing Methods 0.000 claims description 5
- 238000005553 drilling Methods 0.000 claims description 5
- 229910021529 ammonia Inorganic materials 0.000 claims description 3
- 238000000354 decomposition reaction Methods 0.000 claims description 3
- 238000007599 discharging Methods 0.000 claims 1
- 239000011800 void material Substances 0.000 claims 1
- 229920005989 resin Polymers 0.000 description 28
- 239000011347 resin Substances 0.000 description 28
- 239000000047 product Substances 0.000 description 24
- 238000000465 moulding Methods 0.000 description 22
- 238000005530 etching Methods 0.000 description 21
- 238000001746 injection moulding Methods 0.000 description 19
- 239000011148 porous material Substances 0.000 description 13
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 13
- 238000005121 nitriding Methods 0.000 description 12
- 238000004140 cleaning Methods 0.000 description 9
- 238000002347 injection Methods 0.000 description 9
- 239000007924 injection Substances 0.000 description 9
- 238000010791 quenching Methods 0.000 description 8
- 230000000171 quenching effect Effects 0.000 description 8
- 238000007789 sealing Methods 0.000 description 7
- 238000005245 sintering Methods 0.000 description 7
- 230000000052 comparative effect Effects 0.000 description 6
- 230000007797 corrosion Effects 0.000 description 6
- 238000005260 corrosion Methods 0.000 description 6
- 238000005520 cutting process Methods 0.000 description 6
- 238000012360 testing method Methods 0.000 description 6
- 239000011651 chromium Substances 0.000 description 5
- 238000001816 cooling Methods 0.000 description 5
- 238000010586 diagram Methods 0.000 description 5
- 238000009760 electrical discharge machining Methods 0.000 description 5
- 239000007788 liquid Substances 0.000 description 5
- 238000007872 degassing Methods 0.000 description 4
- 229920000122 acrylonitrile butadiene styrene Polymers 0.000 description 3
- 229910000963 austenitic stainless steel Inorganic materials 0.000 description 3
- 239000003795 chemical substances by application Substances 0.000 description 3
- 239000010949 copper Substances 0.000 description 3
- 230000007547 defect Effects 0.000 description 3
- 229910001105 martensitic stainless steel Inorganic materials 0.000 description 3
- 238000002156 mixing Methods 0.000 description 3
- 239000000203 mixture Substances 0.000 description 3
- 238000003303 reheating Methods 0.000 description 3
- 239000004743 Polypropylene Substances 0.000 description 2
- 229910000831 Steel Inorganic materials 0.000 description 2
- 229910052804 chromium Inorganic materials 0.000 description 2
- 239000000498 cooling water Substances 0.000 description 2
- 229910052802 copper Inorganic materials 0.000 description 2
- 230000006866 deterioration Effects 0.000 description 2
- 238000003801 milling Methods 0.000 description 2
- 229910052750 molybdenum Inorganic materials 0.000 description 2
- 238000010422 painting Methods 0.000 description 2
- -1 polypropylene Polymers 0.000 description 2
- 229920001155 polypropylene Polymers 0.000 description 2
- 238000002360 preparation method Methods 0.000 description 2
- 239000010959 steel Substances 0.000 description 2
- 238000007666 vacuum forming Methods 0.000 description 2
- 238000005406 washing Methods 0.000 description 2
- 229910000881 Cu alloy Inorganic materials 0.000 description 1
- 229910017755 Cu-Sn Inorganic materials 0.000 description 1
- 229910017927 Cu—Sn Inorganic materials 0.000 description 1
- 240000007594 Oryza sativa Species 0.000 description 1
- 235000007164 Oryza sativa Nutrition 0.000 description 1
- 239000012298 atmosphere Substances 0.000 description 1
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 1
- CXOWYMLTGOFURZ-UHFFFAOYSA-N azanylidynechromium Chemical compound [Cr]#N CXOWYMLTGOFURZ-UHFFFAOYSA-N 0.000 description 1
- 239000010953 base metal Substances 0.000 description 1
- 230000008859 change Effects 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 238000001704 evaporation Methods 0.000 description 1
- 230000008020 evaporation Effects 0.000 description 1
- 239000003365 glass fiber Substances 0.000 description 1
- 238000007542 hardness measurement Methods 0.000 description 1
- 239000010985 leather Substances 0.000 description 1
- 230000014759 maintenance of location Effects 0.000 description 1
- 229910000734 martensite Inorganic materials 0.000 description 1
- 230000001590 oxidative effect Effects 0.000 description 1
- 239000001301 oxygen Substances 0.000 description 1
- 229910052760 oxygen Inorganic materials 0.000 description 1
- 230000035515 penetration Effects 0.000 description 1
- 239000012466 permeate Substances 0.000 description 1
- 235000009566 rice Nutrition 0.000 description 1
- 230000000087 stabilizing effect Effects 0.000 description 1
- 230000003068 static effect Effects 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
- 230000009466 transformation Effects 0.000 description 1
- 238000013022 venting Methods 0.000 description 1
Images
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29C—SHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
- B29C33/00—Moulds or cores; Details thereof or accessories therefor
- B29C33/38—Moulds or cores; Details thereof or accessories therefor characterised by the material or the manufacturing process
- B29C33/3814—Porous moulds
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B22—CASTING; POWDER METALLURGY
- B22F—WORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
- B22F3/00—Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces
- B22F3/12—Both compacting and sintering
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B22—CASTING; POWDER METALLURGY
- B22D—CASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
- B22D17/00—Pressure die casting or injection die casting, i.e. casting in which the metal is forced into a mould under high pressure
- B22D17/20—Accessories: Details
- B22D17/22—Dies; Die plates; Die supports; Cooling equipment for dies; Accessories for loosening and ejecting castings from dies
- B22D17/2209—Selection of die materials
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B22—CASTING; POWDER METALLURGY
- B22F—WORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
- B22F3/00—Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces
- B22F3/10—Sintering only
- B22F3/11—Making porous workpieces or articles
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B22—CASTING; POWDER METALLURGY
- B22F—WORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
- B22F3/00—Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces
- B22F3/24—After-treatment of workpieces or articles
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B22—CASTING; POWDER METALLURGY
- B22F—WORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
- B22F5/00—Manufacture of workpieces or articles from metallic powder characterised by the special shape of the product
- B22F5/007—Manufacture of workpieces or articles from metallic powder characterised by the special shape of the product of moulds
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C47/00—Making alloys containing metallic or non-metallic fibres or filaments
- C22C47/14—Making alloys containing metallic or non-metallic fibres or filaments by powder metallurgy, i.e. by processing mixtures of metal powder and fibres or filaments
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C49/00—Alloys containing metallic or non-metallic fibres or filaments
- C22C49/02—Alloys containing metallic or non-metallic fibres or filaments characterised by the matrix material
- C22C49/08—Iron group metals
Landscapes
- Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- Chemical & Material Sciences (AREA)
- Manufacturing & Machinery (AREA)
- Materials Engineering (AREA)
- Metallurgy (AREA)
- Organic Chemistry (AREA)
- Moulds For Moulding Plastics Or The Like (AREA)
- Powder Metallurgy (AREA)
- Molds, Cores, And Manufacturing Methods Thereof (AREA)
Description
本発明は、金型等に用いることができる金型用型材、この金型用型材を用いた金型用通気性部材、並びに、金型用型材及び金型用通気性部材の製造方法に関する。 The present invention relates to a mold member that can be used for a mold, a mold breathable member using the mold member, a mold member, and a method for manufacturing the mold breathable member.
従来、真空成形法に用いられる通気性耐久型が、例えば、特開平7−108348号公報(及び対応するCN1041178C及びUS5405570A)(特許文献1)に記載されている。また、真空成形法に用いられる通気性成形体の製造方法が、例えば、特開平7−113103号公報(及び対応するCN1102607A及びUS5435967A)(特許文献2)に記載されている。 Conventionally, a breathable durable mold used in a vacuum forming method is described in, for example, Japanese Patent Laid-Open No. 7-108348 (and corresponding CN 1041178C and US 5405570A) (Patent Document 1). Moreover, the manufacturing method of the air permeable molded object used for a vacuum forming method is described in Unexamined-Japanese-Patent No. 7-113103 (and corresponding CN1102607A and US5435967A) (patent document 2), for example.
特許文献1に記載された従来の通気性耐久型は、強度が弱いという問題があり、さらに、流し込みによる真空成形は可能であったが、機械加工、放電加工、エッチング加工ができないため、射出成形に用いることができなかった。特許文献2に記載された成形体は、さらに強度が弱いという問題があった。
このため、通気性を有するとともに高い強度を有し射出成形にも用いることができる金型用型材が望まれていた。さらに、金型用型材としての使い勝手を向上させるため、加工性を有することも望まれていた。
The conventional breathable durable type described in
Therefore, a mold material that has air permeability and high strength and can be used for injection molding has been desired. Furthermore, in order to improve the usability as a mold material, it has been desired to have workability.
本発明は、従来からの要請を満たすためになされたものであり、通気性に加えて強度及び加工性をも備えた金型用型材を提供することを目的としている。
さらに、本発明は、この金型用型材を用いた金型用通気性部材、及び、これらの金型用型材及び金型用通気性部材の製造方法を提供することも目的としている。
The present invention has been made to satisfy conventional demands, and an object of the present invention is to provide a mold material having strength and workability in addition to air permeability.
Another object of the present invention is to provide a mold breathable member using the mold mold material, and a method for producing the mold mold member and the mold breathable member.
上記の目的を達成するために、本発明の金型用型材は、直径換算径30〜300μmで長さ0.4〜5.0mmのステンレス鋼繊維と、ステンレス鋼粉末とを含む混合材料を形成し、この混合材料のグリーン体を加熱焼結し、得られた焼結体を窒素雰囲気下で加熱して窒化することにより製造され、通気孔の平均空孔径が3〜50μmである
このように構成された金型用型材によれば、強度を保持しつつ優れた通気性を実現し、射出成形にも用いることができる。
In order to achieve the above object, the mold material of the present invention forms a mixed material containing stainless steel fibers having a diameter of 30 to 300 μm and a length of 0.4 to 5.0 mm, and stainless steel powder. The green body of this mixed material is heated and sintered, and the obtained sintered body is manufactured by nitriding by heating in a nitrogen atmosphere, and the average pore diameter of the air holes is 3 to 50 μm. According to the configured mold material, excellent air permeability is realized while maintaining strength, and it can be used for injection molding.
本発明の金型用型材において、好ましくは、ステンレス鋼繊維及びステンレス鋼粉末は、フェライト系ステンレスである。
このように構成された本発明によれば、オーステナイト系ステンレスやマルテンサイト系ステンレスに比べて、加工し易く且つ耐食性の観点でより有利である。
In the mold material of the present invention, preferably, the stainless steel fiber and the stainless steel powder are ferritic stainless steel.
According to the present invention configured as described above, it is more advantageous in terms of easy processing and corrosion resistance than austenitic stainless steel and martensitic stainless steel.
本発明の金型用型材において、好ましくは、窒化による窒素含有量は、ステンレス成分100重量%に対して0.3〜1.2重量%である。
このように構成された本発明によれば、金型用型材として必要な適度な硬さとなり、優れた加工性となる。
In the mold material of the present invention, the nitrogen content by nitriding is preferably 0.3 to 1.2% by weight with respect to 100% by weight of the stainless steel component.
According to the present invention configured as described above, it has an appropriate hardness required as a mold material and has excellent workability.
本発明の金型用型材において、好ましくは、混合材料は、さらに、銅粉末又は銅スズ合金粉末を含む。
このように構成された本発明によれば、靭性が向上し、優れた金型用型材となる。
In the mold material according to the present invention, preferably, the mixed material further includes a copper powder or a copper tin alloy powder.
According to the present invention configured as described above, the toughness is improved and an excellent mold material is obtained.
本発明の金型用型材において、好ましくは、混合材料は、ステンレス成分として、20〜80重量%のステンレス鋼繊維と、20〜80重量%のステンレス鋼粉末とを含み、さらに、このステンレス成分100重量%に対して1〜10重量%の銅粉末又は銅スズ合金粉末を含む。 In the mold material according to the present invention, preferably, the mixed material includes 20 to 80% by weight of stainless steel fibers and 20 to 80% by weight of stainless steel powder as a stainless steel component. 1-10 weight% copper powder or copper tin alloy powder is included with respect to weight%.
本発明の金型用型材は、好ましくは、さらに、通気孔による空孔の空孔率が15〜35%である。 In the mold material according to the present invention, preferably, the porosity of the air holes is 15 to 35%.
本発明の金型用型材において、好ましくは、窒化は、窒素ガス又はアンモニア分解ガス中に900〜1050℃で保持して行われる。 In the mold material according to the present invention, preferably, nitriding is performed while being held at 900 to 1050 ° C. in nitrogen gas or ammonia decomposition gas.
本発明の金型用通気性部材は、上述した金型用型材を、放電加工、エッチング加工、又は、機械加工することにより得られ、金型に組み込まれる。
このように構成された本発明による金型通気性部材によれば、この金型用通気性部材を金型に用いることにより、ガス抜き性及び樹脂の流動性を向上させることができ、金型構造を簡単にでき、射出成形が難しかった製品を成形でき、成形サイクルを短縮化でき、ガス欠陥を防止できる。すなわち、網目状、格子状の成形品も確実に成形でき、薄物も良好に成形できる。さらに、樹脂の金型への密着性が高いので、表面模様を忠実に成形でき、ツヤムラを消すことも可能であるので無塗装を可能とする。
The air-permeable member for a mold of the present invention is obtained by subjecting the above-described mold material to electric discharge machining, etching, or machining, and is incorporated into the mold.
According to the mold breathable member of the present invention configured as described above, the gas ventability and resin fluidity can be improved by using the mold breathable member for the mold. The structure can be simplified, products that were difficult to injection mold can be molded, the molding cycle can be shortened, and gas defects can be prevented. That is, a net-like or lattice-like molded product can be reliably molded, and a thin object can be molded well. Furthermore, since the adhesiveness of the resin to the mold is high, it is possible to form the surface pattern faithfully and to eliminate the gloss unevenness, thus enabling no painting.
本発明の金型用通気性部材は、上述した金型用型材を放電加工、エッチング加工、又は、機械加工により模様を付与することにより得られる金型用通気性部材であって、この金型用通気性部材が組み込まれる金型が樹脂の射出成形に使用可能である。 A gas-permeable member for a mold according to the present invention is a gas-permeable member for a mold obtained by applying a pattern to the above-described mold material by electric discharge machining, etching, or machining. A mold in which an air permeable member is incorporated can be used for resin injection molding.
本発明の金型用通気性部材は、上述した金型用型材を、放電加工、エッチング加工、又は、機械加工することにより得られる金型用通気性部材であって、この金型用通気性部材の内部に通水用の導通孔が設けられている。
このように構成された本発明によれば、金型用通気性部材の内部に通水用の導通孔が設けられているので、金型温度を一定に保持することが出来、それにより、安定した品質と成形サイクルを得ることができる。
The mold breathable member of the present invention is a mold breathable member obtained by subjecting the above-described mold mold material to electrical discharge machining, etching, or machining, and this mold breathable member. A conduction hole for water flow is provided inside the member.
According to the present invention configured as described above, since the water conduction hole is provided inside the mold breathable member, the mold temperature can be kept constant, thereby stabilizing the mold. Quality and molding cycle can be obtained.
本発明の金型用通気性部材において、好ましくは、前記金型用通気性部材の導通孔の内面に、硬化剤配合エポキシ樹脂により目止め処理がなされている。
このように構成された本発明によれば、金型用通気性部材の導通孔の内面に、硬化剤配合エポキシ樹脂により目止め処理がなされているので、導通孔からの水漏れを確実に防止することができる。
In the mold breathable member of the present invention, preferably, the inner surface of the conduction hole of the mold breathable member is sealed with a curing agent-blended epoxy resin.
According to the present invention configured as described above, the inner surface of the conduction hole of the mold breathable member is sealed with an epoxy resin containing a curing agent, so that water leakage from the conduction hole is surely prevented. can do.
本発明の金型用通気性部材において、好ましくは、上述した金型用型材を、放電加工、エッチング加工、又は、機械加工することにより得られる金型用通気性部材であって、この加工後に通気孔となる空孔に浸み込んだ加工油又はエッチング液がエアブローにより洗浄される。
このように構成された本発明によれば、金型用通気性部材において、放電加工、エッチング加工、又は、機械加工により、通気孔に浸み込んだ加工油やエッチィング液をエアブローにより洗浄するようにしているので、従来のように、複雑な作業を行なったり、特別な装置を用意する必要がなく、安全且つ確実に、加工油等の洗浄を行なうことができる。
The mold breathable member of the present invention is preferably a mold breathable member obtained by subjecting the above-described mold mold material to electric discharge machining, etching process, or machining, and after the machining, The processing oil or the etching liquid that has soaked into the air holes serving as the air holes is cleaned by air blowing.
According to the present invention configured as described above, in the air-permeable member for molds, the processing oil and the etching liquid immersed in the air holes are washed by air blowing by electric discharge machining, etching, or machining. Therefore, it is not necessary to perform complicated work or prepare a special device as in the prior art, and it is possible to clean the processing oil and the like safely and reliably.
本発明の金型用通気性部材において、好ましくは、洗浄された金型用通気性部材の通気度が、50cm3/cm2・sec以上である。 In the mold breathable member of the present invention, the air permeability of the washed mold breathable member is preferably 50 cm 3 / cm 2 · sec or more.
本発明の金型用通気性部材は、上述した金型用型材を機械加工することにより得られる金型用通気性部材であって、加工部分の表面粗さが3μm〜20μmである。 The mold breathable member of the present invention is a mold breathable member obtained by machining the mold mold material described above, and the processed portion has a surface roughness of 3 μm to 20 μm.
本発明の金型用通気性部材において、好ましくは、加工部分の表面粗さが3.2μm〜13.5μmである。 In the mold breathable member of the present invention, preferably, the processed portion has a surface roughness of 3.2 μm to 13.5 μm.
本発明の金型用通気性部材において、好ましくは、機械加工はボールエンドミルにより行なわれ、このボールエンドミルの回転数が3000〜30000rpmであり、ボールエンドミルの送り速度が1000〜2000mm/minである。 In the mold breathable member of the present invention, the machining is preferably performed by a ball end mill, the rotation speed of the ball end mill is 3000 to 30000 rpm, and the feed speed of the ball end mill is 1000 to 2000 mm / min.
本発明の金型用型材の製造方法は、直径換算径30〜300μmで長さ0.4〜5.0mmのステンレス鋼繊維と、ステンレス鋼粉末とを含む混合材料を成形し、この混合材料のグリーン体を加熱焼結し、得られた焼結体を窒素雰囲気下で加熱して窒化して、通気孔の平均空孔径が3〜50μmである金型用型材を製造する。 The method for producing a mold member according to the present invention comprises forming a mixed material containing stainless steel fibers having a diameter in terms of diameter of 30 to 300 μm and a length of 0.4 to 5.0 mm and stainless steel powder. The green body is heated and sintered, and the obtained sintered body is heated and nitrided in a nitrogen atmosphere to produce a mold member having an average pore diameter of 3 to 50 μm.
本発明の金型用通気性部材の製造方法は、直径換算径30〜300μmで長さ0.4〜5.0mmのステンレス鋼繊維と、ステンレス鋼粉末とを含む混合材料を形成し、この混合材料のグリーン体を加熱焼結し、得られた焼結体を窒素雰囲気下で加熱して窒化することにより、通気孔の平均空孔径が3〜50μmである金型用型材を製造し、この金型用型材を放電加工、エッチング加工、又は、機械加工することにより金型用通気性部材を製造し、この金型用通気性部材の内部に通水用の導通孔を設け、この導通孔の内面に硬化剤配合エポキシ樹脂により目止め処理を行う。 The method for producing a breathable member for a mold according to the present invention comprises forming a mixed material containing stainless steel fibers having a diameter converted diameter of 30 to 300 μm and a length of 0.4 to 5.0 mm and stainless steel powder, and mixing the mixture. The green body of the material is heated and sintered, and the obtained sintered body is heated and nitrided in a nitrogen atmosphere to produce a mold material having an average pore diameter of 3 to 50 μm. A mold breathable member is manufactured by electric discharge machining, etching process, or machining of a mold mold material, and a water conduction hole is provided inside the mold breathable member. A sealing treatment is performed on the inner surface of the resin with a curing agent-containing epoxy resin.
本発明の金型用通気性部材の製造方法は、直径換算径30〜300μmで長さ0.4〜5.0mmのステンレス鋼繊維と、ステンレス鋼粉末とを含む混合材料を形成し、この混合材料のグリーン体を加熱焼結し、得られた焼結体を窒素雰囲気下で加熱して窒化することにより、通気孔の平均空孔径が3〜50μmである金型用型材を製造し、この金型用型材を放電加工、エッチング加工、又は、機械加工することにより金型用通気性部材を製造し、この加工後に通気孔に浸み込んだ加工油又はエッチング液をエアブローにより洗浄する。 The method for producing a breathable member for a mold according to the present invention comprises forming a mixed material containing stainless steel fibers having a diameter converted diameter of 30 to 300 μm and a length of 0.4 to 5.0 mm and stainless steel powder, and mixing the mixture. The green body of the material is heated and sintered, and the obtained sintered body is heated and nitrided in a nitrogen atmosphere to produce a mold material having an average pore diameter of 3 to 50 μm. A mold breathable member is manufactured by subjecting the mold material to electrical discharge machining, etching, or machining, and the processing oil or etchant that has soaked into the air holes after the machining is washed by air blow.
本発明の金型用通気性部材の製造方法は、直径換算径30〜300μmで長さ0.4〜5.0mmのステンレス鋼繊維と、ステンレス鋼粉末とを含む混合材料を形成し、この混合材料のグリーン体を加熱焼結し、得られた焼結体を窒素雰囲気下で加熱して窒化することにより、平均空孔径が3〜50μmである金型用型材を製造し、この金型用型材を加工部分の表面粗さが3μm〜20μmとなるように機械加工することにより金型用通気性部材を製造する。 The method for producing a breathable member for a mold according to the present invention comprises forming a mixed material containing stainless steel fibers having a diameter converted diameter of 30 to 300 μm and a length of 0.4 to 5.0 mm and stainless steel powder, and mixing the mixture. The green body of the material is heated and sintered, and the obtained sintered body is heated and nitrided in a nitrogen atmosphere to produce a mold material having an average pore diameter of 3 to 50 μm. A mold breathable member is manufactured by machining the mold material so that the processed portion has a surface roughness of 3 μm to 20 μm.
本発明の金型用通気性部材の製造方法は、機械加工はボールエンドミルにより行なわれ、このボールエンドミルの回転数が3000〜30000rpmであり、ボールエンドミルの送り速度が1000〜2000mm/minである。 In the method for producing a mold breathable member of the present invention, machining is performed by a ball end mill, the rotation speed of the ball end mill is 3000 to 30000 rpm, and the feed speed of the ball end mill is 1000 to 2000 mm / min.
以下、添付図面を参照して、本発明の実施形態に係わる金型用型材、金型用通気性部材、並びに、金型用型材及び金型用通気性部材の製造方法を説明する。
先ず、図1及び図2を参照して、本発明の実施形態による金型用型材、及び、この金型用型材の製造方法について説明する。
Hereinafter, with reference to the accompanying drawings, a mold material, a mold breathable member, a mold mold material, and a mold breathable member according to an embodiment of the present invention will be described.
First, with reference to FIG.1 and FIG.2, the metal mold | die material by embodiment of this invention and the manufacturing method of this metal mold | die material are demonstrated.
本発明の実施形態による金型用型材は、直径換算径30〜300μmで長さ0.4〜5.0mmのフェライト系ステンレス鋼繊維と、フェライト系ステンレス鋼粉末とを含んで混合した混合材料を、加圧成型してグリーン体を得て、この得られたグリーン体を加熱焼結し、得られた焼結体を窒素雰囲気下で加熱して窒化された金型用型材である。さらに、この金型用型材において、平均空孔径が3〜50μmである。 The mold material according to the embodiment of the present invention is a mixed material including a ferritic stainless steel fiber having a diameter of 30 to 300 μm and a length of 0.4 to 5.0 mm and a ferritic stainless steel powder. A green body is obtained by press molding to obtain a green body, the obtained green body is heated and sintered, and the obtained sintered body is heated and nitrided in a nitrogen atmosphere. Furthermore, in this mold material, the average pore diameter is 3 to 50 μm.
ここで、本発明の実施形態による金型用型材は、フェライト系ステンレスに限定されるものではなく、例えばオーステナイト系ステンレスや、マルテンサイト系ステンレスを用いたものであっても良い。しかしながら、オーステナイト系ステンレスは、加工が困難となる場合があり、マルテンサイト系ステンレスは、成分に応じて耐食性が劣化して錆の発生が問題となる場合がある。そのため、フェライト系ステンレスは、オーステナイト系ステンレスやマルテンサイト系ステンレスに比べて、加工し易く且つ耐食性の観点でより有利である。 Here, the mold material according to the embodiment of the present invention is not limited to ferritic stainless steel, and may be, for example, austenitic stainless steel or martensitic stainless steel. However, austenitic stainless steels may be difficult to process, and martensitic stainless steels may have a problem of rusting due to deterioration of corrosion resistance depending on the components. Therefore, ferritic stainless steel is more advantageous in terms of easy processing and corrosion resistance than austenitic stainless steel and martensitic stainless steel.
また、フェライト系ステンレス鋼繊維と、フェライト系ステンレス鋼粉末とを含む混合材料は、さらに、銅粉末又は銅スズ合金粉末を含んでも良く、その場合には、銅合金の特性により靭性が向上し、優れた金型用型材となる。 Moreover, the mixed material containing the ferritic stainless steel fiber and the ferritic stainless steel powder may further contain a copper powder or a copper tin alloy powder, in which case the toughness is improved by the characteristics of the copper alloy, It is an excellent mold material.
尚、混合材料は、ステンレス成分として、20〜80重量%のステンレス鋼繊維と、20〜80重量%のステンレス鋼粉末とを含み、さらに、このステンレス成分100重量%に対して1〜10重量%の銅粉末又は銅スズ合金粉末を含むことが望ましい。 The mixed material contains 20 to 80% by weight of stainless steel fiber and 20 to 80% by weight of stainless steel powder as a stainless steel component, and further 1 to 10% by weight with respect to 100% by weight of this stainless steel component. It is desirable to contain copper powder or copper tin alloy powder.
ステンレス鋼繊維及びステンレス鋼粉末として用いられるフェライト形ステンレスの代表例は、SUS434(C≦0.1%,16%≦Cr≦19%,0.5%≦Mo≦2%)や、SUS430(C≦0.03%,16%≦Cr≦19%)である。 Typical examples of ferritic stainless steel used as stainless steel fiber and stainless steel powder are SUS434 (C ≦ 0.1%, 16% ≦ Cr ≦ 19%, 0.5% ≦ Mo ≦ 2%) and SUS430 (C ≦ 0.03%, 16% ≦ Cr ≦ 19%).
ステンレス鋼繊維は、例えば上述の化学成分からなる厚み30〜300μmのコイル材を端面切削法により切削して、直径換算径30〜300μmの長繊維を用意し、この長繊維をカッターミル等で寸断することにより、長さ0.4〜5.0mmの短繊維を得て、この短繊維を用いる。
ここで、直径換算径30〜300μmのステンレス鋼繊維は、そのステンレス鋼繊維の断面積と等しい断面積を有する真円の直径が30〜300μmの範囲であるステンレス鋼繊維を意味する。
For example, the stainless steel fiber is prepared by cutting a coil material having a thickness of 30 to 300 μm made of the above-described chemical components by an end face cutting method to prepare a long fiber having a diameter converted diameter of 30 to 300 μm, and cutting the long fiber with a cutter mill or the like. By doing this, a short fiber having a length of 0.4 to 5.0 mm is obtained, and this short fiber is used.
Here, a stainless steel fiber having a diameter converted diameter of 30 to 300 μm means a stainless steel fiber having a diameter of a perfect circle having a cross-sectional area equal to the cross-sectional area of the stainless steel fiber in a range of 30 to 300 μm.
上述したステンレス鋼繊維と、ステンレス鋼粉末と、銅(Cu)粉末若しくは銅スズ合金(Cu−Sn)粉末とを加えて得られる混合材料をCIP法用ラバー型内に均一に充填して2〜4ton/cm2の加圧力により加圧成形することにより、混合材料のグリーン体が得られる。 A mixed material obtained by adding the above-described stainless steel fiber, stainless steel powder, and copper (Cu) powder or copper-tin alloy (Cu-Sn) powder is uniformly filled into a rubber mold for CIP method. A green body of a mixed material is obtained by pressure molding with a pressure of 4 ton / cm 2 .
このグリーン体を、真空雰囲気中で加熱焼結し、得られた焼結体を、これに連続して又は再加熱して、窒素ガス又はアンモニア分解ガス中に、900℃〜1050℃で保持し、これにより、母金属であるステンレス成分(ステンレス鋼繊維及びステンレス鋼粉末)100重量%に対して、窒素を0.3〜1.2重量%含有させて窒化がなされる。 The green body is heated and sintered in a vacuum atmosphere, and the obtained sintered body is continuously or reheated and held in nitrogen gas or ammonia decomposition gas at 900 ° C. to 1050 ° C. Thus, nitriding is performed by containing 0.3 to 1.2% by weight of nitrogen with respect to 100% by weight of the stainless steel component (stainless steel fiber and stainless steel powder) as the base metal.
以上の成形、焼結及び窒化により、全面に微細な空孔(空孔率15〜35%、平均空孔径3〜50μm)を有し、且つ、切削性、耐食性を損なうことなく、型材として必要な強さと硬さ(HMV250〜500)を備えた金型用型材を得ることができる。また、この金型用型材では、熱処理を施すことにより硬さの制御を行うことができる。
By the above molding, sintering and nitriding, it has fine pores (porosity 15 to 35%,
尚、上述した実施形態では、成形、焼結及び窒化により金型用型材を得るようにしたが、本発明はこれに限られるものではない。すなわち、窒化後に、冷却及び再加熱処理を行うようにしてもよい。再加熱処理は、例えば真空焼入れ処理により行われる。また、冷却は、例えば平均冷却速度5.5℃/min以上で、250℃以下となるまで急冷で行われ、再加熱処理は、例えば600〜680℃の範囲で行われ、それにより、良い結果が得られた。 In the embodiment described above, the mold material is obtained by molding, sintering, and nitriding, but the present invention is not limited to this. That is, cooling and reheating treatment may be performed after nitriding. The reheating process is performed by, for example, a vacuum quenching process. Further, the cooling is performed, for example, at an average cooling rate of 5.5 ° C./min or higher and rapidly cooled to 250 ° C. or lower, and the reheating treatment is performed, for example, in a range of 600 to 680 ° C. was gotten.
次に、本発明の実施形態による金型用型材の実施例1乃至6、及び、これら実施例と比較するための比較例1乃至4を説明する。 Next, Examples 1 to 6 of the mold material according to the embodiment of the present invention and Comparative Examples 1 to 4 for comparison with these Examples will be described.
先ず、これらの実施例及び比較例の諸条件を説明する。ステンレス鋼繊維として、SUS434(C:0.1%,Cr:18%,Mo:1%)のステンレス鋼の100μmのコイル材を端面切削法により切削して直径換算径60〜150μmの長繊維を作製し、これをカッターミルで寸断して0.4〜5.0mmの短繊維を得て、これを用いた。 First, conditions of these examples and comparative examples will be described. As a stainless steel fiber, a stainless steel 100 μm coil material of SUS434 (C: 0.1%, Cr: 18%, Mo: 1%) is cut by an end face cutting method to obtain a long fiber having a diameter converted diameter of 60 to 150 μm. It was produced and cut with a cutter mill to obtain 0.4 to 5.0 mm short fibers, which were used.
ステンレス鋼粉末としては、SUS434(C:0.05%,Cr:17%,Mo:2%)のステンレス鋼粉末を用いた。ステンレス鋼粉末の条件は150μm以下のものが90%以上となるものである。 As the stainless steel powder, stainless steel powder of SUS434 (C: 0.05%, Cr: 17%, Mo: 2%) was used. The condition of the stainless steel powder is such that 90% or more is 150 μm or less.
銅粉末としては、電解銅粉末を用いた。銅粉末の条件は、45μm以下のものが80%以上となるものである。 As the copper powder, electrolytic copper powder was used. The condition of the copper powder is such that a powder of 45 μm or less is 80% or more.
混合材料としては、ステンレス鋼繊維40重量%、ステンレス鋼粉末60重量%を混合し、さらにこのステンレス成分100重量%に対して銅粉末3重量%を添加して混合した混合材料を得た。この混合材料をCIP法用ラバー型内に均一に充填して3ton/cm2の加圧力により加圧成形することにより、グリーン体(圧粉体)を得た。次に、グリーン体を図1に示す焼結条件で焼結を行うことにより、焼結体を得た。 As a mixed material, 40% by weight of stainless steel fiber and 60% by weight of stainless steel powder were mixed, and further, 3% by weight of copper powder was added to 100% by weight of this stainless steel component to obtain a mixed material. The mixed material was uniformly filled into a rubber mold for CIP method and pressure-molded with a pressure of 3 ton / cm 2 to obtain a green body (green compact). Next, the green body was sintered under the sintering conditions shown in FIG. 1 to obtain a sintered body.
図1は、本発明の実施形態による金型用型材を製造する際の混合材料のグリーン体の焼結条件を示す線図である。図1の横軸は、時間(Hr)を示し、縦軸は、温度(℃)を示し、P1で示される範囲は、真空度1×10-2torr以下の範囲を示し、P2で示される範囲は、パーシャル窒素10torrの範囲を示し、P3の時点は、窒素ガス3kg/cm2流す時点を示す。
FIG. 1 is a diagram showing sintering conditions for a green body of a mixed material when a mold material according to an embodiment of the present invention is manufactured. The horizontal axis in FIG. 1 indicates time (Hr), the vertical axis indicates temperature (° C.), the range indicated by P1 indicates a range of a vacuum degree of 1 × 10 −2 torr or less, and is indicated by P2. The range indicates the range of 10 torr of partial nitrogen, and the time point P3 indicates the time point of flowing
この図1に示す焼結条件について詳細に説明する。供試材として250mm×200mm×100mm(約30kg)のブロック状のものを用いる。先ず、この供試材を真空焼結炉内で1×10-2torr以下まで減圧し、その後、550℃に達するまで昇温を行い、次に、550℃にて気化成分を十分脱気するために30分間その温度を保持して1×10-2torr以下の真空度を得た。その後、1150℃まで再昇温を行い1150℃にて2時間保持し、その後700℃まで炉冷を行った。 The sintering conditions shown in FIG. 1 will be described in detail. A block-like material of 250 mm × 200 mm × 100 mm (about 30 kg) is used as a test material. First, the test material is depressurized to 1 × 10 −2 torr or less in a vacuum sintering furnace, and then heated up to reach 550 ° C., and then the vaporized components are sufficiently degassed at 550 ° C. Therefore, the temperature was maintained for 30 minutes to obtain a vacuum of 1 × 10 −2 torr or less. Thereafter, the temperature was raised again to 1150 ° C., held at 1150 ° C. for 2 hours, and then cooled to 700 ° C.
ここで、1150℃まで再昇温を行なうとき、パーシャル窒素を10torr(10/780気圧)流す。パーシャル窒素を流す目的は、真空高温に保持した場合、ステンレス鋼中のCr蒸発を防止するためである。 Here, when the temperature is raised again to 1150 ° C., partial nitrogen is allowed to flow at 10 torr (10/780 atm). The purpose of flowing partial nitrogen is to prevent Cr evaporation in the stainless steel when kept at a high vacuum temperature.
炉冷を行なって700℃になった時点で窒素ガスを3kg/cm2流し、供試材を急速冷却させる。700℃で急速冷却を開始するのは変態点を過ぎてミクロ(顕微鏡)組織変化を起こさせないためである。 When the furnace is cooled to 700 ° C., nitrogen gas is flowed at 3 kg / cm 2 to rapidly cool the specimen. The reason why the rapid cooling is started at 700 ° C. is to prevent the micro (microscopic) structure from changing after the transformation point.
次に、この供試材を表1に示す条件で窒化処理を行った。表1には、得られた金型用型材の成分の分析値及び硬さ測定値も示されている。 Next, the specimen was subjected to nitriding treatment under the conditions shown in Table 1. Table 1 also shows analysis values and hardness measurement values of the components of the obtained mold material.
窒化処理は、真空熱処理炉内で1×10-2torr以下まで減圧し、その後、700℃に達するまで昇温を行い、次に、700℃にて気化成分の十分なる脱気のための30分間温度保持をし、1×10-2torr以下の真空度を得た。その後、再昇温を行い、各保持温度あるいは保持時間を変化させ、1気圧中の窒素雰囲気下で窒化処理を行った。均一な窒素含有を得るには保持時間30分以上が必要であった。 In the nitriding treatment, the pressure is reduced to 1 × 10 −2 torr or less in a vacuum heat treatment furnace, and then the temperature is raised until the temperature reaches 700 ° C., and then 30 ° C. for sufficient degassing of vaporized components at 700 ° C. The temperature was kept for 1 minute to obtain a vacuum of 1 × 10 −2 torr or less. Thereafter, the temperature was raised again, and each holding temperature or holding time was changed, and nitriding was performed in a nitrogen atmosphere at 1 atm. A retention time of 30 minutes or more was required to obtain a uniform nitrogen content.
表1に示すように、窒化しないもの(比較例1)、窒素含有量が0.3%より小さいもの(比較例2)は、その硬さが、金型用型材として必要な硬さであるHMV250以下となるので不適切である。また、窒素含有量が1.2%より大きいもの(比較例3、比較例4)は、窒化クロムが多量に生成され、その硬さがHMV500以上となり、加工が困難で金型用型材として適し難い。ここで、「HMV」とは、硬さを表す単位であるマイクロビッカース硬度を示し、株式会社島津製作所製のマイクロビッカース硬度計(型番HMV−2000)にて計測した値である。 As shown in Table 1, the non-nitriding material (Comparative Example 1) and the nitrogen content smaller than 0.3% (Comparative Example 2) have the hardness required as a mold material. Since it is below HMV250, it is inappropriate. Also, those having a nitrogen content greater than 1.2% (Comparative Example 3 and Comparative Example 4) produce a large amount of chromium nitride and have a hardness of HV500 or more, which is difficult to process and suitable as a mold material. hard. Here, “HMV” indicates micro Vickers hardness, which is a unit representing hardness, and is a value measured by a micro Vickers hardness meter (model number HMV-2000) manufactured by Shimadzu Corporation.
次に、強度や空孔について説明する。表1の実施例のうち実施例1を選択し、表2に、この実施例1の機械的性質及び空孔径、空孔率の結果を示す。ここで、実施例1は、機械加工性に優れ、切削速度が従来の通常の型材(SKD61)と同等である。 Next, strength and holes will be described. Example 1 was selected from the examples shown in Table 1, and Table 2 shows the results of mechanical properties, pore diameter, and porosity of Example 1. Here, Example 1 is excellent in machinability and has a cutting speed equivalent to that of a conventional ordinary mold material (SKD61).
この実施例1の型材を加工し、金型として使用した。汎用ABS樹脂を最小肉厚0.7mm、製品寸法10mm×150mmのバンド状のものを10ヶ所に込め、成形テストを行ったところ、射出圧98kg/cm2できれいに成形ができ、ガス焼けのないものが得られた。尚、通常の型材を使用した場合射出圧138kg/cm2であった。
The mold material of Example 1 was processed and used as a mold. Rice universal ABS resin minimum thickness 0.7 mm, what band-
次に、真空焼入れテストについて説明する。表1の実施例のうち実施例2及び実施例5を選択して、表3に、真空焼入れテストを行った結果を示す。 Next, the vacuum quenching test will be described. Example 2 and Example 5 were selected from the examples in Table 1, and Table 3 shows the results of the vacuum quenching test.
ここで、真空焼入れ条件を図2を参照して説明する。図2は、本発明の実施形態による金型用型材を製造する際の金型用型材の真空焼入れ条件を示す線図である。図2の横軸は時間(Hr)を示し、縦軸は温度(℃)を示し、P11及びP13で示される範囲は、真空度1×10-2torr程度の範囲を示し、P12は、窒素ガス3kg/cm2を流す時点を示し、P14は炉冷が行われていることを示す。 Here, the vacuum quenching conditions will be described with reference to FIG. FIG. 2 is a diagram showing the vacuum quenching conditions of the mold material when manufacturing the mold material according to the embodiment of the present invention. In FIG. 2, the horizontal axis indicates time (Hr), the vertical axis indicates temperature (° C.), the range indicated by P11 and P13 indicates a range of a vacuum degree of about 1 × 10 −2 torr, and P12 indicates nitrogen. The time point at which 3 kg / cm 2 of gas is supplied is shown, and P14 indicates that furnace cooling is being performed.
図2に示すように、先ず、真空熱処理炉内で1×10-2torr程度まで減圧し、その後700℃まで昇温し、700℃にて気化成分の十分な脱気のため30分間温度保持をし、次に、1×10-2torr程度の真空度を得た後、950℃及び1020℃にそれぞれ再昇温し、その温度で30分間保持し、その時点で窒素ガスを3kg/cm2流し、試料を急速冷却させる。さらに、30分後に1×10-2torr程度の真空度を得て、その後、250℃まで昇温し、250℃で2時間保持をし、その後、炉冷を行った。
As shown in FIG. 2, first, the pressure is reduced to about 1 × 10 −2 torr in a vacuum heat treatment furnace, then the temperature is raised to 700 ° C., and the temperature is maintained at 700 ° C. for 30 minutes for sufficient degassing of vaporized components. Next, after obtaining a degree of vacuum of about 1 × 10 −2 torr, the temperature was raised again to 950 ° C. and 1020 ° C., and held at that temperature for 30 minutes, at which point nitrogen gas was reduced to 3 kg /
上述した真空焼入れ条件は、一般の金型材の焼入れに用いられる条件と同じであり、通常の真空熱処理条件でもHMV600までの硬さが得られガラス繊維強化樹脂にも十分使用できることが確認できた。 The above-described vacuum quenching conditions are the same as those used for quenching a general mold material, and it has been confirmed that even a normal vacuum heat treatment condition can obtain a hardness of up to HMV 600 and can be sufficiently used for a glass fiber reinforced resin.
上述した本発明の実施形態による金型用型材は、従来の型材が持つ優れた特性を保持すると同時に、主材料としてフェライト系ステンレス鋼を使用した場合には酸化腐食による諸問題を克服でき、さらに、窒化処理がなされているので、その後に行われる焼入れ処理によりその硬度を制御することが可能となり、金型用型材として優れた特性を有する。 The mold material according to the above-described embodiment of the present invention retains the excellent characteristics of the conventional mold material, and at the same time can overcome various problems due to oxidative corrosion when ferritic stainless steel is used as a main material. Since the nitriding treatment is performed, it is possible to control the hardness by a quenching treatment performed thereafter, and it has excellent characteristics as a mold material.
すなわち、この金型用型材は、全面にわたって通気用の微細空孔を有するとともに切削性、耐食性に優れている。さらに、この金型用型材は、機械加工はもちろんのこと放電加工やエッチング加工も可能である。また、この金型用型材は、熱処理による硬さの制御が可能である。 That is, this mold material has fine pores for ventilation over the entire surface and is excellent in machinability and corrosion resistance. Furthermore, this mold material can be subjected to electrical discharge machining and etching as well as machining. In addition, the mold material can be controlled in hardness by heat treatment.
以上のように本発明の実施形態による金型用型材は、強度を保持しつつ優れた通気性及び加工性を実現することができた。本発明の実施形態による金型用型材は、射出成形にも用いることができ、金型構造を簡単にでき、これにより、ガス抜き性及び樹脂の流動性を向上でき、欠陥のない製品を成形できる。即ち、射出成形が難しかった製品を成形できる。また、射出成形圧力を低減でき、成形サイクルを短縮化でき、ガス欠陥を防止できる。また、本発明の実施形態による金型用型材は、スタンピング成形やプレス成形にも用いることができる。 As described above, the mold material according to the embodiment of the present invention was able to realize excellent air permeability and workability while maintaining strength. The mold material according to the embodiment of the present invention can also be used for injection molding, which can simplify the mold structure, thereby improving the degassing property and resin fluidity, and molding a defect-free product. it can. That is, a product that has been difficult to be injection molded can be molded. Moreover, the injection molding pressure can be reduced, the molding cycle can be shortened, and gas defects can be prevented. The mold material according to the embodiment of the present invention can also be used for stamping molding and press molding.
次に、本発明の実施形態による金型用通気性部材、及び、この金型用通気性部材の製造方法を説明する。
上述の金型用型材は、放電加工、エッチング加工、又は、機械加工することにより、金型用通気性部材として用いることが可能であり、この金型用通気性部材は、金型に組み込まれる。また、上述の金型用型材は、放電加工、エッチング加工、又は機械加工により模様を付与することにより、金型用通気性部材として用いることが可能であり、この金型用通気性部材が組み込まれた金型が樹脂の射出成形に使用される。
Next, a mold breathable member according to an embodiment of the present invention and a method for manufacturing the mold breathable member will be described.
The above-described mold mold material can be used as a mold breathable member by performing electrical discharge machining, etching process, or machining, and this mold breathable member is incorporated into a mold. . Further, the above-described mold material can be used as a mold breathable member by applying a pattern by electric discharge machining, etching process, or machining, and this mold breathable member is incorporated. The molded mold is used for resin injection molding.
次に、金型用型材を放電加工して金型用通気性部材を製作する例について説明する。自動車内装カップホールダベース用樹脂射出成形型を、表2に示された仕様の通気性型部材(金型用型材)を入れ子型キャビティに用いて製作した。 Next, an example in which a mold breathable member is manufactured by electrical discharge machining of a mold material will be described. A resin injection mold for an automobile interior cup holder base was manufactured using a breathable mold member (mold mold material) having the specifications shown in Table 2 as a nested mold cavity.
通気性型部材の加工にあたり、まず、機械加工にて形状加工を実施し、次いで、銅電極を用意し、(株)ソディック製(EPOC−3)にて表面粗さほぼRmax20μmの加工条件にて加工した後、通気性型部材の気孔に残留する加工油を除去して射出成形金型を製作した。 In processing the breathable mold member, first, shape processing is performed by machining, and then a copper electrode is prepared, and processing conditions with a surface roughness of approximately Rmax 20 μm are manufactured by Sodick Corporation (EPOC-3). After processing, the processing oil remaining in the pores of the breathable mold member was removed to produce an injection mold.
金型により、ABS樹脂を成形し、成形品表面のグロス値を測定(株式会社シロ産業製光沢計)したところグロス値約4.0を得た。通常の型鋼材による金型での成形品のグロス値は10程度と光沢率が高い。一般に、樹脂成形品で光沢率が低い値は艶消し状況を示すことになり、外観、手触り感が向上する。自動車内装では、適度に光沢率の低い樹脂成形品が好まれ、本通気性型部材を使用することで極めて風合いのよい樹脂成形品を得ることができた。 An ABS resin was molded with a mold, and the gloss value on the surface of the molded product was measured (gloss meter manufactured by Shiro Sangyo Co., Ltd.). A gloss value of about 4.0 was obtained. The gloss value of a molded product with a mold made of ordinary mold steel is about 10, and the gloss rate is high. In general, a low gloss value in a resin molded product indicates a matte state, and the appearance and feel are improved. For automobile interiors, resin molded products having a moderately low gloss rate are preferred, and by using this breathable mold member, a resin molded product having a very good texture can be obtained.
次に、金型用型材をエッチング加工して金型用通気性部材を製作する例を説明する。放電加工のときと同様に、カップホールダベース用樹脂射出成形型を、表2に示された仕様の通気性型部材(実施例1の金型用型材)を入れ子型キャビティに用いて製作した。 Next, an example of manufacturing a mold breathable member by etching a mold material will be described. As in the case of electric discharge machining, a cup holder base resin injection mold was manufactured using a breathable mold member (mold material of Example 1) having the specifications shown in Table 2 as a nested mold cavity.
金型用通気性部材の加工にあたり、まず、機械加工にて形状加工を実施し、次いで、エッチング加工を行うに先立ち、金型用通気性部材の気孔にエッチング液が浸み込まないように目止め樹脂(小池酸素工業(株)販売;商品名:ディヒトール)にて目止め処理を実施し、次いで、自動車内装用の代表的皮シボ模様をエッチング加工((株)棚澤八光社にて処理)により模様付けし、金型通気性部材の気孔に残留するディヒトールを除去して射出成形金型を製作した。 In processing the mold breathable member, first, shape processing is performed by machining, and then, prior to performing the etching process, make sure that the etchant does not penetrate into the pores of the mold breathable member. A sealing resin (saved by Koike Oxygen Industry Co., Ltd .; trade name: Dihitoru) was subjected to sealing treatment, and then a typical leather texture pattern for automobile interiors was etched (at Tanasawa Hakkou Co., Ltd.) The injection molding mold was manufactured by removing the dichthal remaining in the pores of the mold breathable member.
この金型により、ポリプロピレン樹脂を成形し、成形品表面のグロス値を測定(株式会社シロ産業製光沢計)したところ、グロス値約2.0を得た。通常の型鋼材による金型での成形品のグロス値は5.5程度と光沢率が高い。一般に、樹脂成形品で光沢率が低い値は艶消し状況を示すことになり、外観、手触り感が向上する。自動車内装では、適度に光沢率の低い樹脂成形品が好まれ、本発明の実施形態による金型用通気性部材を使用することで極めて風合いのよい樹脂成形品を得ることができた。 When this mold was used to mold a polypropylene resin and the gloss value on the surface of the molded product was measured (Shiro Sangyo Co., Ltd. gloss meter), a gloss value of about 2.0 was obtained. The gloss value of a molded product with a normal mold steel mold is as high as about 5.5. In general, a low gloss value in a resin molded product indicates a matte state, and the appearance and feel are improved. For automobile interiors, resin molded products having a reasonably low gloss rate are preferred, and by using the mold breathable member according to the embodiment of the present invention, a resin molded product having a very good texture could be obtained.
次に、金型用型材から得た金型用通気性部材を樹脂成形に用いた場合の第1の用途例及び第2の用途例について説明する。 Next, a first application example and a second application example in the case where a mold breathable member obtained from a mold material is used for resin molding will be described.
まず、第1の用途例として、ショートショットを解消した例について説明する。自動車内装のポリプロピレン樹脂製スピーカグリルの成形において、開口1.5mmの格子状で、その線径約0.3mmの形状が正常に成形することができ、今まで、金属性金網のインサート成形であった部品が、樹脂の一体成形にて製造できた。 First, an example in which a short shot is eliminated will be described as a first application example. In the molding of speaker grills made of polypropylene resin for automobile interiors, a grid shape with an opening of 1.5 mm and a wire diameter of about 0.3 mm can be formed normally. Until now, it has been an insert molding of a metal wire mesh. Parts could be manufactured by integral molding of resin.
次に、第2の用途例としてウェルドラインを解消した例について説明する。ABS樹脂製便座の成形にて、成形時の金型からキャビティ内のガスが抜けないことにより、十字あるいはT字形状のウェルドラインが発生していたが、このウェルドライン発生箇所の金型に通気性型部材を使用することにより、ウェルドライン発生を解消することができた。 Next, an example in which the weld line is eliminated as a second application example will be described. When molding the ABS resin toilet seat, gas in the cavity did not escape from the mold during molding, and a cross or T-shaped weld line was generated. By using a sex member, the generation of weld lines could be eliminated.
以上説明したように、本発明の実施形態による金型用通気性部材は、強度を保持しつつ優れた通気性を実現し、射出成形にも用いることができる。この金型用通気性部材を金型に用いることにより、ガス抜き性及び樹脂の流動性を向上させることができ、金型構造を簡単にでき、射出成形が難しかった製品を成形でき、成形サイクルを短縮化でき、ガス欠陥を防止できる。すなわち、網目状、格子状の成形品も確実に成形でき、薄物も良好に成形できる。さらに、樹脂の金型への密着性が高いので、表面模様を忠実に成形でき、ツヤムラを消すことも可能であるので無塗装を可能とする。 As described above, the mold breathable member according to the embodiment of the present invention achieves excellent breathability while maintaining strength, and can also be used for injection molding. By using this mold breathable member in the mold, it is possible to improve the gas venting and resin fluidity, simplify the mold structure, mold the product difficult to injection molding, molding cycle Can be shortened and gas defects can be prevented. That is, a net-like or lattice-like molded product can be reliably molded, and a thin object can be molded well. Furthermore, since the adhesiveness of the resin to the mold is high, it is possible to form the surface pattern faithfully and to eliminate the gloss unevenness, thus enabling no painting.
次に、図3乃至図6を参照して、本発明の他の実施形態による金型用通気性部材及びその金型通気性部材の製造方法を説明する。図3は本発明の他の実施形態による金型用通気部材を示す部分平面図、図4は図3のIV−IV線に沿って見た断面図、図5は本発明の他の実施形態による金型用通気部材の他の例を示す部分平面断面図、図6は本発明の他の実施形態による金型用通気部材の更なる他の例を示す部分平面断面図である。 Next, with reference to FIG. 3 thru | or FIG. 6, the manufacturing method of the air permeable member for metal mold | dies by the other embodiment of this invention and its air permeable member is demonstrated. 3 is a partial plan view showing a mold ventilation member according to another embodiment of the present invention, FIG. 4 is a cross-sectional view taken along line IV-IV of FIG. 3, and FIG. 5 is another embodiment of the present invention. FIG. 6 is a partial plan sectional view showing still another example of the mold ventilation member according to another embodiment of the present invention.
図3及び図4に示すように、本発明の他の実施形態による金型用通気性部材10は、その一面側に製品形状に対応したキャビティ12が形成され、さらに、その内部に通水用の複数の導通孔14が形成されている。これらの導通孔14は直線状に形成され、導通孔14の両端部は、連結管16により接続され、これらの導通孔14及び連結管16内に、外部から供給される冷却水が流れるようになっている。
As shown in FIGS. 3 and 4, a mold
この導通孔14は、図3及び図4に示された直線状のもの以外に、図5に示すように、金型用通気性部材10内で回路状に延びるように形成されたものであっても良い。さらに、導通孔14は、図6に示すように、タンク形状のものであっても良い。
In addition to the linear shape shown in FIGS. 3 and 4, the
この導通孔14は、ドリル加工により形成される。この導通孔14の直径は、5mm〜20mmの範囲が好ましい。
The
このように金型用通気性部材10の内部に通水用の導通孔14を形成したので、以下の利点がある。即ち、樹脂成形に代表される射出成形においては、通常、加熱溶融された樹脂を冷却された金型に射出して、金型により冷却、固化されて、射出成形がなされるようになっている。この射出成形において、数グラムの小さな成型品では、その成形サイクルが数秒以下であり、また、自動車のバンパーのような大きな成型品でも、数十秒サイクルで成形される。本発明の実施形態による金型通気用部材10の内部には導通孔14が形成され、この導通孔14に冷却水を流すようにしたので、金型温度を一定に保持することが出来、それにより、安定した品質と成形サイクルを得ることができる。
Thus, since the
次に、この金型用通気性部材10の内部に形成された通水用の導通孔14の漏水防止のための目止め処理について説明する。金型用通気性部材10にドリル加工により導通孔14を形成した場合、そのまま通水すると、金型用通気性部材10の通気孔へ水が浸み込み、水漏れが発生し、射出成形が安定せず、成型品の品質が低下する場合がある。
Next, a sealing process for preventing water leakage of the
このような水漏れを防止するため、本発明の実施形態による金型用通気性部材10の導通孔14の内面には、硬化剤配合エポキシ樹脂により目止め処理がなされている。この硬化剤配合エポキシ樹脂は、硬化剤により常温で硬化を始めるエポキシ樹脂である。この目止め処理は、先ず、硬化剤配合エポキシ樹脂を導通孔の注入孔から流し込み、数分間静置し、その後、エポキシ樹脂を排出し、さらに、導通孔の内部に残った樹脂が硬化するまで一定時間放置して、目止め処理が終了する。具体的には、導通孔14を形成した後、この導通孔14内に、粘度が200mPa・s〜20000mPa・sの硬化剤配合エポキシ樹脂を流し込み、排出するようにするのが好ましい。
In order to prevent such water leakage, the inner surface of the
より具体的に説明すると、目止め処理を、エポキシ樹脂の初期粘度は500mPa・s、金型温度は15℃〜25℃、静値時間は1〜5分、エポキシ樹脂の排出時の粘度は1800〜2500mPa、15℃〜25℃で16時間以上放置した条件で実施した。この目止め処理がなされたものは、0.6mPaの圧漏れテストにおいて、水漏れがないことが確認された。 More specifically, the sealing treatment is carried out by using an epoxy resin with an initial viscosity of 500 mPa · s, a mold temperature of 15 ° C. to 25 ° C., a static time of 1 to 5 minutes, and a viscosity of 1800 when the epoxy resin is discharged. It was carried out under the conditions of standing at ˜2500 mPa, 15 ° C. to 25 ° C. for 16 hours or more. In the case of this sealing treatment, it was confirmed that there was no water leak in a pressure leak test at 0.6 mPa.
次に、図7及び図8を参照して、本発明の実施形態による金型通気性部材のエアブロー洗浄について説明する。図7は、本発明の実施形態による金型用通気性部材のエアブロー洗浄を説明するための金型用通気性部材の正面図であり、図8は、エアブロー洗浄における通気度とエアブロー時間の関係を示す線図である。 Next, with reference to FIG.7 and FIG.8, the air blow washing | cleaning of the metal mold | die air permeable member by embodiment of this invention is demonstrated. FIG. 7 is a front view of a mold breathable member for explaining air blow cleaning of the mold breathable member according to the embodiment of the present invention, and FIG. 8 is a relationship between air permeability and air blow time in the air blow cleaning. FIG.
射出形成においては、キャビィティ内の空気を樹脂で置換することにより成型品を形成する。この射出形成において、本発明の実施形態による金型用通気性部材が金型のキャビティ面に用いられ、金型用通気性部材の通気孔により、キャビティ内の空気を抜くようになっている。上述したように、金型通気性部材を得るためには、放電加工、エッチング加工、又は、機械加工が行なわれるが、これらの加工により、通気孔となる空孔に加工油又はエッチング液が浸み込み、この加工油等により、通気性が失われ、ガス抜きの効果が発揮できず、成型品の品質の低下を引き起こす不具合が発生する。 In injection molding, a molded product is formed by replacing the air in the cavity with resin. In this injection molding, the mold breathable member according to the embodiment of the present invention is used on the cavity surface of the mold, and the air in the cavity is vented by the vent hole of the mold breathable member. As described above, in order to obtain a mold breathable member, electric discharge machining, etching machining, or machining is performed. By these machining, processing oil or etching liquid is immersed in the air holes that become the ventilation holes. Due to the penetration, this processing oil, etc. loses air permeability and cannot exhibit the effect of degassing, resulting in a problem that causes deterioration in the quality of the molded product.
そのため、本発明の実施形態による金型通気性部材においては、放電加工、エッチング加工、又は、機械加工により、通気孔に浸み込んだ加工油やエッティング液をエアブローにより洗浄するようにしている。 Therefore, in the mold breathable member according to the embodiment of the present invention, the processing oil and the etching liquid that have soaked into the vent hole are washed by air blow by electric discharge machining, etching machining, or machining. .
図7に示すように、金型通気性部材20は、入れ子22を介して、モールドベース24内に配置されている。このモールドベース24には、空気給排気孔26が形成され、この空気給排気孔26の金型通気性部材20の側には、エア連結溝28が形成されている。また、空気給排気孔26の他端側には、ホース継手30が連結されている。
As shown in FIG. 7, the mold
エアブロー処理を行なう場合、事前準備として、加工後通気孔に浸み込んだ加工油等と射出成形時に発生したガスを確実に抜くために、金型通気性部材20の形状加工面10aと裏面10bに、通気性を確保できる加工を行なう。即ち、通気度が50cm3/cm2・sec以上となる加工である。この加工には、放電加工や、ボールエンドミル加工が用いられる。
When performing the air blowing process, as a pre-preparation, in order to reliably remove the processing oil soaked in the vent hole after processing and the gas generated during the injection molding, the shape processed
この事前準備完了後に、図7に示すように、金型用通気性部材20をモールドベース24に設置し、この状態で、ホース継手30から、圧縮エアを空気給排気孔26へ供給する。供給された圧縮エアは、0.2〜0.8MPaのエアが好ましく、エア連結溝28により、均等に行き渡り、エアブロー処理が実施される。
After completion of this preliminary preparation, as shown in FIG. 7, the mold
具体的に説明すると、このエアブロー洗浄は、平均通気孔20μmの金型用通気性部材の上下面(形状加工面及び裏面)に放電加工を施し、加工油が浸み込んだ厚さの異なる2種類の試料(12mm、20mm)を用いて行なった。0.5MPaの圧縮エアを供給し、エアブロー洗浄時間と通気度の関係を測定した。ここで、通気度は、0.5MPaの圧縮エアが試料を1秒間に流れる1cm2あたりの流量を積算流量計で測定した値である。 More specifically, this air blow cleaning is performed by performing electric discharge machining on the upper and lower surfaces (the shape processed surface and the back surface) of the mold air-permeable member having an average air hole of 20 μm, and the thickness in which the processing oil is immersed is different. It carried out using the kind of sample (12 mm, 20 mm). Compressed air of 0.5 MPa was supplied, and the relationship between air blow cleaning time and air permeability was measured. Here, the air permeability is a value obtained by measuring a flow rate per 1 cm 2 of compressed air of 0.5 MPa flowing through the sample for 1 second with an integrating flow meter.
図8に示すように、本発明の実施形態による金型用通気性部材20は、エアブロー洗浄6時間後は、通気度の変化がなく、ほぼ加工油が抜けたことが確認された。これにより、エアブロー洗浄による油抜きが有効であることが確認できた。また、エアブロー洗浄開始2時間後には厚さ20mmの試料で通気度770cm3/cm2・secであり、6時間後の95%以上の通気度が確保されているので、エアブロー洗浄は、2時間以上行なうことが有効であることを確認した。
As shown in FIG. 8, it was confirmed that the mold
このように、本発明の実施形態による金型用通気性部材によれば、放電加工、エッチング加工、又は、機械加工により、通気孔に浸み込んだ加工油やエッチィング液をエアブローにより洗浄するようにしているので、従来のように、複雑な作業を行なったり、特別な装置を用意する必要がなく、安全且つ確実に、加工油等の洗浄を行なうことができる。 As described above, according to the mold breathable member according to the embodiment of the present invention, the processing oil and the etching liquid immersed in the vent hole are washed by air blow by electric discharge machining, etching machining, or machining. Therefore, it is not necessary to perform complicated work or prepare a special device as in the prior art, and it is possible to clean the processing oil and the like safely and reliably.
次に、本発明の実施形態による金型用通気性部材においては、必要な表面粗さを得るために、ボールエンドミル加工を行なっている。ボールエンドミルによる加工条件は、回転数が3000〜30000rpmであり、送り速度が1000〜2000mm/minであり、直径は0.5から10mmであり、送りピッチが0.1mmであり、仕上切込量が0.1mmである。 Next, in the air permeable member for molds according to the embodiment of the present invention, ball end milling is performed in order to obtain a necessary surface roughness. The processing conditions with the ball end mill are a rotation speed of 3000 to 30000 rpm, a feed rate of 1000 to 2000 mm / min, a diameter of 0.5 to 10 mm, a feed pitch of 0.1 mm, and a finishing cut amount. Is 0.1 mm.
また、金型用通気性部材のボールエンドミル加工により加工される加工部分の表面粗さは、3μm〜20μmであり、好ましくは、3.2μm〜13.5μmである。
さらに、ボールエンドミル加工により得られた金型用通気性部材の通気度は、100〜2000cm3/cm2・secである。
Moreover, the surface roughness of the process part processed by the ball end mill process of the breathable member for metal mold | dies is 3 micrometers-20 micrometers, Preferably, they are 3.2 micrometers-13.5 micrometers.
Furthermore, the air permeability of the mold breathable member obtained by ball end milling is 100 to 2000 cm 3 / cm 2 · sec.
金型用通気性部材が目詰まりしないように、放電加工を行なった場合、表面粗さが荒くなり、樹脂射出成形では、抜型時の離形抵抗が大きいという問題がある。しかしながら、本発明の実施形態による金型用通気性部材は、上述した条件のボールエンドミルにより加工を行なったので、表面粗さも20μm以下となり、樹脂射出成形時の離形抵抗を低減することができ、精密射出成型品において寸法精度を確保することが容易になった。そのため、リブ形状等のように今まで使用困難な分野にも適用可能となった。 When electric discharge machining is performed so as not to clog the mold breathable member, the surface roughness becomes rough, and the resin injection molding has a problem that the mold release resistance at the time of die cutting is large. However, since the mold breathable member according to the embodiment of the present invention is processed by the ball end mill under the above-described conditions, the surface roughness is 20 μm or less, and the mold release resistance at the time of resin injection molding can be reduced. It has become easy to ensure dimensional accuracy in precision injection molded products. Therefore, it can be applied to fields that have been difficult to use, such as rib shapes.
10,20 金型用通気性部材
12 キャビティ
14 導通孔
16 連結管
22 入れ子
24 モールドベース
26 空気給排気孔
28 エア連結溝
30 ホース継手
10, 20
Claims (11)
この混合材料のグリーン体を加熱焼結して焼結体を作り、
この焼結体を窒素雰囲気下で加熱して、平均空孔径が3〜50μmである空孔を備えた金型用型材を製造し、
この金型用型材を機械加工して3μm〜20μmの表面粗さを有する金型用通気性部材を製造し、
通気性部材をエアブロー処理により洗浄して通気性部材が50cm3/cm2・sec以上の通気度を持つようにし、
通気性部材をドリル加工して、5mm−20mmの直径を有する導通孔を通気性部材の内部に形成し、
導通孔の内面に粘度が200−20000mPa・sの硬化剤配合エポキシ樹脂を流し込み、排出することにより導通孔内に開口した空孔をシールする、金型用通気性部材の製造方法。 A green body is produced by forming a mixed material including a stainless steel fiber having a diameter converted diameter of 30 to 300 μm and a length of 0.4 to 5.0 mm and a stainless steel powder,
The green body of this mixed material is heated and sintered to make a sintered body,
This sintered body is heated under a nitrogen atmosphere to produce a mold material having holes having an average hole diameter of 3 to 50 μm,
This mold material is machined to produce a mold breathable member having a surface roughness of 3 μm to 20 μm,
The air-permeable member is washed by air blowing so that the air-permeable member has an air permeability of 50 cm 3 / cm 2 · sec or more,
Drilling the breathable member to form a conduction hole having a diameter of 5 mm-20 mm in the breathable member;
A method for producing a mold-permeable air-permeable member, in which a void formed in a conduction hole is sealed by pouring and discharging a curing agent-blended epoxy resin having a viscosity of 200-20000 mPa · s into the inner surface of the conduction hole.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2013553185A JP6094948B2 (en) | 2011-02-14 | 2012-02-13 | Manufacturing method of breathable member for mold |
Applications Claiming Priority (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2011028067 | 2011-02-14 | ||
JP2011028067 | 2011-02-14 | ||
JP2013553185A JP6094948B2 (en) | 2011-02-14 | 2012-02-13 | Manufacturing method of breathable member for mold |
PCT/JP2012/053894 WO2012111835A2 (en) | 2011-02-14 | 2012-02-13 | Mold and die metallic material, air-permeable member for mold and die use, and method for manufacturing the same |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2014509350A JP2014509350A (en) | 2014-04-17 |
JP6094948B2 true JP6094948B2 (en) | 2017-03-15 |
Family
ID=45815934
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2013553185A Active JP6094948B2 (en) | 2011-02-14 | 2012-02-13 | Manufacturing method of breathable member for mold |
Country Status (5)
Country | Link |
---|---|
US (1) | US9545736B2 (en) |
JP (1) | JP6094948B2 (en) |
KR (1) | KR20140007895A (en) |
CN (1) | CN103492106B (en) |
WO (1) | WO2012111835A2 (en) |
Families Citing this family (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US9545736B2 (en) * | 2011-02-14 | 2017-01-17 | Sintokogio, Ltd. | Mold and die metallic material, air-permeable member for mold and die use, and method for manufacturing the same |
KR20180090867A (en) * | 2015-12-08 | 2018-08-13 | 쓰리엠 이노베이티브 프로퍼티즈 컴파니 | Metallic matrix composites comprising inorganic particles and discontinuous fibers and methods for their preparation |
JP7167428B2 (en) * | 2017-11-10 | 2022-11-09 | 昭和電工マテリアルズ株式会社 | Iron-based sintered alloy material and its manufacturing method |
TWI665076B (en) * | 2018-09-26 | 2019-07-11 | 瑞皇精密工業股份有限公司 | Liquid silicone molding die |
US11699634B2 (en) * | 2019-05-03 | 2023-07-11 | Applied Materials, Inc. | Water cooled plate for heat management in power amplifiers |
Family Cites Families (44)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US2122053A (en) * | 1935-01-22 | 1938-06-28 | Accumulatoren Fabrik Ag | Process of manufacturing porous metallic bodies |
US2217802A (en) * | 1939-05-25 | 1940-10-15 | Gen Motors Corp | Mold equipment and method of making same |
US2835572A (en) * | 1954-07-30 | 1958-05-20 | Isbenjian Hrant | Method of making porous metal molds |
JPS5013205B1 (en) * | 1969-11-08 | 1975-05-17 | ||
SE411306B (en) * | 1976-01-28 | 1979-12-17 | Severinsson Lars M | FORM INTENDED FOR MOLDING OF MOLDABLE MATERIAL AND METHODS OF MANUFACTUREING SUCH SHAPE |
JPS55145105A (en) * | 1979-04-27 | 1980-11-12 | Tohoku Metal Ind Ltd | Plating method of porous sintered alloy |
US4340474A (en) * | 1979-09-29 | 1982-07-20 | Johnston Ian R W | Converging flow filter |
US4469654A (en) * | 1980-02-06 | 1984-09-04 | Minnesota Mining And Manufacturing Company | EDM Electrodes |
US4373127A (en) * | 1980-02-06 | 1983-02-08 | Minnesota Mining And Manufacturing Company | EDM Electrodes |
JPS6046213A (en) * | 1983-04-22 | 1985-03-13 | Takeo Nakagawa | Mold for vacuum molding and manufacture thereof |
US4631228A (en) * | 1985-12-16 | 1986-12-23 | Lear Siegler, Inc. | Method for making a porous rigid structure and the porous rigid structure made thereby |
DE3704546A1 (en) * | 1987-02-13 | 1988-08-25 | Kernforschungsz Karlsruhe | METHOD FOR PRODUCING A FILTER AND FILTER PRODUCED THEREOF |
JP2588025B2 (en) * | 1989-06-26 | 1997-03-05 | 新東工業株式会社 | Manufacturing method of mold material for mold |
JPH03188203A (en) * | 1989-12-14 | 1991-08-16 | Nippon Steel Corp | Manufacture of porous sintered body |
JP2663190B2 (en) * | 1990-02-17 | 1997-10-15 | 新東工業株式会社 | Manufacturing method of decorative plastics mold |
JP2674715B2 (en) * | 1990-04-13 | 1997-11-12 | 大同特殊鋼株式会社 | Method for manufacturing porous mold |
JP2588057B2 (en) * | 1990-10-19 | 1997-03-05 | 新東工業株式会社 | Manufacturing method of mold material for mold |
ATE139174T1 (en) * | 1990-11-15 | 1996-06-15 | Unipor Ag | METHOD FOR PRODUCING A METALLIC MATERIAL AND MATERIAL PRODUCED BY THE METHOD |
JP2949679B2 (en) * | 1992-07-17 | 1999-09-20 | 新東工業株式会社 | Method for manufacturing porous mold material |
US5775402A (en) * | 1995-10-31 | 1998-07-07 | Massachusetts Institute Of Technology | Enhancement of thermal properties of tooling made by solid free form fabrication techniques |
JP2682362B2 (en) * | 1992-12-09 | 1997-11-26 | 日本鋼管株式会社 | Exhaust heat recovery type combustion device |
JP3240023B2 (en) | 1993-10-08 | 2001-12-17 | 新東工業株式会社 | Manufacturing method of durable air-permeable type |
JPH07113103A (en) | 1993-10-15 | 1995-05-02 | Sintokogio Ltd | Production of gas permeable compact |
US5625861A (en) * | 1994-10-20 | 1997-04-29 | Kubota Corporation | Porous metal body and process for producing same |
JPH08150437A (en) * | 1994-11-25 | 1996-06-11 | Ube Ind Ltd | Production of die with permeability having heating, cooling hole and die with permeability |
JPH08218103A (en) * | 1994-12-12 | 1996-08-27 | Kubota Corp | Production of metallic porous body |
EP0799102B1 (en) * | 1994-12-19 | 2001-02-28 | Aga Aktiebolag | Process including heating and cooling for production of an injection-moulded body |
SE514696C2 (en) * | 1995-06-28 | 2001-04-02 | Nobel Biocare Ab | Process and apparatus for producing sinterable ceramic or metal product |
JP3271737B2 (en) | 1995-09-22 | 2002-04-08 | 新東工業株式会社 | Porous mold material for casting and method for producing the same |
CN1153688A (en) * | 1995-09-22 | 1997-07-09 | 新东工业株式会社 | Porous mold material for casting and method of producing the same |
JP3548317B2 (en) * | 1996-02-23 | 2004-07-28 | 本田技研工業株式会社 | Method for manufacturing porous mold |
US5850590A (en) * | 1996-04-19 | 1998-12-15 | Kabushiki Kaisha Kobe Seiko Sho | Method for making a porous sintered material |
JPH1047035A (en) * | 1996-08-08 | 1998-02-17 | Sumitomo Electric Ind Ltd | Particulate trap for diesel engine |
US6592807B2 (en) * | 2001-05-24 | 2003-07-15 | The Goodyear Tire And Rubber Company | Method of making a porous tire tread mold |
JP3689911B2 (en) * | 2002-03-15 | 2005-08-31 | 三菱マテリアル株式会社 | Mold equipment for molding |
JP4175849B2 (en) * | 2002-08-29 | 2008-11-05 | 旭有機材工業株式会社 | Resin coated sand for laminated molds |
SE529166C2 (en) * | 2004-11-26 | 2007-05-22 | Pakit Int Trading Co Inc | Pulp mold |
CN1796315A (en) * | 2004-12-23 | 2006-07-05 | 鸿富锦精密工业(深圳)有限公司 | Composite structure of fine mould and preparation method |
CN100560522C (en) * | 2005-01-07 | 2009-11-18 | 鸿富锦精密工业(深圳)有限公司 | Composite structure mould core and preparation method thereof |
JP2007242574A (en) * | 2006-03-13 | 2007-09-20 | Hitachi Metal Precision:Kk | Porous liquid holding member, and alcohol holding member |
CN1907642A (en) * | 2006-08-10 | 2007-02-07 | 华南理工大学 | Self gas permeability metal die and manufacture method and application thereof |
US20080081007A1 (en) * | 2006-09-29 | 2008-04-03 | Mott Corporation, A Corporation Of The State Of Connecticut | Sinter bonded porous metallic coatings |
US9403213B2 (en) * | 2006-11-13 | 2016-08-02 | Howmedica Osteonics Corp. | Preparation of formed orthopedic articles |
US9545736B2 (en) * | 2011-02-14 | 2017-01-17 | Sintokogio, Ltd. | Mold and die metallic material, air-permeable member for mold and die use, and method for manufacturing the same |
-
2012
- 2012-02-13 US US13/985,231 patent/US9545736B2/en active Active
- 2012-02-13 WO PCT/JP2012/053894 patent/WO2012111835A2/en active Application Filing
- 2012-02-13 CN CN201280018394.2A patent/CN103492106B/en active Active
- 2012-02-13 KR KR1020137024028A patent/KR20140007895A/en not_active Application Discontinuation
- 2012-02-13 JP JP2013553185A patent/JP6094948B2/en active Active
Also Published As
Publication number | Publication date |
---|---|
US9545736B2 (en) | 2017-01-17 |
CN103492106B (en) | 2015-08-05 |
KR20140007895A (en) | 2014-01-20 |
CN103492106A (en) | 2014-01-01 |
JP2014509350A (en) | 2014-04-17 |
US20130313405A1 (en) | 2013-11-28 |
WO2012111835A2 (en) | 2012-08-23 |
WO2012111835A3 (en) | 2013-04-18 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP6094948B2 (en) | Manufacturing method of breathable member for mold | |
JP4546238B2 (en) | Method for producing a highly porous metal compact close to the final contour | |
CN110405214B (en) | Preparation method of stainless steel material | |
KR20130069545A (en) | A method for surface treatment of a die-casting die | |
JP2012530001A (en) | Low thermal expansion coefficient slush mold having a textured surface, method for producing the same, and method for using the same | |
CN108950464B (en) | Method for improving surface hardness of 18Ni300 die steel for metal 3D printing | |
JP2017514993A (en) | Method for manufacturing picklable metal components | |
FI121652B (en) | Procedure for producing an object having a cavity | |
CN108202440B (en) | Ceramic member, molding process thereof, and electronic device | |
CN100436639C (en) | Metal material and method for production thereof | |
WO2016058591A4 (en) | Mould core and method for producing moulded parts | |
JPWO2018216461A1 (en) | Manufacturing method of sintered member | |
CN117300163A (en) | Surface-enhanced SLM18Ni300 and preparation method thereof | |
EP1615767A1 (en) | Rapid prototyping process | |
Chang et al. | Enhancement of erosion resistance on AISI H13 tool steel by oxynitriding treatment | |
CN108970417A (en) | Method for preparing metal hollow fiber membrane | |
CN104439079A (en) | Preparation method of spheroidal-graphite-cast-iron shifting fork of automobile transmission | |
CN104018022A (en) | Method for preparing boron carbide base microstructure composite material | |
CN104131187B (en) | A kind of aluminium alloy and preparation method thereof | |
EP0815989A2 (en) | Method of production of local ceramic-reinforced casted brake discs from light-metal alloys | |
CN113926992B (en) | Preparation method of titanium alloy casting | |
JP3548317B2 (en) | Method for manufacturing porous mold | |
CN109128159B (en) | Method and die for reducing surface roughness of rough material | |
RU2740446C1 (en) | Method of manufacturing composite materials | |
JP2004315877A (en) | Method of canning precompact for sintering, and method of producing sintered material thereby |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20150205 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20160218 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20160222 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20160422 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20160719 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20160920 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20161017 |
|
A601 | Written request for extension of time |
Free format text: JAPANESE INTERMEDIATE CODE: A601 Effective date: 20161216 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20161227 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20170123 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 6094948 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20170205 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |