JP2674715B2 - Method for manufacturing porous mold - Google Patents

Method for manufacturing porous mold

Info

Publication number
JP2674715B2
JP2674715B2 JP9898190A JP9898190A JP2674715B2 JP 2674715 B2 JP2674715 B2 JP 2674715B2 JP 9898190 A JP9898190 A JP 9898190A JP 9898190 A JP9898190 A JP 9898190A JP 2674715 B2 JP2674715 B2 JP 2674715B2
Authority
JP
Japan
Prior art keywords
nitriding
powder
hardness
sintered body
mold
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP9898190A
Other languages
Japanese (ja)
Other versions
JPH0472004A (en
Inventor
二朗 市川
久司 太田
洋一 中西
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sintokogio Ltd
Daido Steel Co Ltd
Original Assignee
Sintokogio Ltd
Daido Steel Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sintokogio Ltd, Daido Steel Co Ltd filed Critical Sintokogio Ltd
Priority to JP9898190A priority Critical patent/JP2674715B2/en
Publication of JPH0472004A publication Critical patent/JPH0472004A/en
Application granted granted Critical
Publication of JP2674715B2 publication Critical patent/JP2674715B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Powder Metallurgy (AREA)
  • Molds, Cores, And Manufacturing Methods Thereof (AREA)

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、鋳造に用いる多孔質金型の製造方法に関す
る。
TECHNICAL FIELD The present invention relates to a method for producing a porous mold used for casting.

(従来の技術) 多孔質金型は、ガス抜き性、保温性に優れ、複雑な形
状を製造する場合にも良好な品質の鋳造品を得ることが
できるため、鋳造用金型として注目されている。
(Prior Art) Porous molds are attracting attention as casting molds because they have excellent gas release properties and heat retention properties, and even when manufacturing complex shapes, good quality cast products can be obtained. There is.

従来、この多孔質金型の製造は、主に粉末冶金的手法
で行われている。使用する粉末には、例えば、鉄粉、フ
ェライト系またはオーステナイト系ステンレス鋼粉等が
知られているが、これらの粉末により得られる金型で
は、マイクロビッカース硬さが高々Hv250程度と低く鋳
造用金型としては不充分な硬さであり寿命の短いもので
あった。
Conventionally, the production of this porous mold is mainly performed by a powder metallurgical method. As the powder used, for example, iron powder, ferritic or austenitic stainless steel powder, etc. are known, but in the molds obtained from these powders, the micro Vickers hardness is as low as Hv250 at most and casting metal is low. The mold had insufficient hardness and had a short life.

このため、鋳造用金型として望まれるHv400以上の高
硬度の多孔質金型を得るために、焼入れにより高硬度
が得られる高炭素の鋼、例えば、SUS440C、SKD系等の鋼
種を使用して硬度を上げる方法、また、焼の入らない
ステンレス鋼粉原料に炭素粉を混合し、焼結により一体
化して硬度を上げる方法が考えられる。
Therefore, in order to obtain a high hardness porous mold having a hardness of Hv400 or higher desired as a casting mold, a high carbon steel that can obtain a high hardness by quenching, for example, SUS440C, using a SKD-based steel grade. A method of increasing the hardness, or a method of increasing the hardness by mixing carbon powder with a stainless steel powder raw material that is not quenched and integrating them by sintering is conceivable.

(発明が解決しようとする課題) しかしながら、従来の前記に示した焼入れにより高
硬度が得られる中高炭素の鋼を使用する方法は、焼入れ
可能な鋼種は粉末化のための噴霧段階で急冷され焼が入
っているため、粉末自体が高硬度になって成形性が低下
しているので、成形性を良好にするには一度焼鈍しなけ
ればならず、製造工程が増してしまうという問題があ
る。また、前記に示した焼の入らないステンレス鋼粉
に炭素粉を混合する方法は、炭素粉が必ずしも均一に混
合されず硬さが不均一になったり、焼結体が高硬度とな
るため焼結体の加工性が低下するという問題がある。
(Problems to be Solved by the Invention) However, in the conventional method of using a medium-high carbon steel that can obtain high hardness by quenching as described above, the quenchable steel type is rapidly cooled in a spraying step for pulverization and quenched. However, since the powder itself has a high hardness and the moldability is deteriorated, it is necessary to anneal once in order to improve the moldability, and there is a problem that the manufacturing process is increased. Further, the method of mixing the carbon powder with the non-quenching stainless steel powder described above is because the carbon powder is not always uniformly mixed and the hardness becomes non-uniform, or the sintered body becomes high in hardness. There is a problem in that the workability of the union is reduced.

本発明は、このような問題点を解決するためになされ
たもので、原料の成形性とともに焼結体の加工性を高め
複雑形状の金型の製造を可能とし、かつ金型を高強度で
耐久性に優れたものにする多孔質金型の製造方法を提供
することを目的とする。
The present invention has been made in order to solve such a problem, and makes it possible to manufacture a mold having a complicated shape by improving the workability of the raw material and the workability of the sintered body, and the mold has high strength. It is an object of the present invention to provide a method for manufacturing a porous mold that has excellent durability.

(課題を解決するための手段) そのために、多孔質金型の製造方法は、低C、低N−
Cr系ステンレス鋼粉末を主原料とする原料を成形し、こ
の成形体を真空中または雰囲気ガス中で焼結し、得られ
た焼結体を必要に応じ機械加工した後、前記焼結体を窒
素雰囲気中、800〜1100℃の温度範囲で加熱することに
より窒化することを特徴とする。
(Means for Solving the Problems) Therefore, a method for manufacturing a porous mold is low C, low N-
A raw material containing Cr-based stainless steel powder as a main raw material is molded, the molded body is sintered in a vacuum or in an atmosphere gas, and the obtained sintered body is machined as necessary, and then the sintered body is formed. It is characterized by nitriding by heating in a temperature range of 800 to 1100 ° C in a nitrogen atmosphere.

主原料の低C、低N−Cr系ステンレス鋼粉末のC量お
よびN量は、C≦0.15wt%、N≦0.10wt%のものを用い
るのが望ましい。特許請求の範囲請求項1に記載の低
C、低N−Cr系ステンレス鋼粉末粉末のC量およびN量
は、C≦0.15wt%、N≦0.10wt%の範囲である。これら
の値を超えると、粉末が高硬度となり成形性が低下する
とともに、得られる焼結体についても高硬度となり加工
性が低下するからである。
It is desirable that the C content and N content of the low C, low N—Cr stainless steel powder as the main raw material be C ≦ 0.15 wt% and N ≦ 0.10 wt%. The C content and N content of the low C, low N—Cr stainless steel powder powder according to claim 1 are in the range of C ≦ 0.15 wt% and N ≦ 0.10 wt%. If these values are exceeded, the powder will have high hardness and the formability will decrease, and the sintered body obtained will also have high hardness and the workability will decrease.

また、低N−Cr系ステンレス鋼粉末のCr量としては、
金型の耐食性を損なわせないために11wt%以上の含まれ
ていることが望ましい。さらに、Cu、Moを添加すること
ができる。
Further, as the Cr amount of the low N-Cr type stainless steel powder,
In order not to impair the corrosion resistance of the mold, it is desirable that the content be 11 wt% or more. Furthermore, Cu and Mo can be added.

さらに、原料には必要に応じ、成形性向上のための潤
滑剤、結合剤等を加えることも可能である。その他少量
の金属粉または金属繊維、あるいはセラミック粉または
セラミック繊維等を加え成形体や焼結体の特性(強度、
気孔率)を調整することも可能である。
Furthermore, it is possible to add a lubricant, a binder or the like for improving the moldability to the raw material, if necessary. Other characteristics such as a small amount of metal powder or metal fiber, or ceramic powder or ceramic fiber, etc.
It is also possible to adjust the porosity).

成形方法については、特に限定されるものではなく、
プレス成形、冷間静水圧プレス(CIP)、スリップキャ
ストなど各種の成形方法を使用することができる。
The molding method is not particularly limited,
Various molding methods such as press molding, cold isostatic pressing (CIP) and slip casting can be used.

焼結は真空中で行うのが望ましいが、著しい酸化、窒
化、浸炭等がなければ雰囲気ガス中でもよい。焼結温度
および焼結時間については焼結体の強度や気孔率との兼
ね合いで選定する。例えば1100〜1200℃で2時間程度行
うとよい。
Sintering is preferably performed in a vacuum, but may be performed in an atmosphere gas unless significant oxidation, nitriding, carburizing, or the like. The sintering temperature and sintering time are selected in consideration of the strength and porosity of the sintered body. For example, it may be carried out at 1100 to 1200 ° C. for about 2 hours.

焼結体の窒化は、必要に応じて機械加工した後行う
が、加工の必要がなければ、真空中または雰囲気ガス中
の焼結に引き続き行うことができる。
The nitriding of the sintered body is carried out after mechanical processing if necessary, but if processing is not necessary, it can be carried out subsequent to sintering in a vacuum or an atmosphere gas.

窒化のときの加熱温度を800℃以上としたのは、800℃
未満では多孔質の焼結体の内部まで充分に窒化させるこ
とができないからである。1100℃以下としたのは、1100
℃を超えると前工程の焼結温度域に入ってしまうからで
ある。
The heating temperature during nitriding was set to 800 ° C or higher because it was 800 ° C.
This is because if the amount is less than this, it is not possible to sufficiently nitride the inside of the porous sintered body. 1100 ℃ or less is 1100
This is because if the temperature exceeds ℃, it will enter the sintering temperature range of the previous step.

窒化は真空炉を用いて行い、炉内に導入したN2ガスを
導入し、N2ガス圧3.00〜900torr程度にして加熱するの
が望ましい。この場合、窒化を促進するため、H2、Arガ
スを混合することも可能である。また、窒化を妨害する
酸化が起らなければ雰囲気炉を用いて行ってもよい。
It is desirable to perform nitriding using a vacuum furnace, introduce N 2 gas introduced into the furnace, and heat the N 2 gas at a pressure of about 3.00 to 900 torr. In this case, in order to promote nitriding, it is also possible to mix H 2 and Ar gas. Further, if no oxidation that hinders nitriding occurs, an atmosphere furnace may be used.

さらに窒化のときには同時に若干の浸炭を行うことも
可能である。
Further, during nitriding, it is possible to carry out a slight carburization at the same time.

また、窒化による硬化機構は、Nの固溶硬化、微
細窒化物の析出硬化、窒化の増加により高温相がオー
ステナイト化して焼入れ能が発生するため、急冷により
マルテンサイト化して硬化する、の3つの機構が考えら
れるが、の硬化を促進する場合にはオーステナイト化
するため加熱温度は900℃以上であるのが望ましい。
In addition, the hardening mechanism by nitriding is a solid solution hardening of N, precipitation hardening of fine nitrides, and an increase in nitriding causes the austenite of the high temperature phase to generate quenching ability. Although a mechanism may be considered, it is preferable that the heating temperature is 900 ° C. or higher in order to promote austenitization when accelerating the hardening of.

また、窒化のときの窒素量は、0.6〜1.3wt%程度とす
るのが望ましい。0.6wt%未満であると窒化不足にな
り、1.3wt%を超えると脆弱になるからである。
Further, the amount of nitrogen at the time of nitriding is preferably about 0.6 to 1.3 wt%. If it is less than 0.6 wt%, nitriding will be insufficient, and if it exceeds 1.3 wt%, it will be brittle.

(作用) 鋼材を硬化させる通常の窒化法は、約600℃で行わ
れ、表面より0.1〜0.3mm程度の表層を硬化させる。本発
明によれば、窒化温度を800℃以上としたことにより多
孔質の焼結体の内部まで窒化し硬化させることができ
る。
(Function) A normal nitriding method for hardening a steel material is performed at about 600 ° C. to harden a surface layer of about 0.1 to 0.3 mm from the surface. According to the present invention, by setting the nitriding temperature to 800 ° C. or higher, the inside of the porous sintered body can be nitrided and hardened.

(実施例) 以下、本発明の実施例について説明する。(Example) Hereinafter, an example of the present invention will be described.

−100メッシュSUS430L粉末(0.019wt%C、0.02wt%
N)に潤滑剤として2wt%のステアリン酸亜鉛を加え、
圧力3ton/cm2で金型を用いて成形し、厚さ15mm×直径40
mmの円柱状成形体を得た。
-100 mesh SUS430L powder (0.019wt% C, 0.02wt%
2% by weight of zinc stearate as a lubricant to N),
Molded with a mold at a pressure of 3 ton / cm 2 , thickness 15 mm × diameter 40
A cylindrical molded body of mm was obtained.

この成形体を真空炉中で1150℃、2時間加熱し、密度
6.2g/cm3の焼結体を得た。さらに、真空炉中にN2ガスを
導入し、N2ガス圧800torr下で950℃、1時間加熱し焼結
体を窒化した。
This compact was heated in a vacuum furnace at 1150 ° C for 2 hours to
A sintered body of 6.2 g / cm 3 was obtained. Further, N 2 gas was introduced into the vacuum furnace and heated at 950 ° C. for 1 hour under N 2 gas pressure of 800 torr to nitride the sintered body.

加熱後、炉冷により得られたものを試験例1とし、5
気圧のN2ガス下で急冷して得られたものを試験例2とし
て後述する試験に使用した。なお、冷却後の試験例1お
よび試験例2のN2含有量は、0.75%および0.71%であっ
た。
What was obtained by heating and then cooling the furnace was designated as Test Example 1.
What was obtained by rapid cooling under N 2 gas at atmospheric pressure was used as Test Example 2 in the test described later. The N 2 contents of Test Example 1 and Test Example 2 after cooling were 0.75% and 0.71%.

硬さ試験および耐久性試験 次に、これら試験例1および試験例2についてマイク
ロビッカース硬さ測定および耐久性試験を行った。
Hardness Test and Durability Test Next, the micro Vickers hardness measurement and the durability test were performed on these Test Examples 1 and 2.

硬さ測定は、焼結体を試験片の大きさに切り出し、研
磨後、荷重50gの条件で行った。
The hardness was measured by cutting out a sintered body into a size of a test piece, polishing, and then applying a load of 50 g.

耐久性試験は、硬さ測定後、Alの低圧鋳造に用いる金
型の一部として使用し、この金型の使用可能な鋳造回数
を調査した。
In the durability test, after the hardness was measured, it was used as a part of a mold used for low-pressure casting of Al, and the usable number of castings of this mold was investigated.

また、試験例1および試験例2に対し、比較例1とし
て真空中での焼結後、窒化を行わないものを製造し、試
験例1および試験例2と同様に硬さ測定および耐久性試
験を行った。
Further, in contrast to Test Example 1 and Test Example 2, as Comparative Example 1, a product that was not nitrided after sintering in vacuum was manufactured, and hardness measurement and durability test were performed in the same manner as in Test Example 1 and Test Example 2. I went.

試験結果 硬さ測定の結果、試験例1、試験例2および比較例1
は、それぞれHv430、Hv490、Hv210であった。
Test Results Hardness measurement results, Test Example 1, Test Example 2 and Comparative Example 1
Were Hv430, Hv490, and Hv210, respectively.

耐久性試験の結果、試験例1は、射出回数8000回、試
験例2は12000回使用でき、比較例1は5000回で割れが
発生した。
As a result of the durability test, in the test example 1, the number of injections was 8000 times, in the test example 2 it was possible to use 12000 times, and in the comparative example 1, cracking occurred after 5000 times.

(発明の効果) 以上説明したように、本発明の多孔質金型の製造方法
によれば、低C、低N−Cr系ステンレス鋼粉末を使用す
るため、成形性および加工性が良好でかつ複雑形状品を
製造可能でしかも高強度で耐久性に優れた多孔質金型を
得ることができるという効果がある。
(Effects of the Invention) As described above, according to the method for manufacturing a porous mold of the present invention, since low C, low N—Cr-based stainless steel powder is used, moldability and workability are good and There is an effect that it is possible to manufacture a complex-shaped product and obtain a porous mold having high strength and excellent durability.

───────────────────────────────────────────────────── フロントページの続き (56)参考文献 特開 平1−205846(JP,A) ─────────────────────────────────────────────────── ─── Continuation of front page (56) References JP-A-1-205846 (JP, A)

Claims (1)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】低C、低N−Cr系ステンレス鋼粉末を主原
料とする原料を成形し、この成形体を真空中または雰囲
気ガス中で焼結し、得られた焼結体を必要に応じ機械加
工した後、前記焼結体を窒素雰囲気中、800〜1100℃の
温度範囲で加熱することにより窒化することを特徴とす
る多孔質金型の製造方法。
1. A raw material containing low-C, low-N--Cr type stainless steel powder as a main raw material is shaped, and this shaped body is sintered in a vacuum or an atmosphere gas, and the obtained sintered body is required. After machining according to the above, the sintered body is heated in a nitrogen atmosphere in a temperature range of 800 to 1100 ° C. for nitriding, thereby nitriding the porous die.
JP9898190A 1990-04-13 1990-04-13 Method for manufacturing porous mold Expired - Fee Related JP2674715B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP9898190A JP2674715B2 (en) 1990-04-13 1990-04-13 Method for manufacturing porous mold

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP9898190A JP2674715B2 (en) 1990-04-13 1990-04-13 Method for manufacturing porous mold

Publications (2)

Publication Number Publication Date
JPH0472004A JPH0472004A (en) 1992-03-06
JP2674715B2 true JP2674715B2 (en) 1997-11-12

Family

ID=14234190

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9898190A Expired - Fee Related JP2674715B2 (en) 1990-04-13 1990-04-13 Method for manufacturing porous mold

Country Status (1)

Country Link
JP (1) JP2674715B2 (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA2160857C (en) 1994-10-20 2001-12-25 Takashi Nishi Porous metal body and process for producing same
JP3271737B2 (en) * 1995-09-22 2002-04-08 新東工業株式会社 Porous mold material for casting and method for producing the same
JP2011189631A (en) * 2010-03-15 2011-09-29 Tohno Seimitsu Co Ltd Insert molding, and manufacturing method therefor
WO2012111835A2 (en) * 2011-02-14 2012-08-23 Sintokogio, Ltd. Mold and die metallic material, air-permeable member for mold and die use, and method for manufacturing the same
CN104439080A (en) * 2014-11-15 2015-03-25 安徽省新方尊铸造科技有限公司 Accurate forming metal mold casting method adopting porous steel and non-occupying coating
CN106077665B (en) 2016-06-29 2018-06-29 华南理工大学 A kind of method of Metal screen cloth wound sintering pressure processing and manufacturing structural metallic materials

Also Published As

Publication number Publication date
JPH0472004A (en) 1992-03-06

Similar Documents

Publication Publication Date Title
JP4610822B2 (en) Austenitic steel with low nickel content
JP3798317B2 (en) Low nickel austenitic steel
CN105177397A (en) Preparation method for powder metallurgy wear-resisting stainless steel
JP3504786B2 (en) Method for producing iron-based sintered alloy exhibiting quenched structure
US20100196188A1 (en) Method of producing a steel moulding
US5141554A (en) Injection-molded sintered alloy steel product
JP2674715B2 (en) Method for manufacturing porous mold
JPH06340942A (en) Production of high strength ferrous sintered body
EP0917593A1 (en) Making metal powder articles by sintering, spheroidizing and warm forming
JPH09263906A (en) Iron-nickel-chrome-alum. ferritic alloy and its production
JP2588057B2 (en) Manufacturing method of mold material for mold
KR970005415B1 (en) Method for manufacturing vanadium carbide powder added tool steel by milling process
JP2949679B2 (en) Method for manufacturing porous mold material
JP2572053B2 (en) Manufacturing method of iron alloy moldings
JP3351844B2 (en) Alloy steel powder for iron-based sintered material and method for producing the same
RU2287404C2 (en) Method for making iron-base sintered tool for working metal
JPH10317009A (en) Production of stainless sintered body
JP2908018B2 (en) Method for producing high hardness sintered member and metal powder mixture
JP2934350B2 (en) Manufacturing method of air-permeable mold material
JPH07103442B2 (en) Manufacturing method of high strength sintered alloy steel
JPH0578712A (en) Production of sintered part
JPH0680164B2 (en) Sintered forged product manufacturing method
JP2557870B2 (en) Manufacturing method of tough sintered member
JPS6040505B2 (en) Manufacturing method of nitrided sintered alloy
JPH07116548B2 (en) High hardness alloy steel manufacturing method

Legal Events

Date Code Title Description
FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080718

Year of fee payment: 11

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090718

Year of fee payment: 12

LAPS Cancellation because of no payment of annual fees