JPH0680164B2 - Sintered forged product manufacturing method - Google Patents

Sintered forged product manufacturing method

Info

Publication number
JPH0680164B2
JPH0680164B2 JP59237181A JP23718184A JPH0680164B2 JP H0680164 B2 JPH0680164 B2 JP H0680164B2 JP 59237181 A JP59237181 A JP 59237181A JP 23718184 A JP23718184 A JP 23718184A JP H0680164 B2 JPH0680164 B2 JP H0680164B2
Authority
JP
Japan
Prior art keywords
forged product
forging
manufacturing
sintering
sintered forged
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP59237181A
Other languages
Japanese (ja)
Other versions
JPS61117203A (en
Inventor
和彦 高橋
邦彦 今橋
弘 浜本
幹夫 近藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Toyota Central R&D Labs Inc
Original Assignee
Toyota Motor Corp
Toyota Central R&D Labs Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp, Toyota Central R&D Labs Inc filed Critical Toyota Motor Corp
Priority to JP59237181A priority Critical patent/JPH0680164B2/en
Publication of JPS61117203A publication Critical patent/JPS61117203A/en
Publication of JPH0680164B2 publication Critical patent/JPH0680164B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Powder Metallurgy (AREA)

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は、機械的性質を向上させうる焼結鍛造品の製造
方法に関するものである。本発明は、例えば、コネクテ
ィングロッド、ギヤ、ハブ、ジョイントカップ等の自動
車部品、あるいは事務機械部品、農業機械部品等の金属
部品の製造に利用することができる。 [従来の技術] 近年、省資源、省エネルギータイプの金属成形品の製造
方法として、焼結鍛造法が注目を浴びている。この焼結
鍛造品の製造方法は、鉄を主要成分とする金属粉末に対
して圧縮成形及び焼結を行ない予備成形品を得る成形焼
結工程、得られた予備成形品を高温下で鍛造して焼結鍛
造品を得る鍛造工程からなる。このような焼結鍛造方法
で製造すれば、通常の粉末治金法で製造した製品に比べ
て強度が大きな製品を得ることができる。 [発明が解決しようとする問題点] 上記した製造方法においては、通常の粉末治金法に比し
て高強度の製品を得ることができる。然しながら上記し
た製造方法においては鍛造工程で予備成形品の表面部に
鍛造型が直接接触する。そのため焼結で高温に加熱され
ている予備成形品の表面部は、鍛造型で急に冷却され、
故に該表面部には異常組織が生じやすい。又、該表面部
には鍛造の際に線状欠陥が生じやすい。また成形焼結し
たものは空孔が多いため、焼結炉から大気中にとり出し
た場合には、炉出後鍛造するまでにかなり内部まで脱炭
することがあり、更には鍛造体でも未だ気孔を有してい
るため、鍛造後放冷する間に脱炭が進行する。そのため
に表面部に脱炭層が生じるおそれがある。 また、上記した実情等により、焼結鍛造品は通常の粉末
治金法に比して強度が大きいものの、より高強度が要請
される製品に使用するには、機械的性質は必ずしも充分
に満足するものではなかった。 本発明は上記した従来の技術の問題点を解決するために
なされたものである。 [問題点を解決するための手段] 本発明者は鋭意研究を重ねた結果、圧縮成形及び焼結に
より形成した該予備成形品を高温下で鍛造して焼結鍛造
品を形成した後、その焼結鍛造品を800℃〜1150℃の温
度で50秒以上30分間未満保持すれば、前述した種々の欠
陥が減少したり解消したりし、これにより焼結鍛造品の
機械的性質が向上することを発見した。本発明はこの発
見に基いてなされたものである。 即ち本発明の焼結鍛造品の製造方法は、鉄を主要成分と
する金属粉末に対して圧縮成形及び焼結を行なうことに
より、予備成形品を形成する成形焼結工程と、予備成形
品を高温下で鍛造して焼結鍛造品を形成する鍛造工程
と、焼結鍛造品を800〜1150℃温度に50秒間以上で30分
間未満加熱保持する再加熱工程と、加熱保持した焼結鍛
造品を冷却する冷却工程とからなることを特徴とするも
のである。 以下、本発明の製造方法について工程ごとに詳細に説明
する。 (成形焼結工程) 成形焼結工程では、鉄を主要成分とする金属粉末に対し
て圧縮成形及び焼結を行なうことにより、予備成形品を
形成する。 金属粉末としては、特に限定されるものでなく通常の焼
結鍛造品に使用される従来の鉄を主要成分とする金属粉
末原料を使用することができる。より具体的には金属粉
末は、重量%で0.5〜5.0%の銅、0.3〜0.8%の炭素又は
黒鉛、不可避の不純物、残部鉄の組成をもつものを使用
することができる。この場合鉄粉、銅粉、黒鉛粉末より
なる混合粉末を焼結金属粉末原料として使用することが
できる。ここで、銅は焼結、鍛造のための加熱時に鉄中
に固溶して固溶強化の作用をなし、また冷却時に一部析
出して地鉄の硬さおよび強度を向上させる。又、黒鉛や
炭素も、母鉄の硬さ、強度を上昇させる元素であるが、
少ない含有量では強度向上効果が充分に達成され得ず、
他方多すぎると、母相にセメンタイトが析出して強度が
低下し、また被削性が著しく悪化する。 なお不可避の不純物としては潤滑剤等が該当する。潤滑
剤として例えばステアリン酸亜鉛等をあげることができ
る。なお他にも、例えば焼結促進用の元素としてP(リ
ン),B(ホウ素)などの添加物を含ませたり、あるいは
被削性を良好にするS(イオウ)を含有させたり、MnS
粉を混合して用いることもある。なお上記した金属粉末
としては、圧縮成形性、焼結性のよいものを用いるのが
好ましく、一般に、鉱石還元粉、ミルスケール還元粉、
アトマイズ粉、電解粉などから焼結鍛造品の種類に応じ
て適宜選択する。 成形焼結工程では、従来より用いられる公知の圧縮成形
手段、焼結手段を用いることができる。この場合通常、
上記した金属粉末を圧縮成形して圧粉体を形成した後、
この圧粉体を焼結して予備成形品を成形するが、場合に
よっては圧縮成形と焼結とを同時に行なうホットプレス
法を用いてもよい。尚圧粉体成形の際に、ブラスチング
処理等により該圧粉体の表面の密度を高くしておくこと
も好ましいことである。表面の気孔が少なくなるからで
ある。 (鍛造工程) 鍛造工程では、従来と同様に該予備成形品を高温下で鍛
造して鍛造品を形成する。これにより上記した予備成形
品は、高密度化した焼結鍛造品となる。鍛造を行なう温
度は、焼結鍛造品の種類、金属粉末の組成に応じて適宜
選択するが、一般には1000℃以上とする。鍛造を行なう
雰囲気としては一般的には大気中にするが、必要に応じ
て不活性ガス中とすることもできる。鍛造工程における
加圧力、鍛造回数は、焼結鍛造品の形状、金属粉末の組
成等の要因に応じて適宜選択する。加圧力は一般的には
1平方ミリメートルあたり60kg〜100kgとし、又、鍛造
回数は一般的には1回とする。但し上記した値に限定さ
れるものではない。鍛造加工法としては、予備成形品の
加工形状および使用目的等に応じて、公知の型鍛造、す
え込み鍛造あるいは自由鍛造など適宜の手段をとること
ができる。 (再加熱工程) 再加熱工程は本発明を特色づける工程である。再加熱工
程は、該焼結鍛造品を800〜1150℃の温度に50秒以上で3
0分間未満加熱保持する工程を意味する。再加熱工程を
行なう焼結鍛造品がA3変態点を有する場合には、A3変態
点〜1150℃で再加熱工程を行なうことが好ましい。再加
熱工程における温度が前述のごとく800〜1150℃である
理由は、主として、1150℃を超えると結晶粒の粗大化の
度合が大きくなり、又、800℃未満では機械的性質の改
善効果が少ないからである。予備成形品の表面部に脱炭
層が生じている場合には、再加熱工程は、予備成形品を
浸炭しうる雰囲気、例えばプロパン、ブタン等の炭化水
素ガス、木炭を焼結したガスなどで行なうことが好まし
い。この場合には50秒間〜30分間未満加熱保持すること
が好ましい。なかでも1〜30分間程度がより好ましい。
その主たる理由は、1分間未満では浸炭は不充分となり
がちであり、又、30分間を超えると浸炭効果は飽和状態
となるからである。 なお、予備成形品の引張強度の向上を主目的としている
場合には、再加熱工程は大気中でも行なうことができ
る。但し、この場合には、加熱保持時間を短くすること
が好ましい。例えば50秒間〜15分間程度が好ましい。そ
の主たる理由は、加熱保持時間が長いと大気中における
加熱のため焼結鍛造品の表面部の酸化の度合が大きくな
るからである。 再加熱工程を行なう時期は、鍛造工程を終了した後直ち
に行なうことが、省エネルギーの点から好ましい。但し
場合によっては、鍛造工程を終了した焼結鍛造品を所定
温度例えば常温に放冷した後、該焼結鍛造品を800〜115
0℃の温度に加熱し、そこで再加熱工程を行なうことも
できる。この場合には、鍛造工程を経た多数個の焼結鍛
造品をまとめて加熱炉内に装入し、これによりまとめて
再加熱工程を行ないうるので、焼結鍛造品を量産する場
合に好適する。 (冷却工程) 冷却工程では、再加熱工程で加熱保持した該焼結鍛造品
を冷却する。この冷却工程では、鍛造品の形状・大きさ
等に応じて、放冷・風冷・水噴霧冷却その他公知の手段
を適宜選択することができる。 金属粉末を0.5〜5.0%の銅0.3〜0.8%の炭素又は黒鉛、
不可避の不純物、残部鉄の組成とし、かつ再加熱工程を
A3変態点以上の温度領域で行なった場合には、冷却工程
は、少なくともA3変態点(より詳しくはAr3変態点)ま
での温度域においては2〜5℃/秒の平均冷却速度で行
なうことが好ましい。このようにすれば焼結鍛造品をよ
り高強度化するに効果的であることが実験によって確認
されている。ところで金属粉末が、重量%で0.5〜5.0%
の銅、0.3〜0.8%の炭素又は黒鉛、不可避の不純物、残
部鉄の組成をもつ場合には、製造された焼結鍛造品の顕
微鏡組織は、一般的にフェライトとパーライトを主体と
するものとなる。この組織は焼入れ焼もどし組織として
知られているソルバイト、あるいはトールスタイト(も
どしマルテンサイト)等とは組織上異なるものである。
本発明では一般的には冷却工程を終了した焼結鍛造品に
は焼入れ焼もどし処理を行なわないものである。 [実施例1] −80メッシュのアトマイズ純鉄粉に、−200メッシュの
電解銅粉及び鱗片状黒鉛粉末を添加し、これにより重量
%にて0.6%黒鉛−2%銅−残部鉄の組成となるように
配合した。その後、潤滑剤としてステアリン酸亜鉛粉末
を混合粉末全体の0.8%添加して30分間乾式タイプの混
合機で混粉した。次に油圧プレス機によって1平方セン
チメートルあたり5tonの加圧力で圧粉体を成形し、次に
1120℃で5分間、通称P×ガスとして知られている吸熱
ガス中で加熱焼結し、これにより成形焼結工程を行なっ
た。 成形焼結工程を終了したのち直ちに、1平方センチメー
トルあたり8tonの面圧で熱間鍛造し、これにより鍛造工
程を行ない、試験片を形成した。その後550℃まで空冷
した。なお、鍛造工程は、大気中で1000〜1090℃程度の
温度領域で行なった。 尚本例の試験片の形状は、第1図に示す側面をもちチャ
ック部、試験部を有する板状試験片であり、全体の長さ
Lが100ミリメートル、チャック部の幅Bは24ミリメー
トル、試験部の幅bは10ミリメートル、試験部の長さP
は20ミリメートル、チャック部と試験部とを結ぶフィレ
ットの半径Rは18ミリメートル、厚み5.0ミリメートル
である。 上記試験片を3種類(NO.1〜NO.3)形成し、NO.1の試験
片を900℃で、NO.2の試験片を1000℃で、NO.3の試験片
を1100℃でそれぞれ1分間大気中で加熱保持し、以て再
加熱工程を行なった。 再加熱工程を終了したのちは、NO.1〜NO.3の試験片を2
〜5℃/secの冷却速度で550℃まで空冷し、冷却工程を
行なった。 [実施例2] 本例では、成形焼結工程、鍛造工程、冷却工程、試験片
の形状寸法は実施例1の場合と基本的には同じである。
但し、再加熱工程が異なる。即ち、実施例1の場合と同
様な成形焼結工程、鍛造工程をえて3種類の厚さ5.0ミ
リメートルの試験片(NO.11〜NO.13)を形成し、NO.11
の試験片を900℃で、NO.12の試験片を1000℃で、NO.13
の試験片を1100℃で、それぞれ1分間加熱保持し、次に
それぞれの試験片を900℃で15分間加熱保持し、以て再
加熱工程を行なった。本例では再加熱工程は、C・P=
0.60〜0.65%の吸熱ガス雰囲気中で行なった。この点、
再加熱工程を大気中で行なった実施例1の場合とは異な
る。再加熱工程を終了したのちは2〜5℃/secの冷却速
度で500℃まで空冷し、冷却工程を行なった。 [試験及び評価] 上記した実施例を特色づける再加熱工程の効果を調べる
ため、上記実施例1の試験片(NO.1〜NO.3)及び実施例
2の試験片(NO.11〜NO.13)について引張試験及び板曲
げ疲労試験を黒皮肌のままで行なった。又、実施例2の
NO.1試験片について板曲げ疲労試験を黒皮肌のままで行
なった。ここで引張試験は、具体的には、10Tonの万能
試験機で5mm/minの引張速度で行なった。又板曲げ疲労
試験は、具体的には4kg・mのシェンク式両振り平面曲
げ疲労試験機を用いて、応力繰返し速度3000cpmにより
行なった。 尚比較例(NO.20)も形成し同様に試験した。比較例
は、実施例1、実施例2の場合と同様に成形焼結工程、
鍛造工程、冷却工程を行なったものであるが、再加熱工
程は行なっていないものである。 引張試験の試験結果を第2図及び第3図に示す。板曲げ
疲労試験の試験結果を第4図に示す。 引張強さについては、第2図に示すように比較例(NO.2
0)の場合には70kg/mm2であった。この点実施例1の(N
O.1〜NO.3)の場合には78〜85kg/mm2と大きかった。特
に、実施例1の場合には、再加熱工程の加熱温度が900
℃、1000℃、1100℃と上昇するにつれて引張強さが増加
することがわかる。又、第3図に示すように実施例2
(NO.11〜NO.13)の場合には、引張強さは84〜88kg/mm2
であり、実施例1の場合と同様に比較例の場合に比して
比較例に比してかなり増加している。 伸びについては、比較例(NO.20)の場合には4%程度
であった。この点、実施例1(NO.1〜NO.3)の場合には
8.3〜10.8%程度と比較例に比してかなり増加してい
る。又実施例2(NO.11〜NO.13)の場合には7.5〜9.0%
程度と同様にかなり増加している。 疲労限度については、第4図に示すように比較例の場合
には27kg/mm2程度であった。この点実施例2の場合には
34kg/mm2程度と比較例に比してかなり増加した。 上記した試験結果から、引張強さ、伸び、疲労限度とい
った機械的性質を向上させるには、鍛造工程を終了した
焼結鍛造品に再加熱工程を行なうことが極めて有効であ
ることが理解できる。本実施例で上記した優れた効果が
得られる理由は、以下の(1)(2)の理由によるもの
と推測されている。即ち、 (1)本実施例及び比較例では鍛造工程の際に試験片の
表層部に線状欠陥が形成される。しかし本実施例では線
状欠陥は再加熱工程で拡散接合して減少するかあるいは
消滅する。 (2)本実施例及び比較例では鍛造工程の際に生じた型
冷却により異常組織(フェライト球状セメンタイト)が
表面部に生じる。しかし本実施例では再加熱工程により
正常なフェライト+パーライト組織となる。この(1)
(2)の理由により内部硬さに見合った伸び、引張強さ
が得られると推定される。特に浸炭可能な吸熱ガス中で
再加熱工程を行なえば、表面脱炭層が浸炭されることに
より引張特性に加え疲労強度も向上すると推定される。 [発明の効果] 本発明の焼結鍛造品の製造方法によれば、前述した実施
例1、実施例2の試験結果からあきらかなように引張強
さ、伸び、疲労限度といった機械的性質を、従来の焼結
鍛造品に比べて向上させることができる。
TECHNICAL FIELD The present invention relates to a method for producing a sintered forged product capable of improving mechanical properties. INDUSTRIAL APPLICABILITY The present invention can be used for manufacturing automobile parts such as connecting rods, gears, hubs and joint cups, or metal parts such as office machine parts and agricultural machine parts. [Prior Art] In recent years, a sintering forging method has been attracting attention as a method for producing a resource-saving and energy-saving type metal molded product. This sinter forged product is manufactured by compression molding and sintering metal powder containing iron as the main component to obtain a preformed product, and forging the obtained preformed product at high temperature. It consists of a forging process to obtain a sintered forged product. When manufactured by such a sintering forging method, it is possible to obtain a product having higher strength than a product manufactured by a normal powder metallurgy method. [Problems to be Solved by the Invention] In the above-described manufacturing method, a product having higher strength can be obtained as compared with a usual powder metallurgy method. However, in the above-mentioned manufacturing method, the forging die directly contacts the surface portion of the preform in the forging step. Therefore, the surface of the preform, which is heated to a high temperature during sintering, is rapidly cooled by the forging die,
Therefore, abnormal tissue is likely to occur on the surface portion. Further, linear defects are likely to occur on the surface portion during forging. In addition, since the molded and sintered product has many pores, if it is taken out of the sintering furnace into the atmosphere, it may be decarburized to the inside considerably before being forged after the furnace is discharged, and even the forged body still has pores. Therefore, decarburization progresses during standing and cooling after forging. Therefore, a decarburized layer may occur on the surface. Further, due to the above-mentioned circumstances, etc., although the sintered forged product has a higher strength than the ordinary powder metallurgy method, the mechanical properties are not sufficiently satisfactory for use in products requiring higher strength. It wasn't something to do. The present invention has been made to solve the above-mentioned problems of the conventional technology. [Means for Solving the Problems] As a result of intensive studies by the present inventor, the preform formed by compression molding and sintering was forged at high temperature to form a sintered forged product, Holding the sintered forged product at a temperature of 800 ° C to 1150 ° C for 50 seconds or more and less than 30 minutes reduces or eliminates the various defects described above, thereby improving the mechanical properties of the sintered forged product. I found that. The present invention is based on this finding. That is, the method for producing a sintered forged product of the present invention comprises a forming and sintering step of forming a preformed product by performing compression molding and sintering on a metal powder containing iron as a main component, and a preformed product. Forging process to form a sintered forged product by forging under high temperature, reheating process for heating and holding the sintered forged product at a temperature of 800 to 1150 ° C for 50 seconds or more and less than 30 minutes, and the sintered forged product heated and held. And a cooling step for cooling. Hereinafter, the manufacturing method of the present invention will be described in detail for each step. (Molding and Sintering Step) In the molding and sintering step, a preform is formed by performing compression molding and sintering on metal powder containing iron as a main component. The metal powder is not particularly limited, and a conventional metal powder raw material containing iron as a main component, which is used in a normal sintered forged product, can be used. More specifically, the metal powder having a composition of 0.5 to 5.0% by weight of copper, 0.3 to 0.8% of carbon or graphite, unavoidable impurities, and balance iron can be used. In this case, a mixed powder composed of iron powder, copper powder and graphite powder can be used as the raw material for the sintered metal powder. Here, copper forms a solid solution in iron at the time of heating for sintering and forging, and acts as a solid solution strengthening, and partly precipitates at the time of cooling to improve hardness and strength of the base steel. Also, graphite and carbon are elements that increase the hardness and strength of mother iron,
With a small content, the strength improving effect cannot be sufficiently achieved,
On the other hand, if the amount is too large, cementite precipitates in the matrix to lower the strength, and the machinability deteriorates significantly. Lubricants and the like correspond to the inevitable impurities. Examples of the lubricant include zinc stearate and the like. In addition, for example, additives such as P (phosphorus) and B (boron) are included as elements for promoting sintering, or S (sulfur) is added to improve machinability, and MnS is added.
The powder may be mixed and used. As the above-mentioned metal powder, it is preferable to use one having good compression moldability and sinterability, and generally, ore reduced powder, mill scale reduced powder,
It is appropriately selected from atomized powder, electrolytic powder and the like according to the type of the sintered forged product. In the molding and sintering step, known compression molding means and sintering means that have been conventionally used can be used. In this case usually
After compression molding the above-mentioned metal powder to form a green compact,
The green compact is sintered to form a preform, but in some cases, a hot press method in which compression molding and sintering are performed simultaneously may be used. It is also preferable to increase the surface density of the green compact by blasting or the like during the green compact formation. This is because the number of pores on the surface is reduced. (Forging Step) In the forging step, the preform is forged at a high temperature to form a forged article as in the conventional case. As a result, the above-mentioned preform becomes a densified sintered forged product. The temperature at which forging is performed is appropriately selected depending on the type of sintered forged product and the composition of the metal powder, but is generally 1000 ° C. or higher. The atmosphere for forging is generally in the air, but may be in an inert gas if necessary. The pressing force and the number of times of forging in the forging step are appropriately selected according to factors such as the shape of the sintered forged product and the composition of the metal powder. The pressing force is generally 60 kg to 100 kg per square millimeter, and the number of times of forging is generally once. However, the values are not limited to the above values. As the forging method, appropriate means such as known die forging, swaging forging or free forging can be adopted depending on the processed shape of the preform and the purpose of use. (Reheating Step) The reheating step is a step which characterizes the present invention. In the reheating step, the sintered forged product is heated to a temperature of 800 to 1150 ° C in 50 seconds or more for 3 seconds.
It means a step of heating and holding for less than 0 minutes. When the sintered forged product subjected to the reheating step has an A3 transformation point, the reheating step is preferably performed at the A3 transformation point to 1150 ° C. The reason why the temperature in the reheating step is 800 to 1150 ° C as described above is mainly because the degree of coarsening of crystal grains becomes large when the temperature exceeds 1150 ° C, and the effect of improving mechanical properties is less than 800 ° C. Because. If a decarburized layer is formed on the surface of the preform, the reheating step is performed in an atmosphere that can carburize the preform, for example, a hydrocarbon gas such as propane or butane, or a gas obtained by sintering charcoal. It is preferable. In this case, it is preferable to heat and hold for 50 seconds to less than 30 minutes. Especially, about 1 to 30 minutes is more preferable.
The main reason is that carburization tends to be insufficient in less than 1 minute, and the carburizing effect becomes saturated in more than 30 minutes. If the main purpose is to improve the tensile strength of the preform, the reheating step can be performed in the atmosphere. However, in this case, it is preferable to shorten the heating and holding time. For example, about 50 seconds to 15 minutes is preferable. The main reason for this is that if the heating and holding time is long, the degree of oxidation of the surface portion of the sintered forged product increases due to heating in the atmosphere. From the viewpoint of energy saving, it is preferable to perform the reheating step immediately after the forging step is completed. However, in some cases, the sintered forged product that has undergone the forging process is allowed to cool to a predetermined temperature, for example, room temperature, and then the sintered forged product is 800 to 115
It is also possible to heat to a temperature of 0 ° C. and carry out a reheating step there. In this case, a large number of sintered forged products that have undergone the forging process can be put together in a heating furnace, and thus the reheating process can be performed collectively, which is suitable for mass production of sintered forged products. . (Cooling Step) In the cooling step, the sintered forged product heated and held in the reheating step is cooled. In this cooling step, known means such as cooling by cooling, air cooling, water spray cooling and the like can be appropriately selected according to the shape and size of the forged product. Metal powder 0.5-5.0% copper 0.3-0.8% carbon or graphite,
Inevitable impurities, balance iron composition, and reheating process
When the A3 was performed in the temperature range of lower than the transformation point, cooling step, it is carried out at an average cooling rate of 2 to 5 ° C. / sec in a temperature range up to at least the A3 transformation point (more specifically Ar 3 transformation point) Is preferred. It has been confirmed by an experiment that this is effective in increasing the strength of the sintered forged product. By the way, metal powder is 0.5-5.0% by weight.
In the case of the composition of copper, 0.3 to 0.8% of carbon or graphite, unavoidable impurities, and the balance of iron, the microstructure of the manufactured sintered forged product is generally composed mainly of ferrite and pearlite. Become. This structure is structurally different from sorbite, which is known as a quenched and tempered structure, or tallstite (tempered martensite).
In the present invention, generally, the quenching and tempering process is not performed on the sintered forged product after the cooling process. [Example 1] To -80 mesh atomized pure iron powder, -200 mesh electrolytic copper powder and scaly graphite powder were added, whereby a composition of 0.6% graphite-2% copper-balance iron in weight% was obtained. It was blended so that Then, zinc stearate powder was added as a lubricant in an amount of 0.8% of the entire mixed powder, and the mixture was mixed for 30 minutes by a dry type mixer. Next, using a hydraulic press machine, a green compact is formed with a pressure of 5 tons per square centimeter.
Heat sintering was carried out at 1120 ° C. for 5 minutes in an endothermic gas commonly known as P × gas, thereby performing a molding and sintering step. Immediately after the molding and sintering process was completed, hot forging was carried out at a surface pressure of 8 tons per square centimeter, whereby the forging process was carried out to form a test piece. Then, it was air-cooled to 550 ° C. The forging process was performed in the atmosphere in the temperature range of about 1000 to 1090 ° C. The shape of the test piece of this example is a plate-like test piece having a side surface shown in FIG. 1 and having a chuck portion and a test portion. The overall length L is 100 mm and the width B of the chuck portion is 24 mm. The width b of the test part is 10 mm and the length P of the test part is
Is 20 mm, the radius R of the fillet connecting the chuck part and the test part is 18 mm, and the thickness is 5.0 mm. The above test pieces are formed in three types (NO.1 to NO.3), the NO.1 test piece at 900 ° C, the NO.2 test piece at 1000 ° C, and the NO.3 test piece at 1100 ° C. Each was heated and held in the atmosphere for 1 minute, and the reheating step was performed. After finishing the reheating process, test pieces of NO.1 to NO.3
Air-cooling was performed to 550 ° C. at a cooling rate of ˜5 ° C./sec, and a cooling step was performed. [Example 2] In this example, the forming and sintering process, the forging process, the cooling process, and the shape and size of the test piece are basically the same as those in the first embodiment.
However, the reheating process is different. That is, three kinds of 5.0 mm-thick test pieces (NO.11 to NO.13) were formed by the same forming / sintering step and forging step as in Example 1, and NO.11
No.12 test piece at 900 ℃, NO.12 test piece at 1000 ℃, NO.13
Each test piece was heated and held at 1100 ° C. for 1 minute, and then each test piece was heated and held at 900 ° C. for 15 minutes, thereby performing the reheating step. In this example, the reheating step is performed by C · P =
It was performed in an endothermic gas atmosphere of 0.60 to 0.65%. In this respect,
This is different from the case of Example 1 in which the reheating step is performed in the atmosphere. After the reheating step was completed, it was air-cooled to 500 ° C at a cooling rate of 2 to 5 ° C / sec, and the cooling step was performed. [Test and Evaluation] In order to investigate the effect of the reheating step which characterizes the above-described examples, the test pieces of Example 1 (NO. 1 to NO. 3) and the test pieces of Example 2 (NO. 11 to NO. .13), a tensile test and a plate bending fatigue test were performed on the black skin. In addition, in the second embodiment
A plate bending fatigue test was conducted on the NO.1 test piece with the black skin as it was. Here, the tensile test was specifically carried out at a tensile speed of 5 mm / min with a universal testing machine of 10 Ton. Further, the plate bending fatigue test was specifically carried out using a Schenk type double swing flat bending fatigue tester with a stress repetition rate of 3000 cpm. A comparative example (NO.20) was also formed and tested in the same manner. In the comparative example, the forming and sintering process is performed in the same manner as in Examples 1 and 2,
The forging process and the cooling process were performed, but the reheating process was not performed. The test results of the tensile test are shown in FIGS. 2 and 3. The test results of the plate bending fatigue test are shown in FIG. Regarding tensile strength, as shown in Fig. 2, a comparative example (NO.2
In the case of 0), it was 70 kg / mm 2 . In this respect, (N
In the case of O.1 to NO.3), it was as large as 78 to 85 kg / mm 2 . Particularly, in the case of Example 1, the heating temperature in the reheating step is 900
It can be seen that the tensile strength increases as the temperature increases to ℃, 1000 ℃, 1100 ℃. In addition, as shown in FIG.
In the case of (NO.11 to NO.13), the tensile strength is 84 to 88kg / mm 2
As in the case of Example 1, the number of comparisons is considerably higher than that of the comparison example. The elongation was about 4% in the case of the comparative example (NO.20). In this respect, in the case of Example 1 (NO.1 to NO.3)
It is about 8.3 to 10.8%, which is a considerable increase compared to the comparative example. In the case of Example 2 (NO.11 to NO.13), 7.5 to 9.0%
It has increased considerably as well as the degree. The fatigue limit was about 27 kg / mm 2 in the case of the comparative example, as shown in FIG. In this respect, in the case of the second embodiment,
It was about 34 kg / mm 2, which was a considerable increase compared to the comparative example. From the above test results, it can be understood that it is extremely effective to perform the reheating step on the sintered forged product after the forging step in order to improve the mechanical properties such as tensile strength, elongation and fatigue limit. It is presumed that the reason why the excellent effects described above are obtained in the present embodiment is due to the following reasons (1) and (2). That is, (1) In this example and the comparative example, linear defects are formed in the surface layer portion of the test piece during the forging step. However, in this embodiment, the linear defects are reduced or disappear by diffusion bonding in the reheating process. (2) In this example and the comparative example, an abnormal structure (ferrite spherical cementite) is generated on the surface due to mold cooling generated during the forging process. However, in this embodiment, the reheating process results in a normal ferrite + pearlite structure. This (1)
Due to the reason (2), it is presumed that elongation and tensile strength commensurate with the internal hardness can be obtained. In particular, if the reheating step is performed in a carburizing endothermic gas, it is presumed that the surface decarburized layer is carburized to improve not only tensile properties but also fatigue strength. [Effects of the Invention] According to the method for manufacturing a sintered forged product of the present invention, the mechanical properties such as tensile strength, elongation, and fatigue limit are clearly determined from the test results of Examples 1 and 2 described above. It can be improved as compared with the conventional sintered forged product.

【図面の簡単な説明】 第1図は試験片の側面図である。第2図は、実施例1に
おける引張強さと再加熱工程の加熱温度との関係、伸び
と再加熱工程の加熱温度との関係を示すグラフである。
第3図は、実施例2における引張強さと再加熱工程の加
熱温度との関係、伸びと再加熱工程の加熱温度との関係
を示すグラフである。第4図は、比較例と実施例2の疲
労限度を示すグラフである。
BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 is a side view of a test piece. FIG. 2 is a graph showing the relationship between the tensile strength and the heating temperature in the reheating step and the relationship between the elongation and the heating temperature in the reheating step in Example 1.
FIG. 3 is a graph showing the relationship between the tensile strength and the heating temperature in the reheating step and the relationship between the elongation and the heating temperature in the reheating step in Example 2. FIG. 4 is a graph showing the fatigue limit of Comparative Example and Example 2.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 浜本 弘 愛知県愛知郡長久手町大字長湫字横道41番 地の1 株式会社豊田中央研究所内 (72)発明者 近藤 幹夫 愛知県愛知郡長久手町大字長湫字横道41番 地の1 株式会社豊田中央研究所内 (56)参考文献 特開 昭55−41969(JP,A) 特開 昭55−38983(JP,A)   ─────────────────────────────────────────────────── ─── Continued front page    (72) Inventor Hiroshi Hamamoto             Aichi Prefecture Nagachite Town Aichi District             Ground 1 Toyota Central Research Institute Co., Ltd. (72) Inventor Mikio Kondo             Aichi Prefecture Nagachite Town Aichi District             Ground 1 Toyota Central Research Institute Co., Ltd.              (56) Reference JP-A-55-41969 (JP, A)               JP 55-38983 (JP, A)

Claims (1)

【特許請求の範囲】 【請求項1】鉄を主要成分とする金属粉末に対して圧縮
成形及び焼結を行なうことにより、予備成形品を形成す
る成形焼結工程と、 該予備成形品を高温下で鍛造して焼結鍛造品を形成する
鍛造工程と、 該焼結鍛造品を800〜1150℃の温度に50秒間以上で30分
間未満加熱保持する再加熱工程と、 加熱保持した該焼結鍛造品を冷却する冷却工程とからな
ることを特徴とする焼結鍛造品の製造方法。 【請求項2】再加熱工程は、浸炭可能な雰囲気又は大気
中において行なう特許請求の範囲第1項記載の製造方
法。 【請求項3】金属粉末は、重量%で0.5〜5.0%の銅、0.
3〜0.8%の炭素又は黒鉛、不可避の不純物、残部鉄の組
成をもつ特許請求の範囲第1項記載の製造方法。 【請求項4】冷却工程は、少なくともA3変態点までの温
度域においては2〜5℃/秒の平均冷却速度で行なう特
許請求の範囲第1項記載の製造方法。 【請求項6】冷却工程を経た焼結鍛造品は、引張り強度
が1平方ミルメートルあたり75kg以上であり、伸びが7
%以上であり、疲れ限度が1平方ミリメートルあたり30
kg以上である特許請求の範囲第1項記載の製造方法。
Claim: What is claimed is: 1. A molding and sintering step of forming a preformed product by performing compression molding and sintering on a metal powder containing iron as a main component, and the preformed product at a high temperature. A forging step of forging under to form a sintered forged product, a reheating step of heating and holding the sintered forged product at a temperature of 800 to 1150 ° C. for 50 seconds or more and less than 30 minutes, and the sintering held by heating A method for manufacturing a sintered forged product, comprising a cooling step of cooling the forged product. 2. The manufacturing method according to claim 1, wherein the reheating step is performed in a carburizable atmosphere or air. 3. The metal powder comprises 0.5 to 5.0% by weight of copper and 0.1% by weight.
The manufacturing method according to claim 1, which has a composition of 3 to 0.8% of carbon or graphite, inevitable impurities, and the balance iron. 4. The manufacturing method according to claim 1, wherein the cooling step is performed at an average cooling rate of 2 to 5 ° C./sec at least in a temperature range up to the A3 transformation point. 6. The sintered forged product that has undergone the cooling step has a tensile strength of 75 kg or more per 1 square mil meter and an elongation of 7
% Or more and the fatigue limit is 30 per square millimeter.
The manufacturing method according to claim 1, wherein the manufacturing method is kg or more.
JP59237181A 1984-11-09 1984-11-09 Sintered forged product manufacturing method Expired - Fee Related JPH0680164B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP59237181A JPH0680164B2 (en) 1984-11-09 1984-11-09 Sintered forged product manufacturing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59237181A JPH0680164B2 (en) 1984-11-09 1984-11-09 Sintered forged product manufacturing method

Publications (2)

Publication Number Publication Date
JPS61117203A JPS61117203A (en) 1986-06-04
JPH0680164B2 true JPH0680164B2 (en) 1994-10-12

Family

ID=17011570

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59237181A Expired - Fee Related JPH0680164B2 (en) 1984-11-09 1984-11-09 Sintered forged product manufacturing method

Country Status (1)

Country Link
JP (1) JPH0680164B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4902280B2 (en) * 2006-07-06 2012-03-21 株式会社神戸製鋼所 Powder forged member, mixed powder for powder forging, method for producing powder forged member, and fracture split type connecting rod using the same
RU2490353C2 (en) * 2007-12-27 2013-08-20 Хеганес Аб (Пабл) Low-alloy steel powder
WO2009085001A1 (en) * 2007-12-27 2009-07-09 Höganäs Ab (Publ) Low alloyed steel powder
CN101918162B (en) * 2008-01-04 2014-11-12 Gkn烧结金属有限公司 Prealloyed copper powder forged connecting rod

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5538983A (en) * 1978-09-13 1980-03-18 Sumitomo Electric Ind Ltd Production of high density powder molding by powder hot forging process
JPS5541969A (en) * 1978-09-19 1980-03-25 Sumitomo Electric Ind Ltd Production of high density powder moldings by powder hot- forging method

Also Published As

Publication number Publication date
JPS61117203A (en) 1986-06-04

Similar Documents

Publication Publication Date Title
US5613180A (en) High density ferrous power metal alloy
US7169351B2 (en) Method of production of surface densified powder metal components
US8870997B2 (en) Iron-based pre-alloyed powder
JP4018905B2 (en) Hot rolled wire rod and bar for machine structure and manufacturing method thereof
JP3966493B2 (en) Cold forging wire and method for producing the same
CN109128183B (en) Manufacturing method of iron-based powder metallurgy part
JPH0987794A (en) Production of ferrous sintered alloy showing hardened structure
US20060182648A1 (en) Austempering/marquenching powder metal parts
CN107794348A (en) A kind of Technology for Heating Processing of raising Cr12MoV steel combination properties
JPS6043431B2 (en) Manufacturing method of nitrided machine parts for light loads
US7722803B2 (en) High carbon surface densified sintered steel products and method of production therefor
JPH09279295A (en) Steel for soft-nitriding excellent in cold forgeability
JPH0680164B2 (en) Sintered forged product manufacturing method
JPH0535203B2 (en)
KR20140083164A (en) Method for manufacturing iron-based diffusion bonding powders
CN113677459A (en) Iron-based mixed powder for powder metallurgy and iron-based sintered body
JPH09279296A (en) Steel for soft-nitriding excellent in cold forgeability
JPH03219040A (en) High strength sintered steel and its manufacture
JPS58133301A (en) Preparation of sintered forged product
JPS6120602B2 (en)
JPS626612B2 (en)
JP2005350690A (en) Cold forged component having excellent toughness and wear resistance, and its manufacturing method
JPS61253303A (en) Production of high-strength sintered member
KR100263956B1 (en) Process for producing heat treatment iron alloy parts
Hanejko Advances in P/M gear materials

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees