JPS61117203A - Production of sinter forged parts - Google Patents

Production of sinter forged parts

Info

Publication number
JPS61117203A
JPS61117203A JP23718184A JP23718184A JPS61117203A JP S61117203 A JPS61117203 A JP S61117203A JP 23718184 A JP23718184 A JP 23718184A JP 23718184 A JP23718184 A JP 23718184A JP S61117203 A JPS61117203 A JP S61117203A
Authority
JP
Japan
Prior art keywords
sintering
manufacturing
product
forging
reheating
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP23718184A
Other languages
Japanese (ja)
Other versions
JPH0680164B2 (en
Inventor
Kazuhiko Takahashi
和彦 高橋
Kunihiko Imahashi
今橋 邦彦
Hiroshi Hamamoto
弘 浜本
Mikio Kondo
幹夫 近藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Toyota Central R&D Labs Inc
Original Assignee
Toyota Motor Corp
Toyota Central R&D Labs Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp, Toyota Central R&D Labs Inc filed Critical Toyota Motor Corp
Priority to JP59237181A priority Critical patent/JPH0680164B2/en
Publication of JPS61117203A publication Critical patent/JPS61117203A/en
Publication of JPH0680164B2 publication Critical patent/JPH0680164B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Abstract

PURPOSE:To produce sinter-forged parts having excellent mechanical properties by subjecting metallic powder consisting essentially of iron to compression molding and sintering, forging the resulted preform at a high temp. then heating and holding the forged parts for a prescribed period to and at an adequate temp. and cooling the parts. CONSTITUTION:The metallic powder consisting essentially of Fe and having the compsn. contg. 0.5-5.0wt% Cu, 0.3-0.8% C or graphite and unavoidable impurities and the balance Fe is subjected to compression molding and sintering to form the preform. The preform is then forged at a high temp. of about >=1,000 deg.C and under about 60-100kg/mm<2> pressurizing force to form the sinter- forged parts. The sinter-forged parts are subjected to the reheating treatment by heating and holding the same for 50sec-30min to and at 800-1,150 deg.C, more preferably 900-1,000 deg.C in a carburizable atmosphere or the atm. air and thereafter the parts are cooled at an average cooling rate of 2-5 deg.C/sec in the temp. region down to at least the A3 transformation point. The sinter forged parts having the excellent mechanical properties of >=75kg/mm<2> tensile strength, >=7% elongation and >=30kg/mm<2> fatigue limit are thus obtd.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は、機械的性質を向上させうる焼結鍛造品の製造
方法に関するものである。本発明は、例えば、コネクテ
ィングロッド、ギヤ、ハブ、ジヨイントカップ等の自動
車部品、あるいは事務機械部品、農業n械部品等の金属
部品の製造に利用することができる。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Field of Application] The present invention relates to a method for manufacturing a sintered forged product that can improve mechanical properties. The present invention can be used, for example, to manufacture automobile parts such as connecting rods, gears, hubs, and joint cups, or metal parts such as office machine parts and agricultural machinery parts.

[従来の技術j 近年、省資源、省エネルギータイプの金属成形品の製造
方法として、焼結鍛造法が注目を浴びている。この焼結
鍛造品の製造方法は、鉄を主要成分とする金属粉末に対
して圧縮成形及び焼結を行ない予備成形品を得る成形焼
結工程、得られた予備成形品を高温下で鍛造して焼結鍛
造品を得る鍛造工程からなる。このような焼結鍛造方法
で製造すれば、通常の粉末冶金法で製造した製品に比べ
て強度が大きな製品を得ることができる。
[Prior Art J] In recent years, sintering and forging has attracted attention as a method for manufacturing resource-saving and energy-saving metal molded products. The manufacturing method of this sintered forged product consists of a forming and sintering process in which a metal powder whose main component is iron is compression molded and sintered to obtain a preform, and the obtained preform is forged at high temperature. It consists of a forging process to obtain a sintered forged product. If manufactured using such a sinter-forging method, a product with greater strength can be obtained compared to products manufactured using normal powder metallurgy.

[発明が解決しようとする問題点] 上記した製造方法においては、通常の粉末冶金法に比し
て高強度の製品を得ることができる。然しながら上記し
た製造方法においては鍛造工程で予備成形品の表面部に
鍛m型が直接接触する。そのため焼結で高温に加熱され
ている予備成形品の表面部は、鍛造型で急に冷却され、
故に該表面部には異常組織が生じやすい。又、該表面部
には鍛造の際に線状欠陥が生じやすい。また成形焼結し
たものは空孔が多いため、焼結炉から大気中にとり出し
て場合には、炉出後鍛造するまでにかなり内部まで脱炭
することがあり、更には鍛造体でも未だ気孔を有してい
るため。鍛造模放冷する間に脱炭が進行する。そのため
に表面部に脱炭層が生しるおそれがある。
[Problems to be Solved by the Invention] In the above-described manufacturing method, a product with higher strength can be obtained compared to the usual powder metallurgy method. However, in the above manufacturing method, the forging mold directly contacts the surface portion of the preform during the forging process. Therefore, the surface of the preform, which is heated to a high temperature during sintering, is suddenly cooled in the forging die.
Therefore, abnormal tissue is likely to occur on the surface. Furthermore, linear defects are likely to occur on the surface portion during forging. In addition, molded and sintered products have many pores, so if they are taken out of the sintering furnace into the atmosphere, they may be decarburized to the inside by the time they are forged. Because it has. Decarburization progresses during forging and cooling. Therefore, there is a possibility that a decarburized layer will form on the surface.

また、上記した実情等により、焼結鍛造品は通常の粉末
冶金法に比して強度が大きいものの、より高強度が要請
される製品に使用するには、機械的性質は必ずしも充分
に満足するものではなかった。
In addition, due to the above-mentioned circumstances, although sintered forged products have greater strength than those made using normal powder metallurgy, their mechanical properties are not necessarily sufficient for use in products that require higher strength. It wasn't something.

本発明は上記した従来の技術の問題点を解決するために
なされたものである。
The present invention has been made in order to solve the problems of the above-mentioned conventional techniques.

「問題点を解決するための手段] 本発明者は鋭意研究を重ねた結果、圧縮成形及び焼結に
より形成し、た該予備成形品を高温下で鍛造して焼結鍛
造品を形成した後、その焼結鍛造品を800℃〜115
0℃の温度で所定時間保持すれば、前述した種々の欠陥
が減少したり解消した    ゛りし、これにより焼結
鍛造品の機械的性質が向上することを発見した。本発明
はこの発見に基いてなされたものである。
"Means for Solving the Problems" As a result of extensive research, the inventor of the present invention has found that after forming a preformed product by compression molding and sintering, and forming a sintered forged product by forging the preformed product at high temperature, , the sintered forged product is heated to 800°C to 115°C.
It has been discovered that the various defects described above are reduced or eliminated by holding the product at a temperature of 0°C for a predetermined period of time, thereby improving the mechanical properties of the sintered forged product. The present invention has been made based on this discovery.

即ち本発明の焼結鍛造品の製造方法は、鉄を主要成分と
する金属粉末に対して圧縮成形及び焼結を行なうことに
より、予備成形品を形成する成形焼結工程と、 該予備成形品をa瀉下で鍛造して焼結鍛造品を形成する
鍛造工程と、 該焼結鍛造品を800〜1150℃の温度に所定時間加
熱保持する再加熱工程と、 加熱保持したat焼結Iり造品を冷却する冷却工程とか
らなることを特徴とするものである。
That is, the method for manufacturing a sintered forged product of the present invention includes a shaping and sintering step of forming a preform by compression molding and sintering a metal powder whose main component is iron; a forging step in which a sintered forged product is formed by forging under a-temperature; a reheating step in which the sintered forged product is heated and held at a temperature of 800 to 1150°C for a predetermined time; and a sintered forged product that is heated and held. The method is characterized by comprising a cooling step of cooling the product.

以下、本発明の製造方法について工程ごとに詳細に説明
する。
Hereinafter, each step of the manufacturing method of the present invention will be explained in detail.

〈成形焼結工程〉 成形焼結工程では、鉄を主要成分とする金属粉末に対し
て圧縮成形及び焼結を行なうことにより、予備成形品を
形成する。
<Molding and Sintering Process> In the forming and sintering process, a preformed product is formed by compressing and sintering metal powder whose main component is iron.

金属粉末としては、特に限定されるものでなく通常の焼
結鍛造品に使用される従来の鉄を主要成分とづる金属粉
末原料を使用づることができる。
The metal powder is not particularly limited, and conventional metal powder raw materials containing iron as a main component, which are used for ordinary sintered forged products, can be used.

より具体的には金属粉末は、Φ量%で0.5〜5゜0%
の銅、0.3〜0.8%の炭素又は黒鉛、不可避の不純
物、残部鉄の組成をもつものを使用することができる。
More specifically, the metal powder has a Φ amount of 0.5 to 5°0%.
of copper, 0.3 to 0.8% carbon or graphite, unavoidable impurities, balance iron can be used.

この場合鉄粉、銅粉、黒鉛粉末よりなる混合粉末を焼結
金属粉末原料として使用することができる。ここで、銅
は焼結、鍛造のための加熱時に鉄中に固溶して固溶強化
の作用をなし、また冷部時に一部析出して地鉄の硬さお
よび強度を向上させる。又、黒鉛や炭素も、磁鉄の硬さ
、強度を上昇させる元素であるが、少ない含有最では強
度向上効果が充分に達成され得す、他方多すぎると、母
相にセメンタイトが析出して強度が低下し、また被剛性
が著しく悪化する。
In this case, a mixed powder consisting of iron powder, copper powder, and graphite powder can be used as the sintered metal powder raw material. Here, copper dissolves in solid solution in the iron during heating for sintering and forging and acts as solid solution strengthening, and partially precipitates during the cold section to improve the hardness and strength of the base iron. In addition, graphite and carbon are also elements that increase the hardness and strength of magnetic iron, but if they are contained in a small amount, the strength improvement effect can be sufficiently achieved, but if the content is too large, cementite will precipitate in the matrix. Strength decreases and stiffness significantly deteriorates.

なお不可避の不純物として・は潤滑剤等が該当する。潤
滑剤として例えばステアリン酸亜鉛等をあげることがで
きる。なお他にも、例えば焼結促進用の元素としてP(
リン)、B(ホウ1li)などの添加物を含ませたり、
あるいは被削性を良好にするS(イオウ)を含有させた
り、MnS粉を混合して用いることもある。なお上記し
た金属粉末としては、圧縮成形性、焼結性のよいものを
用いるのが好ましく、一般に、鉱石還元粉、ミルスケー
ル還元粉、アトマイズ粉、電解粉などから焼結鍛造品の
種類に応じて適宜選択する。
Note that unavoidable impurities include lubricants, etc. Examples of lubricants include zinc stearate. In addition, P(
Additives such as phosphorus), B (ho 1li), etc.
Alternatively, it may contain S (sulfur), which improves machinability, or may be mixed with MnS powder. It is preferable to use the above-mentioned metal powder that has good compression moldability and sinterability, and generally, depending on the type of sintered forged product, from reduced ore powder, mill scale reduced powder, atomized powder, electrolytic powder, etc. Select as appropriate.

成形焼結工程では、従来より用いられる公知の圧縮成形
手段、焼結手段を用いることができる。
In the shaping and sintering step, conventionally known compression molding means and sintering means can be used.

この場合通常、上記した金属粉末を圧縮成形して圧粉体
を形成した後、この圧粉体を焼結して予備成形品を成形
するが、場合によっては圧縮成形と焼結とを同時に行な
うホットプレス法を用いてもよい。尚圧粉体成形の際に
、プラスチング処理等により該圧粉体の表面の密度を高
くしておくことも好ましいことである。表面の気孔が少
なくなるからである。
In this case, the above-mentioned metal powder is usually compression-molded to form a green compact, and then this green compact is sintered to form a preformed product, but in some cases, compression-molding and sintering are performed simultaneously. A hot press method may also be used. It is also preferable to increase the density of the surface of the green compact by a plasting treatment or the like when compacting the green compact. This is because there are fewer pores on the surface.

(鍛造工程) 鍛造工程では、従来と同様に該予備成形品を高温下で鍛
造して鍛造品を形成する。これにより上記した予備成形
品は、a%t!!!’度化した焼結鍛造品となる。鍛造
を行なう温度は、焼結鍛造品の種類、金属粉末の組成に
応じて適宜選択するが、一般叫は1000℃以上とする
。鍛造を行なう雰囲気としては一般的には大気中にする
が、必要に応じて不活性ガス中とすることもできる。#
1選工程における加圧力、鍛造回数は、焼結鍛造品の形
状、金属粉末の組成等の要因に応じて適宜選択する。加
圧力は一般的には1平方ミリメートルあたり60kg〜
100kaとし、又、鍛造回数は一般的には1回とする
。但し上記した値に限定されるものではない。鍛造加工
法としては、予備成形品の加工形状および使用目的等に
応じて、公知の型鍛造、すえ込み鍛造あるいは自由鍛造
など適宜の手段をとることができる。
(Forging process) In the forging process, the preform is forged at high temperature to form a forged product, as in the past. As a result, the above-mentioned preformed product has a%t! ! ! It becomes a highly sintered forged product. The temperature at which forging is performed is appropriately selected depending on the type of sintered forged product and the composition of the metal powder, but is generally 1000° C. or higher. The atmosphere for forging is generally air, but it can also be an inert gas atmosphere if necessary. #
The pressing force and the number of forgings in the first selection step are appropriately selected depending on factors such as the shape of the sintered forged product and the composition of the metal powder. Pressure force is generally 60 kg per square millimeter.
100ka, and the number of forgings is generally one. However, it is not limited to the above values. As the forging method, appropriate means such as known die forging, swaging forging, or free forging can be used depending on the processed shape of the preform and the purpose of use.

(再加熱工程) 再加熱工程は本発明を特色づける工程である。(Reheating process) The reheating process is a process that characterizes the present invention.

再加熱工程は、該焼結鍛造品を800〜1150℃の温
度に所定時間加熱保持する工程を意味する。
The reheating step means a step of heating and holding the sintered forged product at a temperature of 800 to 1150° C. for a predetermined period of time.

再加熱工程を行なう焼結鍛造品がA3変態点を有する場
合には、A3変態点〜1150℃で再加熱゛工程を行な
うことが好ましい。再加熱工程における温度が前述のご
とく800〜1150℃である理由は、主として、11
50℃を超えると結晶粒の粗大化の度合が大きくなり、
又、800℃未満では機械的性質の改善効果が少ないか
らである。
When the sintered forged product to be subjected to the reheating process has an A3 transformation point, it is preferable to perform the reheating process at a temperature between the A3 transformation point and 1150°C. The reason why the temperature in the reheating step is 800 to 1150°C as mentioned above is mainly due to 11
When the temperature exceeds 50℃, the degree of coarsening of crystal grains increases,
Further, if the temperature is lower than 800°C, the effect of improving mechanical properties is small.

予備成形品の表面部に脱炭層が生じている場合には、再
加熱工程は、予備成形品を浸炭しつる雰囲気、例えばプ
ロパン、ブタン等の炭化水素ガス、木炭を焼結したガス
などで行なうことが好ましい。
If a decarburized layer has formed on the surface of the preform, the reheating step is performed in an atmosphere that will carburize the preform, such as a hydrocarbon gas such as propane or butane, or a gas made by sintering charcoal. It is preferable.

この場合には50秒M〜40分間程度加熱保持すること
が好ましい。なかでも1〜30分間vi’、aがより好
ましい。その主たる理由は、1分間未満では浸炭は不充
分となりがちであり、又、30分間を超えると浸炭効果
は飽和状態となるからである。
In this case, it is preferable to heat and hold for about 50 seconds to 40 minutes. Among them, vi' and a for 1 to 30 minutes are more preferable. The main reason for this is that carburizing tends to be insufficient if the carburizing time is less than 1 minute, and if the carburizing effect exceeds 30 minutes, the carburizing effect becomes saturated.

なお、予備成形品の引張強度の向上を主目的としている
場合には、再加熱工程は大気中でも行なうことができる
。但し、この場合には、加熱保持時間を短くすることが
好ましい。例えば50秒間〜15分間程度が好ましい。
Note that if the main purpose is to improve the tensile strength of the preform, the reheating step can be performed in the atmosphere. However, in this case, it is preferable to shorten the heating holding time. For example, about 50 seconds to 15 minutes is preferable.

その主たる理由は、加熱保持時間が長いと大気中におけ
る加熱のため焼結鍛造品の表面部の酸化の度合が大きく
なるからである。
The main reason for this is that if the heating holding time is long, the degree of oxidation of the surface portion of the sintered forged product increases due to heating in the atmosphere.

再加熱工程を行なう時期は、鍛造工程を終了した後直ち
に行なうことが、省エネルギーの点から好ましい。但し
場合によっては、鍛造工程を終了した焼結鍛造品を所定
温度例えば常温に放冷した後、該焼結鍛造品を800〜
1150℃の温度に加熱し、そこで再加熱工程を行なう
こともできる。
From the viewpoint of energy saving, it is preferable to perform the reheating step immediately after the forging step is completed. However, in some cases, after the sintered forged product that has completed the forging process is allowed to cool to a predetermined temperature, for example, room temperature, the sintered forged product is
It is also possible to heat to a temperature of 1150° C. and carry out a reheating step there.

この場合には、#1I3i!I工程を経た多数個の焼結
鍛造品をまとめて加熱炉内に装入し、これによりまとめ
て再加熱工程を行ないうるので、焼結鍛造品を量産する
場合に好適する。
In this case, #1I3i! A large number of sintered forged products that have gone through the I process can be charged into a heating furnace all at once, and the reheating process can then be performed all at once, which is suitable for mass producing sintered forged products.

(冷却工程) 冷却工程では、再加熱工程で加熱保持した該焼結鍛造品
を冷却する。この冷却工程では、鍛造品の形状・大きさ
等に応じて、放冷・風冷・水噴霧冷却その他公知の手段
を適宜選択することができる。
(Cooling process) In the cooling process, the sintered forged product heated and held in the reheating process is cooled. In this cooling step, depending on the shape, size, etc. of the forged product, air cooling, wind cooling, water spray cooling, and other known means can be selected as appropriate.

金属粉末を0.5〜5.0%の銅0.3〜0゜8%の炭
素又は黒鉛、不可避の不純物、残部鉄の組成とし、かつ
再加熱工程をA3変態点以上の温度領域で行なった場合
には、冷却工程は、少なくともA3変態点(より詳しく
はAr3変態点)までの温度域においては2〜b 度で行なうことが好ましい。このようにすれば焼結鍛造
品をより高強度化するに効果的であることが実験によっ
て確認されている。 ところで金属粉末が、重量%で0
.5〜5.0%の銅、0.3〜0.8%の炭素又は黒鉛
、不可避の不純物、残部鉄の組成をもつ場合には、製造
された焼結鍛造品の顕微饋組織は、一般的にフェライト
とパーライトを主体とするものとなる。この組織は焼入
れ焼もどし組織として知られているソルバイト、あるい
はトールスタイト(もどしマルテンサイト)等とは組織
上異なるものである。本発明では一般的には冷却工程を
終了した焼結鍛造品には焼入れ焼もどし処理を行なわな
いものである。但し場合によっては、焼結鍛造品のより
一層の機械的性質の向上が望めるならば、必要に応じて
焼入れ焼もどしを行なってもよい。
The metal powder has a composition of 0.5 to 5.0% copper, 0.3 to 0.8% carbon or graphite, unavoidable impurities, and the balance iron, and the reheating process is performed in a temperature range above the A3 transformation point. In this case, the cooling step is preferably carried out at a temperature of 2 to 5 degrees Celsius in the temperature range up to at least the A3 transformation point (more specifically, the Ar3 transformation point). It has been confirmed through experiments that this method is effective in increasing the strength of sintered forged products. By the way, metal powder is 0% by weight.
.. If the composition is 5 to 5.0% copper, 0.3 to 0.8% carbon or graphite, unavoidable impurities, and the balance iron, the microscopic structure of the manufactured sintered forged product is generally It is mainly composed of ferrite and pearlite. This structure is structurally different from sorbite, which is known as a quenched and tempered structure, or thollstone (restored martensite). In the present invention, the sintered forged product that has undergone the cooling process is generally not subjected to quenching and tempering treatment. However, in some cases, if it is desired to further improve the mechanical properties of the sintered forged product, quenching and tempering may be performed as necessary.

[実施例1] 一80メツシュのアトマイズ純鉄粉に、−200メツシ
ユの電解銅粉及び鱗片状黒鉛粉末を添加し、これにより
重量%にて0.6%黒鉛−2%銅−残部鉄の組成となる
ように配合した。その後、1Illl滑剤としてステア
リン酸亜鉛粉末を混合粉末全体の0.8%添加して30
分分間式タイプの混合機で混粉した。次に油圧プレス機
によって1平方センチメートルあたり5tonの加圧力
で圧粉体を成形し、次に1120℃で5分間、通称RX
ガスとして知られている吸熱ガス中で加熱焼結し、これ
により成形焼結工程を行なった。
[Example 1] -200 meshes of electrolytic copper powder and flaky graphite powder were added to 180 meshes of atomized pure iron powder, resulting in a composition of 0.6% graphite, 2% copper, and the balance iron in weight percent. It was blended to achieve the following composition. Then, 0.8% of the total mixed powder was added with zinc stearate powder as a lubricant.
The powder was mixed using a minute-minute mixer. Next, a compact is formed using a hydraulic press machine with a pressure of 5 tons per square centimeter, and then heated at 1120°C for 5 minutes, commonly known as RX.
The molding and sintering process was carried out by heating and sintering in an endothermic gas known as gas.

成形焼結工程を終了したのち直ちに、1平方セ゛ンチメ
ートルあたり8tonの面圧で熱間鍛造し、これにより
鍛造工程を行ない、試験片を形成した。
Immediately after completing the shaping and sintering process, hot forging was carried out under a surface pressure of 8 tons per square centimeter, thereby carrying out the forging process to form a test piece.

その後550℃まで空冷した。なお、鍛造工程は、大気
中で1000〜1090℃程度の濃度領域で行なった。
Thereafter, it was air cooled to 550°C. Note that the forging process was performed in the atmosphere at a concentration range of about 1000 to 1090°C.

尚本例の試験片は形状は、第1図に示す側面をもちチャ
ック部、試験部を有する板状試験片であ   ゛す、全
体の長さLが100ミリメートル、チャック部の幅Bは
24ミリメートル、試験部の幅すは10ミリメートル、
試験部の長さPは20ミリメートル、チャック部と試験
部とを結ぶフィレットの半径Rは18ミリメートル、厚
み5.0ミリメートルである。
The shape of the test piece in this example is a plate-like test piece with side surfaces as shown in Figure 1, and a chuck part and a test part.The overall length L is 100 mm, and the width B of the chuck part is 24 mm. mm, the width of the test section is 10 mm,
The length P of the test section is 20 mm, the radius R of the fillet connecting the chuck section and the test section is 18 mm, and the thickness is 5.0 mm.

上記試験片を3種類(No、1〜No、3)形成し、N
091の試験片を900℃で、NO62の試験片を10
00℃で、No、3の試験片を1100℃でそれぞれ1
分間大気中で加熱保持し、以て再加熱工程を行なった。
Three types of the above test pieces (No. 1 to No. 3) were formed, and N
091 test piece at 900℃, NO62 test piece at 10
At 00℃, test pieces No. and 3 were heated to 1100℃, respectively.
The mixture was heated and maintained in the atmosphere for a minute, and then a reheating step was performed.

再加熱工程を終了したのちは、NO,1〜No。After finishing the reheating process, NO, 1 to No.

3の各試験片を2〜b 50℃まで空冷し、冷却工程を行なった。3 each test piece from 2 to b A cooling step was performed by air cooling to 50°C.

[実施例2] 本例では、成形焼結工程、鍛造工程、冷却工程、試験片
の形状寸法は実施例1の場合と基本的には同じである。
[Example 2] In this example, the shaping and sintering process, the forging process, the cooling process, and the shape and dimensions of the test piece are basically the same as in Example 1.

但し、再加熱工程が異なる。即ち、実施例1の場合と同
様な成形焼結工程、鍛造工程をえて3種類の厚さ5.0
ミリメートルの試験片(No、11〜No、13)を形
成し、N0011の試験片を900℃で、No、1−2
の試験片を1000℃で、No、13の試験片を110
0℃で、それぞれ1分間加熱保持し、次にそれぞれの試
験片を900℃で15分間加熱保持し、以て再加熱工程
を行なった。本例では再加熱工程は、C・P−0,60
〜0.65%の吸熱ガス雰囲気中で行なった。この点、
再加熱工程を大気中で行なった実施例1の場合とは異な
る。再加熱工程を終了したのちは2〜b 0℃まで空冷し、冷却工程を行なった。
However, the reheating process is different. That is, by performing the same forming and sintering process and forging process as in Example 1, three types of thickness 5.0
Millimeter test pieces (No. 11 to No. 13) were formed, and the N0011 test piece was heated at 900°C to No. 1-2.
test piece No. 13 at 110°C.
Each test piece was heated and held at 0°C for 1 minute, and then each test piece was heated and held at 900°C for 15 minutes, thereby performing a reheating process. In this example, the reheating step is C.P-0,60
It was carried out in an endothermic gas atmosphere of ~0.65%. In this point,
This differs from the case of Example 1 in which the reheating step was performed in the atmosphere. After the reheating step was completed, the sample was air cooled to 2 to 0° C. for a cooling step.

[試験及び評価] 上記した実施例を特色づける再加熱工程の効果を調べる
ため、上記実施例1の試験片(No、1〜No、3)及
び実施例2の試験片(No、11〜N0.13)につい
て引張試験及び板曲げ疲労試験を黒皮肌のままで行なっ
た。又、実施例2のN011試験片について板曲げ疲労
試験を黒皮肌のままで行なった。ここで引張試験は、具
体的には、10TOnの万能試験機で5 ram/ s
inの引張速度で行なった。又板曲げ疲労試験は、具体
的には4k(1・剛のシエンク式両振り平面曲げ疲労試
J11機を用いて、応力繰返し速度3000 cpsに
より行なった。
[Test and Evaluation] In order to investigate the effect of the reheating process that characterizes the above-mentioned Examples, test pieces of Example 1 (No. 1 to No. 3) and Example 2 (No. 11 to No. 3) were tested. Regarding .13), a tensile test and a plate bending fatigue test were conducted with the black skin intact. In addition, a plate bending fatigue test was conducted on the N011 test piece of Example 2 with the black skin intact. Specifically, the tensile test is performed using a 10Ton universal testing machine at 5 ram/s.
It was carried out at a tensile speed of in. In addition, the plate bending fatigue test was specifically conducted using a 4K (1-rigid Sienck-type bidirectional plane bending fatigue test J11 machine) at a stress repetition rate of 3000 cps.

尚比較fff(No、20>も形成し同様に試験した。A comparative fff (No. 20> was also formed and tested in the same manner.

比較例は、実施例1、実施例2の場合と同様に成形焼結
工程、鍛造工程、冷却工程を行なったものであるが、再
加熱工程は行なっていないものである。
In the comparative example, the molding and sintering process, forging process, and cooling process were performed in the same manner as in Examples 1 and 2, but the reheating process was not performed.

引張試験の試験結果を第2図及び第3図に示す。The test results of the tensile test are shown in FIGS. 2 and 3.

板曲げ疲労試験の試験結果を第4図に示す。Figure 4 shows the test results of the plate bending fatigue test.

引張強ざについては、第2図に示すように比較例(No
、20)の場合には7Qkg/sm2であった。この点
実施例1の(No、1〜No、3)の場合には78〜8
5k(J/II’と大きかった。
Regarding tensile strength, as shown in Figure 2, comparative example (No.
, 20), it was 7Qkg/sm2. In this respect, in the case of (No, 1 to No, 3) in Example 1, 78 to 8
It was large at 5k (J/II').

特に、実施例1の場合には、再加熱工程の加熱温度が9
00℃、1000℃、1100℃と上昇するにつれて引
張強さが増加することがわかる。又、第3図に示すよう
に実施例2<No、11〜N0913)の場合には、引
張強さは84〜88kg/l!11112であり、実施
例1の場合と同様に比較例の場合に比して比較例に比し
てかなり増加している。
In particular, in the case of Example 1, the heating temperature in the reheating step was 9
It can be seen that the tensile strength increases as the temperature increases from 00°C to 1000°C to 1100°C. Moreover, as shown in FIG. 3, in the case of Example 2<No, 11-N0913), the tensile strength is 84-88 kg/l! 11112, which is considerably increased compared to the comparative example as in the case of Example 1.

伸びについては、比較例(No、20)の場合には4%
程度であった。この点、実施例1 (No。
Regarding elongation, in the case of comparative example (No. 20), it is 4%.
It was about. In this respect, Example 1 (No.

1〜No、3ンの場合には8.3〜10.8%程度と比
較例に比してかなり増加している。又実施例2 (No
、 11〜No、 13)+7)場合には7゜5〜9.
0%程度と同様にかなり増加している。
In the case of No. 1 to No. 3 and No. 3, it is about 8.3 to 10.8%, which is a considerable increase compared to the comparative example. Moreover, Example 2 (No.
, 11~No, 13)+7), 7°5~9.
This is a significant increase, as it was around 0%.

疲労限度については、第4図に示すように比較例の場合
には27kg/+uu程度であった。この点実施例2の
場合には34kg/s1程度と比較例に比してかなり増
加した。
As for the fatigue limit, as shown in FIG. 4, in the case of the comparative example, it was about 27 kg/+uu. In this respect, in the case of Example 2, it was approximately 34 kg/s1, which was considerably increased compared to the comparative example.

上記した試験結果から、引張強さ、伸び、疲労限度とい
った機械的性質を向上させるには、鍛造工程を終了した
焼結鍛造品に再加熱工程を行なうことが極めて有効であ
ることが理解できる。本実施例で上記した優れた効果が
轡られる理由は、以下の(1)(2)の理由によるもの
と推測されている。即ち、 (1)本実施例及び比較例では鍛造工程の際に試験片の
表層部に線状欠陥が形成される。しかし本実施例では線
状欠陥は再加熱工程で広敷接合して減少するかあるいは
消滅する。
From the above test results, it can be understood that in order to improve mechanical properties such as tensile strength, elongation, and fatigue limit, it is extremely effective to perform a reheating process on a sintered forged product that has completed the forging process. It is presumed that the reason why the excellent effects described above are not achieved in this example is due to the following reasons (1) and (2). That is, (1) In the present example and comparative example, linear defects are formed in the surface layer portion of the test piece during the forging process. However, in this embodiment, the linear defects are reduced or eliminated by wide bonding in the reheating step.

(2)本実施例及び比較例では鍛造工程の際に生じた型
冷却により異常組m(フェライト球状セメンタイト)が
表面部に生じる。しかし本実施例では再加熱工程により
正常なフェライト+パーライト組織となる。この(1)
(2)の理由により内部硬さに見合った伸び、引張強さ
が得られると推定される。特に浸炭可能な吸熱ガス中で
再加熱工程を行なえば、表面脱炭層が浸炭されることに
より引張特性に加え疲労強度も向上すると推定される。
(2) In the present example and comparative example, an abnormal group m (ferrite spherical cementite) is formed on the surface part due to mold cooling that occurs during the forging process. However, in this example, a normal ferrite+pearlite structure is formed by the reheating process. This (1)
It is presumed that elongation and tensile strength commensurate with the internal hardness can be obtained due to the reason (2). In particular, if the reheating step is performed in an endothermic gas that can be carburized, it is estimated that the surface decarburized layer will be carburized, thereby improving not only the tensile properties but also the fatigue strength.

[発明の効果1 本発明の焼結鍛造品の製造方法によれば、前述した実施
例1、実施例2の試験結果からあきらかなように引張強
さ、伸び、疲労限度といった機械的性質を、従来の焼結
鍛造品に比べて向上させることができる。
[Effect of the invention 1] According to the method for manufacturing a sintered forged product of the present invention, mechanical properties such as tensile strength, elongation, and fatigue limit can be improved, as is clear from the test results of Examples 1 and 2 described above. It can be improved compared to conventional sintered forged products.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は試験片の側面図である。第2図は、実施例1に
おける引張強さと再加熱工程の加熱温度との関係、伸び
と再加熱工程の加熱温度との関係を示すグラフである。 第3図は、実施例2における引張強さと再加熱工程の加
熱温度との関係、伸びと再加熱工程の加熱温度との関係
を示すグラフである。第4図は、比゛較例と実施例2の
疲労限度を示すグラフである。 特許出願人  トヨタ自動車株式会社 同    株式会社豊田中央研究所 代理人    弁理士 大川 宏 同     弁理士 藤谷 修 同     弁理士 丸山明夫 第1図 第4図 繰返し数個)
FIG. 1 is a side view of the test piece. FIG. 2 is a graph showing the relationship between tensile strength and heating temperature in the reheating step and the relationship between elongation and heating temperature in the reheating step in Example 1. FIG. 3 is a graph showing the relationship between tensile strength and heating temperature in the reheating step and the relationship between elongation and heating temperature in the reheating step in Example 2. FIG. 4 is a graph showing the fatigue limits of Comparative Example and Example 2. Patent applicant: Toyota Motor Corporation Toyota Central Research Institute Co., Ltd. Agent Patent attorney: Hirodo Okawa Patent attorney: Shudo Fujitani Patent attorney: Akio Maruyama (Figure 1, Figure 4, several repetitions)

Claims (6)

【特許請求の範囲】[Claims] (1)鉄を主要成分とする金属粉末に対して圧縮成形及
び焼結を行なうことにより、予備成形品を形成する成形
焼結工程と、 該予備成形品を高温下で鍛造して焼結鍛造品を形成する
鍛造工程と、 該焼結鍛造品を800〜1150℃の温度に所定時間加
熱保持する再加熱工程と、 加熱保持した該焼結鍛造品を冷却する冷却工程とからな
ることを特徴とする焼結鍛造品の製造方法。
(1) A molding and sintering process in which a preformed product is formed by compression molding and sintering metal powder whose main component is iron, and a sintering forging process in which the preformed product is forged at a high temperature. A forging process that forms a product, a reheating process that heats and holds the sintered forged product at a temperature of 800 to 1150°C for a predetermined time, and a cooling process that cools the heated and held sintered forged product. A method for manufacturing a sintered forged product.
(2)再加熱工程は、浸炭可能な雰囲気又は大気中にお
いて行なう特許請求の範囲第1項記載の製造方法。
(2) The manufacturing method according to claim 1, wherein the reheating step is performed in a carburizing atmosphere or in the air.
(3)再加熱工程は、900〜1000℃の温度領域で
50秒間〜30分間行なう特許請求の範囲第1項記載の
製造方法。
(3) The manufacturing method according to claim 1, wherein the reheating step is performed in a temperature range of 900 to 1000°C for 50 seconds to 30 minutes.
(4)金属粉末は、重量%で0.5〜5.0%の銅、0
.3〜0.8%の炭素又は黒鉛、不可避の不純物、残部
鉄の組成をもつ特許請求の範囲第1項記載の製造方法。
(4) The metal powder contains 0.5 to 5.0% copper by weight, 0
.. The manufacturing method according to claim 1, having a composition of 3 to 0.8% carbon or graphite, unavoidable impurities, and the balance iron.
(5)冷却工程は、少なくともA3変態点までの温度域
においては2〜5℃/秒の平均冷却速度で行なう特許請
求の範囲第1項記載の製造方法。
(5) The manufacturing method according to claim 1, wherein the cooling step is carried out at an average cooling rate of 2 to 5° C./second in the temperature range up to at least the A3 transformation point.
(6)冷却工程を経た焼結鍛造品は、引張り強度が1平
方ミリメートルあたり75kg以上であり、伸びが7%
以上であり、疲れ限度が1平方ミリメートルあたり30
kg以上である特許請求の範囲第1項記載の製造方法。
(6) Sintered forged products that have gone through the cooling process have a tensile strength of 75 kg or more per square millimeter and an elongation of 7%.
or more, and the fatigue limit is 30 per square millimeter.
The manufacturing method according to claim 1, wherein the amount is more than 1 kg.
JP59237181A 1984-11-09 1984-11-09 Sintered forged product manufacturing method Expired - Fee Related JPH0680164B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP59237181A JPH0680164B2 (en) 1984-11-09 1984-11-09 Sintered forged product manufacturing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59237181A JPH0680164B2 (en) 1984-11-09 1984-11-09 Sintered forged product manufacturing method

Publications (2)

Publication Number Publication Date
JPS61117203A true JPS61117203A (en) 1986-06-04
JPH0680164B2 JPH0680164B2 (en) 1994-10-12

Family

ID=17011570

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59237181A Expired - Fee Related JPH0680164B2 (en) 1984-11-09 1984-11-09 Sintered forged product manufacturing method

Country Status (1)

Country Link
JP (1) JPH0680164B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008004585A1 (en) * 2006-07-06 2008-01-10 Kabushiki Kaisha Kobe Seiko Sho Member produced by powder forging, powder mixture for powder forging, process for producing member by powder forging, and fracture splitting connecting rod obtained from the same
JP2011508090A (en) * 2007-12-27 2011-03-10 ホガナス アクチボラグ (パブル) Low alloy steel powder
JP2011508091A (en) * 2007-12-27 2011-03-10 ホガナス アクチボラグ (パブル) Low alloy steel powder
JP2011509348A (en) * 2008-01-04 2011-03-24 ジーケーエヌ シンター メタルズ、エル・エル・シー Pre-alloyed copper alloy powder forged connecting rod

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5538983A (en) * 1978-09-13 1980-03-18 Sumitomo Electric Ind Ltd Production of high density powder molding by powder hot forging process
JPS5541969A (en) * 1978-09-19 1980-03-25 Sumitomo Electric Ind Ltd Production of high density powder moldings by powder hot- forging method

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5538983A (en) * 1978-09-13 1980-03-18 Sumitomo Electric Ind Ltd Production of high density powder molding by powder hot forging process
JPS5541969A (en) * 1978-09-19 1980-03-25 Sumitomo Electric Ind Ltd Production of high density powder moldings by powder hot- forging method

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008004585A1 (en) * 2006-07-06 2008-01-10 Kabushiki Kaisha Kobe Seiko Sho Member produced by powder forging, powder mixture for powder forging, process for producing member by powder forging, and fracture splitting connecting rod obtained from the same
JP2008013818A (en) * 2006-07-06 2008-01-24 Kobe Steel Ltd Powder forged member, powdery mixture for powder forging, method for producing powder forged member and fracture split type connecting rod using the same
JP2011508090A (en) * 2007-12-27 2011-03-10 ホガナス アクチボラグ (パブル) Low alloy steel powder
JP2011508091A (en) * 2007-12-27 2011-03-10 ホガナス アクチボラグ (パブル) Low alloy steel powder
JP2015108195A (en) * 2007-12-27 2015-06-11 ホガナス アクチボラグ (パブル) Low alloy steel powder
JP2015110842A (en) * 2007-12-27 2015-06-18 ホガナス アクチボラグ (パブル) Low alloy steel powder
JP2011509348A (en) * 2008-01-04 2011-03-24 ジーケーエヌ シンター メタルズ、エル・エル・シー Pre-alloyed copper alloy powder forged connecting rod
US8935852B2 (en) 2008-01-04 2015-01-20 Gkn Sinter Metals, Llc Prealloyed copper powder forged connecting rod

Also Published As

Publication number Publication date
JPH0680164B2 (en) 1994-10-12

Similar Documents

Publication Publication Date Title
US5613180A (en) High density ferrous power metal alloy
JP4018905B2 (en) Hot rolled wire rod and bar for machine structure and manufacturing method thereof
US20050123432A1 (en) Method of producing powder metal parts
JPH0987794A (en) Production of ferrous sintered alloy showing hardened structure
US5562786A (en) Process for producing heat-treated sintered iron alloy part
JPS61117203A (en) Production of sinter forged parts
CN114395738B (en) Die steel with high thermal diffusivity and preparation method thereof
JPS6345306A (en) Production of sintered member
JP3517916B2 (en) Manufacturing method of heat-treated iron-based sintered alloy parts
US20070048169A1 (en) Method of making powder metal parts by surface densification
JPS58133301A (en) Preparation of sintered forged product
JPH0518894B2 (en)
US2295334A (en) Metallurgy of ferrous metals
WO2000066795A1 (en) Malleable iron containing graphite nodules
JPS5980715A (en) Production of spheroidal graphite cast iron having high resistance to fatigue
JPS6120602B2 (en)
KR100263956B1 (en) Process for producing heat treatment iron alloy parts
JPS61253303A (en) Production of high-strength sintered member
JPS5923840A (en) Production of high strength sintered material
JPH03219040A (en) High strength sintered steel and its manufacture
JPH0459362B2 (en)
JPS61261404A (en) Production of sintered connecting rod having high strength
JPS6160138B2 (en)
CN113677459A (en) Iron-based mixed powder for powder metallurgy and iron-based sintered body
CN111876672A (en) High-performance die steel and preparation method thereof

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees