JPH09263906A - Iron-nickel-chrome-alum. ferritic alloy and its production - Google Patents

Iron-nickel-chrome-alum. ferritic alloy and its production

Info

Publication number
JPH09263906A
JPH09263906A JP25939296A JP25939296A JPH09263906A JP H09263906 A JPH09263906 A JP H09263906A JP 25939296 A JP25939296 A JP 25939296A JP 25939296 A JP25939296 A JP 25939296A JP H09263906 A JPH09263906 A JP H09263906A
Authority
JP
Japan
Prior art keywords
alloy
less
molten metal
aluminum
ferrite
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP25939296A
Other languages
Japanese (ja)
Other versions
JP3410303B2 (en
Inventor
Kenichi Inoue
謙一 井上
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Proterial Ltd
Original Assignee
Hitachi Metals Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Metals Ltd filed Critical Hitachi Metals Ltd
Priority to JP25939296A priority Critical patent/JP3410303B2/en
Publication of JPH09263906A publication Critical patent/JPH09263906A/en
Application granted granted Critical
Publication of JP3410303B2 publication Critical patent/JP3410303B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Other Surface Treatments For Metallic Materials (AREA)
  • Heat Treatment Of Articles (AREA)

Abstract

PROBLEM TO BE SOLVED: To produce an Fe-Ni-Cr-Al ferritic alloy excellent in molten metal erosion resistance and having extremely good workability and to provide a method for producing the same. SOLUTION: This alloy has a compsn. contg., by weight, <=0.05% C, <=2% Si, <=2% Mn, 2 to <15% Ni, 15 to <20% Cr, 2 to 8% Al and one or >= tow kinds among Ti, Zr, Hf, V, Nb, Y and rare earth metals by 0.05 to 1.0%, and the balance substantial Fe with inevitable impurities. Furthermore, as for the method for producing the same, this alloy stock is formed into a prescribed shape, which is held under heating in an oxidizing atmosphere heated at 800 to 1,300 deg.C, then, a film essentially consisting of the oxide of aluminum is formed on the surface of the member, and after that, cooling is executed at a rate of that in air cooling or above.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、金型やその部品、
入子などの金属溶湯接触部材、耐摩耗性部材として用い
られるFe−Ni−Cr−Al系フェライト合金および
その製造方法に関するものである。
TECHNICAL FIELD The present invention relates to a mold and its parts,
The present invention relates to a Fe-Ni-Cr-Al-based ferrite alloy used as a metal melt contact member such as an insert, an abrasion resistant member, and a method for producing the same.

【0002】[0002]

【従来の技術】通常、Fe、Ni、Co、Al、Zn、
Cu、Mg、またはこれら金属を主体とする合金等の金
属材料の溶湯を鋳造する際に、金型等の金属溶湯接触部
材には、従来、熱間ダイス鋼、高速度鋼、ステンレス鋼
等の鋼が用いられてきた。上記鉄鋼材料に金属溶湯が接
触する部分では、これらの鉄鋼材料が金属溶湯によって
溶損し、金属溶湯中の鉄含有量を増加し、鋳造部品の品
質を低下させる欠点があった。さらに、これら金型等の
溶損は、鋳造品の肌不良や鋳造品と金型とが溶着して離
型性不良を生じるなど、操業上種々の不都合を生じて部
材の機能が早期に低下し短寿命となる問題があった。
2. Description of the Related Art Usually, Fe, Ni, Co, Al, Zn,
When casting a melt of a metal material such as Cu, Mg, or an alloy mainly composed of these metals, a metal melt contact member such as a mold is conventionally formed of hot die steel, high speed steel, stainless steel, or the like. Steel has been used. In the portion where the molten metal comes into contact with the above-mentioned steel materials, these steel materials have the drawbacks of being damaged by the molten metal, increasing the iron content in the molten metal, and degrading the quality of cast parts. Furthermore, melting damage of these molds causes various inconveniences in operation, such as poor skin of cast products and poor mold releasability due to welding between the cast product and mold, resulting in early deterioration of the function of members. However, there was a problem of a short life.

【0003】これらの問題点を解決するために、従来、
鉄鋼材料から製造した部材の表面に、浸炭、窒化等の表
面処理を施して硬質層を形成させる方法の他、窒化物、
炭化物、ホウ化物(例えばTiN、TiC、BN、Si
C、Si34、TiB2、Al23)等を、プラズマ化
学蒸着法やスパッタリング法などに代表される物理蒸着
法、あるいは融着法や焼ばめ法などで表面を被覆する提
案がされている(特開昭56−111560号、特開昭
59−21416号、特開昭59−33128号、特開
昭60−178017号、特開昭61−33734
号)。また一方では溶融金属に対してほとんど反応しな
いセラミックス系の材料や、溶損を起こしにくいW合
金、Mo合金等が一部使用されている。
In order to solve these problems, conventionally,
On the surface of the member manufactured from the steel material, carburization, in addition to the method of performing a surface treatment such as nitriding to form a hard layer, nitride,
Carbides, borides (eg TiN, TiC, BN, Si
Proposal to coat the surface of C, Si 3 N 4 , TiB 2 , Al 2 O 3 ) etc. by physical vapor deposition method represented by plasma chemical vapor deposition method or sputtering method, or by fusion bonding method or shrink fitting method. (JP-A-56-111560, JP-A-59-21416, JP-A-59-33128, JP-A-60-178017, JP-A-61-33734).
issue). On the other hand, ceramic-based materials that hardly react with molten metal, W alloys and Mo alloys that are less likely to cause melting loss, and the like are partially used.

【0004】[0004]

【発明が解決しようとする課題】上記鉄鋼材料から製造
した部材に浸炭、窒化した表面処理層は、拡散処理であ
るため、深い処理層が得られるだけでなく、剥離の問題
がないことから、これらの処理を実施することを前提に
開発された材質との組み合わせで多く用いられようにな
ってきた。また、これらの表面処理の最大の利点は非常
に安価であることが挙げられる。しかし、近年、鋳造部
品の高強度化により、鋳造品材料として従来のアルミ合
金や亜鉛合金に比べ、高融点のアルミ合金や亜鉛合金の
使用が増大してきた。
Since the surface treated layer obtained by carburizing and nitriding the member manufactured from the above steel material is a diffusion treatment, not only a deep treated layer can be obtained, but there is no problem of peeling. It has come to be often used in combination with a material developed on the assumption that these treatments are carried out. Also, the greatest advantage of these surface treatments is that they are very inexpensive. However, in recent years, as the strength of cast parts has increased, the use of high melting point aluminum alloys and zinc alloys has increased as compared with conventional aluminum alloys and zinc alloys as casting material.

【0005】そのため、従来から実施されてきた金型表
面部に浸炭または窒化処理を施したものは、作業時の昇
温により表面処理層中のC、Nが、金属溶湯中へ逆拡散
して、本来の耐溶損性機能の低下が生じる問題が出てき
た。また、化学蒸着法や、物理蒸着法によってセラミッ
クス系の硬質物質を被覆して使用する場合、被覆層中に
微細なクラックが認められ、このクラックを経路として
溶湯が浸透し、被覆層直下の母材中の鉄と反応して合金
を形成することから体積の膨張が生じ、その結果、被覆
層を剥離させる現象が発生する欠点があった。さらに、
セラミックス系の材料やW合金、Mo合金は非常に高価
であり、また、入子として用いられた場合、周囲の鉄鋼
材料との熱膨張係数の差が大きいことによる種々の問題
や、折れ、欠け等に対する強度、靱性、耐熱衝撃性の不
足などの問題があり、必ずしも満足できるものではなか
った。
Therefore, in the case where the surface of the mold has been conventionally carburized or nitrided, C and N in the surface treatment layer are reversely diffused into the molten metal due to the temperature rise during the work. However, there has been a problem that the original melting resistance function is deteriorated. Further, when the ceramic hard material is coated by a chemical vapor deposition method or a physical vapor deposition method, fine cracks are recognized in the coating layer, and the molten metal permeates through the cracks as a route to form a mother layer directly under the coating layer. There is a drawback that volume expansion occurs due to the reaction with iron in the material to form an alloy, resulting in the phenomenon of peeling the coating layer. further,
Ceramic-based materials, W alloys, and Mo alloys are very expensive, and when used as a nest, various problems due to a large difference in thermal expansion coefficient from surrounding steel materials, bending, and chipping. However, there were problems such as lack of strength, toughness, and thermal shock resistance, and they were not always satisfactory.

【0006】本発明の目的は、これら上記の問題を解消
する新規な考え方に基づいた耐溶損性および耐摩耗性に
優れ、かつ極めて良好な加工性を有するFe−Ni−C
r−Al系フェライト合金およびその製造方法を提供す
ることである。
An object of the present invention is Fe-Ni-C which is excellent in melting resistance and wear resistance and has extremely good workability based on a novel idea for solving the above problems.
An object of the present invention is to provide an r-Al ferrite alloy and a method for producing the same.

【0007】[0007]

【課題を解決するための手段】従来より、セラミックス
系の材質は溶融金属とほとんど反応しない事は良く知ら
れている。しかしながらセラッミクス系の材質を金型等
へ適用した場合には、上述したように様々な問題点があ
り、浸炭、窒化による拡散を用いた表面処理以上の金型
寿命の向上、コスト的優位性は望めないのが現状であ
る。そこで発明者は、母材に鉄鋼材料を用い、これを高
温酸化することにより表面に酸化物系セラミックスであ
るアルミニウム酸化物を主体とする被膜を生成させ得る
組成であり、かつ耐溶融金属溶損性および耐摩耗性を高
め、加工性については従来の金型や耐摩耗性部材と同程
度であるような適正な組成について検討した。その結
果、Fe−Cr−Ni−Al系フェライト合金を基本組
成として新たな合金を見出したものである。本発明合金
は、以下に示す化学組成からなり、優れた塑性加工性を
有すると共に、成形後の酸化処理により、少なくとも部
材の作業表面に耐溶損性、およびまたは耐摩耗性に優れ
たアルミニウムの酸化物を主体とする被膜を形成させる
ことが大きな特徴の一つである。
It has been well known that ceramic materials hardly react with molten metal. However, when ceramics-based materials are applied to dies, there are various problems as described above. Improving die life and cost advantages over surface treatment using diffusion by carburization and nitriding. The reality is that we cannot hope for it. Therefore, the inventor uses a steel material as a base material, and has a composition capable of producing a coating film mainly composed of aluminum oxide, which is an oxide ceramic, on the surface by high-temperature oxidation of the steel material, and the molten metal corrosion resistance The composition and the wear resistance were improved, and an appropriate composition was examined so that the workability was comparable to that of the conventional molds and wear resistant members. As a result, they have found a new alloy using the Fe-Cr-Ni-Al ferrite alloy as a basic composition. The alloy of the present invention is composed of the chemical composition shown below, and has excellent plastic workability, and by oxidation treatment after molding, at least the work surface of the member has corrosion resistance, and / or oxidation of aluminum excellent in wear resistance. One of the major characteristics is the formation of a film mainly composed of objects.

【0008】すなわち本発明の第1発明は、重量比で
C:0.05%以下、Si:2%以下、Mn:2%以
下、Ni:2%以上15%未満、Cr:15%以上20
%未満、Al:2〜8%、およびTi、Zr、Hf、
V、Nb、Y、REMの1種または2種以上:0.05
〜1.0%、残部が実質的にFeならびに不可避的な不
純物からなることを特徴とするFe−Ni−Cr−Al
系フェライト合金である。
That is, in the first invention of the present invention, C: 0.05% or less, Si: 2% or less, Mn: 2% or less, Ni: 2% or more and less than 15%, Cr: 15% or more and 20% by weight.
%, Al: 2-8%, and Ti, Zr, Hf,
One or more of V, Nb, Y and REM: 0.05
Fe-Ni-Cr-Al, characterized in that the balance consists essentially of Fe and inevitable impurities.
Series ferrite alloy.

【0009】また第2発明は、重量比でC:0.05%
以下、Si:2%以下、Mn:2%以下、Ni:2%以
上15%未満、Cr:15%以上20%未満、Al:2
〜8%、およびTi、Zr、Hf、V、Nb、Y、RE
Mの1種または2種以上:0.05〜1.0%、さらに
W、Mo、Coの1種または2種以上:0.2〜2.0
%、残部が実質的にFeならびに不可避的な不純物から
なることを特徴とするFe−Ni−Cr−Al系フェラ
イト合金である。この発明は第1発明に対し、さらに
W、Mo、Coの1種または2種以上を0.2〜2.0
%の範囲で添加されていることを特徴としている。
The second invention is C: 0.05% by weight.
Hereinafter, Si: 2% or less, Mn: 2% or less, Ni: 2% or more and less than 15%, Cr: 15% or more and less than 20%, Al: 2
~ 8%, and Ti, Zr, Hf, V, Nb, Y, RE
One or more of M: 0.05 to 1.0%, and one or more of W, Mo, Co: 0.2 to 2.0.
%, The balance substantially consisting of Fe and inevitable impurities, is an Fe-Ni-Cr-Al ferrite alloy. The present invention is different from the first invention in that one, two or more of W, Mo and Co are added in an amount of 0.2 to 2.0.
It is characterized by being added in the range of%.

【0010】さらに第3発明は、上記発明合金の酸化被
膜形成法に関するもので、第1発明または第2発明の組
成からなる合金素材を、所定の形状に成形した後、80
0〜1300℃の酸化雰囲気中で加熱保持し、部材表面
にアルミニウムの酸化物を主体とする被膜を形成させた
後、空冷以上の速度で冷却することを特徴とするFe−
Ni−Cr−Al系フェライト合金の製造方法である。
Further, a third invention relates to a method for forming an oxide film on the above-mentioned invention alloy, which is formed by molding an alloy material having the composition of the first invention or the second invention into a predetermined shape,
Fe- characterized by heating and holding in an oxidizing atmosphere of 0 to 1300 ° C. to form a film mainly composed of aluminum oxide on the surface of the member, and then cooling at a rate of air cooling or higher.
It is a method for producing a Ni-Cr-Al ferrite alloy.

【0011】[0011]

【発明の実施の形態】以下に本発明に係わるFe−Ni
−Cr−Al系フェライト合金の化学組成の限定理由と
作用について述べる。
BEST MODE FOR CARRYING OUT THE INVENTION Fe-Ni according to the present invention will be described below.
The reasons and effects of limiting the chemical composition of the -Cr-Al ferrite alloy will be described.

【0012】Cは、本発明合金に含有されるCrあるい
は選択的に添加されるTi、Zr、Hf、V、Nb、
W、Moなどと結合して炭化物を形成して、これら元素
の添加効果を低下させるため低い方が望ましい。またC
の含有量が多くなると部材の酸化処理中に母材表層から
発生するCO2ガスによって、形成されたアルミニウム
の酸化物を主体とする被膜が破壊される原因にもなる。
しかし、Cは原料から混入し、脱炭精錬にも費用が嵩む
のでその上限を0.05%とするが、望ましくは0.0
1%以下である。
C is Cr contained in the alloy of the present invention or Ti, Zr, Hf, V, Nb, and
It is preferably lower because it forms a carbide by combining with W, Mo, etc. and reduces the effect of addition of these elements. Also C
When the content of is increased, the CO 2 gas generated from the surface of the base material during the oxidation treatment of the member may cause the formed film mainly composed of aluminum oxide to be broken.
However, since C is mixed in from the raw material and the cost for decarburization refining is high, the upper limit is set to 0.05%.
It is 1% or less.

【0013】Siは、本発明のFe−Ni−Cr−Al
系フェライト合金の製造における鋳造時に、本合金の湯
流れ性を向上させ、健全な鋳塊を製造するために非常に
効果的な元素である。また、本発明合金からなる部材表
面に形成させるアルミニウムの酸化物を主体とする被膜
中にSiO2などの酸化物として一部が存在し、被膜の
緻密性を低下させ、高温酸化処理によって表面に形成さ
れるアルミニウムの酸化物を主体とする被膜を適度にポ
ーラス化するため、ダイカスト金型として使用した場
合、鋳造時、溶融金属から発生するガスのガス抜き性お
よび離型性を向上させ、また低圧鋳造用金型として使用
した場合、金型表面に塗布する塗布剤の耐剥離性を向上
させる。しかしながら2%を越えて含有すると、アルミ
ニウムの酸化物を主体とする被膜の緻密性が著しく低下
し、使用中にアルミニウムの酸化物を主体とする被膜の
剥離が生じ、鋳造用金型としての用途に適さなくなるた
めSiの上限を2%とする。Siの望ましい範囲は0.
3〜1.5%である。
Si is the Fe--Ni--Cr--Al of the present invention.
It is a very effective element for improving the melt flowability of the present alloy at the time of casting in the production of a system ferrite alloy and producing a sound ingot. Further, there is a part as oxides such as SiO 2 in the film mainly composed of the oxide of aluminum formed on the surface of the member made of the alloy of the present invention, which reduces the denseness of the film, and the surface is oxidized by the high temperature oxidation treatment. When used as a die-casting mold, in order to make the film mainly composed of an oxide of aluminum to be porous, it improves the degassing and releasing properties of the gas generated from the molten metal during casting, and When used as a low pressure casting mold, it improves the peeling resistance of the coating agent applied to the surface of the mold. However, if the content exceeds 2%, the denseness of the coating mainly composed of aluminum oxide is significantly reduced, and the coating mainly composed of aluminum oxide is peeled off during use, resulting in use as a casting mold. Therefore, the upper limit of Si is set to 2%. The desirable range of Si is 0.
3 to 1.5%.

【0014】Mnは、脱酸および脱硫剤として作用し、
合金の清浄度を高めるために添加する。しかしながら、
2%を越えて添加すると熱間加工性が低下するため、M
nの上限を2%以下とする。Niは、フェライト基地中
に固溶して基地の強化に寄与するとともに、一部はAl
との共存下でNiAlの金属間化合物を析出して、母材
の硬さを向上させるため、本合金にとって不可欠な元素
である。上記効果を得るためには最低2%以上のNiが
必要であるが、逆にNi量を15%以上含有させると、
基地中にオーステナイト相が生成して、母材の強度が極
端に低下するためNiの範囲を2%以上15%未満とす
る。Niの望ましい範囲は5%以上15%未満である。
さらに望ましい範囲は7〜13%である。
Mn acts as a deoxidizing and desulfurizing agent,
It is added to improve the cleanliness of the alloy. However,
If added in excess of 2%, the hot workability deteriorates, so M
The upper limit of n is 2% or less. Ni contributes to the strengthening of the matrix by forming a solid solution in the ferrite matrix, and part of it is Al.
It is an essential element for the present alloy because it precipitates an intermetallic compound of NiAl in the coexistence with and improves the hardness of the base material. To obtain the above effect, at least 2% or more of Ni is required, but conversely, if the Ni content is 15% or more,
Since the austenite phase is generated in the matrix and the strength of the base material is extremely reduced, the range of Ni is set to 2% or more and less than 15%. The desirable range of Ni is 5% or more and less than 15%.
A more desirable range is 7 to 13%.

【0015】Crは、本発明のFe−Ni−Cr−Al
系フェライト合金において、部材との密着力が強く、か
つ均一なアルミニウムの酸化物を主体とする被膜を形成
させる効果と同時に、母材のフェライト相を安定させる
うえで重要な元素である。上記効果を得るには、Crは
15%以上が必要であるが、逆に20%以上含有する
と、合金の鋳造性および塑性加工性が著しく低下するた
めCrの範囲を15%以上20%未満とする。Crの望
ましい範囲は16〜19.5%である。
Cr is Fe-Ni-Cr-Al of the present invention.
In a ferrite ferrite alloy, it is an element important in stabilizing the ferrite phase of the base material, at the same time as having the effect of forming a uniform coating film mainly composed of aluminum oxide, which has a strong adhesion to the member. In order to obtain the above effect, Cr needs to be 15% or more. On the contrary, if the content of Cr is 20% or more, the castability and plastic workability of the alloy are significantly reduced, so the Cr range is set to 15% or more and less than 20%. To do. The desirable range of Cr is 16 to 19.5%.

【0016】Alは、Niとの共存下で、フェライト基
地中にNiAlを析出させ、母材の硬さを向上させると
ともに、部材に成形後の酸化処理によって部材表面に均
一なアルミニウムの酸化物を主体とする被膜を形成さ
せ、金属溶湯に対する耐溶損性や摺動部の耐摩耗性を向
上するために不可欠な元素である。上記効果を得るため
には、2%以上のAlを添加することが必要であるが、
8%を越えて含有すると合金の靭性および塑性加工性が
著しく低下するためAlの範囲を2〜8%とする。Al
の望ましい範囲は4〜8%である。さらに望ましい範囲
は4.5〜7%である。
Al, in the coexistence with Ni, precipitates NiAl in the ferrite matrix to improve the hardness of the base material, and at the same time, forms a uniform aluminum oxide on the surface of the member by the oxidation treatment after molding the member. It is an indispensable element for forming a coating film as a main component and improving the melt loss resistance to molten metal and the wear resistance of sliding parts. To obtain the above effect, it is necessary to add 2% or more of Al.
If the content is more than 8%, the toughness and plastic workability of the alloy are significantly reduced, so the Al content is made 2 to 8%. Al
The desirable range of is 4 to 8%. A more desirable range is 4.5 to 7%.

【0017】Ti、Zr、Hf、V、Nb、Y、REM
は部材成形後に実施される酸化処理によって部材表面に
形成されるアルミニウムの酸化物を主体とする被膜直下
のフェライト母材内部側に酸化物粒子を形成し、アルミ
ニウム酸化物を主体とする被膜の密着性を著しく向上さ
せる効果を有すため1種または2種以上を添加する。こ
の効果を得るためには、単独または複合で少なくとも
0.05%以上の添加が必要であるが過度に添加する
と、逆に酸化物粒子が粗大化し膜の密着性を低下させた
め、Ti、Zr、Hf、V、Nb、Y、REMの1種ま
たは2種以上を0.05〜1.0%とする。
Ti, Zr, Hf, V, Nb, Y, REM
Is an oxide particle that is formed on the surface of the member due to the oxidation treatment that is performed after the molding of the member. Since it has the effect of remarkably improving the properties, one or more kinds are added. In order to obtain this effect, it is necessary to add at least 0.05% or more singly or in combination, but if excessively added, the oxide particles are coarsened and the adhesion of the film is deteriorated. , Hf, V, Nb, Y, and REM are 0.05 to 1.0%.

【0018】W、Mo、Coは、必ずしも添加する必要
はないが、母材中に固溶して固溶強化することにより高
温強度を更に高める効果があり、必要に応じて添加され
る。上記効果を得るためには、0.2%以上の添加が必
要であるが、2%を越えると高温での変形抵抗が増大
し、熱間加工性が著しく悪化する。また、上記元素は高
価であるため、コスト的にも不利となる。そのため、必
要に応じて添加するW、Mo、Coの1種または2種以
上を0.2〜2.0%とする。
Although W, Mo and Co are not necessarily added, they have the effect of further enhancing the high temperature strength by forming a solid solution in the base material to strengthen the solid solution, and they are added as necessary. In order to obtain the above effect, it is necessary to add 0.2% or more, but if it exceeds 2%, the deformation resistance at high temperature increases and the hot workability deteriorates significantly. Further, since the above elements are expensive, there is a cost disadvantage. Therefore, the content of one or more of W, Mo, and Co that is added as necessary is set to 0.2 to 2.0%.

【0019】本発明合金の製造方法は、溶解して造塊さ
れた後、熱間加工または熱間加工と冷間加工との塑性加
工と焼なましを施し、さらに必要に応じて機械加工を行
なって所定の形状に成形して部材とする。続いて、この
部材を酸化雰囲気中、800〜1300℃の温度で加熱
保持し、表面にアルミニウムの酸化物を主体とする被膜
を形成させた後、空冷またはそれ以上の速度で冷却す
る。なお、本発明合金の塑性加工後に実施する焼なまし
処理は、酸化処理と兼ねて実施することができる。しか
も、本発明合金およびその製造方法によれば、従来の工
具鋼ベースで鋼で必要とされる焼入れ焼戻し処理も必要
としないから、工程を大幅に短縮できることも特徴であ
る。本発明において、この酸化処理を行うことは、本発
明合金の耐溶損性および耐摩耗性を向上させるために重
要な手段である。この時、酸化処理温度が800℃未満
では、上記効果を発揮させる被膜の厚さが得られなく、
また1300℃を越える温度では、母材のフェライト基
地が脆化するとともに、形成されるアルミニウムの酸化
物を主体とする被膜が剥離し易くなる。そのため酸化処
理温度を800〜1300℃とする。
In the method for producing the alloy of the present invention, after melting and ingoting, hot working or plastic working of hot working and cold working and annealing are carried out, and further, if necessary, mechanical working is carried out. After that, the member is formed into a predetermined shape. Subsequently, this member is heated and held at a temperature of 800 to 1300 ° C. in an oxidizing atmosphere to form a coating film containing aluminum oxide as a main component on the surface, and then cooled by air cooling or at a higher speed. The annealing treatment performed after the plastic working of the alloy of the present invention can be performed in combination with the oxidation treatment. Moreover, according to the alloy of the present invention and the method for producing the same, since the quenching and tempering treatment which is required for steel in the conventional tool steel base is not required, the process can be greatly shortened. In the present invention, performing this oxidation treatment is an important means for improving the melt loss resistance and wear resistance of the alloy of the present invention. At this time, if the oxidizing temperature is lower than 800 ° C., the thickness of the film exhibiting the above effects cannot be obtained,
At a temperature higher than 1300 ° C., the ferrite matrix of the base material becomes brittle and the formed film mainly composed of an oxide of aluminum easily peels off. Therefore, the oxidation treatment temperature is set to 800 to 1300 ° C.

【0020】また、酸化処理後の冷却速度が過度に遅く
なると、フェライト基地中のNiAlが粗大化して、母
材硬さが低下するため、空冷以上でできるだけ早く冷却
するのが良い。単純な形状の場合は水冷や油冷でもよ
い。しかし、例えば、鋳造用金型等は複雑な形状のもの
が多く、この場合、水冷、油冷等の極端な急冷は、母材
の熱処理歪みによる変形や衝撃的な熱応力が発生して形
成したアルミニウムの酸化物を主体とする被膜の剥離の
原因となる。そのため、複雑な形状の部材の場合は、酸
化処理後の冷却を放冷または衝風冷却するのが良い。
Further, if the cooling rate after the oxidation treatment becomes excessively slow, NiAl in the ferrite matrix becomes coarse and the hardness of the base material lowers. Therefore, it is preferable to cool as quickly as possible by air cooling or more. In the case of a simple shape, water cooling or oil cooling may be used. However, for example, many casting molds have complicated shapes, and in this case, extreme cooling such as water cooling or oil cooling causes deformation due to heat treatment distortion of the base material or shock thermal stress. It causes the peeling of the coating film mainly composed of the aluminum oxide. Therefore, in the case of a member having a complicated shape, it is preferable that the cooling after the oxidation treatment is allowed to cool or blow air.

【0021】さらに、部材の表面にアルミニウムの酸化
物を形成させるための酸化処理時間は、部材の用途や寸
法により必要に応じて適宜設定するのが良いが、金属溶
湯の溶損に対し十分耐えうる厚みのアルミニウムの酸化
物を主体とする被膜の形成、耐摩耗性の向上を考慮する
と、部材が所定の温度に達してから5〜20時間保持さ
せるのが望ましい。
Further, the oxidation treatment time for forming the aluminum oxide on the surface of the member may be appropriately set depending on the application and size of the member, but it is sufficiently resistant to melting damage of the molten metal. Considering the formation of a coating film mainly composed of aluminum oxide having a variable thickness and the improvement of wear resistance, it is desirable to hold the member for 5 to 20 hours after reaching a predetermined temperature.

【0022】[0022]

【実施例】以下に本発明を実施例に基づいて説明する。 (実施例1)表1に示すNo.1〜24およびNo.3
0〜34の組成からなる素材を真空誘導溶解炉によって
溶解した。得られた鋳塊は熱間鍛造を行い、断面が40
mm×15mmの角材に加工し、焼なまし処理を行った
後、所定の試験片に加工して供試材とした。この時、合
金の加工性が悪く熱間鍛造が不可能であったものについ
ては、再度溶解を行い、得られた鋳塊を焼なまし処理を
行なった後、所定の試験片を切り出した。また、No.
40の従来合金(SKD61相当)については大気中に
おいて溶解し、得られた鋳塊を熱間鍛造にて断面が40
mm×15mmの角材にした後、焼なまし処理を行い、
その後、所定の試験片に加工した。上記の供試材に対
し、以下に示す特性試験を行った。
DESCRIPTION OF THE PREFERRED EMBODIMENTS The present invention will be described below based on embodiments. (Example 1) No. 1 shown in Table 1 1-24 and No. 3
A material having a composition of 0 to 34 was melted in a vacuum induction melting furnace. The obtained ingot is hot forged and its cross section is 40
After being processed into a square material having a size of 15 mm × 15 mm, annealed, and then processed into a predetermined test piece to obtain a test material. At this time, with respect to the alloy whose workability was poor and hot forging was impossible, the alloy was melted again, the obtained ingot was annealed, and then a predetermined test piece was cut out. In addition, No.
Forty conventional alloys (equivalent to SKD61) were melted in the atmosphere, and the obtained ingot was hot forged to obtain a cross section of 40.
After making square pieces of mm × 15 mm, annealed,
Then, it processed into the predetermined test piece. The following test was performed on the above test materials.

【0023】各特性試験は、得られた各供試材から切り
出した試験片を、No.1〜24およびNo.30〜3
4については、酸化雰囲気の炉中で、1150℃、15
時間、加熱保持後、すばやく炉から取り出し常温まで平
均冷却速度約100℃/秒で冷却し、酸化処理を行った
後に試験を行った。またNo.40の従来合金であるS
KD61については、切り出した試験片を1030℃の
油冷を行い、続いて硬さが40HRCになるように焼戻
し温度を600〜650℃に変えて調整した後、表2に
示す表面処理を施して試験を行った。なお塑性加工性の
評価については、熱間鍛造時に変形能が著しく劣り大割
れが生じる合金を鍛造不可とし、変形能が良好な合金を
鍛造可能として評価した。
In each characteristic test, the test piece cut out from each of the obtained test materials was 1-24 and No. 30-3
For No. 4, 1150 ° C., 15 in an oxidizing atmosphere furnace
After heating and holding for a period of time, it was quickly taken out of the furnace, cooled to room temperature at an average cooling rate of about 100 ° C./sec, subjected to an oxidation treatment, and then tested. No. 40 conventional alloy S
For KD61, the cut out test piece was oil-cooled at 1030 ° C., and subsequently adjusted by changing the tempering temperature to 600 to 650 ° C. so that the hardness became 40 HRC, and then subjected to the surface treatment shown in Table 2. The test was conducted. Regarding the evaluation of the plastic workability, the alloy in which the deformability was remarkably inferior at the time of hot forging and large cracks were not allowed to be forged, and the alloy having good deformability was allowed to be forged.

【0024】[0024]

【表1】 [Table 1]

【0025】[0025]

【表2】 [Table 2]

【0026】(1)加工性評価 真空誘導溶解炉によって得られたNo.1〜24および
No.30〜34の鋳塊について熱間鍛造を行い、その
際の鍛造の可否により加工性を評価した。 (2) 摩耗量 摩耗量は、8mm丸×25mm長さの試験片を板状の相
手材の平面に試験片の端面を押し付けながら無潤滑で一
定時間摺動させ、試験後の試験片の損失量より摩耗量を
測定した。なお、相手材にはSCM415(焼鈍材)を
使用し、荷重を30kgf、摺動速度を10m/mi
n、試験時間は1.5時間で往復運動させた。 (3)耐溶融金属溶損性 耐アルミ溶損試験は、アルミ合金AC4CHの750℃
の溶湯中に試験片を3時間浸漬し、試験片の試験前後の
重量比でその耐溶損性を比較した。耐亜鉛溶損試験につ
いては、亜鉛合金ZAC2の600℃の溶湯中に、試験
片を20時間浸漬し、耐アルミ溶損試験と同様の方法に
て、その溶損性を評価した。以上の結果、および酸化処
理後の各試験片の内部硬さ測定結果を、それぞれ表3に
示す。
(1) Workability evaluation No. 1 obtained by a vacuum induction melting furnace. 1-24 and No. Hot forging was performed on 30 to 34 ingots, and workability was evaluated based on whether or not forging was performed at that time. (2) Abrasion amount The amount of abrasion is the loss of the test piece after the test, which is caused by sliding the test piece of 8 mm round x 25 mm length against the flat surface of the plate-shaped mating material for a certain period of time without pressing the end surface of the test piece The amount of wear was measured from the amount. Note that SCM415 (annealed material) was used as the mating material, the load was 30 kgf, and the sliding speed was 10 m / mi.
n, the test time was 1.5 hours, and the reciprocating motion was performed. (3) Melting resistance against molten metal The aluminum resistance test is based on aluminum alloy AC4CH at 750 ° C.
The test piece was dipped in the molten metal of No. 3 for 3 hours, and the weight loss ratio of the test piece before and after the test was compared for its melting resistance. For the zinc corrosion resistance test, the test piece was immersed in a molten zinc alloy ZAC2 at 600 ° C. for 20 hours, and its melting resistance was evaluated by the same method as in the aluminum corrosion resistance test. Table 3 shows the above results and the measurement results of the internal hardness of each test piece after the oxidation treatment.

【0027】[0027]

【表3】 [Table 3]

【0028】表3に示すように本発明合金は、加工性が
非常に優れており容易に熱間鍛造が行える。これに対
し、比較合金中Crを多量に添加したNo.30、3
2、33は、塑性加工性が非常に悪く、熱間鍛造中、鋳
塊に割れが多数発生し鍛造が不可能であったが、Cr量
が比較的低めであるNo.31、34は、その加工性に
は問題はなく、熱間鍛造は容易に行えた。また、本発明
合金の酸化処理後の内部硬さは、従来合金SKD61の
380〜400HVと比較しても、その硬さは410H
V〜460HVであり、鋳造用金型または接溶湯器具と
しての使用に十分耐え得るものとなっている。No.3
1の合金は加工性は優れているものの、Ni量が本発明
の合金の範囲から外れるために内部硬さは著しく低下す
ることがわかる。
As shown in Table 3, the alloys of the present invention have excellent workability and can be easily hot forged. On the other hand, in the case of No. 30, 3
Nos. 2 and 33, which had extremely poor plastic workability and were incapable of forging due to many cracks in the ingot during hot forging, had a relatively low Cr content. Nos. 31 and 34 had no problem in workability, and hot forging could be easily performed. Further, the internal hardness of the alloy of the present invention after the oxidation treatment is 410 H even when compared with the conventional alloy SKD61 of 380 to 400 HV.
V to 460 HV, which is sufficiently durable for use as a casting mold or a molten metal welding device. No. 3
It can be seen that the alloy No. 1 has excellent workability, but the Ni content is out of the range of the alloy of the present invention, so that the internal hardness is significantly reduced.

【0029】本発明合金の摩耗量は、Siの添加量が増
加することによって表面のアルミニウムの酸化物を主体
とする被膜がポーラス状になり若干摩耗量が増加し、そ
の耐摩耗性は若干低下するが、何れも従来合金の摩耗量
と比較してほぼ同レベルか、もしくはそれ以上の耐摩耗
性を示しており良好である。しかし、比較合金の摩耗量
は、No.31、32については、母材の硬さ不足、お
よびアルミニウムの酸化物を主体とする被膜の密着性不
足のため、また、No.33については、Siの過度の
添加によりアルミニウムの酸化物を主体とする被膜の緻
密性が極端に低下したため、摩耗試験中に被膜の剥離が
生じ摩耗量が増大した。比較合金No.34について
は、Cの過度の添加により酸化処理中にアルミニウムの
酸化物を主体とする被膜が破壊されたため、被膜による
耐摩耗性向上効果が得られなかったものと考えられる。
With respect to the wear amount of the alloy of the present invention, as the amount of Si added increases, the coating mainly composed of aluminum oxide on the surface becomes porous and the wear amount slightly increases, and the wear resistance thereof slightly decreases. However, in all cases, the wear resistance is about the same level as or higher than the wear amount of the conventional alloy, which is good. However, the wear amount of the comparative alloy is no. Regarding Nos. 31 and 32, due to insufficient hardness of the base material and insufficient adhesion of the coating film mainly composed of aluminum oxide, No. With respect to No. 33, since the denseness of the coating film mainly composed of the oxide of aluminum was extremely lowered by the excessive addition of Si, the coating film was peeled off during the abrasion test and the abrasion amount was increased. Comparative alloy No. Regarding No. 34, it is considered that the effect of improving the wear resistance by the film was not obtained because the film mainly composed of the oxide of aluminum was destroyed during the oxidation treatment by the excessive addition of C.

【0030】次に各供試材の耐溶融金属溶損性につい
て、本発明合金に酸化処理を行なってアルミニウムの酸
化物を主体とする被膜を形成させた試験片は、アルミ合
金、および亜鉛合金に対して、非常に高い耐溶損性を有
し、従来合金No.40−6のSKD61に塩浴浸硫窒
化を施したものと比較しても非常に優れていることがわ
かる。これに対して比較合金では、加工性および内部硬
さとも本発明合金と同等レベルの比較合金No.34
は、Cの過度の添加により酸化処理中にアルミニウムの
酸化物を主体とする被膜が破壊されたため、被膜の保護
効果が得られず、その耐溶融金属溶損性が著しく低下し
た。また、熱間鍛造が不可能であったため、鋳塊より試
験片を加工し酸化処理を行った比較合金No.30は、
内部硬さ、耐摩耗性については本発明合金と同等であっ
たが、凝固不良による試験片中の欠陥より溶融金属が浸
入し溶損が発生した。
Next, regarding the molten metal erosion resistance of each test material, the test pieces obtained by subjecting the alloy of the present invention to an oxidation treatment to form a film mainly composed of an oxide of aluminum are aluminum alloy and zinc alloy. In comparison with conventional alloy No. It can be seen that even when compared to the SKD61 of 40-6 subjected to the salt bath sulfuritriding, it is very excellent. On the other hand, in the comparative alloy, the workability and the internal hardness are the same as those of the alloy of the present invention in the comparative alloy No. 34
In the case of C, since the coating mainly composed of the oxide of aluminum was destroyed during the oxidation treatment due to the excessive addition of C, the protective effect of the coating could not be obtained, and the molten metal corrosion resistance thereof was significantly lowered. Further, since hot forging was impossible, Comparative Alloy No. 30 is
The internal hardness and wear resistance were similar to those of the alloy of the present invention, but molten metal penetrated due to defects in the test piece due to poor solidification, resulting in melting loss.

【0031】本発明合金は、酸化処理によって表面にア
ルミニウムの酸化物を主体とするアルミニウムの酸化物
を主体とする被膜が形成され、溶融金属から母材を遮断
することで耐溶損性を向上させるわけであるが、その被
膜とほぼ同成分のアルミナを、プラズマ化学蒸着法によ
り被覆をした従来合金No.40−1は、被覆工程中に
発生したものと推察される膜中のクラックから溶融金属
が浸入し、母材のSKD61と溶融金属が反応し溶損が
発生していることが認められた。なお、本実施例では、
アルミ合金と亜鉛合金に対する耐溶損試験の結果を示し
たが、一般に溶融金属による金型等の溶損は、溶融金属
と金型等の母材である金属との接触による、化合物の形
成により進行する。したがって、本発明の鋳造用金型ま
たは接溶湯器具の材料は、アルミ系や亜鉛系に対すると
同様に、その他の溶融金属、例えば、鉄系や銅系の合金
に対する耐溶損性も、同様に優れることが確認されてい
る。
In the alloy of the present invention, a coating film containing aluminum oxide as a main component and aluminum oxide as a main component is formed on the surface by oxidation treatment, and the base material is shielded from the molten metal to improve the melt damage resistance. However, the conventional alloy No. 1 in which alumina having almost the same composition as the coating was coated by the plasma chemical vapor deposition method was used. In No. 40-1, it was confirmed that the molten metal penetrated from the cracks in the film, which are presumed to have occurred during the coating step, and the SKD61 of the base material and the molten metal reacted with each other to cause melting loss. In this embodiment,
The results of erosion resistance tests for aluminum alloys and zinc alloys are shown.Generally, erosion of molds, etc. due to molten metal progresses due to the formation of compounds due to contact between the molten metal and the base metal of the mold, etc. To do. Therefore, the material of the casting mold or the molten metal welding equipment of the present invention is similarly excellent in the corrosion resistance to other molten metals, for example, iron-based or copper-based alloys, as well as aluminum-based or zinc-based materials. It has been confirmed.

【0032】[0032]

【発明の効果】以上のように、本発明のFe−Ni−C
r−Al系フェライト合金は、化学成分上のバランスを
考慮し、酸化処理を併用することによって、母材表面に
高強度、高密着性のアルミニウムの酸化物を主体とする
被膜を形成させて、特別な表面処理を必要としなくとも
耐溶融金属溶損性、および耐摩耗性の向上が可能とな
り、鋳造用金型等の金属溶湯接触部材、耐摩耗性部材の
寿命を大幅に向上することができる。また、従来より多
く使用されているSKD61は、所定の部材形状への加
工後、焼入れ、焼戻しの熱処理を行った後、更に窒化処
理等の表面処理を施し、耐溶損性、および耐摩耗性を高
めなければならなかったのに対し、本発明品は、加工
後、複雑な表面処理や熱処理を施す必要がなく、簡単な
酸化処理を行うだけで目的とする特性が得られるため、
部材の製造工程の短縮、および製造コストの削減が大幅
に可能となる。
As described above, Fe-Ni-C of the present invention
The r-Al ferrite alloy has a high strength, high adhesion aluminum oxide film as a main component formed on the surface of the base material by using an oxidation treatment in consideration of the balance of the chemical composition. It is possible to improve molten metal erosion resistance and wear resistance without requiring special surface treatment, and it is possible to greatly improve the service life of metal melt contact members such as casting dies and wear resistant members. it can. In addition, SKD61, which has been used more often than before, is subjected to surface treatment such as nitriding treatment after processing into a predetermined member shape, quenching and tempering heat treatment, and then melt resistance and wear resistance. Whereas the product of the present invention had to be increased, the product of the present invention did not need to be subjected to complicated surface treatment or heat treatment after processing, and the desired characteristics could be obtained only by performing a simple oxidation treatment.
It is possible to significantly reduce the manufacturing process of the member and the manufacturing cost.

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 重量比でC:0.05%以下、Si:2
%以下、Mn:2%以下、Ni:2%以上15%未満、
Cr:15%以上20%未満、Al:2〜8%、および
Ti、Zr、Hf、V、Nb、Y、REMの1種または
2種以上:0.05〜1.0%、残部が実質的にFeな
らびに不可避的な不純物からなることを特徴とするFe
−Ni−Cr−Al系フェライト合金。
1. C: 0.05% or less by weight, Si: 2
% Or less, Mn: 2% or less, Ni: 2% or more and less than 15%,
Cr: 15% or more and less than 20%, Al: 2 to 8%, and one or more of Ti, Zr, Hf, V, Nb, Y, and REM: 0.05 to 1.0%, the balance being substantially Fe, which is characterized by comprising Fe and unavoidable impurities
-Ni-Cr-Al ferrite alloy.
【請求項2】 重量比でC:0.05%以下、Si:2
%以下、Mn:2%以下、Ni:2%以上15%未満、
Cr:15%以上20%未満、Al:2〜8%、および
Ti、Zr、Hf、V、Nb、Y、REMの1種または
2種以上:0.05〜1.0%、さらにW、Mo、Co
の1種または2種以上:0.2〜2.0%、残部が実質
的にFeならびに不可避的な不純物からなることを特徴
とするFe−Ni−Cr−Al系フェライト合金。
2. C: 0.05% or less by weight ratio, Si: 2
% Or less, Mn: 2% or less, Ni: 2% or more and less than 15%,
Cr: 15% or more and less than 20%, Al: 2 to 8%, and one or more of Ti, Zr, Hf, V, Nb, Y and REM: 0.05 to 1.0%, further W, Mo, Co
1 or 2 or more: 0.2 to 2.0%, and the balance substantially consisting of Fe and inevitable impurities, Fe-Ni-Cr-Al ferrite alloy.
【請求項3】 請求項1または2の組成からなる合金素
材を、所定の形状に成形した後、800〜1300℃の
酸化雰囲気中で加熱保持し、部材表面にアルミニウムの
酸化物を主体とする被膜を形成させた後、空冷以上の速
度で冷却することを特徴とするFe−Ni−Cr−Al
系フェライト合金の製造方法。
3. The alloy material having the composition according to claim 1 or 2 is molded into a predetermined shape and then heated and held in an oxidizing atmosphere at 800 to 1300 ° C., and the surface of the member is mainly composed of an oxide of aluminum. Fe-Ni-Cr-Al characterized by cooling at a rate higher than air cooling after forming a film
Of manufacturing a ferrite ferrite alloy.
JP25939296A 1996-01-23 1996-09-30 Fe-Ni-Cr-Al ferrite alloy excellent in molten metal erosion resistance and wear resistance and method for producing the same Expired - Fee Related JP3410303B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP25939296A JP3410303B2 (en) 1996-01-23 1996-09-30 Fe-Ni-Cr-Al ferrite alloy excellent in molten metal erosion resistance and wear resistance and method for producing the same

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP960196 1996-01-23
JP8-9601 1996-01-23
JP25939296A JP3410303B2 (en) 1996-01-23 1996-09-30 Fe-Ni-Cr-Al ferrite alloy excellent in molten metal erosion resistance and wear resistance and method for producing the same

Publications (2)

Publication Number Publication Date
JPH09263906A true JPH09263906A (en) 1997-10-07
JP3410303B2 JP3410303B2 (en) 2003-05-26

Family

ID=26344362

Family Applications (1)

Application Number Title Priority Date Filing Date
JP25939296A Expired - Fee Related JP3410303B2 (en) 1996-01-23 1996-09-30 Fe-Ni-Cr-Al ferrite alloy excellent in molten metal erosion resistance and wear resistance and method for producing the same

Country Status (1)

Country Link
JP (1) JP3410303B2 (en)

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6692585B2 (en) 2000-12-04 2004-02-17 Hitachi Metals Ltd. Ferritic Fe-Cr-Ni-Al alloy having exellent oxidation resistance and high strength and a plate made of the alloy
WO2004104245A3 (en) * 2003-05-20 2005-07-07 Exxonmobil Res & Eng Co Composition gradient cermets and reactive heat treatment process for preparing same
US7005105B2 (en) * 2000-12-28 2006-02-28 Korea Electrotechnology Research Institute Fe-Cr-Al alloys for electric resistance wires
US7431777B1 (en) 2003-05-20 2008-10-07 Exxonmobil Research And Engineering Company Composition gradient cermets and reactive heat treatment process for preparing same
CN103320712A (en) * 2013-06-08 2013-09-25 哈尔滨市屹昂科技开发有限公司 Alumina type high-temperature resistant corrosion resisting high strength alloy steel and preparation method thereof
CN103572166A (en) * 2013-10-22 2014-02-12 江苏盛伟模具材料有限公司 Boracic high-speed steel with good red hardness and preparation method thereof
CN104060186A (en) * 2014-07-09 2014-09-24 上海大学兴化特种不锈钢研究院 Chromium-nickel-saving-type high-aluminum heat-resistance stainless steel
JP2015092010A (en) * 2013-11-08 2015-05-14 三菱日立パワーシステムズ株式会社 Precipitation strengthening type ferritic heat resistant steel, turbine high temeperature member using heat resistant steel, and turbin using turbine high temeperature member
CN108779538A (en) * 2016-10-21 2018-11-09 韩国科学技术院 High-strength Fe-Cr-Ni-Al multi-phase stainless steel and manufacturing method thereof
CN112981273A (en) * 2019-12-18 2021-06-18 韩电原子力燃料株式会社 Ferritic alloy and method for manufacturing nuclear fuel cladding tube using the same
JP2021134363A (en) * 2020-02-21 2021-09-13 日立金属株式会社 Stainless steel member for casting, manufacturing method thereof, and metal wire manufacturing apparatus
SE2130152A1 (en) * 2021-06-01 2022-12-02 Sandvik Materials Tech Emea Ab Alumina forming austenite-ferrite stainless steel alloy

Cited By (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6692585B2 (en) 2000-12-04 2004-02-17 Hitachi Metals Ltd. Ferritic Fe-Cr-Ni-Al alloy having exellent oxidation resistance and high strength and a plate made of the alloy
DE10159408B4 (en) * 2000-12-04 2005-06-09 Hitachi Metals, Ltd. Fe-Cr-Ni-Al alloy having excellent oxidation resistance and high strength, and plate made of this alloy
US7005105B2 (en) * 2000-12-28 2006-02-28 Korea Electrotechnology Research Institute Fe-Cr-Al alloys for electric resistance wires
WO2004104245A3 (en) * 2003-05-20 2005-07-07 Exxonmobil Res & Eng Co Composition gradient cermets and reactive heat treatment process for preparing same
US7431777B1 (en) 2003-05-20 2008-10-07 Exxonmobil Research And Engineering Company Composition gradient cermets and reactive heat treatment process for preparing same
CN103320712A (en) * 2013-06-08 2013-09-25 哈尔滨市屹昂科技开发有限公司 Alumina type high-temperature resistant corrosion resisting high strength alloy steel and preparation method thereof
CN103572166A (en) * 2013-10-22 2014-02-12 江苏盛伟模具材料有限公司 Boracic high-speed steel with good red hardness and preparation method thereof
JP2015092010A (en) * 2013-11-08 2015-05-14 三菱日立パワーシステムズ株式会社 Precipitation strengthening type ferritic heat resistant steel, turbine high temeperature member using heat resistant steel, and turbin using turbine high temeperature member
CN104060186A (en) * 2014-07-09 2014-09-24 上海大学兴化特种不锈钢研究院 Chromium-nickel-saving-type high-aluminum heat-resistance stainless steel
CN108779538A (en) * 2016-10-21 2018-11-09 韩国科学技术院 High-strength Fe-Cr-Ni-Al multi-phase stainless steel and manufacturing method thereof
US11649517B2 (en) 2016-10-21 2023-05-16 Korea Advanced Institute Of Science And Technology High-strength Fe—Cr—Ni—Al multiplex stainless steel and manufacturing method therefor
CN112981273A (en) * 2019-12-18 2021-06-18 韩电原子力燃料株式会社 Ferritic alloy and method for manufacturing nuclear fuel cladding tube using the same
US11603584B2 (en) 2019-12-18 2023-03-14 Kepco Nuclear Fuel Co., Ltd. Ferritic alloy and method of manufacturing nuclear fuel cladding tube using the same
JP2021134363A (en) * 2020-02-21 2021-09-13 日立金属株式会社 Stainless steel member for casting, manufacturing method thereof, and metal wire manufacturing apparatus
SE2130152A1 (en) * 2021-06-01 2022-12-02 Sandvik Materials Tech Emea Ab Alumina forming austenite-ferrite stainless steel alloy
WO2022255927A1 (en) * 2021-06-01 2022-12-08 Alleima Emea Ab Alumina forming austenite-ferrite stainless steel alloy
SE545439C2 (en) * 2021-06-01 2023-09-12 Sandvik Materials Tech Emea Ab Alumina forming austenite-ferrite stainless steel alloy

Also Published As

Publication number Publication date
JP3410303B2 (en) 2003-05-26

Similar Documents

Publication Publication Date Title
EP0266149B1 (en) High wear-resistant member, method of producing the same, and valve gear using the same for use in internal combustion engine
US20090314448A1 (en) Method for production of metal material
JP3410303B2 (en) Fe-Ni-Cr-Al ferrite alloy excellent in molten metal erosion resistance and wear resistance and method for producing the same
JP3979502B1 (en) Method of nitriding / oxidizing and re-oxidizing metal member
JP2004501276A (en) Thermal spray formed nitrogen-added steel, method for producing the steel, and composite material produced from the steel
JP3608546B2 (en) Mold for casting and manufacturing method thereof
JP2000144334A (en) Steel for aluminum diecasting die excellent in erosion resistance
JP3381812B2 (en) Casting mold or molten metal material with excellent erosion resistance
JP3029642B2 (en) Casting molds or molten metal fittings with excellent erosion resistance to molten metal
JP5090257B2 (en) Tool steel suitable for aluminum machining dies and aluminum machining dies
JP2905243B2 (en) Manufacturing method of bearing material with excellent rolling fatigue life
JP2002194477A (en) Member for molten nonferrous metal
JP2905241B2 (en) Manufacturing method of bearing material with excellent rolling fatigue life
JP2005028398A (en) Material with erosion-resistance to aluminum and its producing method
JP2688729B2 (en) Aluminum corrosion resistant material
JP2001214238A (en) Powder hot tool steel excellent in heat crack resistance and wear resistance and hot die
JPS624849A (en) Die for hot working al and al alloy
JPH09111417A (en) Molten metal contacting member excellent in erosion resistance and its production
JP2004291079A (en) Erosion resistant member for non-ferrous molten metal
JPH10183299A (en) Steel sheet for nitriding, excellent in deep drawability, and press formed body with superior forming precision and excellent wear resistance
JPH0428837A (en) Continuous casting mold material made of high strength cu alloy having high cooling capacity and its manufacture
JP3983502B2 (en) Mold with excellent resistance to aluminum erosion and its processing method
JPH0525591A (en) Wire for piston ring and its manufacture
JP2000297351A (en) Steel for diecasting die and diecasting die
JP2004167505A (en) Member for die casting machine, and method for manufacturing the same

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 6

Free format text: PAYMENT UNTIL: 20090320

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090320

Year of fee payment: 6

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100320

Year of fee payment: 7

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 8

Free format text: PAYMENT UNTIL: 20110320

LAPS Cancellation because of no payment of annual fees