JP2015092010A - Precipitation strengthening type ferritic heat resistant steel, turbine high temeperature member using heat resistant steel, and turbin using turbine high temeperature member - Google Patents

Precipitation strengthening type ferritic heat resistant steel, turbine high temeperature member using heat resistant steel, and turbin using turbine high temeperature member Download PDF

Info

Publication number
JP2015092010A
JP2015092010A JP2013231810A JP2013231810A JP2015092010A JP 2015092010 A JP2015092010 A JP 2015092010A JP 2013231810 A JP2013231810 A JP 2013231810A JP 2013231810 A JP2013231810 A JP 2013231810A JP 2015092010 A JP2015092010 A JP 2015092010A
Authority
JP
Japan
Prior art keywords
mass
heat resistant
resistant steel
less
component
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2013231810A
Other languages
Japanese (ja)
Other versions
JP6289873B2 (en
Inventor
慎司 及川
Shinji Oikawa
慎司 及川
今野 晋也
Shinya Konno
晋也 今野
新井 将彦
Masahiko Arai
将彦 新井
土井 裕之
Hiroyuki Doi
裕之 土井
秀夫 依田
Hideo Yoda
秀夫 依田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Power Ltd
Original Assignee
Mitsubishi Hitachi Power Systems Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Hitachi Power Systems Ltd filed Critical Mitsubishi Hitachi Power Systems Ltd
Priority to JP2013231810A priority Critical patent/JP6289873B2/en
Publication of JP2015092010A publication Critical patent/JP2015092010A/en
Application granted granted Critical
Publication of JP6289873B2 publication Critical patent/JP6289873B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Turbine Rotor Nozzle Sealing (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide precipitation strengthening type ferritic heat resistant steel having balance of mechanical strength and oxidation resistance at high temperature at a higher level than conventional one, a turbine high temperature member using the heat resistant steel and a turbine using the turbine high temperature member.SOLUTION: The precipitation strengthening type ferritic heat resistant steel contains 0.1 mass% or less of C, 12 mass% to 20 mass% of Cr, 2 mass% to 6 mass% of Ni, 2 mass% to 8 mass% of Al, 2.5 mass% to 10 mass% of W, 0.5 mass% to 2.5 mass% of Mo, 2 mass% to 6 mass% of Co, 0.001 mass% to 0.01 mass% of B and the balance Fe with inevitable impurities.

Description

本発明は、優れた高温強度と耐酸化性とを有する耐熱鋼に関し、特に析出強化型フェライト系耐熱鋼、該耐熱鋼を用いたタービン高温部材、および該タービン高温部材を用いたタービンに関するものである。   The present invention relates to a heat resistant steel having excellent high temperature strength and oxidation resistance, and more particularly to a precipitation strengthened ferritic heat resistant steel, a turbine high temperature member using the heat resistant steel, and a turbine using the turbine high temperature member. is there.

近年、省エネルギー(例えば、化石燃料の節約)および地球環境保護(例えば、CO2ガスの発生量抑制)の観点から火力発電プラントの効率向上(例えば、蒸気タービンにおける効率向上)が望まれている。蒸気タービンの効率を向上させる有効な手段の1つとして、主蒸気温度の高温化がある。例えば、主蒸気温度を600℃級から650℃級に高めることにより、大幅な熱効率向上が期待できる。また、蒸気温度の上昇を伴わない場合でも、蒸気タービン部材の冷却に使用している蒸気量の一部を削減することにより、熱効率の向上が期待できる。 In recent years, from the viewpoint of energy saving (for example, saving of fossil fuel) and protection of the global environment (for example, suppression of CO 2 gas generation amount), improvement in efficiency of a thermal power plant (for example, improvement in efficiency in a steam turbine) has been desired. One effective means for improving the efficiency of the steam turbine is to increase the main steam temperature. For example, a significant improvement in thermal efficiency can be expected by increasing the main steam temperature from 600 ° C to 650 ° C. Further, even when the steam temperature does not increase, it is possible to expect an improvement in thermal efficiency by reducing a part of the amount of steam used for cooling the steam turbine member.

現在、超々臨界圧発電(USC)プラントの蒸気タービン部材(例えば、動翼・静翼)には、種々の耐熱鋼(オーステナイト系、マルテンサイト系、フェライト系)が使用されている。ここで、主蒸気温度を650℃級に上昇させるためには、蒸気タービン部材の材料として、より高い機械的強度を有する材料が必要となる。また、長期安定性/信頼性の観点から優れた耐酸化性を有することも望まれる。なお、機械的強度としては、高温特性を大きく左右するクリープ破断強度が最も重要である。   Currently, various heat-resistant steels (austenitic, martensitic, and ferritic) are used for steam turbine members (for example, moving blades and stationary blades) of ultra-supercritical power generation (USC) plants. Here, in order to raise the main steam temperature to 650 ° C., a material having higher mechanical strength is required as a material of the steam turbine member. It is also desired to have excellent oxidation resistance from the viewpoint of long-term stability / reliability. As the mechanical strength, the creep rupture strength that greatly affects the high temperature characteristics is the most important.

良好な機械的強度を有する構造材料として、例えば、特許文献1(特公平8−30251)には、重量%で、C:0.05〜0.20%、Mn:0.05〜1.5%、Ni:0.05〜1.0%、Cr:9.0〜13.0%、Mo:0.05〜0.50%(0.50%を含まず)、W:2.0〜3.5%、V:0.05〜0.30%、Nb:0.01〜0.20%、Co:2.1〜10.0%、N:0.01〜0.1%を含み、残部が実質的にFeおよび不可避の不純物よりなり、特にSiを不純物として0.15%以下に制限したフェライト系耐熱鋼が、開示されている。   As a structural material having good mechanical strength, for example, in Patent Document 1 (Japanese Patent Publication No. 8-30251), by weight, C: 0.05 to 0.20%, Mn: 0.05 to 1.5%, Ni: 0.05 to 1.0% , Cr: 9.0 to 13.0%, Mo: 0.05 to 0.50% (not including 0.50%), W: 2.0 to 3.5%, V: 0.05 to 0.30%, Nb: 0.01 to 0.20%, Co: 2.1 to 10.0%, A ferritic heat resistant steel containing N: 0.01 to 0.1%, the balance being substantially made of Fe and inevitable impurities, and particularly limiting Si to 0.15% or less is disclosed.

特許文献2(特開平9−296258)には、重量で、C:0.05〜0.20%、Si:0.15%以下、Mn:1.5%以下、Ni:1.0%以下、Cr:8.5〜13.0%、Mo:3.50%以下、W:3.5%以下、V:0.05〜0.30%、Nb:0.01〜0.20%、Co:5.0%以下、B:0.001〜0.020%、N:0.005〜0.040%、O:0.010%以下、H:0.00020%以下を含み、全焼戻しマルテンサイト組織を有する耐熱鋼が、開示されている。   In Patent Document 2 (Japanese Patent Laid-Open No. 9-296258), by weight, C: 0.05 to 0.20%, Si: 0.15% or less, Mn: 1.5% or less, Ni: 1.0% or less, Cr: 8.5 to 13.0%, Mo: 3.50% or less, W: 3.5% or less, V: 0.05-0.30%, Nb: 0.01-0.20%, Co: 5.0% or less, B: 0.001-0.020%, N: 0.005-0.040%, O: 0.010% or less, H: A heat-resistant steel containing 0.00020% or less and having a total tempered martensite structure is disclosed.

特許文献3(特公平8−30249)には、重量%で、炭素0.05〜0.2%、シリコン0.1%以下、マンガン0.05〜1.5%、クロム8.0%を越え13.0%未満、ニッケル1.5%未満、バナジウム0.1〜0.3%、ニオブ0.01〜0.1%、窒素0.01〜0.1%、アルミニウム0.02%以下、モリブデン0.50%未満、タングステン0.9〜3.0%を含有し、かつモリブデン及びタングステンの含有量〔Mo〕,〔W〕が所定の関係式をそれぞれ満足する鉄基合金であって、金属組織中に基本的にδ−フェライト相と巨大な粒界炭化物とをほとんど含まずマルテンサイトのマトリックスが形成されている耐熱鋼が、開示されている。   In Patent Document 3 (Japanese Patent Publication No. 8-30249), by weight, carbon 0.05 to 0.2%, silicon 0.1% or less, manganese 0.05 to 1.5%, chromium 8.0% to less than 13.0%, nickel 1.5% or less, vanadium 0.1 -0.3%, niobium 0.01-0.1%, nitrogen 0.01-0.1%, aluminum 0.02% or less, molybdenum less than 0.50%, tungsten 0.9-3.0%, and molybdenum and tungsten content [Mo], [W] A heat-resisting steel that is an iron-base alloy that satisfies each of the predetermined relational expressions, and basically includes a martensite matrix that contains almost no δ-ferrite phase and huge grain boundary carbides in the metal structure. It is disclosed.

また、特許文献4(特開平8−13102)には、重量%で、C:0.05〜0.15%、Si:0.5%以下、Mn:0.05〜0.50%、Cr:17〜25%、Ni:7〜20%、Cu:2.0〜4.5%、Nb:0.10〜0.80%、B:0.001〜0.010%、N:0.05〜0.25%、sol. Al:0.003〜0.030%およびMg:0〜0.015%を含有し、更に、Mo:0.3〜2.0%およびW:0.5〜4.0%のいずれか一方または両方を含み、残部はFeおよび不可避的不純物からなるオーステナイト系耐熱鋼が、開示されている。   In Patent Document 4 (Japanese Patent Laid-Open No. 8-13102), by weight, C: 0.05 to 0.15%, Si: 0.5% or less, Mn: 0.05 to 0.50%, Cr: 17 to 25%, Ni: 7 to 20%, Cu: 2.0-4.5%, Nb: 0.10-0.80%, B: 0.001-0.010%, N: 0.05-0.25%, sol. Al: 0.003-0.030% and Mg: 0-0.015%, Furthermore, an austenitic heat-resistant steel containing either or both of Mo: 0.3 to 2.0% and W: 0.5 to 4.0%, the balance being Fe and inevitable impurities is disclosed.

特公平8−30251号公報Japanese Patent Publication No.8-30251 特開平9−296258号公報JP-A-9-296258 特公平8−30249号公報Japanese Patent Publication No.8-30249 特開平8−13102号公報JP-A-8-13102

世界的に地球環境保護の気運が高まる一方で、エネルギー需要も増大し続けている。これらの相反する要求に対応するため、火力発電プラント(特に、蒸気タービン)に対して更なる効率向上が強く求められている。そして、前述したように、蒸気タービンの効率向上には、主蒸気温度の高温化が非常に有効である。   While demand for protecting the global environment is increasing worldwide, energy demand continues to increase. In order to meet these conflicting demands, further improvement in efficiency is strongly demanded for thermal power plants (especially steam turbines). As described above, increasing the main steam temperature is very effective for improving the efficiency of the steam turbine.

650℃級の主蒸気温度は、蒸気タービンにおける長年の目標であり、実用化に向けて耐熱鋼の研究開発が数多くなされてきた。しかしながら、残念なことに今日においても650℃級蒸気タービンは実用化されていない。言い換えると、従来の耐熱鋼(例えば、特許文献1〜4)は、要求される特性を十分に満足できていないことを意味する。   A main steam temperature of 650 ° C has been a long-term goal for steam turbines, and many research and developments of heat-resistant steel have been made for practical application. Unfortunately, however, a 650 ° C. class steam turbine has not been put into practical use even today. In other words, the conventional heat-resistant steel (for example, Patent Documents 1 to 4) means that the required characteristics are not sufficiently satisfied.

なお、一般的に、オーステナイト系耐熱鋼は、高温強度と耐酸化性とに優れる利点を有するが、熱膨張係数が比較的大きいために温度変化に起因する熱疲労に弱点を有する(すなわち、長期安定性/信頼性の観点で弱点を有する)。マルテンサイト系耐熱鋼は、マルテンサイト組織による高い転位密度や炭窒化物の析出硬化に起因した非常に高い機械的強度の利点を有するが、高温長時間の環境において転位の回復や析出物の凝集粗大化が生じ易く、長期安定性/信頼性の観点で弱点を有する。一方、フェライト系耐熱鋼は、マトリックス結晶粒中の転位密度がもともと低いことから、高温長時間の環境においても微細組織変化が少なく長期安定性/信頼性に優れる利点を有するが、機械的強度が比較的低いという弱点を有する。   In general, austenitic heat-resistant steels have the advantage of being excellent in high-temperature strength and oxidation resistance, but have a weak point in thermal fatigue caused by temperature changes due to a relatively large thermal expansion coefficient (that is, long-term It has weak points from the viewpoint of stability / reliability). Martensitic heat resistant steel has the advantage of high dislocation density due to martensite structure and very high mechanical strength due to precipitation hardening of carbonitride, but dislocation recovery and precipitate aggregation in high temperature and long time environment. It is easy to cause coarsening and has weak points from the viewpoint of long-term stability / reliability. Ferritic heat-resistant steel, on the other hand, has the advantage of excellent long-term stability / reliability, since it has a low dislocation density in the matrix crystal grains and has little microstructural change even in high-temperature and long-time environments. It has a weak point of being relatively low.

したがって、本発明の目的は、高温での機械的強度と耐酸化性とが従来以上に高いレベルでバランスした析出強化型フェライト系耐熱鋼、該耐熱鋼を用いたタービン高温部材、および該タービン高温部材を用いたタービンを提供することにある。   Therefore, an object of the present invention is to provide a precipitation strengthened ferritic heat resistant steel in which mechanical strength and oxidation resistance at high temperatures are balanced at a higher level than before, a turbine high temperature member using the heat resistant steel, and the turbine high temperature It is providing the turbine using a member.

(I)本発明の一つの態様は、上記目的を達成するため、金属間化合物が分散析出したフェライト系耐熱鋼であって、
0.1質量%以下のC(炭素)と、
12質量%以上20質量%以下のCr(クロム)と、
2質量%以上6質量%以下のNi(ニッケル)と、
2質量%以上8質量%以下のAl(アルミニウム)と、
2.5質量%以上10質量%以下のW(タングステン)と、
0.5質量%以上2.5質量%以下のMo(モリブデン)と、
2質量%以上6質量%以下のCo(コバルト)と、
0.001質量%以上0.01質量%以下のB(ホウ素)とを含み、
残部がFe(鉄)および不可避不純物からなることを特徴とする析出強化型フェライト系耐熱鋼を提供する。
(I) One aspect of the present invention is a ferritic heat resistant steel in which an intermetallic compound is dispersed and precipitated in order to achieve the above object,
C (carbon) of 0.1% by mass or less,
12 mass% or more and 20 mass% or less of Cr (chrome),
Ni (nickel) of 2 mass% or more and 6 mass% or less,
Al (aluminum) of 2 mass% or more and 8 mass% or less,
W (tungsten) of 2.5 mass% or more and 10 mass% or less,
0.5 mass% or more and 2.5 mass% or less of Mo (molybdenum),
2% to 6% by weight of Co (cobalt),
0.001 mass% or more and 0.01 mass% or less B (boron),
There is provided a precipitation strengthened ferritic heat resistant steel characterized in that the balance is Fe (iron) and inevitable impurities.

(II)本発明の他の態様は、上記目的を達成するため、上記の析出強化型フェライト系耐熱鋼を用いたことを特徴とするタービン高温部材を提供する。   (II) Another aspect of the present invention provides a high-temperature turbine member using the precipitation-strengthened ferritic heat resistant steel described above in order to achieve the above object.

(III)本発明の他の態様は、上記目的を達成するため、上記のタービン高温部材がタービンロータシャフトであり、前記タービンロータシャフトを用いたことを特徴とするタービンロータを提供する。   (III) In order to achieve the above object, another aspect of the present invention provides a turbine rotor characterized in that the turbine high temperature member is a turbine rotor shaft, and the turbine rotor shaft is used.

(IV)本発明の他の態様は、上記目的を達成するため、上記のタービンロータを用いたことを特徴とする蒸気タービンを提供する。   (IV) According to another aspect of the present invention, there is provided a steam turbine using the above-described turbine rotor in order to achieve the above object.

(V)本発明の他の態様は、上記目的を達成するため、上記の蒸気タービンを用いたことを特徴とする火力発電プラントを提供する。   (V) Another aspect of the present invention provides a thermal power plant using the steam turbine described above in order to achieve the above object.

本発明によれば、高温での機械的強度と耐酸化性とが従来以上に高いレベルでバランスした析出強化型フェライト系耐熱鋼、該耐熱鋼を用いたタービン高温部材、および該タービン高温部材を用いたタービンを提供することができる。また、該タービンを用いた火力発電プラントを提供することができる。   According to the present invention, precipitation-strengthened ferritic heat resistant steel in which mechanical strength and oxidation resistance at high temperatures are balanced at a higher level than before, a turbine high temperature member using the heat resistant steel, and the turbine high temperature member The used turbine can be provided. In addition, a thermal power plant using the turbine can be provided.

本発明に係る蒸気タービン用部材を使用した蒸気タービンの一例を示す断面模式図である。It is a cross-sectional schematic diagram which shows an example of the steam turbine using the member for steam turbines concerning this invention. 本発明に係る火力発電プラントの一例を示す系統概略図である。It is a systematic schematic diagram showing an example of a thermal power plant according to the present invention.

本発明は、前述した本発明に係る析出強化型フェライト系耐熱鋼(I)において、以下のような改良や変更を加えることができる。
(i)5質量%以下のTi(チタン)を更に含む。
(ii)Nb(ニオブ)およびV(バナジウム)のうちの少なくとも1種を合計0.5質量%以下で更に含む。
(iii)1質量%以下のSi(ケイ素)および1質量%以下のMn(マンガン)のうちの少なくとも1種を更に含む。
(iv)前記不可避不純物が、P(リン)、S(硫黄)、Sb(アンチモン)、Sn(スズ)、As(砒素)およびN(窒素)のうちのいずれか1種以上であり、前記Pが0.5質量%以下、前記Sが0.5質量%以下、前記Sbが0.1質量%以下、前記Snが0.1質量%以下、前記Asが0.1質量%以下、前記Nが0.1質量%以下である。
(v)前記金属間化合物がLaves相およびβ-NiAl相である。
(vi)前記析出強化型フェライト系耐熱鋼は、1000℃以上1200℃以下の焼きならし処理が施された後、600℃以上800℃以下の焼き戻し処理が施されている。
The present invention can be modified or changed as follows in the precipitation strengthened ferritic heat resistant steel (I) according to the present invention described above.
(I) Further containing 5% by mass or less of Ti (titanium).
(Ii) It further contains at least one of Nb (niobium) and V (vanadium) in a total amount of 0.5% by mass or less.
(Iii) It further contains at least one of 1 mass% or less of Si (silicon) and 1 mass% or less of Mn (manganese).
(Iv) The inevitable impurity is at least one of P (phosphorus), S (sulfur), Sb (antimony), Sn (tin), As (arsenic), and N (nitrogen), Is 0.5 mass% or less, S is 0.5 mass% or less, Sb is 0.1 mass% or less, Sn is 0.1 mass% or less, As is 0.1 mass% or less, and N is 0.1 mass% or less.
(V) The intermetallic compound is a Laves phase and a β-NiAl phase.
(Vi) The precipitation strengthened ferritic heat resistant steel is subjected to a normalizing treatment at 1000 ° C. or higher and 1200 ° C. or lower and then a tempering treatment at 600 ° C. or higher and 800 ° C. or lower.

以下、本発明に係る実施形態について、図面を参照しながら説明する。ただし、本発明はここで取り挙げた実施形態に限定されるものではなく、その発明の技術的思想を逸脱しない範囲で適宜組み合わせや改良が可能である。   Hereinafter, embodiments according to the present invention will be described with reference to the drawings. However, the present invention is not limited to the embodiments described here, and can be appropriately combined and improved without departing from the technical idea of the present invention.

(析出強化型フェライト系耐熱鋼の組成)
以下、本発明に係る析出強化型フェライト系耐熱鋼の各成分について説明する。
(Composition of precipitation strengthened ferritic heat resistant steel)
Hereinafter, each component of the precipitation strengthening ferritic heat resistant steel according to the present invention will be described.

C成分:
C成分は、CrやTiなどと炭化物を生成し析出強化に寄与する成分である。ただし、C成分量が0.1質量%超になると、炭化物の過剰析出による靭性の低下や、粒界近傍のCr濃度低下による耐食性の悪化の要因となる。また、過剰のC成分は、マトリックスのオーステナイト相化を著しく促進させる。よって、C成分量は0.1質量%以下が望ましい。0.05質量%以下がより望ましく、0.025質量%以下が更に望ましい。
C component:
The C component is a component that generates carbides such as Cr and Ti and contributes to precipitation strengthening. However, if the amount of the C component exceeds 0.1% by mass, it causes a decrease in toughness due to excessive precipitation of carbides and a deterioration in corrosion resistance due to a decrease in Cr concentration near the grain boundary. Further, the excessive C component significantly promotes the austenite phase of the matrix. Therefore, the amount of component C is preferably 0.1% by mass or less. 0.05 mass% or less is more desirable, and 0.025 mass% or less is further desirable.

Cr成分:
Cr成分は、耐熱鋼の表面に不動態被膜を形成することで耐食性向上に寄与する成分であり、フェライト相の安定化・単相化に寄与する成分である。Cr成分量が12質量%未満になると、それらの作用効果が不十分となる。一方、Cr成分量が20質量%超になると、有害相(例えば、σ相:Fe-Cr系金属間化合物)が生成し易くなり機械的特性を劣化させる要因となる。よって、Cr成分量は12〜20質量%が望ましい。14〜18質量%がより望ましく、15〜17質量%が更に望ましい。
Cr component:
The Cr component is a component that contributes to the improvement of corrosion resistance by forming a passive film on the surface of the heat resistant steel, and is a component that contributes to the stabilization and single phase of the ferrite phase. When the Cr component amount is less than 12% by mass, their effects are insufficient. On the other hand, when the Cr component amount exceeds 20% by mass, a harmful phase (for example, σ phase: Fe—Cr intermetallic compound) is likely to be generated, which causes deterioration of mechanical properties. Therefore, the Cr content is preferably 12 to 20% by mass. 14-18 mass% is more desirable, and 15-17 mass% is still more desirable.

Ni成分:
Ni成分は、Ni-Al系金属間化合物(例えば、β-NiAl相)を生成し、該相の分散析出硬化により高温強度(例えば、クリープ破断強度)の向上に寄与する成分である。Ni-Al系金属間化合物は、主にマトリックス結晶の粒内に分散析出する。また、靭性を向上する効果もある。Ni成分量が2質量%未満になると、それらの作用効果が不十分となる。一方、Ni成分量が6質量%超になると、オーステナイト相が析出してフェライト相の単相化が阻害される要因となる。よって、Ni成分量は2〜6質量%が望ましい。3〜5質量%がより望ましく、3.5〜4.5質量%が更に望ましい。
Ni component:
The Ni component is a component that generates a Ni—Al-based intermetallic compound (for example, β-NiAl phase) and contributes to improvement of high-temperature strength (for example, creep rupture strength) by dispersion precipitation hardening of the phase. Ni-Al intermetallic compounds are mainly dispersed and precipitated in the matrix crystal grains. It also has the effect of improving toughness. When the amount of Ni component is less than 2% by mass, the effects thereof are insufficient. On the other hand, when the amount of Ni component exceeds 6 mass%, the austenite phase is precipitated and becomes a factor that inhibits the ferrite phase from becoming a single phase. Therefore, the Ni component amount is desirably 2 to 6% by mass. 3-5 mass% is more desirable, and 3.5-4.5 mass% is still more desirable.

Al成分:
Al成分もNi-Al系金属間化合物(例えば、β-NiAl相)を生成して析出硬化および高温強度の向上に寄与する成分である。Al成分量が2質量%未満になると、それらの作用効果が不十分となる。一方、Al成分量が8質量%超になると、Ni-Al系金属間化合物が過剰析出して靱性を劣化させる要因となる。よって、Al成分量は2〜8質量%が望ましい。3〜7質量%がより望ましく、4〜6質量%が更に望ましい。
Al component:
The Al component is also a component that generates a Ni—Al-based intermetallic compound (for example, a β-NiAl phase) and contributes to precipitation hardening and improvement of high-temperature strength. If the amount of Al component is less than 2% by mass, their effects are insufficient. On the other hand, when the amount of Al component exceeds 8% by mass, Ni—Al-based intermetallic compounds are excessively precipitated, which causes deterioration of toughness. Therefore, the amount of Al component is desirably 2 to 8% by mass. 3-7 mass% is more desirable, and 4-6 mass% is still more desirable.

W成分:
W成分は、マトリックス中に固溶して機械的強度の向上(固溶強化)に寄与する成分である。また、鉄と化合してLaves相(例えば、Fe2W相)を形成することで高温強度の向上に寄与する成分である。Laves相は、主にマトリックス結晶の粒界に沿って析出する。W成分量が2.5質量%未満になると、それらの作用効果が不十分となる。一方、W成分量が10質量%超になると、Laves相の過剰生成を助長し機械的特性(例えば、靱性)を劣化させる要因となる。よって、W成分量は2.5〜10質量%が望ましい。3〜9質量%がより望ましく、4〜8質量%が更に望ましい。
W component:
The W component is a component that contributes to improvement in mechanical strength (solid solution strengthening) by dissolving in the matrix. In addition, it is a component that contributes to the improvement of high-temperature strength by forming a Laves phase (for example, Fe 2 W phase) by combining with iron. The Laves phase precipitates mainly along the grain boundaries of the matrix crystal. When the amount of the W component is less than 2.5% by mass, the effects thereof are insufficient. On the other hand, when the amount of W component exceeds 10% by mass, excessive formation of a Laves phase is promoted and mechanical characteristics (for example, toughness) are deteriorated. Therefore, the amount of W component is preferably 2.5 to 10% by mass. 3-9 mass% is more desirable, and 4-8 mass% is still more desirable.

Mo成分:
Mo成分は、W成分と同様に、マトリックス中に固溶して機械的強度の向上(固溶強化)に寄与する成分である。また、鉄と化合してLaves相を形成することで高温強度の向上に寄与する成分である。上記のW成分との複合添加により、高温強度向上の効果をより一層高めることができる。この場合のLaves相は、Fe2(W,Mo)相になっていると考えられる。Mo成分量が0.5質量%未満になると、それらの作用効果が不十分となる。一方、Mo成分量が2.5質量%超になると、Laves相の過剰生成を助長し機械的特性(例えば、靱性)を劣化させる要因となる。よって、Mo成分量は0.5〜2.5質量%が望ましい。1〜2質量%がより望ましく、1.25〜1.75質量%が更に望ましい。
Mo component:
Similar to the W component, the Mo component is a component that contributes to improvement in mechanical strength (solid solution strengthening) by solid solution in the matrix. In addition, it is a component that contributes to the improvement of high-temperature strength by combining with iron to form a Laves phase. By combined addition with the above W component, the effect of improving the high temperature strength can be further enhanced. The Laves phase in this case is considered to be an Fe 2 (W, Mo) phase. When the amount of Mo component is less than 0.5% by mass, these effects are insufficient. On the other hand, if the amount of Mo component exceeds 2.5% by mass, excessive formation of Laves phase is promoted and mechanical characteristics (for example, toughness) are deteriorated. Therefore, the amount of Mo component is desirably 0.5 to 2.5% by mass. It is more preferably 1 to 2% by mass, and further preferably 1.25 to 1.75% by mass.

Co成分:
Co成分は、析出するNi-Al系金属間化合物の微細化を促進して高温強度(例えば、クリープ破断強度)の向上に寄与する成分である。Co成分量が2質量%未満になると、その作用効果が不十分となる。一方、Co成分量が6質量%超になると、オーステナイト相が析出してフェライト相の単相化が阻害される要因となる。よって、Co成分量は2〜6質量%以下が望ましい。2〜5質量%がより望ましく、2〜4質量%が更に望ましい。
Co component:
The Co component is a component that contributes to improvement of high-temperature strength (for example, creep rupture strength) by promoting the refinement of the precipitated Ni—Al-based intermetallic compound. When the amount of Co component is less than 2% by mass, the effect is insufficient. On the other hand, when the amount of Co component exceeds 6% by mass, the austenite phase is precipitated, which becomes a factor for inhibiting the ferrite phase from becoming a single phase. Therefore, the amount of Co component is desirably 2 to 6% by mass or less. 2-5 mass% is more desirable, and 2-4 mass% is still more desirable.

B成分:
B成分は、析出するNi-Al系金属間化合物の凝集粗大化を抑制して(微細分散化を促進して)高温強度の向上に寄与する成分である。B成分量が0.001質量%未満になると、その作用効果が不十分となる。一方、B成分量が0.01質量%超になると、機械的特性(例えば、靱性)および溶接性を劣化させる要因となる。よって、B成分量は0.001〜0.01質量%が望ましい。0.002〜0.009質量%がより望ましく、0.003〜0.007質量%が更に望ましい。
B component:
The B component is a component that contributes to the improvement of the high-temperature strength by suppressing the aggregation and coarsening of the precipitated Ni—Al intermetallic compound (promoting fine dispersion). When the amount of component B is less than 0.001% by mass, the effect is insufficient. On the other hand, when the amount of component B exceeds 0.01% by mass, it becomes a factor of deteriorating mechanical properties (for example, toughness) and weldability. Therefore, the amount of component B is preferably 0.001 to 0.01% by mass. 0.002 to 0.009 mass% is more desirable, and 0.003 to 0.007 mass% is still more desirable.

本発明の析出強化型フェライト系耐熱鋼は、析出強化相として、Ni-Al系金属間化合物(例えば、β-NiAl相)とLaves相(例えば、Fe2W相、Fe2(W,Mo)相)とを複合析出させることによって高温強度(例えば、クリープ破断強度)を向上させ、かつCr成分量を調整することによって耐酸化性を確保しているところに最大の特徴がある。なお、前述したように、Ni-Al系金属間化合物は、主にマトリックス結晶の粒内に微細分散析出する。Laves相は、主にマトリックス結晶の粒界に沿って析出する。 The precipitation strengthened ferritic heat resistant steel of the present invention has a Ni—Al intermetallic compound (for example, β-NiAl phase) and a Laves phase (for example, Fe 2 W phase, Fe 2 (W, Mo)) as a precipitation strengthening phase. The greatest feature is that the high temperature strength (for example, creep rupture strength) is improved by complex precipitation of the phase) and the oxidation resistance is ensured by adjusting the amount of Cr component. As described above, the Ni—Al intermetallic compound is finely dispersed and precipitated mainly in the matrix crystal grains. The Laves phase precipitates mainly along the grain boundaries of the matrix crystal.

Ti成分:
Ti成分は、炭化物を生成すると共に金属間化合物(Ni-Ti系化合物、例えば、Ni3Ti相)を生成して析出強化に寄与する成分である。また、Ti炭化物はCr炭化物よりも優先して生成されることから、結果としてCr炭化物の生成を抑制し耐食性の向上にも寄与する。本発明においてTi成分は、必須成分ではないが、その作用効果から添加することは好ましい。ただし、Ti成分量が5質量%超になると、金属間化合物の過剰析出により機械的特性(例えば、靭性)を低下させる要因となる。よって、Ti成分量は5質量%以下が望ましい。4質量%以下がより望ましく、3質量%以下が更に望ましい。
Ti component:
The Ti component is a component that contributes to precipitation strengthening by generating carbide and generating an intermetallic compound (Ni-Ti-based compound, for example, Ni 3 Ti phase). In addition, Ti carbide is generated in preference to Cr carbide, and as a result, the formation of Cr carbide is suppressed and the corrosion resistance is improved. In the present invention, the Ti component is not an essential component, but it is preferable to add it because of its effect. However, when the amount of Ti component exceeds 5% by mass, excessive precipitation of intermetallic compounds causes a decrease in mechanical properties (for example, toughness). Therefore, the amount of Ti component is desirably 5% by mass or less. 4 mass% or less is more desirable, and 3 mass% or less is more desirable.

Nb成分:
Nb成分は、炭化物や炭窒化物として析出し機械的強度の向上に寄与する成分である。本発明においてNb成分は、必須成分ではないが、その作用効果から添加することは好ましい。ただし、Nb成分量が0.5質量%超になると、製造加工性を劣化させる要因となる。よって、Nb成分量は0.5質量%以下が望ましく、0.45質量%以下がより望ましい。
Nb component:
The Nb component is a component that precipitates as a carbide or carbonitride and contributes to an improvement in mechanical strength. In the present invention, the Nb component is not an essential component, but it is preferable to add it because of its action and effect. However, when the amount of Nb component exceeds 0.5 mass%, it becomes a factor which deteriorates manufacturing workability. Therefore, the Nb component amount is desirably 0.5% by mass or less, and more desirably 0.45% by mass or less.

V成分:
V成分は、Nb成分に置き換えて添加することができる。その場合、合計添加量はNb単独添加の場合と同量にすることが望ましい。すなわち、NbおよびVのうちの少なくとも1種を合計0.5質量以下%添加することが望ましく、0.45質量%以下がより望ましい。本発明においてV成分は、必須成分ではないが、Nb成分と複合添加することにより、析出強化をより顕著にする作用効果がある。
V component:
The V component can be added in place of the Nb component. In that case, the total addition amount is desirably the same as that in the case of adding Nb alone. That is, it is desirable to add at least one of Nb and V in a total amount of 0.5% by mass or less, and more preferably 0.45% by mass or less. In the present invention, the V component is not an essential component, but by adding it in combination with the Nb component, there is an effect of making precipitation strengthening more remarkable.

Si成分:
Si成分は、脱酸剤であって耐熱鋼の溶解時に機能する成分であり、少量でも効果がある。本発明においてSi成分は、必須成分ではないが、その作用効果から添加することは好ましい。ただし、Si成分量が1質量%超になると、オーステナイト相を生成させ易く特性劣化の要因となる。よって、Si成分量は1質量%以下が望ましい。0.5質量%以下がより望ましく、0.25質量%以下が更に望ましい。なお、耐熱鋼の溶解工程においてカーボン真空脱酸法やエレクトロスラグ再溶解法などを行う場合は、Si成分を積極的に添加する必要はない(Si無添加でよい)。
Si component:
The Si component is a deoxidizer and is a component that functions when the heat-resistant steel is dissolved, and is effective even in a small amount. In the present invention, the Si component is not an essential component, but it is preferable to add it because of its effect. However, when the amount of Si component exceeds 1% by mass, an austenite phase is easily generated, which causes deterioration of characteristics. Therefore, the amount of Si component is desirably 1% by mass or less. 0.5 mass% or less is more desirable, and 0.25 mass% or less is further desirable. In addition, when performing a carbon vacuum deoxidation method, an electroslag remelting method, or the like in the melting process of heat-resistant steel, it is not necessary to positively add Si component (Si may not be added).

Mn成分:
Mn成分は、脱酸剤および脱硫剤であって耐熱鋼の溶解時に機能する成分であり、少量でも効果がある。本発明においてMn成分は、必須成分ではないが、その作用効果から添加することは好ましい。ただし、Mn成分量が1質量%超になると、オーステナイト相を生成させ易く特性劣化の要因となる。よって、Mn成分量は1質量%が望ましい。0.5質量%がより望ましく、0.25質量%が更に望ましい。なお、耐熱鋼の溶解工程において真空誘導溶解法(VIM)や真空アーク再溶解法(VAR)などを行う場合は、Mn成分を積極的に添加する必要はない(Mn無添加でよい)。
Mn component:
The Mn component is a deoxidizing agent and a desulfurizing agent, and is a component that functions when the heat-resistant steel is dissolved, and is effective even in a small amount. In the present invention, the Mn component is not an essential component, but it is preferable to add it because of its action and effect. However, if the amount of the Mn component exceeds 1% by mass, an austenite phase is easily generated, which causes deterioration of characteristics. Therefore, the amount of Mn component is desirably 1% by mass. 0.5% by mass is more desirable, and 0.25% by mass is even more desirable. In addition, when the vacuum induction melting method (VIM), the vacuum arc remelting method (VAR), or the like is performed in the heat-resistant steel melting step, it is not necessary to positively add the Mn component (Mn may not be added).

不可避不純物:
本発明において不可避不純物とは、意図的に添加したものではない成分を指す。言い換えると、原材料にもともと含まれていた成分や、製造過程でやむを得ず混入する成分を指す。不可避不純物としては、例えばP、S、Sb、Sn、AsおよびNが挙げられ、これらのうちの少なくとも1種が本発明の析出強化型フェライト系耐熱鋼に含まれる。
Inevitable impurities:
In the present invention, inevitable impurities refer to components that are not intentionally added. In other words, it refers to a component that was originally included in the raw material, or a component that is inevitably mixed in the manufacturing process. Inevitable impurities include, for example, P, S, Sb, Sn, As and N, and at least one of these is included in the precipitation strengthened ferritic heat resistant steel of the present invention.

P成分およびS成分は、熱間加工性や機械的特性(例えば、靭性)に悪影響を及ぼす成分であり、極力低減することが望ましい。熱間加工性や靭性の観点からP成分量を0.5質量%以下とし、S成分量を0.5質量%以下とすることが望ましい。0.1質量%以下のP、0.1質量%以下のSがより望ましい。   The P component and the S component are components that adversely affect hot workability and mechanical properties (for example, toughness), and are desirably reduced as much as possible. From the viewpoint of hot workability and toughness, it is desirable that the P component amount be 0.5% by mass or less and the S component amount be 0.5% by mass or less. P of 0.1% by mass or less and S of 0.1% by mass or less are more desirable.

Sb成分、Sn成分およびAs成分は、高温強度(例えば、クリープ破断強度)に悪影響を及ぼす成分である。このため、これらの成分も極力低減することが望ましく、0.1質量%以下のSb、0.1質量%以下のSn、0.1質量%以下のAsが望ましい。0.05質量%以下のSb、0.05質量%以下のSn、0.05質量%以下のAsがより望ましい。   The Sb component, Sn component, and As component are components that adversely affect high-temperature strength (for example, creep rupture strength). Therefore, it is desirable to reduce these components as much as possible, and 0.1% by mass or less of Sb, 0.1% by mass or less of Sn, and 0.1% by mass or less of As are desirable. 0.05% by mass or less of Sb, 0.05% by mass or less of Sn, and 0.05% by mass or less of As are more preferable.

N成分は、Al成分やTi成分やB成分との親和力が強く、窒化物(例えば、AlN、TiN、BN)を形成して疲労強度や靱性を低下させる。また、窒化物を生成した分、析出強化相の金属間化合物(例えば、Ni-Al系化合物、Ni-Ti系化合物)の析出量を減少させて機械的強度を低下させる。このため、N成分も極力低減することが望ましく、0.1質量%以下が望ましい。0.05質量%以下のNがより望ましい。   N component has strong affinity with Al component, Ti component, and B component, and forms nitrides (for example, AlN, TiN, BN) to reduce fatigue strength and toughness. In addition, the amount of precipitation of intermetallic compounds (for example, Ni—Al compounds, Ni—Ti compounds) in the precipitation strengthening phase is reduced by the amount of nitrides generated, thereby reducing the mechanical strength. For this reason, it is desirable to reduce the N component as much as possible, and it is preferably 0.1% by mass or less. N of 0.05% by mass or less is more desirable.

(製造方法)
本発明に係る析出強化型フェライト系耐熱鋼の製造方法は、熱処理工程において望ましい熱処理条件がある他は特段の限定がなく、従前の方法を利用することができる。以下、本発明の熱処理について説明する。
(Production method)
The method for producing a precipitation strengthened ferritic heat resistant steel according to the present invention is not particularly limited except that there are desirable heat treatment conditions in the heat treatment step, and a conventional method can be used. Hereinafter, the heat treatment of the present invention will be described.

本発明では、1000℃以上1200℃以下(より望ましくは1050℃以上1150℃以下)で加熱保持後に空冷以上の速度で冷却する焼きならし処理を行うことが望ましい。本発明における焼きならし処理とは、析出物の形成に関わる成分(例えば、Ni、Al、W、Mo、Ti)をマトリックス中に十分固溶させると共に、均等なフェライト相組織を得るための熱処理を指す。   In the present invention, it is desirable to perform a normalizing process in which cooling is performed at a speed equal to or higher than air cooling after heating and holding at 1000 ° C. to 1200 ° C. (more desirably, 1050 ° C. to 1150 ° C.). The normalizing treatment in the present invention is a heat treatment for sufficiently dissolving the components related to the formation of precipitates (for example, Ni, Al, W, Mo, Ti) in the matrix and obtaining a uniform ferrite phase structure. Point to.

該焼きならし処理を施した後、600℃以上800℃以下(より望ましくは650℃以上750℃以下)で加熱保持後に徐冷する焼き戻し処理を行うことが望ましい。本発明における焼き戻し処理とは、金属間化合物(例えば、β-NiAl相、Laves相)を生成・析出させるための熱処理を指す。これらの焼きならし処理および焼き戻し処理により、均等なフェライト相組織を有しかつ析出物が分散析出した望ましい微細構造を有する析出強化型フェライト系耐熱鋼を得ることができる。   After the normalizing treatment, it is desirable to perform a tempering treatment in which the sample is gradually cooled after being heated at 600 ° C. to 800 ° C. (more desirably 650 ° C. to 750 ° C.). The tempering treatment in the present invention refers to a heat treatment for generating and precipitating intermetallic compounds (for example, β-NiAl phase, Laves phase). By these normalizing treatment and tempering treatment, it is possible to obtain a precipitation strengthened ferritic heat resistant steel having a uniform ferrite phase structure and a desirable fine structure in which precipitates are dispersed and precipitated.

本発明のフェライト系耐熱鋼を用いたタービン高温部材の製造は、上記の全ての熱処理が終了した後の耐熱鋼素材に成形加工を行ってもよいが、焼きならし処理後で焼き戻し処理前の耐熱鋼素材(金属間化合物の強化相が析出していない状態)を用いた方が、加工性・作業性の観点から好ましい。その場合、形状加工後に時効熱処理を行えばよい。   The manufacture of the high temperature turbine member using the ferritic heat resistant steel of the present invention may be performed on the heat resistant steel material after all the heat treatments are completed, but after the normalizing process and before the tempering process. From the viewpoint of workability and workability, it is preferable to use a heat resistant steel material (a state in which a strengthening phase of an intermetallic compound is not precipitated). In that case, an aging heat treatment may be performed after the shape processing.

(タービン高温部材およびタービン)
本発明に係る析出強化型フェライト系耐熱鋼は、良好な機械的特性と良好な耐食性とを兼ね備えることから、タービン高温部材(例えば、主蒸気温度が600℃以上の高圧蒸気タービンや中圧蒸気タービンや高中圧一体型蒸気タービンのタービンロータシャフト)として好適に利用することができる。
(Turbine high temperature member and turbine)
The precipitation strengthened ferritic heat resistant steel according to the present invention has good mechanical properties and good corrosion resistance. Therefore, the high temperature turbine member (for example, a high pressure steam turbine or medium pressure steam turbine having a main steam temperature of 600 ° C. or higher). And a turbine rotor shaft of a high-medium pressure integrated steam turbine.

図1は、本発明に係る蒸気タービン用部材を使用した蒸気タービンの一例を示す断面模式図である。図1に示した蒸気タービンは、高中圧一体型蒸気タービン10であり、高圧段蒸気タービンと中圧段蒸気タービンとが一体化したものである。高圧段蒸気タービン(図中の左半分)では、高圧内部車室11とその外側の高圧外部車室12とが形成され、それら車室内に、高圧タービン翼13が植設された高中圧車軸(高中圧一体型タービンロータシャフト14)が設けられている。高温高圧の蒸気は、ボイラ(図示せず)によって得られ、主蒸気管(図示せず)を通って、主蒸気入口を構成するフランジ・エルボ15より主蒸気入口16を通り、ノズルボックス17より高圧初段タービン翼13’に導かれる。蒸気は、高中圧一体型タービンロータシャフト14の中央側より入り、高圧段蒸気タービン側のロータ軸受部14’・軸受け18の方向に流れる。なお、本蒸気タービンでの主蒸気温度は650℃級を想定している。   FIG. 1 is a schematic cross-sectional view showing an example of a steam turbine using a steam turbine member according to the present invention. The steam turbine shown in FIG. 1 is a high-medium pressure integrated steam turbine 10 in which a high-pressure stage steam turbine and an intermediate-pressure stage steam turbine are integrated. In the high-pressure stage steam turbine (left half in the figure), a high-pressure internal casing 11 and a high-pressure external casing 12 outside thereof are formed, and high- and medium-pressure axles (with high-pressure turbine blades 13 implanted in these casings) A high and medium pressure integrated turbine rotor shaft 14) is provided. High-temperature and high-pressure steam is obtained by a boiler (not shown), passes through a main steam pipe (not shown), a flange elbow 15 constituting a main steam inlet, a main steam inlet 16, and a nozzle box 17. Guided to high-pressure first stage turbine blade 13 '. Steam enters from the center side of the high-medium pressure integrated turbine rotor shaft 14 and flows in the direction of the rotor bearing portion 14 ′ and the bearing 18 on the high-pressure steam turbine side. The main steam temperature in this steam turbine is assumed to be 650 ° C.

高圧段蒸気タービンより排出された蒸気は、再熱器(図示せず)によって再加熱された後、中圧段蒸気タービン(図中の右半分)に導かれる。中圧蒸気タービンは高圧蒸気タービンと共に発電機(図示せず)を回転させる。中圧段蒸気タービンは、高圧段蒸気タービンと同様に、中圧内部車室21と中圧外部車室22とを有し、高中圧一体型タービンロータシャフト14には中圧タービン翼23が植設されている。再加熱された蒸気は、高中圧一体型タービンロータシャフト14の中央側より入り、中圧初段タービン翼23’に導かれて中圧段蒸気タービン側のロータ軸受部14”・軸受け18’の方向に流れる。   The steam discharged from the high-pressure stage steam turbine is reheated by a reheater (not shown), and then guided to an intermediate-pressure stage steam turbine (the right half in the figure). The medium pressure steam turbine rotates a generator (not shown) with the high pressure steam turbine. Like the high-pressure stage steam turbine, the intermediate-pressure stage steam turbine has an intermediate-pressure inner casing 21 and an intermediate-pressure outer casing 22, and the intermediate-pressure turbine blades 23 are planted on the high- and intermediate-pressure integrated turbine rotor shaft 14. It is installed. The reheated steam enters from the center side of the high- and medium-pressure integrated turbine rotor shaft 14 and is guided to the intermediate-pressure first stage turbine blade 23 ′ and is directed to the rotor bearing portion 14 ″ and bearing 18 ′ on the intermediate-pressure stage steam turbine side. Flowing into.

高温の蒸気に曝され大きな応力が掛り、かつ大型の高温部材であるタービンロータシャフトは、本発明に係る析出強化型フェライト系耐熱鋼で構成されることが特に好ましい。同様に、ケーシングを締め付ける高温ボルト(図示せず)、シール24や配管(例えば、ノズルボックス17、ボイラチューブ(図示せず))等の高温の蒸気に曝される部材も本発明に係る析出強化型フェライト系耐熱鋼で構成されることが好ましい。   It is particularly preferable that the turbine rotor shaft, which is exposed to high-temperature steam and is subjected to great stress and is a large high-temperature member, is composed of the precipitation-strengthened ferritic heat resistant steel according to the present invention. Similarly, members that are exposed to high-temperature steam such as high-temperature bolts (not shown) for tightening the casing, seals 24 and piping (for example, nozzle box 17, boiler tube (not shown)) are also strengthened by precipitation according to the present invention. Preferably, it is made of type ferritic heat resistant steel.

(火力発電プラント)
図2は、本発明に係る火力発電プラントの一例を示す系統概略図である。図2においては、高圧段蒸気タービンと中圧段蒸気タービンとが別体であり、タービンロータシャフトを介してタンデム連結されている例を示した。図2に示したように、火力発電プラント30では、まず、ボイラ31で発生した高温高圧の蒸気は、高圧段蒸気タービン32で仕事をした後、ボイラ31で再加熱される。次に、再加熱された蒸気は、中圧段蒸気タービン33で仕事をした後、さらに低圧段蒸気タービン34で仕事をする。蒸気タービンで発生した仕事は、発電機35で電力に変えられる。低圧段蒸気タービン34を出た蒸気は、復水器36に導かれて水になった後、ボイラ31に戻される。
(Thermal power plant)
FIG. 2 is a system schematic diagram showing an example of a thermal power plant according to the present invention. FIG. 2 shows an example in which the high-pressure stage steam turbine and the intermediate-pressure stage steam turbine are separate and are tandemly connected via the turbine rotor shaft. As shown in FIG. 2, in the thermal power plant 30, first, the high-temperature and high-pressure steam generated in the boiler 31 is reheated in the boiler 31 after working in the high-pressure stage steam turbine 32. Next, the reheated steam works in the low pressure stage steam turbine 34 after working in the intermediate pressure stage steam turbine 33. The work generated in the steam turbine is converted into electric power by the generator 35. The steam exiting the low-pressure stage steam turbine 34 is led to the condenser 36 to become water, and then returned to the boiler 31.

以下、本発明を実施例に基づいて更に詳しく説明するが、本発明はこれらに限定されるものではない。   EXAMPLES Hereinafter, although this invention is demonstrated in more detail based on an Example, this invention is not limited to these.

(発明耐熱鋼1〜10および比較耐熱鋼1〜2の作製)
はじめに、高周波真空溶解炉(5.0×10-3 Pa以下、1600℃以上)を用いて原料を溶造した。得られた鋳塊に対して、1000 ton鍛造機および250 kgfハンマ鍛造機を用いて熱間鍛造を行い、幅×長さ×厚さ=100 mm×1000 mm×30 mmの角材に成形した。次に、この角材を幅×長さ×厚さ=50 mm×120 mm×30 mmに切断加工して耐熱鋼出発材とした。
(Production of invention heat resistant steels 1 to 10 and comparative heat resistant steels 1 to 2)
First, the raw material was melted using a high-frequency vacuum melting furnace (5.0 × 10 −3 Pa or less, 1600 ° C. or more). The obtained ingot was hot forged using a 1000 ton forging machine and a 250 kgf hammer forging machine, and formed into square bars of width × length × thickness = 100 mm × 1000 mm × 30 mm. Next, this square was cut into width × length × thickness = 50 mm × 120 mm × 30 mm to obtain a heat resistant steel starting material.

次に、各耐熱鋼出発材に対して、ボックス電気炉を用いて種々の熱処理を施した。まず、焼きならし処理として1100℃で1時間保持した後に室温の水に浸漬する水急冷を行った。次いで、焼き戻し処理として700℃で2時間保持した後に室温の大気中に取り出す空冷を行った。   Next, each heat-resistant steel starting material was subjected to various heat treatments using a box electric furnace. First, as a normalizing treatment, water quenching was performed by holding at 1100 ° C. for 1 hour and then immersing in room temperature water. Next, as a tempering treatment, the substrate was kept at 700 ° C. for 2 hours and then air-cooled to be taken out into the atmosphere at room temperature.

得られた鋳塊の化学組成分析値を表1〜表2に示す。なお、比較耐熱鋼1〜2は、600℃級蒸気タービンの高温部材用の材料として現用されている耐熱鋼(市販品)である。また、表中の記載は省略するが、不可避不純物(P、S、Sb、Sn、As、およびN)は、それぞれ本発明の規定範囲を満たしていた。   Tables 1 and 2 show chemical composition analysis values of the obtained ingots. The comparative heat resistant steels 1 and 2 are heat resistant steels (commercially available) currently used as materials for high temperature members of 600 ° C. class steam turbines. Although not shown in the table, inevitable impurities (P, S, Sb, Sn, As, and N) each satisfied the specified range of the present invention.

Figure 2015092010
Figure 2015092010

Figure 2015092010
Figure 2015092010

(各種特性評価)
上記で得られた各試料(発明耐熱鋼1〜10および比較耐熱鋼1〜2)に対して、微細組織観察、高温強度の指標としてクリープ破断強度、および耐酸化性の指標として酸化スケール厚さの評価試験をそれぞれ実施した。各評価試験の概要について次に説明する。
(Various characteristic evaluation)
For each sample obtained above (invention heat resistant steels 1 to 10 and comparative heat resistant steels 1 to 2), microstructure observation, creep rupture strength as an index of high temperature strength, and oxide scale thickness as an index of oxidation resistance Each evaluation test was conducted. The outline of each evaluation test will be described next.

微細組織観察では、光学顕微鏡または走査型電子顕微鏡を用いて、マトリックスの組織および析出物の様子を観察した。   In the microstructure observation, the structure of the matrix and the state of the precipitate were observed using an optical microscope or a scanning electron microscope.

高温強度の評価としては、600〜700℃の温度範囲、所定の応力で103時間までのクリープ試験を行い、得られた試験結果に対してラーソン・ミラー・パラメータを用いて、103時間、104時間および105時間のクリープ破断強度を求めた。650℃級蒸気タービンを実用化するためには、103時間で190 MPa以上、104時間で120 MPa以上、かつ105時間で100 MPa以上のクリープ破断強度が少なくとも必要と考えられている。よって、それらを合否の判定基準とした。 As an evaluation of the high temperature strength, a creep test is performed up to 10 3 hours at a temperature range of 600 to 700 ° C. with a predetermined stress, and the obtained test results are used for 10 3 hours using Larson Miller parameters. The creep rupture strength at 10 4 hours and 10 5 hours was determined. For practical applications of 650 ° C. class steam turbine 10 for 3 hours at 190 MPa or more, 10 4 hours at 120 MPa or more and 10 5 hours creep rupture strength of at least 100 MPa it is considered at least necessary. Therefore, they were used as pass / fail criteria.

耐酸化性の評価としては、水蒸気酸化試験を行った。水蒸気雰囲気中にて600〜700℃で103時間保持した後、試料表面に形成された酸化スケール層の平均厚さを測定した。耐酸化性の判定基準は、酸化スケール層の平均厚さが600℃×103時間で50μm以下、650℃×103時間で60μm以下、700℃×103時間で70μm以下を「合格」とし、その値超を「不合格」とした。 As an evaluation of oxidation resistance, a steam oxidation test was conducted. After maintaining 10 3 hours at 600 to 700 ° C. at a steam atmosphere, to measure the average thickness of the oxide scale layer formed on the surface of the sample. Criteria for oxidation resistance, 50 [mu] m or less is 600 ° C. × 10 3 hours average thickness of the oxide scale layer, 60 [mu] m at 650 ° C. × 10 3 hours or less, a 70μm or less at 700 ° C. × 10 3 hours as "pass" The value exceeding the value was regarded as “fail”.

高温強度の結果を表3〜表4に示し、耐酸化性の結果を表5〜表6に示す。   The results of high temperature strength are shown in Tables 3 to 4, and the results of oxidation resistance are shown in Tables 5 to 6.

Figure 2015092010
Figure 2015092010

Figure 2015092010
Figure 2015092010

Figure 2015092010
Figure 2015092010

Figure 2015092010
Figure 2015092010

微細組織観察において、比較耐熱鋼1〜2は、マルテンサイト組織のマトリックスを有し、炭化物および/または炭窒化物の析出物(粒径:数μm)が分散していた。一方、発明耐熱鋼1〜10は、いずれもフェライト相をマトリックスとし、マトリックス結晶粒の各粒中にβ-NiAl相析出物(粒径:10 nm以下)が均等に微細分散しており、粒界に沿ってLaves相析出物が析出していることが確認された。   In the observation of the microstructure, the comparative heat resistant steels 1 and 2 had a matrix of martensite structure, and carbide and / or carbonitride precipitates (particle size: several μm) were dispersed. On the other hand, the invention heat resistant steels 1 to 10 all have a ferrite phase as a matrix, and β-NiAl phase precipitates (particle size: 10 nm or less) are uniformly finely dispersed in each of the matrix crystal grains. It was confirmed that a Laves phase precipitate was deposited along the boundary.

高温強度(650℃でのクリープ破断強度)においては、表3〜4に示したように、103時間ですべての耐熱鋼(発明耐熱鋼1〜10および比較耐熱鋼1〜2)が190 MPa以上のクリープ破断強度を示した。しかしながら、104時間では比較耐熱鋼2が120 MPa以上を満たせず、105時間では比較耐熱鋼1〜2が100 MPa以上を満たせなかった。言い換えると、発明耐熱鋼1〜10は、長時間側でのクリープ破断強度の低下が少なく、650℃級蒸気タービンを実用化するための高温強度の要求基準を満たしていることが確認された。 In the high temperature strength (creep rupture strength at 650 ° C.), as shown in Tables 3 to 4, all the heat resistant steels (invention heat resistant steels 1 to 10 and comparative heat resistant steels 1 to 2) are 190 MPa in 10 3 hours. The above creep rupture strength was shown. However, the comparative heat resistant steel 2 did not satisfy 120 MPa or more in 10 4 hours, and the comparative heat resistant steels 1 and 2 did not satisfy 100 MPa or more in 10 5 hours. In other words, it was confirmed that the invention heat resistant steels 1 to 10 have little decrease in creep rupture strength on the long-time side and satisfy the high temperature strength requirement standard for putting a 650 ° C. class steam turbine to practical use.

耐酸化性(103時間での酸化スケール層の平均厚さ)においては、表5〜6に示したように、600℃×103時間ですべての耐熱鋼(発明耐熱鋼1〜10および比較耐熱鋼1〜2)が50μm以下の酸化スケール層の平均厚さを示した。しかしながら、650℃×103時間および700℃×103時間では比較耐熱鋼1〜2がそれぞれ60μm以下および70μm以下を満たせなかった。言い換えると、発明耐熱鋼1〜10は、高温側でも酸化スケール層の形成が少なく、650℃級蒸気タービンを実用化するための耐酸化性の要求基準を満たしていることが確認された。 In oxidation resistance (average thickness of oxide scale layer at 10 3 hours), as shown in Tables 5-6, all heat resistant steels (invention heat resistant steels 1 to 10 and comparison) at 600 ° C. × 10 3 hours Heat resistant steels 1-2) showed an average thickness of the oxide scale layer of 50 μm or less. However, the comparative heat resistant steels 1 and 2 could not satisfy 60 μm or less and 70 μm or less at 650 ° C. × 10 3 hours and 700 ° C. × 10 3 hours, respectively. In other words, it was confirmed that the invention heat-resistant steels 1 to 10 have little formation of an oxide scale layer even on the high temperature side, and satisfy the requirements for oxidation resistance for putting a 650 ° C. class steam turbine into practical use.

以上説明してきたように、本発明に係る析出強化型フェライト系耐熱鋼は、高温での機械的強度と耐酸化性とが従来以上に高いレベルでバランスしているため、主蒸気温度の高温化に対応する蒸気タービン高温部材(例えば、タービンロータシャフト)に好ましく適用することができる。本発明に係るタービン高温部材は、タービンロータシャフトに限らず、ボイラチューブやケーシングボルトなどの高温高圧部材としても適用可能である。また、本発明は、該タービンロータシャフトを用いたタービンロータ、該タービンロータを用いた蒸気タービン、該蒸気タービンを用いた火力発電プラントとして適用することができる。   As described above, the precipitation-strengthened ferritic heat-resistant steel according to the present invention balances mechanical strength and oxidation resistance at high temperatures at a higher level than before. Can be preferably applied to a steam turbine high-temperature member (for example, a turbine rotor shaft) corresponding to the above. The turbine high-temperature member according to the present invention is not limited to the turbine rotor shaft, and can be applied as a high-temperature high-pressure member such as a boiler tube or a casing bolt. Further, the present invention can be applied as a turbine rotor using the turbine rotor shaft, a steam turbine using the turbine rotor, and a thermal power plant using the steam turbine.

なお、上記した実施例は、本発明の理解を助けるために具体的に説明したものであり、本発明は、説明した全ての構成を備えることに限定されるものではない。例えば、ある実施例の構成の一部を他の実施例の構成に置き換えることが可能であり、また、ある実施例の構成に他の実施例の構成を加えることも可能である。さらに、各実施例の構成の一部について、削除・他の構成に置換・他の構成の追加をすることが可能である。   Note that the above-described embodiments have been specifically described in order to help understanding of the present invention, and the present invention is not limited to having all the configurations described. For example, a part of the configuration of one embodiment can be replaced with the configuration of another embodiment, and the configuration of another embodiment can be added to the configuration of one embodiment. Further, a part of the configuration of each embodiment can be deleted, replaced with another configuration, or added with another configuration.

10…高中圧一体型蒸気タービン、11…高圧内部車室、12…高圧外部車室、
13…高圧タービン翼、13’…高圧初段タービン翼、
14…高中圧一体型タービンロータシャフト、14’,14”…ロータ軸受部、
15…フランジ・エルボ、16…主蒸気入口、17…ノズルボックス、18,18’…軸受け、
21…中圧内部車室、22…中圧外部車室、
23…中圧タービン翼、23’…中圧初段タービン翼、24…シール、
30…火力発電プラント、31…ボイラ、32…高圧段蒸気タービン、
33…中圧段蒸気タービン、34…低圧段蒸気タービン、35…発電機、36…復水器。
10 ... High and medium pressure integrated steam turbine, 11 ... High pressure internal casing, 12 ... High pressure external casing,
13 ... High-pressure turbine blade, 13 '... High-pressure first stage turbine blade,
14 ... High and medium pressure integrated turbine rotor shaft, 14 ', 14 "... Rotor bearing
15 ... Flange / Elbow, 16 ... Main steam inlet, 17 ... Nozzle box, 18, 18 '... Bearing,
21 ... Medium pressure internal compartment, 22 ... Medium pressure external compartment,
23 ... Medium pressure turbine blade, 23 '... Medium pressure first stage turbine blade, 24 ... Seal,
30 ... Thermal power plant, 31 ... Boiler, 32 ... High-pressure steam turbine,
33 ... Medium pressure stage steam turbine, 34 ... Low pressure stage steam turbine, 35 ... Generator, 36 ... Condenser.

Claims (11)

金属間化合物が分散析出したフェライト系耐熱鋼であって、
0.1質量%以下のCと、
12質量%以上20質量%以下のCrと、
2質量%以上6質量%以下のNiと、
2質量%以上8質量%以下のAlと、
2.5質量%以上10質量%以下のWと、
0.5質量%以上2.5質量%以下のMoと、
2質量%以上6質量%以下のCoと、
0.001質量%以上0.01質量%以下のBとを含み、
残部がFeおよび不可避不純物からなることを特徴とする析出強化型フェライト系耐熱鋼。
A ferritic heat resistant steel in which intermetallic compounds are dispersed and precipitated,
0.1 mass% or less of C,
12 to 20% by mass of Cr,
Ni of 2 mass% or more and 6 mass% or less,
Al of 2 mass% or more and 8 mass% or less,
2.5 wt% to 10 wt% W,
0.5% to 2.5% by mass of Mo,
2% to 6% by weight of Co,
0.001% by mass or more and 0.01% by mass or less B and
A precipitation strengthened ferritic heat resistant steel characterized in that the balance consists of Fe and inevitable impurities.
請求項1に記載の析出強化型フェライト系耐熱鋼おいて、
5質量%以下のTiを更に含むことを特徴とする析出強化型フェライト系耐熱鋼。
In the precipitation strengthened ferritic heat resistant steel according to claim 1,
A precipitation-strengthened ferritic heat resistant steel further comprising 5% by mass or less of Ti.
請求項1又は請求項2に記載の析出強化型フェライト系耐熱鋼おいて、
NbおよびVのうちの少なくとも1種を合計0.5質量%以下で更に含むことを特徴とする析出強化型フェライト系耐熱鋼。
In the precipitation strengthened ferritic heat resistant steel according to claim 1 or claim 2,
A precipitation strengthened ferritic heat resistant steel further comprising at least one of Nb and V in a total amount of 0.5% by mass or less.
請求項1乃至請求項3のいずれかに記載の析出強化型フェライト系耐熱鋼おいて、
1質量%以下のSiおよび1質量%以下のMnのうちの少なくとも1種を更に含むことを特徴とする析出強化型フェライト系耐熱鋼。
In the precipitation strengthened ferritic heat resistant steel according to any one of claims 1 to 3,
A precipitation-strengthened ferritic heat resistant steel, further comprising at least one of 1 mass% or less of Si and 1 mass% or less of Mn.
請求項1乃至請求項4のいずれかに記載の析出強化型フェライト系耐熱鋼おいて、
前記不可避不純物が、P、S、Sb、Sn、AsおよびNのうちのいずれか1種以上であり、
前記Pが0.5質量%以下、前記Sが0.5質量%以下、前記Sbが0.1質量%以下、前記Snが0.1質量%以下、前記Asが0.1質量%以下、前記Nが0.1質量%以下であることを特徴とする析出強化型フェライト系耐熱鋼。
In the precipitation strengthened ferritic heat resistant steel according to any one of claims 1 to 4,
The inevitable impurity is at least one of P, S, Sb, Sn, As and N;
The P is 0.5 mass% or less, the S is 0.5 mass% or less, the Sb is 0.1 mass% or less, the Sn is 0.1 mass% or less, the As is 0.1 mass% or less, and the N is 0.1 mass% or less. Precipitation strengthened ferritic heat resistant steel characterized by
請求項1乃至請求項5のいずれかに記載の析出強化型フェライト系耐熱鋼おいて、
前記金属間化合物がLaves相およびβ-NiAl相であることを特徴とする析出強化型フェライト系耐熱鋼。
In the precipitation strengthened ferritic heat resistant steel according to any one of claims 1 to 5,
A precipitation strengthened ferritic heat resistant steel, wherein the intermetallic compound is a Laves phase and a β-NiAl phase.
請求項1乃至請求項6のいずれかに記載の析出強化型フェライト系耐熱鋼おいて、
前記析出強化型フェライト系耐熱鋼は、1000〜1200℃の焼きならし処理が施された後、600〜800℃の焼き戻し処理が施されていることを特徴とする析出強化型フェライト系耐熱鋼。
In the precipitation strengthened ferritic heat resistant steel according to any one of claims 1 to 6,
The precipitation strengthened ferritic heat resistant steel is subjected to a normalizing treatment at 1000 to 1200 ° C. and then subjected to a tempering treatment at 600 to 800 ° C. .
請求項1乃至請求項7のいずれかに記載の析出強化型フェライト系耐熱鋼を用いたことを特徴とするタービン高温部材。   A high temperature turbine member using the precipitation strengthened ferritic heat resistant steel according to any one of claims 1 to 7. 請求項8に記載のタービン高温部材がタービンロータシャフトであり、
前記タービンロータシャフトを用いたことを特徴とするタービンロータ。
The turbine high temperature member according to claim 8 is a turbine rotor shaft,
A turbine rotor using the turbine rotor shaft.
請求項9に記載のタービンロータを用いたことを特徴とする蒸気タービン。   A steam turbine using the turbine rotor according to claim 9. 請求項10に記載の蒸気タービンを用いたことを特徴とする火力発電プラント。   A thermal power plant using the steam turbine according to claim 10.
JP2013231810A 2013-11-08 2013-11-08 Precipitation strengthened ferritic heat resistant steel, turbine high temperature member using the heat resistant steel, and turbine using the turbine high temperature member Expired - Fee Related JP6289873B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013231810A JP6289873B2 (en) 2013-11-08 2013-11-08 Precipitation strengthened ferritic heat resistant steel, turbine high temperature member using the heat resistant steel, and turbine using the turbine high temperature member

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013231810A JP6289873B2 (en) 2013-11-08 2013-11-08 Precipitation strengthened ferritic heat resistant steel, turbine high temperature member using the heat resistant steel, and turbine using the turbine high temperature member

Publications (2)

Publication Number Publication Date
JP2015092010A true JP2015092010A (en) 2015-05-14
JP6289873B2 JP6289873B2 (en) 2018-03-07

Family

ID=53195300

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013231810A Expired - Fee Related JP6289873B2 (en) 2013-11-08 2013-11-08 Precipitation strengthened ferritic heat resistant steel, turbine high temperature member using the heat resistant steel, and turbine using the turbine high temperature member

Country Status (1)

Country Link
JP (1) JP6289873B2 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09263906A (en) * 1996-01-23 1997-10-07 Hitachi Metals Ltd Iron-nickel-chrome-alum. ferritic alloy and its production
JP2002146484A (en) * 2000-11-10 2002-05-22 Sanyo Special Steel Co Ltd High strength ferritic heat resistant steel
JP2005089850A (en) * 2003-09-19 2005-04-07 Nisshin Steel Co Ltd High strength ferritic stainless steel
JP2012219682A (en) * 2011-04-07 2012-11-12 Hitachi Ltd Rotor shaft for steam turbine, and steam turbine using the same

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09263906A (en) * 1996-01-23 1997-10-07 Hitachi Metals Ltd Iron-nickel-chrome-alum. ferritic alloy and its production
JP2002146484A (en) * 2000-11-10 2002-05-22 Sanyo Special Steel Co Ltd High strength ferritic heat resistant steel
JP2005089850A (en) * 2003-09-19 2005-04-07 Nisshin Steel Co Ltd High strength ferritic stainless steel
JP2012219682A (en) * 2011-04-07 2012-11-12 Hitachi Ltd Rotor shaft for steam turbine, and steam turbine using the same

Also Published As

Publication number Publication date
JP6289873B2 (en) 2018-03-07

Similar Documents

Publication Publication Date Title
US11198930B2 (en) Austenitic stainless steel plate
JP5528986B2 (en) Precipitation hardening type martensitic stainless steel and steam turbine member using the same
US5888318A (en) Method of producing ferritic iron-base alloys and ferritic heat resistant steels
JP4664857B2 (en) Steam turbine
JP5409708B2 (en) Precipitation hardening type martensitic stainless steel and steam turbine long blades using the same
KR20150023935A (en) Austenitic steel alloy having excellent creep strength and resistance to oxidation and corrosion at elevated use temperatures
JP2013147698A (en) Precipitation-hardening type martensitic stainless steel, and steam-turbine long blade, steam-turbine and power-plant using the same
JP2009249658A (en) Austenitic stainless steel for heat-resistant parts, and heat-resistant parts using the steel
EP2765214B1 (en) Stainless steel alloys, turbocharger turbine housings formed from the stainless steel alloys, and methods for manufacturing the same
JPH02290950A (en) Ferritic heat resisting steel excellent in strength at high temperature
JP2014080656A (en) Precipitation hardening type martensitic stainless steel and steam turbine long blade using the same
JP3354832B2 (en) High toughness ferritic heat-resistant steel
JP7428822B2 (en) Heat-resistant steel for steel pipes and castings
US20100158681A1 (en) Ni-based alloy for a forged part of a steam turbine with excellent high temperature strength, forgeability and weldability, rotor blade of a steam turbine, stator blade of a steam turbine, screw member for a steam turbine, and pipe for a steam turbine
JP4256311B2 (en) Rotor shaft for steam turbine, steam turbine, and steam turbine power plant
JPS616257A (en) 12% cr heat resisting steel
JP5265325B2 (en) Heat resistant steel with excellent creep strength and method for producing the same
JP5932622B2 (en) Austenitic heat resistant steel and turbine parts
JP6317566B2 (en) Precipitation hardening type martensitic stainless steel, turbine member using the stainless steel, and turbine using the turbine member
JP3362369B2 (en) Steam turbine power plant and steam turbine
JPS616256A (en) 12% cr heat resisting steel
JP6289873B2 (en) Precipitation strengthened ferritic heat resistant steel, turbine high temperature member using the heat resistant steel, and turbine using the turbine high temperature member
JP5981357B2 (en) Heat resistant steel and steam turbine components
JP6312367B2 (en) Precipitation hardening martensitic stainless steel, steam turbine blades and steam turbines
JP2015086432A (en) Austenitic heat resistant steel and turbine component

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20160804

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20170414

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20170606

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20170807

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20180109

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20180207

R150 Certificate of patent or registration of utility model

Ref document number: 6289873

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees