JP2905241B2 - Manufacturing method of bearing material with excellent rolling fatigue life - Google Patents

Manufacturing method of bearing material with excellent rolling fatigue life

Info

Publication number
JP2905241B2
JP2905241B2 JP5082590A JP5082590A JP2905241B2 JP 2905241 B2 JP2905241 B2 JP 2905241B2 JP 5082590 A JP5082590 A JP 5082590A JP 5082590 A JP5082590 A JP 5082590A JP 2905241 B2 JP2905241 B2 JP 2905241B2
Authority
JP
Japan
Prior art keywords
rolling
fatigue life
forging
center
bearing material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP5082590A
Other languages
Japanese (ja)
Other versions
JPH03254339A (en
Inventor
聡 安本
虔一 天野
昭三郎 中野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
Kawasaki Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kawasaki Steel Corp filed Critical Kawasaki Steel Corp
Priority to JP5082590A priority Critical patent/JP2905241B2/en
Publication of JPH03254339A publication Critical patent/JPH03254339A/en
Application granted granted Critical
Publication of JP2905241B2 publication Critical patent/JP2905241B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Forging (AREA)
  • Heat Treatment Of Steel (AREA)

Description

【発明の詳細な説明】 (産業上の利用分野) この発明は、自動車、その他産業機械等に用いられる
転がり軸受の素材として好適な、優れた転動疲労寿命特
性を有する軸受用素材の製造方法に関するものである。
The present invention relates to a method for producing a bearing material having excellent rolling fatigue life characteristics, which is suitable as a material for rolling bearings used in automobiles, other industrial machines, and the like. It is about.

(従来の技術) 転がり軸受は、転動輪と転動体とから構成され、いず
れも転動接触面が均質であることが要求される。特に鋳
片中心部に発生するマクロ偏析(以下単に中心偏析と称
す)および共晶炭化物は、転動疲労寿命を劣化させるこ
とから、素材中心部を打ち抜いて廃材とするか、造塊法
または長時間の拡散処理の実施によりこれらを十分に消
散させてから用いられていた。なお共晶炭化物は打抜き
や切断時における割れも増大させる。従って生産性や素
材歩留りの低下を避けることができなかった。
(Prior Art) Rolling bearings are composed of rolling wheels and rolling elements, and all of them are required to have a uniform rolling contact surface. In particular, macro-segregation (hereinafter simply referred to as center segregation) and eutectic carbide generated in the center of the slab deteriorate rolling contact fatigue life. They have been used after sufficiently dissipating them by performing a time diffusion process. The eutectic carbide also increases cracking during punching and cutting. Therefore, reductions in productivity and material yield cannot be avoided.

このような弊害をもたらす中心偏析は、連続鋳造の場
合、凝固先端部の凝固収縮の他、凝固シェルのバルジン
グなどによって生じる空隙の真空吸引力が加わり、凝固
先端部にC,Cr等の濃化溶鋼成分が吸い込まれる結果、鋳
片の断面中心部に正偏析となって残留したもので、製品
加工時の熱処理により、過度の球状化炭化物の残留、残
留オースナイトの増大さらにはこれらミクロ組織の不均
一が生じて、転動疲労寿命を低下させる。
In the case of continuous casting, in addition to solidification shrinkage of the solidification tip, vacuum segregation of voids caused by bulging of the solidified shell is applied in the case of continuous casting. As a result of the inhalation of the molten steel component, it remained as positive segregation in the center of the cross section of the slab, and due to heat treatment during product processing, excessive spheroidized carbide remained, the amount of retained austenite increased, and the microstructure of these Non-uniformity occurs and reduces rolling fatigue life.

その防止策としては、例えば2次冷却帯域における電
磁攪拌等が試みられたが、セミミクロ偏析までを軽減す
るまでには至らず、その効果は充分とはいえない。
As a preventive measure, for example, electromagnetic stirring in a secondary cooling zone has been attempted, but the effect has not been reduced to the extent of semi-micro segregation, and its effect is not sufficient.

その他、凝固末期に一対のロールを用いて大圧下を施
すいわゆるインラインリダクション法{鉄と鋼 第60年
(1974)第7号875〜884頁}の適用も試みられたが、未
凝固層の大きい鋳片領域における圧下が不十分だと、凝
固界面に割れが発生し、逆に圧下が十分すぎる場合には
鋳片の厚み方向中心部に強い負偏析が生じるなどの問題
があった。
In addition, the so-called in-line reduction method of applying a large pressure reduction using a pair of rolls at the end of solidification (iron and steel, No. 60 (1974) No. 7, pp. 875 to 884) was also attempted, but the unsolidified layer was large. If the reduction in the slab area is insufficient, cracks occur at the solidification interface, and if the reduction is too high, there is a problem that strong negative segregation occurs in the center of the slab in the thickness direction.

この点につき、特開昭49−121738号公報では、鋳片の
凝固先端部付近でロール対による軽圧下を施し、該部分
の凝固収縮量を圧下により補償する方法が、また特開昭
52−54625号公報では、鍛造金型を用いて鋳片の凝固完
了点近傍を大圧下する方法が、それぞれ提案されてい
る。
In this regard, Japanese Patent Application Laid-Open No. 49-121738 discloses a method in which a light reduction is performed by a pair of rolls near the solidification front end of a slab and the amount of solidification shrinkage of the portion is reduced by reduction.
Japanese Patent Application Laid-Open No. 52-54625 proposes a method in which a forging die is used to greatly reduce the pressure near the solidification completion point of a slab.

しかしながらロールによる軽圧下の場合には、複数対
のロールによる数mm/mの圧下を施したとしても、ロール
ピッチ間で生じる凝固収縮やバルジングを十分に防止す
ることができず、また圧下位置が適切でなければかえっ
て中心偏析が悪化するといった問題があった。
However, in the case of light rolling with rolls, solidification shrinkage and bulging that occur between roll pitches cannot be sufficiently prevented even when rolling down several mm / m with multiple pairs of rolls, and the rolling position is reduced. If not, there is a problem that the center segregation worsens.

他方、鍛造金型を用いて鋳片の凝固完了点近傍を大圧
下する場合は、インラインリダクション法の如きロール
による大圧下に比べて凝固界面が割れにくく、また負偏
析さらにはセミマクロ偏析をも飛躍的に改善できること
が明らかになってはいるけれども、依然として未凝固層
の大きい鋳片領域での圧下が不十分であると凝固界面に
割れが発生し、逆に圧下が十分すぎると鋳片の中心部に
強い負偏析を生じる不利があり、さらには未凝固厚の小
さい領域を圧下してもその効果が得られないことから、
最適な圧下条件を模索しているのが現状である。
On the other hand, when a forging die is used to greatly reduce the vicinity of the solidification completion point of a slab, the solidification interface is less likely to crack than in the case of a large reduction by a roll such as the in-line reduction method, and it also causes negative segregation and semi-macro segregation. Although it has been clarified that it can be improved, the cracking still occurs at the solidification interface if the reduction in the slab area where the unsolidified layer is large is insufficient, and conversely if the reduction is too large, the center of the slab There is a disadvantage that strong negative segregation occurs in the part, and furthermore, even if the unsolidified thickness is reduced, the effect is not obtained,
At present, we are searching for optimal rolling conditions.

(発明が解決しようとする課題) この発明、上記技術の問題点を有利に克服するもの
で、鍛造性ならびに転動疲労寿命特性に優れた軸受用素
材の有利な製造方法を提案することを目的とする。
(Problems to be Solved by the Invention) The present invention advantageously overcomes the problems of the above technology, and has an object to propose an advantageous method for producing a bearing material excellent in forgeability and rolling fatigue life characteristics. And

(課題を解決するための手段) すなわちこの発明は、 C:0.60〜1.50wt%(以下単に%で示す)、 Si:0.15〜2.00%、 Mn:0.15〜2.50%および Cr:1.00超〜3.00% を含み、残部はFeおよび不可避的不純物からなる溶鋼
を、鋳片内部が凝固を完了するクレータエンド近傍にて
圧下率5%以上の鍛圧加工を施し、ついで均熱処理後、
熱間圧延を施すことからなる転動疲労寿命に優れた軸受
用素材の製造方法(第1発明)である。
(Means for Solving the Problems) That is, the present invention provides: C: 0.60 to 1.50 wt% (hereinafter simply referred to as%), Si: 0.15 to 2.00%, Mn: 0.15 to 2.50%, and Cr: more than 1.00 to 3.00% The remainder is forged with molten steel consisting of Fe and unavoidable impurities, and subjected to forging with a draft of 5% or more near the crater end where the inside of the slab completes solidification.
This is a method for producing a bearing material excellent in rolling fatigue life by performing hot rolling (first invention).

またこの発明は、溶鋼の成分組成が、 C:0.06〜1.50%、 Si:0.15〜2.00%、 Mn:0.15〜2.50%および Cr:1.00超〜3.00% を含み、さらに Mo:0.05〜1.50%、 V:0.05〜0.50%、 Nb:0.05〜0.50%、 W:0.05〜0.50%、 Ni:0.10〜2.00%および Cu:0.05〜1.00% のうちから選んだ1種または2種以上を含有し、残部は
Feおよび不可避的不純物の組成になる軸受用素材の製造
方法(第2発明)である。
Further, according to the present invention, the composition of molten steel includes C: 0.06 to 1.50%, Si: 0.15 to 2.00%, Mn: 0.15 to 2.50%, and Cr: more than 1.00 to 3.00%, and Mo: 0.05 to 1.50%, V: 0.05 to 0.50%, Nb: 0.05 to 0.50%, W: 0.05 to 0.50%, Ni: 0.10 to 2.00%, and Cu: 0.05 to 1.00%. Is
This is a method for producing a bearing material having a composition of Fe and unavoidable impurities (second invention).

さらにこの発明は、上記の第1および第2発明におい
て、均熱処理における処理条件を1100〜1250℃、2〜10
時間とした軸受用素材の製造方法(第3発明)である。
Further, in the present invention, in the first and second inventions, the treatment conditions in the soaking heat treatment are set at 1100 to 1250 ° C.,
This is a time-consuming method for producing a bearing material (third invention).

(作用) まずこの発明において、素材の成分組成を上記の範囲
に限定した理由について説明する。
(Operation) First, the reason for limiting the component composition of the material to the above range in the present invention will be described.

C:0.60〜1.50% Cは、基地に固溶することによって、強度、耐摩耗性
ひいては転動疲労寿命特性を向上させる有用元素であ
る。。しかしながらあまりに多すぎると巨大炭化物が生
成し、かえって転動疲労寿命を劣化させるだけでなく、
さらにその消散のため長時間の拡散焼鈍が必要となり生
産性の低下を招く。そこで上記の点を勘案してC量は0.
60〜1.50%の範囲で添加するものとした。
C: 0.60-1.50% C is a useful element that forms a solid solution in the matrix to improve the strength, wear resistance, and rolling contact fatigue life. . However, if it is too much, a huge carbide is generated, which not only deteriorates the rolling fatigue life, but also
Further, long-term diffusion annealing is required for the dissipation, which causes a decrease in productivity. Therefore, considering the above points, the amount of C is 0.
It was added in the range of 60 to 1.50%.

Si:0.15〜2.00% Siは、鋼の溶製時脱酸剤として作用するほか、基地に
固溶し焼戻しによる硬度低下を抑制して転動疲労寿命を
向上させる有用元素である。しかしながらあまりに多す
ぎると被削性ならびに鍛造性を劣化させるので、Siは0.
15〜2.00%の範囲で添加するものとした。
Si: 0.15% to 2.00% Si is a useful element that acts as a deoxidizing agent when smelting steel and also forms a solid solution in the matrix to suppress a decrease in hardness due to tempering and improve the rolling fatigue life. However, if the content is too large, the machinability and the forgeability deteriorate, so the content of Si is set to 0.
It was added in the range of 15 to 2.00%.

Mn:0.15〜2.50% Mnは、鋼の焼入れ性を向上させることにより、基地靱
性の向上、ひいては鋼材の転動疲労寿命の向上に有効に
寄与する。しかしながら多すぎると被削性ならびに鍛造
性を劣化させるので、Mnは0.15〜2.50%の範囲で添加す
るものとした。
Mn: 0.15 to 2.50% Mn effectively contributes to the improvement of the base toughness and the improvement of the rolling fatigue life of the steel material by improving the hardenability of the steel. However, if the content is too large, the machinability and the forgeability deteriorate, so Mn was added in the range of 0.15 to 2.50%.

Cr:1.00超〜3.00% Crは、焼入れ性を向上させ基地の強度および靱性を高
めると共に、炭化物の球状化を促進する働きを持つ。か
かる効果を充分に発現させるためには1.00%を超える量
のCrが必要であるので、この発明では少なくとも1.00超
のCrを含有させるものとした。しかしながらあまりに多
量の添加は炭化物が粗大化し、被削性ならびに転動疲労
寿命の劣化を招くので、Cr含有量の上限は3.00%とし
た。
Cr: more than 1.00 to 3.00% Cr has a function of improving hardenability, increasing strength and toughness of the matrix, and promoting spheroidization of carbide. In order to sufficiently exhibit such an effect, an amount of Cr exceeding 1.00% is required. Therefore, in the present invention, at least 1.00% of Cr is contained. However, if the addition is too large, the carbides become coarse and the machinability and the rolling fatigue life deteriorate. Therefore, the upper limit of the Cr content is set to 3.00%.

この発明では、上記した基本成分の他、必要に応じて
Mo,V,Nb,WおよびCuのうちから選んだ1種または2種以
上を、強度向上成分として以下に述べる範囲で添加する
ことができる。
In the present invention, in addition to the above basic components, if necessary,
One or more selected from Mo, V, Nb, W and Cu can be added as a strength improving component in the range described below.

Mo:0.05〜1.50%、W:0.05〜0.50% Moは、焼入れ性を高めるだけでなく、強い固溶強化、
析出硬化機能を有することから、強度ならびに転動疲労
寿命の向上に有効に寄与する。しかしながら多すぎると
切削性を劣化させると共に、添加コストの上昇を招く。
よってMoは0.05〜1.50%の範囲で添加するものとした。
Mo: 0.05-1.50%, W: 0.05-0.50% Mo not only enhances hardenability, but also strengthens solid solution,
Since it has a precipitation hardening function, it effectively contributes to improvement in strength and rolling fatigue life. However, if the content is too large, the machinability is deteriorated and the addition cost is increased.
Therefore, Mo was added in the range of 0.05 to 1.50%.

V,Nb,W:0.05〜0.50%、 V,NbおよびWはそれぞれ、高温で安定した炭化物を形
成し、転動疲労寿命特性を向上させる。しかし、多すぎ
ると焼戻し後の硬度が低下し、かえって転動疲労寿命特
性を劣化させる。よってV,NbおよびWはそれぞれ、0.05
〜0.50%の範囲で添加するものとした。
V, Nb, W: 0.05 to 0.50%, V, Nb, and W each form a stable carbide at a high temperature and improve rolling fatigue life characteristics. However, if the amount is too large, the hardness after tempering decreases, and on the contrary, the rolling fatigue life characteristics deteriorate. Therefore, V, Nb and W are each 0.05
It was added in the range of 0.50.50%.

Ni:0.10〜2.00% Niは、焼入れ性の向上に寄与するだけでなく、焼戻し
後の強度低下を抑制させることから、強度および転動疲
労寿命の向上に有用な元素である。しかしながらあまり
に多すぎると、残留オーステナイトが多量に生成し焼戻
し後の鋼材硬度を低下させる。よってNiは0.10〜2.00%
の範囲で添加するものとした。
Ni: 0.10 to 2.00% Ni not only contributes to the improvement of hardenability but also suppresses the decrease in strength after tempering, and is therefore an element useful for improving strength and rolling fatigue life. However, if it is too large, a large amount of retained austenite is generated, and the hardness of the steel after tempering is reduced. Therefore, Ni is 0.10-2.00%
Was added in the range described above.

Cu:0.05〜1.00% Cuは、Niと同様、焼入れ性の向上に寄与するだけでな
く、焼戻し後の硬度低下を抑制させることから、強度お
よび転動疲労寿命の向上に有用な元素である。しかしな
がら含有量が多すぎる場合には鍛造性の劣化を招く。よ
ってCuは0.05〜1.00%の範囲で添加するものとした。
Cu: 0.05 to 1.00% Cu, like Ni, not only contributes to the improvement of hardenability, but also suppresses the decrease in hardness after tempering, and is therefore an element useful for improving strength and rolling fatigue life. However, when the content is too large, forgeability is deteriorated. Therefore, Cu is added in the range of 0.05 to 1.00%.

なおその他、酸素量低減および介在物形態制御を目的
としたAl,Ca,Na,K,MgおよびZrのうちから選んだ1種ま
たは2種以上を、また被削性向上を目的としてS,Ca,Pb,
B,BiおよびREMのうちから選んだ1種または2種以上
を、さらに熱間強度向上を目的としてPおよびNのうち
から選んだ1種または2種を、またさらに脱炭低減を目
的としてSbをそれぞれ少量添加することもできる。
In addition, one or two or more selected from Al, Ca, Na, K, Mg and Zr for the purpose of oxygen content reduction and inclusion morphology control, and S, Ca for the purpose of improving machinability , Pb,
One or more selected from B, Bi and REM, one or two selected from P and N for the purpose of improving hot strength, and Sb for the purpose of further reducing decarburization Can be added in small amounts.

さて上述したような好適成分組成に調整した溶鋼を、
連続鋳造して鋳片とするが、この発明では、得られた連
続鋳造鋳片の内部溶鋼が凝固完了するクレータエンド近
傍にて圧化率:5%以上の鍛圧加工を施すことが肝要であ
り、かくして鋳片中心部における偏析の生成を防止する
のである。
Well, molten steel adjusted to a suitable component composition as described above,
Although it is continuously cast into a slab, in the present invention, it is important to perform forging at a compression ratio of 5% or more in the vicinity of the crater end where the internal molten steel of the obtained continuous cast slab is solidified. Thus, the generation of segregation at the center of the slab is prevented.

ここに、上記の如き鍛圧加工によって、鋳片中心に相
当する位置での偏析が改善される理由は、次のとおりと
考えられる。
Here, the reason why segregation at a position corresponding to the center of the slab is improved by the forging process as described above is considered as follows.

すなわち内部溶鋼の凝固末期には、合金元素の濃度の
高い溶鋼がクレータエンド近傍に存在するため、このま
ま凝固すれば中心偏析となるわけであるが、凝固前に鍛
圧加工を施すと、かような濃度溶鋼は上方に押し出され
るため、中心部の合金元素濃度はさほど上昇することは
なく、その結果、転動疲労寿命劣化の要因となる中心偏
析、共晶炭化物などの生成が防止される。
In other words, in the final stage of solidification of the internal molten steel, molten steel with a high concentration of alloying elements exists near the crater end, so if it solidifies as it is, central segregation will occur, but if forging processing is performed before solidification, Since the molten steel is extruded upward, the alloy element concentration in the central portion does not increase so much, and as a result, generation of center segregation, eutectic carbide, etc., which cause deterioration of rolling contact fatigue life, is prevented.

そして上記したとおり中心偏析や共晶炭化物が効果的
に抑制される結果、従来均熱炉を用いて行われていた拡
散焼鈍処理時間が大幅に短縮されるのである。
As described above, the center segregation and the eutectic carbide are effectively suppressed, and as a result, the diffusion annealing time conventionally performed using the soaking furnace is greatly reduced.

第1図aに、1.00%C−0.45%Si−0.70%Mn−1.30%
Cr鋼の連続鋳造に際し、連続鋳造中に連続的に鍛圧加工
を行って得た鋳片、あるいは鍛圧加工を行わない従来法
により得られた鋳片をそれぞれ、1240℃,2hの均熱拡散
処理後、棒鋼圧延を施し、D/4部(D:棒鋼の直径)なら
びに中心部(棒鋼の中心が表面にくるように試験片を採
取)の転動疲労寿命L0について調べた結果を示す。
In FIG. 1a, 1.00% C-0.45% Si-0.70% Mn-1.30%
For continuous casting of Cr steel, slabs obtained by continuous forging during continuous casting or slabs obtained by the conventional method without forging are each subjected to soaking at 1240 ° C for 2 hours. after subjected to a steel bar rolling, D / 4 parts: shows the results of examining the rolling fatigue life L 0 of (D steel bar diameter) and the center (taken test piece so that the center of the steel bar comes to the surface).

また第1図bには、中心部の鋳造性について調べた結
果を示す。
FIG. 1b shows the result of examining the castability of the central portion.

同図より明らかなように、棒鋼中心部材の転動疲労寿
命特性は、圧下率が5%以上の鍛圧加工を施すことによ
って、かかる鍛圧加工を施さない従来法の5倍以上に向
上し、また割れ発生も完全に防止される。
As is apparent from the figure, the rolling fatigue life characteristics of the steel bar center member are improved by 5 times or more by performing forging with a draft of 5% or more, compared to the conventional method without such forging. Cracking is completely prevented.

ここに、棒鋼中心部材あるいは線材を軸受鋼球用素材
として適用するには、中心部材の転動疲労寿命がD/4部
材と比較して同等あるいはそれ以上の特性を示せばよ
い。
Here, in order to apply the bar steel center member or wire as a material for the bearing steel ball, the rolling fatigue life of the center member may be equal to or greater than that of the D / 4 member.

従ってこの発明では、鍛圧加工による圧下率の下限を
5%としたのである。
Therefore, in the present invention, the lower limit of the rolling reduction by forging is set to 5%.

しかしながら圧下率があまりに大きいと、圧延後の素
材精度が低下する点で問題が生じるので、圧下率は60%
以下程度とするのが好ましい。
However, if the rolling reduction is too large, there is a problem in that the material accuracy after rolling is reduced.
It is preferable to set it to the following level.

なお鍛圧加工法としては、発明者らが先に特開昭60−
82257号公報において開示した連続鍛圧法を利用した。
In addition, as forging working method, the inventors first disclosed in
The continuous forging method disclosed in Japanese Patent No. 82257 was used.

次に第2図、1.0%C−0.45%Si−0.70%Mn−1.30%C
r鋼の連続鋳造に際し、種々の圧下率で鍛圧加工を行っ
たときの、圧下率と鋳片の中心部における共晶炭化物の
大きさ(1個当りの面積)との関係を示す。
Next, FIG. 2, 1.0% C-0.45% Si-0.70% Mn-1.30% C
r The relationship between the reduction ratio and the size of eutectic carbide at the center of the slab (area per piece) when forging is performed at various reduction ratios in continuous casting of steel.

同図より明らかなように、共晶炭化物の大きさは鍛圧
加工における圧下率の増大に伴って小さくなる傾向にあ
り、圧下率を5%以上とすることによって鍛圧加工を施
さない場合の1/5以下にまで低減することができた。
As is clear from the figure, the size of the eutectic carbide tends to decrease as the rolling reduction in the forging process increases, and by setting the rolling ratio to 5% or more, the size of the eutectic carbide is reduced by 1 / in the case where the forging process is not performed. It could be reduced to 5 or less.

また第3図には、鍛圧加工における圧下率を0%,2
%,5%,10%とした場合の、共晶炭化物の消散に必要な
均熱保持温度と保持時間との関係を示す。
FIG. 3 shows that the rolling reduction in the forging process is 0%, 2%.
The relationship between the soaking temperature and the holding time required for dissipating the eutectic carbide in the case of%, 5% and 10% is shown.

均熱温度が1200℃以上あるいは均熱時間が5h以上の場
合には生産性ならびに材質の面から、圧延ラインに直結
した加熱炉を使用することができず、拡散焼鈍処理専用
の均熱炉が必要となる。
If the soaking temperature is 1200 ° C or more or the soaking time is 5 hours or more, a heating furnace directly connected to the rolling line cannot be used due to productivity and material issues. Required.

しかしながら、圧下率が5%以上の鍛圧加工を施せ
ば、加熱温度1100℃以上、保持時間2h以上程度の生産性
の非常に高い加熱、保持時間条件で共晶炭化物の消散を
行うことができる。
However, if forging is performed at a rolling reduction of 5% or more, the eutectic carbide can be dissipated under extremely high heating and holding time conditions of a heating temperature of 1100 ° C. or more and a holding time of about 2 hours or more.

(実施例) 第1表に示す化学成分になる種々の溶鋼を、転炉→連
続鋳造法により、第2表に示す鍛圧条件下に処理して鋳
片とした。
(Examples) Various molten steels having the chemical components shown in Table 1 were processed by a converter to a continuous casting method under the forging conditions shown in Table 2 to obtain cast slabs.

ついで第2表に示す条件で均熱処理後、熱間圧延を施
して65mmφの棒鋼としたのち、球状化焼鈍処理後に12mm
φ×22mm寸法の試験片をD/4部および中心部(棒鋼の中
心が試験片の表面にくるように採取)より採取し、焼入
れ、焼戻し後、転動疲労寿命特性について調べた結果を
第2表に併記する。
Then, after soaking under the conditions shown in Table 2, hot rolling was performed to obtain a 65 mmφ steel bar, and after spheroidizing annealing, 12 mm
Specimens of φ × 22 mm were taken from the D / 4 part and the center (taken so that the center of the steel bar was on the surface of the specimen), quenched, tempered, and examined for rolling fatigue life characteristics. Also shown in Table 2.

なお転動疲労寿命試験は、円筒型転動疲労寿命試験機
を用い、ヘルツ最大接触応力600kgf/mm2、繰り返し応力
数46240cpmの条件で行い、試験結果はワイブル分布に従
うものと仮定して確率紙上にまとめ、鋼材No.1の1240
℃,2h拡散焼鈍処理材のD/4部L10(累積破損確立が10%
のときの、はく離までの応力負荷回数)を1として、相
対的に評価した。
The rolling fatigue life test was performed using a cylindrical rolling fatigue life tester under the conditions of a Hertz maximum contact stress of 600 kgf / mm 2 and a repetitive stress number of 46,240 cpm. 1240 of steel material No.1
° C., D / 4 parts L 10 of 2h diffusion annealing treatment material (cumulative damage established 10%
In this case, the number of times of stress loading until peeling) was set to 1 and the relative evaluation was performed.

また第2表に示す条件で均熱処理後、熱間圧延を施し
て65mmφの棒鋼とし、中心部から鋳造試験へん採取(棒
鋼の中心が試験片の表面にくるように採取)し、鍛造性
について調べた結果を第2表に併記する。
In addition, after soaking under the conditions shown in Table 2, hot rolling was performed to obtain a steel bar of 65 mmφ, and a casting test was taken from the center (taken so that the center of the steel bar came to the surface of the test piece). The results are shown in Table 2.

なお鍛造性試験は、端面完全拘束の状態で圧縮率50%
の条件で行い、同じく鋼材No.1の20h拡散焼鈍処理材の
割れ発生率を1として相対的に評価した。
In the forging test, the compression ratio was 50% with the end face completely restrained.
The cracking rate of the 20-hour diffusion annealing material of steel material No. 1 was also relatively evaluated assuming that it was 1.

第2表から明らかなように、成分組成が適正範囲を満
足し、かつ鍛圧加工時の圧下率:5%以上とした場合はい
ずれも、中心部の転動疲労寿命特性はD/4部と同等かあ
るいは若干優れており、したもD/4D部および中心部とも
転動疲労寿命特性が向上がしている。
As is evident from Table 2, when the component composition satisfies the appropriate range and the rolling reduction during forging is 5% or more, the rolling fatigue life characteristics at the center are D / 4 parts. Equal to or slightly better, but the rolling fatigue life characteristics of both the D / 4D part and the center part are improved.

また鍛造性も、圧下率5%以上の鍛圧加工を加えるこ
とによって、従来例にくらべ短い均熱時間で著しい向上
がみられ、十分な性能が得られている。
In addition, the forging property was significantly improved by applying a forging process with a rolling reduction of 5% or more with a shorter soaking time than the conventional example, and sufficient performance was obtained.

(発明の効果) かくしてこの発明によれば、従来の連続鋳造鋳片にお
いて問題とされた横断面軸心部の非金属介在物の微細化
および共晶炭化物の低減を達成することができ、また均
熱、保持時間の大幅な簡略化が可能となり、鍛造性のみ
ならず転動疲労寿命特性に優れた軸受用素材が得ること
ができる。
(Effects of the Invention) Thus, according to the present invention, it is possible to achieve the miniaturization of nonmetallic inclusions and the reduction of eutectic carbide at the axial center of the cross section, which are problems in the conventional continuous cast slab, and Heat soaking and holding time can be greatly simplified, and a bearing material excellent in not only forgeability but also rolling fatigue life characteristics can be obtained.

また、従来、中心偏析ならびに共晶炭化物の消散のた
め不可避とされた高温、長時間の拡散焼鈍を施す必要が
なくなり、専用の均熱炉が不要となる。
In addition, there is no need to perform high-temperature and long-time diffusion annealing, which has been conventionally unavoidable due to center segregation and dissipation of eutectic carbide, and a dedicated soaking furnace is not required.

さらに連続鋳造鋳片の全断面が軸受素材として適用可
能となることから、生産性ならびに材料歩留りの面でも
有利である。
Further, since the entire cross section of the continuous cast slab can be applied as a bearing material, it is advantageous in terms of productivity and material yield.

【図面の簡単な説明】 第1図aは、鍛圧加工における圧下率と鋳片のD/4部お
よび中心部の転動疲労寿命L0との関係を示したグラフ、
同図bは、鍛圧加工における圧下率と鋳片中心部の鍛造
性およびL0との関係を示したグラフ、 第2図は、鍛圧加工における圧下率と鋳片の中心部にお
ける共晶炭化物の大きさとの関係を示したグラフ、 第3図は、共晶炭化物の消散に必要な均熱保持温度と保
持時間との関係を鍛圧加工における圧下率パラメータと
して示したグラフである。
BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 a is a graph showing the relationship between the rolling contact fatigue life L 0 of D / 4 parts of rolling reduction and billet and the center of the forging process,
FIG. 2B is a graph showing the relationship between the reduction ratio in forging and the forging property and L 0 at the center of the slab, and FIG. 2 is a graph showing the relationship between the reduction ratio in forging and the eutectic carbide at the center of the slab. FIG. 3 is a graph showing the relationship between the soaking temperature and the holding time required for dissipating the eutectic carbide as a rolling reduction parameter in forging.

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.6 識別記号 FI C22C 38/18 C22C 38/18 (56)参考文献 特開 平3−226337(JP,A) 特開 平2−92444(JP,A) 特開 昭48−71318(JP,A) (58)調査した分野(Int.Cl.6,DB名) B22D 11/00 B21J 5/00 C22C 38/00 301 C22C 38/18 ──────────────────────────────────────────────────続 き Continuation of the front page (51) Int.Cl. 6 Identification symbol FI C22C 38/18 C22C 38/18 (56) References JP-A-3-226337 (JP, A) JP-A-2-92444 (JP) , A) JP-A-48-71318 (JP, A) (58) Fields investigated (Int. Cl. 6 , DB name) B22D 11/00 B21J 5/00 C22C 38/00 301 C22C 38/18

Claims (3)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】C:0.06〜1.50wt%、 Si:0.15〜2.00wt%、 Mn:0.15〜2.50wt%および Cr:1.00超〜3.00wt% を含み、残部はFeおよび不可避的不純物からなる溶鋼
を、連続鋳造し、鋳片内部が凝固を完了するクレータエ
ンド近傍にて圧下率5%以上の鍛圧加工を施し、ついで
均熱処理後、熱間圧延を施すことを特徴とする転動疲労
寿命に優れた軸受用素材の製造方法。
1. A molten steel containing C: 0.06 to 1.50% by weight, Si: 0.15 to 2.00% by weight, Mn: 0.15 to 2.50% by weight and Cr: more than 1.00 to 3.00% by weight, with the balance being Fe and inevitable impurities. Is continuously cast, subjected to forging at a rolling reduction of 5% or more near the crater end where the inside of the slab completes solidification, and then subjected to hot rolling after soaking heat treatment. Manufacturing method of excellent bearing material.
【請求項2】溶鋼の成分組成が、 C:0.60〜1.50wt%、 Si:0.15〜2.00wt%、 Mn:0.15〜2.50wt%および Cr:1.00超〜3.00wt% を含み、さらに Mo:0.05〜1.50wt%、 V:0.05〜0.50wt%、 Nb:0.05〜0.50wt%、 W:0.05〜0.50wt%、 Ni:0.10〜2.00wt%および Cu:0.05〜1.00wt% のうちから選んだ1種または2種以上を含有し、残部は
Feおよび不可避的不純物の組成になる請求項1記載の軸
受用素材の製造方法。
2. The composition of molten steel comprises: C: 0.60-1.50 wt%, Si: 0.15-2.00 wt%, Mn: 0.15-2.50 wt%, and Cr: more than 1.00-3.00 wt%, and Mo: 0.05 1 selected from the following: 1.50 wt%, V: 0.05-0.50 wt%, Nb: 0.05-0.50 wt%, W: 0.05-0.50 wt%, Ni: 0.10-2.00 wt%, and Cu: 0.05-1.00 wt%. Contains two or more species, with the balance being
2. The method for producing a bearing material according to claim 1, wherein the composition of Fe and unavoidable impurities is obtained.
【請求項3】均熱処理における処理条件が、1100〜1250
℃、2〜10時間である請求項1または2記載の軸受用素
材の製造方法。
3. The treatment condition in the soaking treatment is 1100-1250.
The method for producing a bearing material according to claim 1, wherein the temperature is 2 ° C. for 2 to 10 hours.
JP5082590A 1990-03-03 1990-03-03 Manufacturing method of bearing material with excellent rolling fatigue life Expired - Fee Related JP2905241B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5082590A JP2905241B2 (en) 1990-03-03 1990-03-03 Manufacturing method of bearing material with excellent rolling fatigue life

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5082590A JP2905241B2 (en) 1990-03-03 1990-03-03 Manufacturing method of bearing material with excellent rolling fatigue life

Publications (2)

Publication Number Publication Date
JPH03254339A JPH03254339A (en) 1991-11-13
JP2905241B2 true JP2905241B2 (en) 1999-06-14

Family

ID=12869548

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5082590A Expired - Fee Related JP2905241B2 (en) 1990-03-03 1990-03-03 Manufacturing method of bearing material with excellent rolling fatigue life

Country Status (1)

Country Link
JP (1) JP2905241B2 (en)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07127643A (en) * 1993-10-29 1995-05-16 Nippon Seiko Kk Rolling bearing
JP3303176B2 (en) * 1993-12-27 2002-07-15 光洋精工株式会社 Bearing parts
KR100446649B1 (en) * 2000-12-26 2004-09-04 주식회사 포스코 Method For Manufacturing Carbonitriding Bearing Steel
JP2004131793A (en) * 2002-10-10 2004-04-30 Daido Steel Co Ltd Part made of niobium-containing low alloy heat resistant steel, and production method therefor
CN103189535B (en) * 2010-11-29 2016-07-06 杰富意钢铁株式会社 The bearing steel of the excellent in workability after spheroidizing and the resistant to hydrogen excellent in fatigue characteristics after Q-tempering
CN103189536A (en) 2010-11-29 2013-07-03 杰富意钢铁株式会社 Bearing steel exhibiting excellent machinability after spheroidizing annealing and excellent resistance to hydrogen fatigue after quenching/tempering
JP5472548B1 (en) * 2012-04-10 2014-04-16 新日鐵住金株式会社 Wire rod, steel wire using the same, and steel slab

Also Published As

Publication number Publication date
JPH03254339A (en) 1991-11-13

Similar Documents

Publication Publication Date Title
KR101520208B1 (en) Case hardening steel, method for producing same, and mechanical structural part using case hardening steel
JP4252837B2 (en) Steel material with excellent rolling fatigue life and method for producing the same
JP2007162128A (en) Case hardening steel having excellent forgeability and crystal grain-coarsening prevention property, its production method and carburized component
JP2905243B2 (en) Manufacturing method of bearing material with excellent rolling fatigue life
JPH05214484A (en) High strength spring steel and its production
JP2905241B2 (en) Manufacturing method of bearing material with excellent rolling fatigue life
JP2986829B2 (en) Manufacturing method of bearing material with excellent rolling fatigue life
JP3764627B2 (en) Case-hardened boron steel for cold forging that does not generate abnormal structure during carburizing and its manufacturing method
JP3002392B2 (en) Method for manufacturing centrifugally cast composite roll
JP2700591B2 (en) Centrifugal casting composite roll
JP2905242B2 (en) Method for producing low Cr bearing steel material with excellent rolling fatigue life
JP3217661B2 (en) High strength ductile cast iron
JP3007834B2 (en) Bearing steel with excellent rolling fatigue characteristics
JP7464821B2 (en) Steel for bearing raceways and bearing raceways
JP3579558B2 (en) Bearing steel with excellent resistance to fire cracking
JP2900783B2 (en) Rolling intermediate roll with excellent fatigue strength
CN110983202A (en) Thermal fatigue resistant die-casting die steel and preparation method thereof
JP3201711B2 (en) Age-hardened steel for die casting
JPH09217143A (en) Steel for machine structural use, excellent in cold forgeability, induction hardenability, and rolling fatigue characteristics
JPH03258445A (en) Production of raw material for bearing having long service life and high strength
JPH05192744A (en) Manufacture of bar steel excellent in drawing workability
JP2003001307A (en) Roll
JP3019240B2 (en) Centrifugal casting composite roll
JP3620935B2 (en) Machine structural steel with excellent cold forgeability, induction hardenability and rolling fatigue properties
JPH03271319A (en) Production of bearing steel having long service life and high strength

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees