JP3620935B2 - Machine structural steel with excellent cold forgeability, induction hardenability and rolling fatigue properties - Google Patents

Machine structural steel with excellent cold forgeability, induction hardenability and rolling fatigue properties Download PDF

Info

Publication number
JP3620935B2
JP3620935B2 JP25632796A JP25632796A JP3620935B2 JP 3620935 B2 JP3620935 B2 JP 3620935B2 JP 25632796 A JP25632796 A JP 25632796A JP 25632796 A JP25632796 A JP 25632796A JP 3620935 B2 JP3620935 B2 JP 3620935B2
Authority
JP
Japan
Prior art keywords
steel
less
rolling fatigue
cold forgeability
hardenability
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP25632796A
Other languages
Japanese (ja)
Other versions
JPH09272946A (en
Inventor
聡 安本
隆 岩本
卓哉 厚見
俊幸 星野
虔一 天野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
JFE Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JFE Steel Corp filed Critical JFE Steel Corp
Priority to JP25632796A priority Critical patent/JP3620935B2/en
Publication of JPH09272946A publication Critical patent/JPH09272946A/en
Application granted granted Critical
Publication of JP3620935B2 publication Critical patent/JP3620935B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Description

【0001】
【発明の属する技術分野】
本発明は、自動車用等の機械部品に使用される機械構造用鋼に関し、とくに、高周波焼入れ処理を施される、例えば等速ジョイント用アウターレースなど、転動部品に用いて好適な機械構造用鋼に関する。
【0002】
【従来の技術】
近年、環境問題から、自動車部材に対して部品の軽量化の要求が強く、この点から自動車用部材の高強度化が要求されている。また、自動車用エンジンの高出力化に伴い、部品の大型化・重量増を避ける意味から、特に等速ジョイントアウターレースなどの駆動系部品に対し、高強度化による軽量化、および転動疲労寿命の向上など耐久性の向上が極めて強く要求されるようになっている。
【0003】
従来、自動車用部材などの機械構造用部材は、熱間圧延棒鋼に熱間鍛造、あるいはさらに焼きならし、焼なまし処理を施し、切削、冷間鍛造等により所定の形状に加工したのち、高周波焼入れ焼戻しを行い、機械構造用部材として重要な特性を確保しているのが一般的である。しかし最近では、熱間鍛造では、寸法精度が悪く、その後重切削する必要があることから、球状化焼なまし後に冷間鍛造により加工するプロセスが採用される傾向にある。
【0004】
高周波焼入れは、表層部のみを焼入れする一種の表面硬化処理であり、鋼材の強度や疲労特性の向上を図る目的で行われ、部品の最終品質を決定している。この高周波焼入れは、処理時間が非常に短いことから生産性、作業性に優れ、広く適用されている。このようなことから、部品の高強度化には、C量の増加により高周波焼入れ焼戻し後の硬さを上昇させる手段が容易に考えられる。現在、冷間鍛造を施す用途に用いる鋼材として、C:0.48%のS48Cがもっとも多く利用されている。
【0005】
しかし、これ以上のC量の増加は、とくに、C:0.50%以上の鋼において、冷間鍛造時の変形抵抗が高くなりすぎ、冷間鍛造機の能力を超える場合が生じるという問題があった。
このような状況から、鋼中C量を高めても、冷間鍛造が可能な鋼材の開発が要望され、たとえば、特開平2−129341号公報には、高周波焼入れ性および冷間鍛造性が優れた鋼材が提案されている。この鋼材は、フェライトの変形抵抗を低下させるため、Siの添加を制限し、C、Nと結合し易いTiを添加し、さらに焼入れ性の増加のためBを添加し、Mn、Cr量を適正化することにより、冷間鍛造性を損なうことなく高周波焼入れ後の硬さを高めることで高強度化を図るものである。
【0006】
一方、転動疲労寿命の向上にも、C量の増大による高周波焼入れ後の硬さの上昇が有効であるが、特開平2−129341号公報に記載された技術では、冷間鍛造性から添加可能なC量が0.60%以下に限定されており、転動疲労寿命の向上に限界があるという問題があった。
【0007】
【発明が解決しようとする課題】
本発明は、上記した状況に鑑み、冷間鍛造性、高周波焼入れ性および転動疲労特性に優れた機械構造用鋼を提供することを目的とする。本発明では、機械部品として現在使用されているS48C鋼と同等あるいはそれ以上の冷間鍛造性、高周波焼入れ性を有し、かつより一層の転動疲労寿命向上を達成する機械構造用鋼を目的とする。
【0008】
【課題を解決するための手段】
本発明者らは、上記問題点を有利に解決するため鋭意検討した結果、鋼中Si量の増大、Mo、Bの添加ならびに鋼中Mn、Cr、Ti、N量を適正値に制御することにより、球状化焼なまし後の冷間鍛造性および高周波焼入れ性を損なうことなく、高周波焼入れ後の転動疲労寿命を著しく向上できることを新たに見いだし、本発明を構成した。
【0009】
すなわち、本発明は、重量比で、C:0.40〜0.80%、Si:0.15 1.20%、Mn:0.40%未満、S:0.020 %以下、Al:0.01〜0.05%未満、Cr:0.10%以下、B:0.0003〜0.0030%、Ti:0.005 〜0.05%、N:0.007 %以下、O:0.0020%以下を含有し、残部Feおよび不可避的不純物からなることを特徴とする冷間鍛造性、高周波焼入れ性および転動疲労特性に優れた機械構造用鋼である。
【0010】
また、本発明は上記組成に加えて、さらにMo:0.05〜0.50%を添加できる。
【0011】
【発明の実施の形態】
まず、本発明における、成分組成の限定理由について説明する。
C:0.40〜0.80%
Cは、高周波焼入れ性への影響が最も大きい元素であり、焼入れ硬化層の硬さおよび深さを高めるうえで有用である。その効果を得るためには少なくとも0.40%以上必要であるが、0.80%を超えると効果が飽和するとともに冷間鍛造性を劣化させる。このため、Cは0.40〜0.80%の範囲とした。なお、冷間鍛造性と高周波焼入性のバランスの観点から、好ましくは、0.55〜0.75%である。
【0012】
Si:0.15 1.20%
Siは、脱酸剤として作用し鋼の低酸素化に寄与する。また、高周波焼入れ焼戻し後の強度を高めるとともに、繰り返し応力負荷による硬さの低下を抑制し、転動疲労寿命の向上に有効な元素である。これらの効果を得るためには、少なくとも0.15%の添加が必要である。しかし、1.20%を超えると冷間鍛造時の変形抵抗を上昇させる。したがって、Siは0.15 1.20%の範囲とする。なお、両者のバランスを最適とする好ましいSiの範囲は、0.15 1.00%である。
【0013】
Mn:0.40%未満
Mnは、高周波焼入れ性を高める元素であるが、球状化焼なまし処理時にフェライト中に固溶し、フェライトを強化し、冷間鍛造時の変形抵抗を上昇させる。このため、本発明では可能なかぎり低減する。フェライトの軟化のために許容できる上限は、0.40%未満である。なお、好ましいMnの上限は0.30%である。
【0014】
S:0.020 %以下
SはMnと結合してMnS を形成し、冷間鍛造性を低下させるため極力低減することが望ましいが、0.020 %までは許容できる。したがって、Sは0.020 %以下とする。
Al:0.01〜0.05%未満
Alは、強力な脱酸剤として、鋼中O量の低減に有効な元素であり、0.01%未満ではこの効果が小さく、また、0.05%以上添加すると、上記効果が飽和するうえ、固溶体強化により冷間鍛造性を劣化させるので、Alは0.01〜0.05%未満の範囲とした。
【0015】
Cr:0.10%以下
Crは、球状化焼なまし時に、炭化物中に固溶し、高周波焼入れ時に炭化物を難溶解性とし、高周波焼入れ性を劣化させ疲労特性を低下させるため、極力低減するのが望ましいが、好ましいCrの範囲は0.10%以下であるので、 Cr 0.10 %以下とした
【0016】
B:0.0003〜0.0030%
Bは、焼入れ性を高め、高周波焼入れ時の焼入れ深さを高めるのに有効である。この効果は、0.0003%以上の添加で認められる。しかし、0.0030%を超えると鋳片割れを生じ易くなり、生産性を劣化させる。そのため、Bは0.0003〜0.0030%の範囲とした。なお、好ましくは0.0005〜0.0030%である。
【0017】
Ti:0.005 〜0.05%
Tiは、Bに比べNとの結合力が強く、固溶Nを低減する効果を有している。固溶Nの減少により、歪時効を抑制し冷間鍛造時の変形抵抗が小さくなり、また、Bの高周波焼入れ性向上効果を有効に作用させる。このような効果は0.005 %以上の添加で認められる。しかし、0.05%を超えて添加すると、巨大なTiN を形成し、転動疲労寿命を低下させる。したがって、Tiは、0.005 〜0.05%の範囲とした。なお、Bの焼入れ性向上効果を有効に作用させるためには、TiはNの3.5 倍以上とする必要がある。
【0018】
N:0.007 %以下
Nは、フェライト中に固溶した場合には歪時効を生じ、冷間鍛造時の変形抵抗を増加させ、あるいはBと結合しBNを形成した場合にはBの高周波焼入れ性向上効果を阻害するため、極力低減することが望ましい。上記Tiとの兼ね合いから0.007 %までは許容できる。このため、Nは0.007 %以下とした。
【0019】
O:0.0020%以下
Oは、酸化物を形成し、冷間鍛造性および転動疲労寿命を低下させるため、極力低減するのが望ましいが、0.0020%までは許容できる。このため、Oは0.0020%以下とした。
Mo:0.05〜0.50%
Moは、焼入れ性向上に有用な元素であり、焼入れ性が特に要求される場合に添加する。焼入れ性向上は、0.05%以上の添加で効果が認められるが、0.50%を超えると著しく硬化し冷間鍛造時の変形抵抗が上昇する。このため、Moは0.05〜0.50%の範囲とした。なお、好ましくは0.05〜0.30%である。
【0020】
その他、不可避的不純物を含有するが、特にPは、鋼を硬化させる元素であり、また、結晶粒界等に偏析し、材質を劣化させるため、極力低減するのが望ましいが、0.020 %まで許容される。
本発明鋼の製造方法は、常法にしたがい製造すればよくとくに限定しない。溶製方法は、転炉あるいは電気炉で溶製し、RH脱ガス等の真空脱ガス、取鍋での精錬などを付加してもよい。溶鋼は連続鋳造法あるいは造塊法で凝固させ、凝固させた後、熱間圧延あるいは熱間・温間鍛造を経て所定の形状の素材とする。これら素材は、必要により焼ならしを施した後、球状化焼なましを行う。次いで、切削、鍛造などの冷間加工により所望の形状に仕上げられ、さらに、高周波焼入れ焼戻しなどの熱処理により、所望の特性を付与される。
【0021】
【実施例】
表1に示す化学組成を有する鋼を転炉で溶製し、連続鋳造により400 ×560mm のブルームとしたのち熱間圧延により34mmφの棒鋼とした。ついで、これら棒鋼に焼ならし、球状化焼なましを施し、下記に示す試験を実施し、その結果を表2に示す。
【0022】
【表1】

Figure 0003620935
【0023】
【表2】
Figure 0003620935
【0024】
(1)冷間鍛造試験
上記棒鋼から機械加工により、冷間鍛造試験用として、15mmφ×22.5mmの円柱状試験片を採取した。冷間鍛造試験は端面完全拘束の条件で、遂次圧縮を行い、限界圧縮率、圧縮率70%での変形抵抗を求めた。冷間鍛造試験は1鋼種あたり10個の試験片を用いた。ここで、限界圧縮率は、試験片の50%が割れを発生する圧縮率をいう。
(2)高周波焼入れ試験
上記棒鋼から機械加工により、12mmφ×100mm の試験片を採取し、これに周波数15kHz の高周波焼入れ装置を用いて焼入れし、 150℃×60min の焼戻しを施して、表面硬さ、有効硬化深さを測定した。ここで、有効硬化深さとはHv392 以上の硬さとなる表面からの距離をいう。
(3)転動疲労試験
上記棒鋼から機械加工により、12mmφ×100mm の試験片を採取し、これに周波数15kHz の高周波焼入れ装置を用いて焼入れし、 150℃×60min の焼戻しを施したのち切断し、12mmφ×22mmの試験片を採取し、ラジアル型転動疲労試験機により転動疲労寿命を求めた。試験条件は、ヘルツ最大接触応力:600kgf/mm、繰り返し応力数:約46500cpm、潤滑:#68タービン飛沫油である。これら試験結果がワイブル分布に従うものとして確率紙上にプロットし、B10寿命(累積破損確率:10%での剥離発生までの総負荷回数)を求めた。各鋼の転動疲労寿命を鋼No.1を基準として、鋼No.1の寿命に対する比で評価した。
【0025】
鋼No.1はS48Cの従来鋼で、限界圧縮率63%、変形抵抗856MPaの冷間鍛造性を、表面硬さHRC55.0 、有効硬化深さ2.3mm の高周波焼入れ性を有している。
鋼No.23 はSiが本発明範囲より低い、特開平2−129341号相当鋼である。鋼No.1に比べてC量が高く、冷間鍛造性、高周波焼入れ性ならびに転動疲労寿命のいずれも鋼No.1と同等以上である。
【0026】
鋼No.2〜No.10 は、本発明例であり、表面硬さHRC58.8 〜62.2、有効硬化深さ 2.5〜3.1mm と鋼No.1にくらべ高い高周波焼入れ性を有している。また、限界圧縮率は63〜65%と鋼No.1と同等またはそれ以上に高く、圧縮率70%における変形抵抗は 748〜811MPaと鋼No.1にくらべ低く、すぐれた冷間鍛造性を有している。さらに、B10寿命は鋼No.1の3.1 〜8.3 倍と優れている。
【0027】
一方、鋼No.11 〜No.22 は比較例である。
鋼No.11 および鋼No.16 はMnが、鋼No.13 はCが、鋼No.15 はSiが、鋼No.22 はSが本発明範囲外であるため、高周波焼入れ性、転動疲労寿命は鋼No.1あるいは鋼No.23 にくらべ優れているが、限界圧縮率が低いか、変形抵抗が高いかで、冷間鍛造性は鋼No.1に比較し不十分である。
【0028】
鋼No.12 はCが本発明範囲より低いため、冷間鍛造性は鋼No.1と同等以上であるが、転動疲労寿命が鋼No.1にくらべ劣り、さらに、表面硬さがHRC53.2 と鋼No.1にくらべ低い。
鋼No.14 はSiが本発明範囲より低いため、冷間鍛造性、高周波焼入れ性は鋼No.1と同等以上であるが、転動疲労寿命が鋼No.1あるいは鋼No.23 と大差なく不十分である。
【0029】
鋼No.17 はCrが、鋼No.18 はBが本発明範囲外であるため、冷間鍛造性、転動疲労寿命は鋼No.1あるいは鋼No.23 と同等以上であるが、高周波焼入れ性のうち表面硬さは鋼No.1より高いものの、有効硬化深さが2.0 mmと鋼No.1より劣る。
鋼No.19 はTiが、鋼No.21 はOが本発明範囲外であるため、鋼No.1にくらべ転動疲労寿命が劣る。
【0030】
鋼No.20 はTiが本発明範囲より低いため、冷間鍛造性、転動疲労寿命は鋼No.1あるいはNo.23 と同等以上である。高周波焼入れ性のうち表面硬さは鋼No.1より高いが、有効硬化深さが2.0 mmと鋼No.1より劣る。
【0031】
【発明の効果】
本発明によれば、S48C鋼と同等あるいはそれ以上の冷間鍛造性を有し、かつ高周波焼入れ性および転動疲労特性に優れた機械構造用鋼材を容易に得ることができ、機械部品、とくに転動部品の高品質化に寄与でき、産業上の利用価値は大である。[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a machine structural steel used for machine parts such as automobiles, and more particularly to a machine structure suitable for use in rolling parts such as outer races for constant velocity joints that are subjected to induction hardening. Related to steel.
[0002]
[Prior art]
In recent years, due to environmental problems, there is a strong demand for weight reduction of parts for automobile members, and in this respect, higher strength of automobile members is required. In addition, with the increase in the output of automobile engines, in order to avoid an increase in the size and weight of the parts, especially for drivetrain parts such as constant velocity joint outer races, weight reduction and rolling fatigue life due to increased strength. There is a strong demand for improved durability, such as improvement of the durability.
[0003]
Conventionally, mechanical structural members such as automobile members are subjected to hot forging or further normalizing, further annealing, and processing into a predetermined shape by cutting, cold forging, etc. In general, induction hardening and tempering are performed to ensure important properties as a machine structural member. However, recently, in hot forging, since the dimensional accuracy is poor and it is necessary to perform heavy cutting thereafter, there is a tendency to adopt a process of processing by cold forging after spheroidizing annealing.
[0004]
Induction hardening is a kind of surface hardening treatment in which only the surface layer is hardened, and is performed for the purpose of improving the strength and fatigue characteristics of the steel material, and determines the final quality of the part. This induction hardening is excellent in productivity and workability because the processing time is very short, and is widely applied. For this reason, a means for increasing the hardness after induction hardening and tempering by increasing the amount of C can be easily considered to increase the strength of the component. At present, as a steel material used for cold forging, C: 0.48% S48C is most frequently used.
[0005]
However, the increase in the C content beyond this is a problem that the deformation resistance at the time of cold forging becomes excessively high especially in the steel of C: 0.50% or more, which may exceed the capacity of the cold forging machine. there were.
Under such circumstances, development of a steel material that can be cold forged even if the amount of C in the steel is increased is desired. For example, Japanese Patent Application Laid-Open No. 2-129341 discloses excellent induction hardenability and cold forgeability. Steel has been proposed. In order to reduce the deformation resistance of ferrite, this steel material restricts the addition of Si, adds Ti that is easy to bond with C and N, and further adds B to increase hardenability, so that the amount of Mn and Cr is appropriate. By increasing the hardness, the strength after induction hardening is increased without impairing the cold forgeability, thereby increasing the strength.
[0006]
On the other hand, an increase in hardness after induction hardening due to an increase in the amount of C is also effective for improving the rolling fatigue life. However, in the technique described in JP-A-2-129341, it is added from the cold forgeability. The possible amount of C is limited to 0.60% or less, and there is a problem that there is a limit in improving the rolling fatigue life.
[0007]
[Problems to be solved by the invention]
An object of this invention is to provide the steel for machine structures excellent in cold forgeability, induction hardenability, and rolling fatigue characteristics in view of the above situation. The object of the present invention is a steel for machine structure that has cold forgeability and induction hardenability equivalent to or higher than S48C steel currently used as a machine part, and achieves further improvement in rolling fatigue life. And
[0008]
[Means for Solving the Problems]
As a result of intensive investigations to advantageously solve the above problems, the present inventors have increased the amount of Si in the steel, added Mo and B, and controlled the amounts of Mn, Cr, Ti, and N in the steel to appropriate values. Thus, it has been found that the rolling fatigue life after induction hardening can be remarkably improved without impairing the cold forgeability and induction hardening after spheroidizing annealing.
[0009]
That is, the present invention is, by weight ratio, C: 0.40~0.80%, Si: . 0 15 ~ 1.20%, Mn: less than 0.40%, S: 0.020% or less, Al: less than 0.01~0.05%, Cr: 0. Cold forgeability characterized by containing 10 % or less, B: 0.0003 to 0.0030%, Ti: 0.005 to 0.05%, N: 0.007% or less, O: 0.0020% or less, and remaining Fe and unavoidable impurities It is a steel for machine structure having excellent induction hardenability and rolling fatigue characteristics.
[0010]
Moreover, in addition to the said composition, this invention can add Mo: 0.05-0.50% further.
[0011]
DETAILED DESCRIPTION OF THE INVENTION
First, the reason for limiting the component composition in the present invention will be described.
C: 0.40 to 0.80%
C is an element having the greatest influence on the induction hardenability, and is useful for increasing the hardness and depth of the quench hardened layer. In order to obtain the effect, at least 0.40% is necessary. However, if it exceeds 0.80%, the effect is saturated and the cold forgeability is deteriorated. For this reason, C was made into the range of 0.40 to 0.80%. In addition, from a viewpoint of the balance between cold forgeability and induction hardenability, 0.55 to 0.75% is preferable.
[0012]
Si:. 0 15 ~ 1.20%
Si acts as a deoxidizer and contributes to the reduction of oxygen in the steel. In addition, it is an element effective in improving the rolling fatigue life by increasing the strength after induction hardening and tempering and suppressing the decrease in hardness due to repeated stress loading. In order to obtain these effects, it is necessary to add at least 0.15 % . However, if it exceeds 1.20%, the deformation resistance during cold forging is increased. Therefore, Si is in the range of 0.15 to 1.20%. The range of preferred Si to optimize the balance between the two is from 0.15 to 1.00%.
[0013]
Mn: Less than 0.40% Mn is an element that enhances induction hardenability, but dissolves in ferrite during spheroidizing annealing, strengthens ferrite, and increases deformation resistance during cold forging. For this reason, in the present invention, it is reduced as much as possible. The upper limit allowable for softening ferrite is less than 0.40%. A preferable upper limit of Mn is 0.30%.
[0014]
S: 0.020% or less S is combined with Mn to form MnS, and it is desirable to reduce it as much as possible in order to reduce the cold forgeability, but it is acceptable up to 0.020%. Therefore, S is made 0.020% or less.
Al: 0.01 to less than 0.05% Al is an effective element for reducing the amount of O in steel as a powerful deoxidizer, and if less than 0.01%, this effect is small. When added in an amount of at least%, the above effect is saturated, and cold forgeability is deteriorated by solid solution strengthening, so Al was made in a range of 0.01 to less than 0.05%.
[0015]
Cr:. 0 10% or less
Cr, upon spheroidizing annealing, solid solution in a carbide, a carbide during induction hardening and low solubility, to reduce the fatigue properties deteriorate the high-frequency hardenability, but as much as possible is desirable to reduce, better good Since the range of Cr is 0.10 % or less , Cr is set to 0.10 % or less .
[0016]
B: 0.0003 to 0.0030%
B is effective for increasing the hardenability and increasing the quenching depth during induction quenching. This effect is recognized with addition of 0.0003% or more. However, if it exceeds 0.0030%, slab cracking is likely to occur, and productivity is deteriorated. Therefore, B is set in the range of 0.0003 to 0.0030%. In addition, Preferably it is 0.0005 to 0.0030%.
[0017]
Ti: 0.005 to 0.05%
Ti has a stronger binding force with N than B and has an effect of reducing solid solution N. By reducing the solid solution N, strain aging is suppressed, the deformation resistance during cold forging is reduced, and the effect of improving the induction hardenability of B is made effective. Such an effect is recognized by addition of 0.005% or more. However, if added over 0.05%, huge TiN is formed and the rolling fatigue life is reduced. Therefore, Ti is set to a range of 0.005 to 0.05%. In order to effectively act the hardenability improvement effect of B, Ti needs to be 3.5 times or more of N.
[0018]
N: 0.007% or less N, when dissolved in ferrite, causes strain aging, increases deformation resistance during cold forging, or when combined with B to form BN, the high frequency of B In order to inhibit the effect of improving hardenability, it is desirable to reduce as much as possible. From the balance with Ti, 0.007% is acceptable. For this reason, N was made into 0.007% or less.
[0019]
O: 0.0020% or less O forms oxides and lowers the cold forgeability and rolling fatigue life, so it is desirable to reduce it as much as possible, but 0.0020% is acceptable. For this reason, O was made into 0.0020% or less.
Mo: 0.05 to 0.50%
Mo is an element useful for improving hardenability, and is added when hardenability is particularly required. The effect of improving the hardenability is recognized when 0.05% or more is added, but when it exceeds 0.50%, it hardens significantly and the deformation resistance during cold forging increases. For this reason, Mo was made into the range of 0.05 to 0.50%. In addition, Preferably it is 0.05 to 0.30%.
[0020]
In addition, inevitable impurities are contained, but P is an element that hardens steel, and segregates at the grain boundaries and degrades the material, so it is desirable to reduce it as much as possible, but 0.020% Is allowed up to.
The method for producing the steel of the present invention is not particularly limited as long as it is produced according to a conventional method. As a melting method, melting may be performed in a converter or an electric furnace, and vacuum degassing such as RH degassing or refining in a ladle may be added. The molten steel is solidified by a continuous casting method or an ingot forming method, solidified, and then subjected to hot rolling or hot / warm forging to obtain a material having a predetermined shape. These materials are subjected to spheroidizing annealing after normalizing if necessary. Subsequently, it is finished into a desired shape by cold working such as cutting and forging, and further desired characteristics are imparted by heat treatment such as induction hardening and tempering.
[0021]
【Example】
Steel having the chemical composition shown in Table 1 was melted in a converter and made into a 400 × 560 mm bloom by continuous casting, and then hot rolled to form a 34 mmφ steel bar. Subsequently, these steel bars were normalized, subjected to spheroidizing annealing, and the following test was performed. The results are shown in Table 2.
[0022]
[Table 1]
Figure 0003620935
[0023]
[Table 2]
Figure 0003620935
[0024]
(1) Cold forging test A 15 mmφ × 22.5 mm cylindrical test piece was sampled from the above bar steel by machining for cold forging test. In the cold forging test, successive compression was performed under the condition of complete restraint of the end face, and the deformation resistance at the limit compression rate and the compression rate of 70% was obtained. The cold forging test used 10 test pieces per steel type. Here, the critical compression ratio refers to a compression ratio at which 50% of the test piece generates cracks.
(2) Induction hardening test A test piece of 12 mmφ × 100 mm was collected from the above steel bar by machining, and was hardened using an induction hardening apparatus with a frequency of 15 kHz, and tempered at 150 ° C. × 60 min to obtain surface hardness. The effective curing depth was measured. Here, the effective curing depth refers to the distance from the surface having a hardness of Hv392 or higher.
(3) Rolling fatigue test A 12 mmφ x 100 mm test piece was sampled from the above steel bar by machining, quenched using an induction hardening device with a frequency of 15 kHz, cut after tempering at 150 ° C for 60 min. , 12 mmφ × 22 mm test specimens were collected, and the rolling fatigue life was determined by a radial type rolling fatigue tester. Test conditions are Hertz maximum contact stress: 600 kgf / mm 2 , repetitive stress number: about 46500 cpm, lubrication: # 68 turbine splash oil. These test results are plotted on a probability paper as conforming to the Weibull distribution, B 10 life: was obtained (cumulative failure probability total load count until flaking occurs at 10%). The rolling fatigue life of each steel is shown in Steel No. 1 as a reference, steel no. The ratio was evaluated based on the ratio of 1 to the lifetime.
[0025]
Steel No. 1 is a conventional steel of S48C, which has a cold forgeability with a limit compression ratio of 63%, a deformation resistance of 856 MPa, and an induction hardenability with a surface hardness HRC of 55.0 and an effective hardening depth of 2.3 mm.
Steel No. No. 23 is a steel equivalent to JP-A-2-129341 in which Si is lower than the range of the present invention. Steel No. The amount of C is higher than that of steel No. 1, and all of the cold forgeability, induction hardenability and rolling fatigue life are steel No. 1. 1 or more.
[0026]
Steel No. 2-No. 10 is an example of the present invention, surface hardness HRC 58.8 to 62.2, effective hardening depth 2.5 to 3.1 mm and steel No. Higher induction hardenability than 1. Further, the critical compression ratio is 63 to 65%, which is Steel No. No. 1 or higher, deformation resistance at a compression rate of 70% is 748-811 MPa, steel No. 1. Lower than 1 and has excellent cold forgeability. Further, B 10 life Steel No. 1 to 3.1 to 8.3 times better.
[0027]
On the other hand, Steel No. 11-No. 22 is a comparative example.
Steel No. 11 and steel no. 16 is Mn. 13 is C, steel no. 15 is Si. No. 22 is outside the scope of the present invention, so the induction hardenability and rolling fatigue life of steel no. 1 or steel no. 23, but the cold forgeability is the same as that of steel No. 23, depending on whether the critical compression ratio is low or the deformation resistance is high. It is insufficient compared with 1.
[0028]
Steel No. No. 12 has C lower than the range of the present invention, so that the cold forgeability is steel No. 12. 1 or more, but the rolling fatigue life is Steel No. 1. 1 and inferior to HRC53.2 and steel No. 1 in surface hardness. Lower than 1
Steel No. No. 14 has Si lower than the range of the present invention, so that the cold forgeability and induction hardenability are the same as those of Steel No. 14. 1 or more, but the rolling fatigue life is Steel No. 1. 1 or steel no. 23 is not enough.
[0029]
Steel No. 17 is Cr. Since B is outside the scope of the present invention, the cold forgeability and rolling fatigue life of Steel No. 18 1 or steel no. No. 23, but the surface hardness of the induction hardenability is steel No. 23. Although it is higher than 1, the effective hardening depth is 2.0 mm and steel no. Inferior to 1.
Steel No. 19 is Ti. 21 is out of the scope of the present invention. The rolling fatigue life is inferior to 1.
[0030]
Steel No. No. 20 has Ti lower than the range of the present invention. 1 or No. It is equal to or more than 23. Of the induction hardenability, the surface hardness is steel no. Although it is higher than 1, the effective hardening depth is 2.0 mm and steel no. Inferior to 1.
[0031]
【The invention's effect】
According to the present invention, it is possible to easily obtain a steel material for machine structure having a cold forgeability equivalent to or higher than that of S48C steel and excellent in induction hardenability and rolling fatigue characteristics, It can contribute to improving the quality of rolling parts and has great industrial utility value.

Claims (2)

重量比で、
C:0.40〜0.80%、
Si:0.15 1.20%、
Mn:0.40%未満、
S:0.020 %以下、
Al:0.01〜0.05%未満、
Cr:0.10%以下、
B:0.0003〜0.0030%、
Ti:0.005 〜0.05%、
N:0.007 %以下、
O:0.0020%以下
を含有し、残部Feおよび不可避的不純物からなることを特徴とする冷間鍛造性、高周波焼入れ性および転動疲労特性に優れた機械構造用鋼。
By weight,
C: 0.40 to 0.80%,
Si:. 0 15 ~ 1.20% ,
Mn: less than 0.40%,
S: 0.020% or less,
Al: 0.01 to less than 0.05%,
Cr:. 0 10% or less,
B: 0.0003 to 0.0030%,
Ti: 0.005 to 0.05%,
N: 0.007% or less,
O: Steel for machine structure excellent in cold forgeability, induction hardenability and rolling fatigue characteristics, characterized by containing 0.0020% or less and the balance being Fe and inevitable impurities.
重量比で、
C:0.40〜0.80%、
Si:0.15 1.20%、
Mn:0.40%未満、
S:0.020 %以下、
Al:0.01〜0.05%未満、
Cr:0.10%以下、
B:0.0003〜0.0030%、
Ti:0.005 〜0.05%、
N:0.007 %以下、
O:0.0020%以下
を含み、さらに、
Mo:0.05〜0.50%
を含有し、残部Feおよび不可避的不純物からなることを特徴とする冷間鍛造性、高周波焼入れ性および転動疲労特性に優れた機械構造用鋼。
By weight,
C: 0.40 to 0.80%,
Si:. 0 15 ~ 1.20% ,
Mn: less than 0.40%,
S: 0.020% or less,
Al: 0.01 to less than 0.05%,
Cr:. 0 10% or less,
B: 0.0003 to 0.0030%,
Ti: 0.005 to 0.05%,
N: 0.007% or less,
O: Including 0.0020% or less,
Mo: 0.05-0.50%
A steel for machine structural use, which is excellent in cold forgeability, induction hardenability and rolling fatigue characteristics, characterized by comprising Fe and balance Fe and inevitable impurities.
JP25632796A 1996-02-09 1996-09-27 Machine structural steel with excellent cold forgeability, induction hardenability and rolling fatigue properties Expired - Fee Related JP3620935B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP25632796A JP3620935B2 (en) 1996-02-09 1996-09-27 Machine structural steel with excellent cold forgeability, induction hardenability and rolling fatigue properties

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP8-24115 1996-02-09
JP2411596 1996-02-09
JP25632796A JP3620935B2 (en) 1996-02-09 1996-09-27 Machine structural steel with excellent cold forgeability, induction hardenability and rolling fatigue properties

Publications (2)

Publication Number Publication Date
JPH09272946A JPH09272946A (en) 1997-10-21
JP3620935B2 true JP3620935B2 (en) 2005-02-16

Family

ID=26361603

Family Applications (1)

Application Number Title Priority Date Filing Date
JP25632796A Expired - Fee Related JP3620935B2 (en) 1996-02-09 1996-09-27 Machine structural steel with excellent cold forgeability, induction hardenability and rolling fatigue properties

Country Status (1)

Country Link
JP (1) JP3620935B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6237186B2 (en) * 2013-12-11 2017-11-29 愛知製鋼株式会社 Machine structural steel with excellent machinability and rolling fatigue life characteristics
JP6350156B2 (en) * 2014-09-12 2018-07-04 愛知製鋼株式会社 Crankshaft and crankshaft steel

Also Published As

Publication number Publication date
JPH09272946A (en) 1997-10-21

Similar Documents

Publication Publication Date Title
JP2012214832A (en) Steel for machine structure and method for producing the same
JP2938101B2 (en) Manufacturing method of steel for cold forging
JP2001026836A (en) Steel for induction hardening and parts for machine structure excellent in cold workability, rolling fatigue strength and twisting fatigue strength
JP3539529B2 (en) Machine structural steel with excellent cold forgeability, induction hardenability and rolling fatigue properties
JP3620935B2 (en) Machine structural steel with excellent cold forgeability, induction hardenability and rolling fatigue properties
JP2841468B2 (en) Bearing steel for cold working
JP3857835B2 (en) Steel for high strength bolt and method for producing high strength bolt
JPH03254342A (en) Manufacture of raw material for bearing having excellent service life to rolling fatigue
JP6390685B2 (en) Non-tempered steel and method for producing the same
JP2905241B2 (en) Manufacturing method of bearing material with excellent rolling fatigue life
JP2905242B2 (en) Method for producing low Cr bearing steel material with excellent rolling fatigue life
JP3644217B2 (en) Induction-hardened parts and manufacturing method thereof
JP3728014B2 (en) Machine structural steel with excellent cold forgeability and induction hardenability
WO2004035848A1 (en) Steel material for mechanical structure excellent in suitability for rolling, quenching crack resistance, and torsional property and drive shaft
JP3154036B2 (en) Machine structural steel with excellent cold workability
JP3760589B2 (en) Steel for cold forging
JPH10152748A (en) Steel for machine structure excellent in cold forgeability, induction hardenability and rolling fatigue characteristic
JP3320958B2 (en) Steel for mechanical structure excellent in machinability and resistance to fire cracking and method for producing the same
JP3815354B2 (en) Bearing member with excellent rolling fatigue characteristics and workability in high-frequency heat-treated parts
JPH09217144A (en) Steel for machine structural use, excellent in cold forgeability, induction hardenability, and rolling fatigue characteristic
JP3368556B2 (en) High-strength rail with excellent rolling fatigue resistance and its manufacturing method
JPH08109438A (en) High strength rail excellent in ductility and toughness and its production
JP4135852B2 (en) Tempering steel suitable for machining in sub-hot temperature range
JP2594865B2 (en) Centrifugal casting roll and manufacturing method thereof
JPH02145744A (en) Carbon steel for machine structural use having excellent cold forgeability and induction hardenability

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20041021

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20041116

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20071126

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081126

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091126

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101126

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111126

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111126

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121126

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131126

Year of fee payment: 9

LAPS Cancellation because of no payment of annual fees