JP3007834B2 - Bearing steel with excellent rolling fatigue characteristics - Google Patents
Bearing steel with excellent rolling fatigue characteristicsInfo
- Publication number
- JP3007834B2 JP3007834B2 JP7323357A JP32335795A JP3007834B2 JP 3007834 B2 JP3007834 B2 JP 3007834B2 JP 7323357 A JP7323357 A JP 7323357A JP 32335795 A JP32335795 A JP 32335795A JP 3007834 B2 JP3007834 B2 JP 3007834B2
- Authority
- JP
- Japan
- Prior art keywords
- less
- excluding
- rolling fatigue
- bearing steel
- center
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
Landscapes
- Rolling Contact Bearings (AREA)
Description
【0001】[0001]
【発明の属する技術分野】本発明は、自動車や各種産業
機械などに使用される玉軸受やローラ軸受などの軸受用
として、優れた転動疲労特性を有する軸受鋼に関するも
のである。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a bearing steel having excellent rolling fatigue characteristics for bearings such as ball bearings and roller bearings used in automobiles and various industrial machines.
【0002】[0002]
【従来の技術】上記の様な用途に用いられる軸受鋼とし
ては、従来よりJIS G 4805に規定されるSU
J2等の高炭素クロム軸受鋼が主として用いられてき
た。ところがこれらの軸受鋼は、高炭素であるため鋳造
時にC等の元素が中心偏析を起こし、その後に分塊や熱
間圧延を行なっても該偏析部に図1に示す様な巨大炭化
物となって現われることがある。そしてこの様な巨大炭
化物が生成したものでは、その後に球状化焼なましや焼
入れ・焼戻し等の工程を経て軸受部品に加工された後も
該巨大炭化物が残存し、これが応力集中源となって転動
疲労寿命を低下させることが経験的に確認されている。2. Description of the Related Art As bearing steel used for the above-mentioned applications, there has been conventionally used a SU as defined in JIS G 4805.
High carbon chromium bearing steels such as J2 have been mainly used. However, since these bearing steels are high carbon, elements such as C cause segregation at the center during casting, and even after lumping or hot rolling, the segregated portions become large carbides as shown in FIG. May appear. In the case where such a large carbide is generated, the huge carbide remains even after being processed into a bearing part through processes such as spheroidizing annealing, quenching and tempering, and this becomes a stress concentration source. It has been empirically confirmed that the rolling fatigue life is reduced.
【0003】そこで、高炭素クロム軸受鋼の鋳造時に生
じる中心偏析および該中心偏析部に生じる巨大炭化物を
消滅させるため、例えば特開平3−75312号には、
鋳造材をビレットに圧延した後ソーキング処理を行なう
方法を提案している。また特開平3−104819号に
は、高炭素クロム軸受鋼を連続鋳造によって製造する際
に、内部が未凝固の状態で圧下を行なう方法、更に特開
昭59−137164号には、連続鋳造の際に電磁攪拌
を行ない、鋳片中心部の炭素含有量C1 と表層部の炭素
含有量C2 との比(C1 /C2 )が1.2以下となる様
に制御する方法を提案している。[0003] In order to eliminate the center segregation generated during casting of high carbon chromium bearing steel and the giant carbide generated in the center segregation portion, for example, Japanese Patent Application Laid-Open No. 3-75312 discloses
A method of rolling a cast material into a billet and then performing a soaking process has been proposed. Japanese Patent Application Laid-Open No. 3-104819 discloses a method in which high carbon chromium bearing steel is produced by continuous casting while the internal portion is unsolidified. At this time, a method is proposed in which electromagnetic stirring is performed to control the ratio (C 1 / C 2 ) of the carbon content C 1 in the center of the slab to the carbon content C 2 in the surface layer to be 1.2 or less. are doing.
【0004】これらの方法は、転動疲労寿命に影響を及
ぼすことが定性的に確認されている前記巨大炭化物の低
減乃至消滅を目的とする点で有意義な方法であるが、該
巨大炭化物が高炭素クロム軸受鋼の転動疲労寿命に具体
的にどの程度悪影響を及ぼすか、更には該巨大炭化物の
存在量をどの程度に抑えれば転動疲労寿命を確実に高め
ることができるか、といった定量的な関係については明
確にされていない。[0004] These methods are significant in that they aim to reduce or eliminate the above-mentioned giant carbide which has been qualitatively confirmed to affect the rolling fatigue life, but the giant carbide has a high effect. Quantitative analysis of how much the rolling fatigue life of carbon chromium bearing steel is adversely affected, and how much the abundance of the giant carbide can be suppressed to reliably increase the rolling fatigue life. The relationship is not clarified.
【0005】[0005]
【発明が解決しようとする課題】本発明は上記の様な事
情に着目してなされたものであって、その目的は、転動
疲労寿命に及ぼす巨大炭化物量の影響を定量的に明らか
にし、優れた転動疲労特性を確実に発揮し得る様な軸受
鋼を提供しようとするものである。SUMMARY OF THE INVENTION The present invention has been made in view of the above-mentioned circumstances, and its object is to quantitatively clarify the effect of the amount of a large carbide on rolling contact fatigue life. An object of the present invention is to provide a bearing steel capable of reliably exhibiting excellent rolling fatigue characteristics.
【0006】[0006]
【課題を解決するための手段】上記課題を解決すること
のできた本発明に係る転動疲労特性に優れた軸受鋼の構
成は、 C :0.6〜1.2% Mn:0.2〜1.5% Si:2.0%以下(0%を含む) Al:0.005〜0.06% P :0.03%以下(0%を含む) S :0.03%以下(0%を含む) Ti:0.005%以下(0%を含む) O :0.0020%以下(0%を含む) 残部:Feおよび不可避的不純物 の要件を満足すると共に、線状または棒状圧延材におけ
る軸心を通る縦断面の中心線において、該縦断面の軸心
を含み該軸心線から片側に夫々1/8・D(Dは該縦断面の
幅を表わす)以内の中心領域に現われる厚さ2μm以上
の炭化物の総断面積が、前記縦断面積に対して0.3%
以下であるところにその特徴を有している。Means for Solving the Problems The constitution of the bearing steel having excellent rolling fatigue characteristics according to the present invention which can solve the above problems is as follows: C: 0.6 to 1.2% Mn: 0.2 to 1.5% Si: 2.0% or less (including 0%) Al: 0.005 to 0.06% P: 0.03% or less (including 0%) S: 0.03% or less (0% Ti: 0.005% or less (including 0%) O: 0.0020% or less (including 0%) Balance: Fe and unavoidable impurities Thickness appearing in the center line of the longitudinal section passing through the axis, including the axis of the longitudinal section, in a central region within 1/8 · D (D represents the width of the longitudinal section) on each side from the axis. The total cross-sectional area of carbide having a thickness of 2 μm or more is 0.3% of the vertical cross-sectional area.
It has the following features.
【0007】本発明に係る軸受鋼は、更に他の元素とし
て、Cr:2.0%以下(0%を含まない)、Ni:
2.0%以下(0%を含まない)、Mo:1.0%以下
(0%を含まない)、Cu:1.0%以下(0%を含ま
ない)、V:0.3%以下(0%を含まない)、Nb:
0.1%以下(0%を含まない)よりなる群から選択さ
れる少なくとも一種を含有させることによって、転動疲
労特性を一段と優れたものとすることができ、また、更
に他の元素として、Pb:0.1%以下(0%を含まな
い)、Ca:0.01%以下(0%を含まない)、T
e:0.1%以下(0%を含まない)、Bi:0.1%
以下(0%を含まない)よりなる群から選択される少な
くとも一種を含有させることによって、被削性を高める
ことが可能である。[0007] The bearing steel according to the present invention further comprises, as other elements, Cr: 2.0% or less (excluding 0%), Ni:
2.0% or less (excluding 0%), Mo: 1.0% or less (excluding 0%), Cu: 1.0% or less (excluding 0%), V: 0.3% or less (Not including 0%), Nb:
By including at least one selected from the group consisting of 0.1% or less (not including 0%), the rolling fatigue characteristics can be further improved, and as another element, Pb: 0.1% or less (excluding 0%), Ca: 0.01% or less (excluding 0%), T
e: 0.1% or less (excluding 0%), Bi: 0.1%
By containing at least one selected from the group consisting of the following (not including 0%), machinability can be enhanced.
【0008】更に、該鋼材中に含まれる合金元素のうち
C,Mn,Cr,Ni,Moの各元素については、それ
らの含有量が、下記(1)式の関係を満たす様に成分調
整して焼入性を高めることにより、転動疲労特性を更に
優れたものとすることができる。 [C]1/2+0.12 ×[Mn]+ 0.11×[Cr]+ 0.05×[Ni]+ 0.03×[Mo]≧1.05……(1) (式中、[元素]は鋼材中の各元素の質量%を表わす)Further, among the alloying elements contained in the steel material, the elements of C, Mn, Cr, Ni, and Mo are adjusted so that their contents satisfy the relationship of the following equation (1). By increasing the hardenability by heating, the rolling fatigue characteristics can be further improved. [C] 1/2 +0.12 × [Mn] + 0.11 × [Cr] + 0.05 × [Ni] + 0.03 × [Mo] ≧ 1.05 ... (1) (where [element] is each element in the steel material Represents the mass% of
【0009】[0009]
【発明の実施の形態】以下、本発明で使用する鋼材の化
学成分を規定した理由、更には、線状もしくは棒状圧延
材の縦断面中心部に存在する炭化物の面積率などを定め
た理由を詳細に説明する。まず鋼材の化学成分を定めた
理由を明らかにする。BEST MODE FOR CARRYING OUT THE INVENTION The reasons for defining the chemical composition of the steel used in the present invention and the reason for defining the area ratio of the carbide existing in the center of the longitudinal section of a linear or rod-shaped rolled material are described below. This will be described in detail. First, the reasons for determining the chemical composition of steel are clarified.
【0010】C:0.6〜1.2% Cは、焼入れ・焼戻し後の状態で軸受鋼に必要とされる
最低限の硬さであるHRc58以上を確保し、転動疲労
特性などの軸受特性を確保するための強化元素として欠
くことのできない元素であり、少なくとも0.6%以上
含有させなければならず、好ましくは0.7%以上含有
させることが望ましい。しかしながら、C含有量が多く
なり過ぎると芯部に巨大炭化物が生成し易くなり、転動
疲労特性に却って悪影響を及ぼす様になるので、多くと
も1.2%以下、好ましくは1.1%以下に抑えるべき
である。 C: 0.6 to 1.2% C secures HRc 58 or more, which is the minimum hardness required for bearing steel after quenching and tempering, and provides bearings with rolling fatigue characteristics and the like. It is an indispensable element as a strengthening element for securing characteristics, and must be contained at least 0.6% or more, and preferably 0.7% or more. However, if the C content is too large, a large carbide is likely to be formed in the core portion, which adversely affects the rolling fatigue characteristics, so that at most 1.2% or less, preferably 1.1% or less. Should be kept to a minimum.
【0011】Si:2.0%以下(0%を含む) Siは、脱酸性元素として有効に作用する他、焼入れ・
焼戻し軟化抵抗を高めて芯部硬さを高める作用を有して
おり、それらの作用は0.03%程度以上含有させるこ
とによって有効に発揮される。しかしながらそれらの効
果は2.0%で飽和し、それ以上含有させると冷間加工
性や被削性に悪影響が現われてくるので、2.0%以
下、より好ましくは1.0%以下に抑えなければならな
い。 Si: 2.0% or less (including 0%) Si not only effectively acts as a deacidifying element, but also
It has the effect of increasing the temper softening resistance to increase the core hardness, and these effects are effectively exhibited by containing about 0.03% or more. However, their effect is saturated at 2.0%, and if contained more than that, adverse effects appear on the cold workability and machinability, so that the content is suppressed to 2.0% or less, more preferably 1.0% or less. There must be.
【0012】Mn:0.2〜1.5% Mnは脱酸・脱硫剤として有効に作用する他、焼入性を
高めて表層および芯部硬さを高め、表面の陥没を防止す
ると共に転動疲労寿命を向上させるうえで欠くことので
きない元素であり、それらの効果を有効に発揮させるに
は0.2%以上含有させなければならない。しかしそれ
らの効果は1.5%で飽和し、それ以上含有させると冷
間加工性や被削性に悪影響を及ぼす様になるので、1.
5%以下に抑えなければならない。Mnのより好ましい
含有量は0.2〜1.2%の範囲である。 Mn: 0.2 to 1.5% Mn not only functions effectively as a deoxidizing / desulfurizing agent, but also enhances the hardenability to increase the hardness of the surface layer and the core portion, thereby preventing the surface from being depressed and rolling. It is an indispensable element for improving the dynamic fatigue life, and must be contained in an amount of 0.2% or more in order to effectively exert those effects. However, these effects are saturated at 1.5%, and if contained more than 1.5%, the cold workability and machinability will be adversely affected.
It must be kept below 5%. The more preferred content of Mn is in the range of 0.2 to 1.2%.
【0013】Al:0.005〜0.06% Alは脱酸性元素として有効に作用する他、窒化物を生
成してオーステナイト結晶粒を微細化し靭性を高める作
用を有しており、それらの効果を有効に発揮させるには
0.005%以上含有させなければならない。しかしな
がらAl量が多くなり過ぎると、オーステナイト結晶粒
が却って粗大化し靭性を悪化させるので、0.06%以
下に抑えなければならない。Alのより好ましい含有量
は0.01〜0.04%の範囲である。 Al: 0.005 to 0.06% Al not only functions effectively as a deacidifying element, but also has a function of forming nitrides to refine austenite crystal grains and increase toughness. Must be contained in an amount of not less than 0.005% in order to exhibit the effect effectively. However, if the amount of Al is too large, austenite crystal grains are rather coarsened and the toughness is deteriorated. Therefore, the content must be suppressed to 0.06% or less. The more preferable content of Al is in the range of 0.01 to 0.04%.
【0014】P:0.03%以下(0%を含む) Pは非金属系介在物となって靭性に悪影響を及ぼすの
で、その含有量は極力少なく抑えるべきであり、その弊
害が実用上ほとんど問題とならない0.03%を上限と
する。より好ましくは0.015%以下である。 P: 0.03% or less (including 0%) Since P becomes a non-metallic inclusion and adversely affects toughness, its content should be kept as low as possible, and its adverse effect is practically negligible. The upper limit is 0.03% that does not cause a problem. More preferably, it is 0.015% or less.
【0015】S:0.03%以下(0%を含む) Sは、鋼中でほとんどがMnSの形態で存在し、切削性
の向上に寄与する元素であるが、酸素含有量の少ない鋼
材においては転動疲労寿命に顕著な悪影響を及ぼすの
で、0.03%以下に抑えなければならない。より好ま
しくは0.015%以下である。 S: 0.03% or less (including 0%) S is an element which exists mostly in the form of MnS in steel and contributes to the improvement of machinability, but in steel materials having a small oxygen content, Has a significant adverse effect on the rolling fatigue life, and must be suppressed to 0.03% or less. More preferably, it is 0.015% or less.
【0016】Ti:0.005%(0%を含む) Tiは、鋼中に微量混入してくるNと結合してTiNを
生成し、転動疲労特性に悪影響を及ぼすばかりでなく、
冷間加工性や熱間加工性も害する有害元素であり、それ
らの障害を回避するには0.005%以下、より好まし
くは0.004%以下に抑えなければならない。 Ti: 0.005% (including 0%) Ti combines with N slightly mixed in steel to form TiN, which not only adversely affects rolling fatigue characteristics, but also
It is a harmful element that also impairs cold workability and hot workability, and must be suppressed to 0.005% or less, more preferably 0.004% or less to avoid such obstacles.
【0017】O:0.0020%以下(0%を含む) Oは、Alと結合して転動疲労特性の劣化原因となるA
l2 O3 系介在物を形成し、また冷間加工性や熱間加工
性にも悪影響を及ぼすので、0.0020%以下、より
好ましくは0.0015%以下に抑えなければならな
い。 O: 0.0020% or less (including 0%) O combines with Al to cause deterioration of rolling contact fatigue characteristics.
l to form a 2 O 3 inclusions, and because also adversely affect cold workability and hot workability, 0.0020% or less, more preferably to be suppressed to 0.0015% or less.
【0018】本発明に係る軸受鋼の残部成分はFeおよ
び不可避的不純物であるが、必要により更に他の元素と
して下記の様な元素を適量含有させることによって、軸
受鋼としての特性を一段と改善することが可能である。The remaining components of the bearing steel according to the present invention are Fe and unavoidable impurities. However, if necessary, the following elements can be added in appropriate amounts to further improve the characteristics of the bearing steel. It is possible.
【0019】Cr:2.0%以下(0%を含まない)、
Ni:2.0%以下(0%を含まない)、Mo:1.0
%以下(0%を含まない)、Cu:1.0%以下(0%
を含まない)、V:0.3%以下(0%を含まない)、
Nb:0.1%以下(0%を含まない)よりなる群から
選択される少なくとも一種 これらの元素はいずれも転動疲労寿命の向上に寄与する
元素である点で同効元素である。即ちCr,Ni,M
o,Cuはいずれも焼入性向上元素として作用し、表層
および芯部の硬さを高めて転動疲労特性の向上および表
面陥没の抑制に寄与し、またVおよびNbは、鋼中のC
やNと結合して炭窒化物を生成し、結晶粒を微細化して
転動疲労寿命の向上に寄与する。これらのうちCr,N
i,Moは、焼入性向上元素としての作用により質量の
大きな部品における焼入れ・焼戻しを容易にするうえで
有効に作用する。また、Cuは焼入性の向上に加えて耐
食性を高める作用も有しており、またV,Nbは、上記
結晶粒微細化作用によって靭性を高める作用も発揮す
る。これらの効果は、Crで0.2%以上、Niで0.
25%以上、Moで0.08%以上、Cuで0.25%
以上、Vで0.01%以上、Nbで0.01%以上含有
させることによって有効に発揮される。Cr: 2.0% or less (excluding 0%),
Ni: 2.0% or less (excluding 0%), Mo: 1.0
% Or less (not including 0%), Cu: 1.0% or less (0%
), V: 0.3% or less (excluding 0%),
Nb: from the group consisting of 0.1% or less under (0%)
At least one of these elements is the same element in that all of these elements contribute to the improvement of the rolling fatigue life. That is, Cr, Ni, M
Both o and Cu act as hardenability improving elements, increase the hardness of the surface layer and the core, and contribute to the improvement of rolling fatigue characteristics and the suppression of surface depression, and V and Nb represent C in steel.
In combination with N and N, a carbonitride is generated, and the crystal grains are refined to contribute to the improvement of rolling fatigue life. Of these, Cr, N
i and Mo effectively act in facilitating quenching and tempering in parts having a large mass by acting as hardenability improving elements. Further, Cu has an effect of increasing corrosion resistance in addition to the improvement of hardenability, and V and Nb also exert an effect of increasing toughness by the above-mentioned crystal grain refining action. These effects are at least 0.2% with Cr and 0.1% with Ni.
25% or more, 0.08% or more of Mo, 0.25% of Cu
As described above, the effect is effectively exhibited by containing 0.01% or more of V and 0.01% or more of Nb.
【0020】しかし、Cr量が2.0%を超えると巨大
なCr炭化物が生成し易くなり、Ni量が2.0%を超
えあるいはMo量が1.0%を超えると冷間加工性や被
削性が悪くなる他、焼入れ・焼戻し後に残留オーステナ
イトが多量生成して寸法安定性が劣化し、Cu量が1.
0%を超えると冷間加工性および被削性が低下する他赤
熱脆性を助長して熱間加工割れを発生し易くなるので、
夫々上限値以下に抑えるべきである。またVの添加効果
は0.3%で飽和し又Nbの上加効果は0.1%で飽和
するので、それ以上の添加は経済的に無駄である。However, when the Cr content exceeds 2.0%, huge Cr carbides are easily formed, and when the Ni content exceeds 2.0% or the Mo content exceeds 1.0%, cold workability and In addition to poor machinability, a large amount of retained austenite is formed after quenching and tempering, resulting in poor dimensional stability.
If it exceeds 0%, cold workability and machinability are reduced, and red hot brittleness is promoted and hot work cracks are easily generated.
Each should be kept below the upper limit. Further, the effect of adding V is saturated at 0.3%, and the effect of adding Vb is saturated at 0.1%, so that further addition is economically useless.
【0021】Pb:0.1%以下(0%を含まない)、
Ca:0.01%以下(0%を含まない)、Te:0.
1%以下(0%を含まない)、Bi:0.1%以下(0
%を含まない)よりなる群から選択される少なくとも一
種 これらの元素はいずれも被削性向上元素として作用する
が、それらの効果は夫々の上限値付近で飽和し、含有量
が多くなり過ぎると転動疲労寿命に悪影響が現われてく
るので、夫々上限値以下に抑えなければならない。Pb: 0.1% or less (excluding 0%),
Ca: 0.01% or less (excluding 0%), Te: 0.
1% or less (excluding 0%), Bi: 0.1% or less ( 0 %
% Excluding) selected from the group consisting of
Seed Both of these elements act as a machinability improving element, but their effect is saturated in the vicinity of the upper limit of each because the too much content the rolling fatigue life is adversely emerge, respectively Must be kept below the upper limit.
【0022】更に本発明においては、上記各含有元素の
種類と夫々の含有量に加えて、焼入れ・焼戻し後の硬さ
を支配する影響要因として、上記含有元素のうちC,M
n,Cr,Ni,Moの含有量が、前記(1)式の関係
を満たす様に成分調整したものは、転動疲労特性を一段
と優れたものにすることができるので好ましい。殊に、
前記(1)式の関係を満足する鋼材を適切な温度範囲で
焼入れ(好ましくは830〜870℃)・焼戻し(好ま
しくは140〜180℃)処理を行なえば、焼入れ・焼
戻し後の状態でHRc60以上の硬さを有するものとな
り、転動疲労特性の一段とすぐれた軸受鋼を与える。Further, in the present invention, in addition to the type and content of each of the above-mentioned contained elements, as an influential factor which governs the hardness after quenching / tempering, C, M among the above contained elements are considered.
A composition in which the contents of n, Cr, Ni, and Mo are adjusted so as to satisfy the relationship of the above formula (1) is preferable because the rolling fatigue characteristics can be further improved. In particular,
If quenching (preferably 830 to 870 ° C) and tempering (preferably 140 to 180 ° C) a steel material satisfying the relationship of the above formula (1) in an appropriate temperature range, HRc 60 or more in a state after quenching and tempering And provides a bearing steel with more excellent rolling fatigue characteristics.
【0023】本発明の軸受鋼は、上記成分組成の要件を
満足させることによって、優れた焼入れ・焼戻し性を確
保して表層部および芯部硬さを確保しつつ、炭化物の生
成量を可及的に抑え、転動疲労特性を改善したものであ
るが、転動疲労寿命が確実に改善されたものとするに
は、これら成分組成の要件に加えて、線状もしくは棒状
に圧延された圧延材または、引き抜き加工材の軸心を含
む縦断面の中心部(具体的には、図2に示す如く軸心線
から縦断面の幅Dに対し片側にそれぞれ1/8 ×D離れた
ラインで挟まれる領域)に存在する厚さ2μm以上の炭
化物の総断面積を、前記縦断面積に対して0.3%以下
に抑えることが極めて重要になる。The bearing steel of the present invention satisfies the above requirements for the component composition, thereby ensuring excellent quenching / tempering properties and ensuring the hardness of the surface layer and the core, and at the same time increasing the amount of carbides generated. Although the rolling fatigue characteristics are improved and rolling fatigue life is definitely improved, in addition to the requirements of these component compositions, rolling in a linear or rod shape is required. The center of the longitudinal section including the axis of the material or the drawn material (specifically, as shown in FIG. 2, each line is separated by 1/8 × D on one side with respect to the width D of the longitudinal section from the axis. It is extremely important that the total cross-sectional area of carbides having a thickness of 2 μm or more existing in the region between them is suppressed to 0.3% or less with respect to the vertical cross-sectional area.
【0024】ちなみに図3は、後述する実施例を含めて
多くの実験データから、上記縦断面中心部に存在する厚
さ2μm以上の炭化物の占める総断面積率が転動疲労寿
命に与える影響を整理して示したグラフであり、この図
からも明らかである様に、厚さ2μm以上の炭化物の面
積率が0.2%付近までは転動疲労寿命の低下傾向は僅
かであるが、この値が0.3%を超えると転動疲労寿命
は急激に低下することを確認できる。そしてこの様な傾
向が得られたのは、炭化物が厚さ2μm以上の巨大なも
のであるとき、その部分に応力集中が起こり易くなり、
その面積率が0.3%を超えた時に顕著な転動疲労寿命
の低下となって現われるためと考えられる。FIG. 3 shows the effect of the total cross-sectional area ratio occupied by the carbide having a thickness of 2 μm or more existing in the center of the longitudinal section on the rolling contact fatigue life based on many experimental data including the examples described later. As is clear from this figure, the tendency of the rolling fatigue life to decrease is small until the area ratio of the carbide having a thickness of 2 μm or more reaches about 0.2%. It can be confirmed that when the value exceeds 0.3%, the rolling fatigue life sharply decreases. The reason why such a tendency was obtained is that when the carbide is a huge one having a thickness of 2 μm or more, stress concentration tends to occur in that part,
It is considered that when the area ratio exceeds 0.3%, the rolling fatigue life is remarkably reduced, and this appears.
【0025】尚、上記の様に軸心部縦断面の中心部に存
在する2μm以上の炭化物の面積率を0.3%以下に抑
えるための手段としては、たとえば連続鋳造法を採用す
る際には、冷却凝固時における固相率0.2〜0.7の
間で大径ロール圧下を加えることによって凝固時の中心
偏析を抑制する方法、あるいはその後更に鋳片を115
0℃以上の温度で10時間以上ソーキング処理する方法
などが好ましい方法として例示される。また通常の造塊
法を採用する場合は、鋳片を1150℃以上の温度で2
0時間以上ソーキング処理する方法などが好ましい方法
として例示される。As means for suppressing the area ratio of carbides of 2 μm or more existing at the center of the longitudinal section of the axial center portion to 0.3% or less as described above, for example, when adopting a continuous casting method, Is a method of suppressing the center segregation at the time of solidification by applying a large-diameter roll reduction at a solid phase ratio of 0.2 to 0.7 at the time of cooling and solidification, or further reducing the slab to 115
A preferred example is a method of soaking at a temperature of 0 ° C. or more for 10 hours or more. When the usual ingot making method is adopted, the slab is kept at a temperature of 1150 ° C. or more for 2 minutes.
A method of performing soaking treatment for 0 hour or more is exemplified as a preferable method.
【0026】[0026]
【実施例】次に実施例を挙げて本発明の構成および作用
効果をより具体的に説明するが、本発明はもとより下記
実施例によって制限を受けるものではなく、前後記の趣
旨に適合し得る範囲で変更を加えて実施することも勿論
可能であり、それらはいずれも本発明の技術的範囲に含
まれる。EXAMPLES Next, the structure and operation and effect of the present invention will be described more specifically with reference to examples. However, the present invention is not limited to the following examples, and can be adapted to the spirit of the preceding and following examples. Of course, the present invention can be implemented with modifications within the scope, and all of them are included in the technical scope of the present invention.
【0027】実施例 表1に示す成分組成の鋼材を150kg真空炉を用いて
溶製した後、造塊法によって鋳片を製造し、各鋳片を1
200℃で10時間ソーキング処理した後直径65mm
に熱間鍛造し、引き続いて下記の条件で球状化焼きなま
し処理を行なった。 (No.2,3および16) 790℃×2時間→680℃まで20℃/Hrで炉冷→
その後空冷 (その他) 760℃×2時間→680℃まで20℃/Hrで炉冷→
その後空冷Example A steel material having the composition shown in Table 1 was melted using a 150 kg vacuum furnace, and then cast pieces were produced by an ingot method.
65mm in diameter after soaking at 200 ° C for 10 hours
Was hot forged and subsequently subjected to a spheroidizing annealing treatment under the following conditions. (No. 2, 3 and 16) 790 ° C x 2 hours → Furnace cooling at 20 ° C / Hr up to 680 ° C →
After that, air cooling (others) 760 ° C x 2 hours → Furnace cooling to 680 ° C at 20 ° C / Hr →
Then air cooling
【0028】得られた各焼きなまし処理材について、軸
心を含む縦断面の中心線から片側に夫々 1/8×直径だけ
離れたライン(前記図2参照)で挟まれる範囲から長さ
10mmのサンプルを10個切り出し、400倍の光学
顕微鏡により被検面全面を観察し、画像解析装置を用い
て厚さ2μm以上の炭化物の面積率を求めた。For each of the obtained annealing materials, a sample having a length of 10 mm from a range sandwiched by lines (see FIG. 2) separated by 1/8 × diameter on one side from the center line of the longitudinal section including the axis. Were cut out, the entire surface to be inspected was observed with a 400 × optical microscope, and the area ratio of carbide having a thickness of 2 μm or more was determined using an image analyzer.
【0029】また、各焼きなまし材について、図4に示
す如く軸心を含む縦断面より60mm、厚さ5mmの円
盤を切り出し、焼入れ・焼戻し処理後ラッピング加工を
施して表面粗さを0.04μmRa以下にした後、下記
の条件で転動疲労試験を行なった(N=20)。結果を
表2に示す。 (転動疲労試験) 面 圧:527kgf/mm2 回転数:1000rpm 鋼球数:6個 潤滑油:タービン#68As shown in FIG. 4, a disk having a thickness of 60 mm and a thickness of 5 mm was cut out from a longitudinal section including the axis as shown in FIG. 4, and quenching and tempering were performed, followed by lapping to reduce the surface roughness to 0.04 μm Ra or less. After that, a rolling fatigue test was performed under the following conditions (N = 20). Table 2 shows the results. (Rolling fatigue test) Surface pressure: 527 kgf / mm 2 Number of rotations: 1000 rpm Number of steel balls: 6 Lubricating oil: turbine # 68
【0030】[0030]
【表1】 [Table 1]
【0031】[0031]
【表2】 [Table 2]
【0032】表1,2より次の様に考察することができ
る。No.1〜16は、鋼材の成分組成が本発明の規定
要件を全て満足すると共に、縦断面中心領域に存在する
厚さ2μm以上の炭化物の面積率が0.3%以下である
実施例であり、いずれも優れた転動疲労寿命を有してい
る。中でも、(1)式の計算値が1.05以上であるも
のは、その値が1.05未満であるものに比べて相対的
に高い転動疲労寿命を有していることが分かる。The following can be considered from Tables 1 and 2. No. Examples 1 to 16 are examples in which the component composition of the steel material satisfies all of the specified requirements of the present invention, and the area ratio of carbide having a thickness of 2 µm or more present in the central region of the longitudinal section is 0.3% or less, All have excellent rolling fatigue life. Among them, those having a calculated value of the formula (1) of 1.05 or more have relatively higher rolling fatigue life than those having a value of less than 1.05.
【0033】これらに対しNo.17〜24は、本発明
で定めるいずれかの要件を欠く比較例であり、下記の如
く軸受鋼としての性能に問題がある。 No.17:巨大炭化物は認められないが、C量が少な
く(1)式の値が著しく低いため、硬さ不足によって満
足な転動疲労特性が得られない。 No.18:C量が多過ぎるため、中心部に規定量を超
える面積率の巨大炭化物が生じており、満足な転動疲労
特性が得られない。On the other hand, no. Nos. 17 to 24 are comparative examples lacking any of the requirements defined in the present invention, and have problems in performance as bearing steel as described below. No. 17: No giant carbide was recognized, but the content of C was small and the value of equation (1) was extremely low, so that satisfactory rolling fatigue characteristics could not be obtained due to insufficient hardness. No. 18: Since the amount of C is too large, a large carbide having an area ratio exceeding the specified amount is generated in the center portion, and satisfactory rolling fatigue characteristics cannot be obtained.
【0034】No.19,20:Si量またはMn量が
規定範囲を超える比較例であり、中心部に巨大炭化物の
生成も認められず転動疲労寿命も良好であるが、冷間加
工性と被削性が非常に悪く実用にそぐわない。 No.21,22,23,24:巨大炭化物の面積率そ
のものは本発明の規定要件を満たしているが、P,S,
Ti,Oの各含有量が多過ぎる比較例であり、いずれも
転動疲労寿命が著しく劣っている。No. 19, 20: Comparative examples in which the amount of Si or Mn exceeds the specified range, no formation of giant carbide at the center and good rolling fatigue life, but very poor cold workability and machinability. Bad for practical use. No. 21, 22, 23, 24: Although the area ratio of the giant carbide itself satisfies the requirements of the present invention, P, S,
These are comparative examples in which the contents of Ti and O are too large, and both have significantly poor rolling fatigue lives.
【0035】実施例2 上記表1に示した鋼種のうちNo.2,3を選択し、夫
々下記の条件で鋳造、ソーキング処理、熱間鍛造、球状
化焼きなまし処理を行なった後、前記実施例1と同様に
して中心部の巨大炭化物の面積率を測定すると共に、転
動疲労試験を行なった。Example 2 Of the steel types shown in Table 1 above, No. After selecting 2, 3 and performing casting, soaking, hot forging, and spheroidizing annealing, respectively, under the following conditions, the area ratio of the giant carbide in the center was measured in the same manner as in Example 1 above. And a rolling fatigue test.
【0036】10kgf真空炉による溶製→造塊→1
200℃×10時間のソーキング処理→直径65mmに
熱間鍛造→790℃×2時間加熱→680℃まで20℃
/時間で炉冷→空冷。 150kgf真空炉による溶製→造塊→1200℃×
10時間のソーキング処理→直径65mmに熱間鍛造→
790℃×2時間加熱→680℃まで20℃/時間で炉
冷→空冷。Melting with a 10 kgf vacuum furnace → ingot making → 1
Soaking treatment at 200 ° C x 10 hours → hot forging to a diameter of 65mm → heating at 790 ° C x 2 hours → 20 ° C to 680 ° C
/ Hour furnace cooling → air cooling. Melting with 150kgf vacuum furnace → ingot making → 1200 ° C x
10 hours soaking → hot forging to 65mm diameter →
Heating at 790 ° C for 2 hours → Furnace cooling to 680 ° C at 20 ° C / hour → Air cooling.
【0037】実機を用いた溶製→連続鋳造による30
0mm×430mmの鋳片製造(鋳型内電磁攪拌の実
施、および固相率0.3〜0.7の領域での大径ロール
圧下)→1200℃×10時間のソーキング処理→直径
65mmに熱間鍛造→790℃×2時間加熱→680℃
まで20℃/時間で炉冷→空冷。 実機による溶製→7トン鋼塊の造塊→1200℃×1
0時間のソーキング処理→直径65mmに熱間鍛造→7
90℃×2時間加熱→680℃まで20℃/時間で炉冷
→空冷。Melting using an actual machine → 30 by continuous casting
Production of a slab of 0 mm x 430 mm (implementation of electromagnetic stirring in the mold and under large-diameter roll pressure in the region of solid phase ratio of 0.3 to 0.7) → 1200 ° C x 10 hours soaking treatment → hot to 65 mm diameter Forging → 790 ℃ × 2 hours heating → 680 ℃
Furnace cooling at 20 ° C / hour until air cooling. Melting with actual machine → ingot of 7 ton steel ingot → 1200 ° C x 1
0 hour soaking process → hot forging to 65mm diameter → 7
90 ° C x 2 hours heating → Furnace cooling to 680 ° C at 20 ° C / hour → Air cooling.
【0038】得られた焼きなまし材について、上記実施
例1と同様にして縦断面中心部における2μm以上の炭
化物の面積率を測定すると共に、転動疲労試験を行なっ
た。結果は表3に示す通りであり、同じ成分組成の鋼種
であっても、縦断面中心部における2μm以上の炭化物
の面積率によって転動疲労特性は著しく変わり、該面積
率が0.3%を超える比較例の転動疲労寿命は非常に悪
いことが分かる。尚これらの実験では、鋳造スケールの
違いによって生じる冷却速度の違いが巨大炭化物の面積
率に大きく影響を及ぼしていると思われ、鋳造スケール
が小さくて冷却速度が速いものほど、巨大炭化物は発生
し難くなっている。With respect to the obtained annealed material, the area ratio of carbide of 2 μm or more at the center of the longitudinal section was measured in the same manner as in Example 1 and a rolling fatigue test was performed. The results are as shown in Table 3. Even in the case of steels having the same composition, the rolling fatigue characteristics are significantly changed depending on the area ratio of carbide of 2 μm or more at the center of the longitudinal section, and the area ratio is reduced by 0.3%. It can be seen that the rolling fatigue life of the comparative example exceeding this is very bad. In these experiments, it is considered that the difference in cooling rate caused by the difference in casting scale has a large effect on the area ratio of the giant carbide, and the larger the casting scale is, the faster the cooling rate is. It has become difficult.
【0039】[0039]
【表3】 [Table 3]
【0040】また、No.2の鋼種を用いた上記と
の供試材について、転動疲労試験を行なった後の試験片
に見られる試験片の中心からのずれ角度と剥離発生頻度
の関係を調べたところ、図5(供試材)および図6
(供試材)に示す結果が得られた。In addition, No. The relationship between the angle of deviation from the center of the test piece and the frequency of occurrence of peeling observed in the test piece after the rolling fatigue test was examined for the test materials using the steel type No. 2 as described above. Test material) and Fig. 6
The results shown in (test material) were obtained.
【0041】これらの図からも明らかな様に、図5(2
μm以上の炭化物面積率が0.3%以下であるもの)で
は、供試材の中心部(中心からのずれ角度=0度)から
表層部(中心からのずれ角度=90度)の範囲で剥離発
生頻度の高い部分がアットランダムに観察されるのに対
し、図6(2μm以上の炭化物面積率が0.3%を超え
るもの)では、中心からのずれ角度が0〜10度の部位
(即ち中心領域)で剥離発生頻度が極端に高くなってお
り、圧延材の軸心部で転動疲労による剥離が極端に起こ
り易くなることを確認できる。As is clear from these figures, FIG.
(where the carbide area ratio of μm or more is 0.3% or less) in the range from the center (offset angle from the center = 0 degree) to the surface layer (offset angle from the center = 90 degrees) of the test material. In FIG. 6 (where the area ratio of carbides of 2 μm or more exceeds 0.3%), a portion where the angle of deviation from the center is 0 to 10 degrees, whereas a portion where the frequency of peeling is high is observed at random. In other words, it can be confirmed that the frequency of occurrence of peeling is extremely high in the center region), and that peeling due to rolling fatigue is extremely likely to occur at the axial center of the rolled material.
【0042】[0042]
【発明の効果】本発明は以上の様に構成されており、鋼
材の化学成分を特定すると共に、圧延材の縦断面中心部
に存在する特定サイズ以上の炭化物の面積率を規定し、
あるいは更に前記式(1)の関係を満たす様に鋼材の成
分組成を調整することによって、優れた転動疲労特性を
有する軸受鋼を提供し得ることになった。The present invention is configured as described above, specifies the chemical composition of the steel material, and specifies the area ratio of carbide having a specific size or more existing in the center of the longitudinal section of the rolled material,
Alternatively, by further adjusting the component composition of the steel material so as to satisfy the relationship of the above formula (1), a bearing steel having excellent rolling fatigue characteristics can be provided.
【図1】軸受鋼の縦断面組織を示す顕微鏡写真であり、
該縦断面に現われた巨大炭化物の一例を示している。FIG. 1 is a micrograph showing a longitudinal cross-sectional structure of a bearing steel;
An example of a giant carbide appearing in the longitudinal section is shown.
【図2】巨大炭化物の面積率を求める観察領域を示す説
明図である。FIG. 2 is an explanatory diagram showing an observation region for obtaining an area ratio of a giant carbide.
【図3】縦断面の中心部に存在する厚さ2μm以上の炭
化物の占める面積率と転動疲労寿命の関係を示すグラフ
である。FIG. 3 is a graph showing the relationship between the area ratio occupied by carbide having a thickness of 2 μm or more existing at the center of the longitudinal section and the rolling fatigue life.
【図4】転動疲労試験片の採取位置を示す説明図であ
る。FIG. 4 is an explanatory view showing a sampling position of a rolling fatigue test piece.
【図5】転動疲労試験片(比較材)の中心からのずれ角
度と剥離発生頻度の関係を示すグラフである。FIG. 5 is a graph showing the relationship between the angle of deviation from the center of a rolling fatigue test piece (comparative material) and the frequency of occurrence of peeling.
【図6】転動疲労試験片(発明材)の中心からのずれ角
度と剥離発生頻度の関係を示すグラフである。FIG. 6 is a graph showing the relationship between the angle of deviation from the center of a rolling fatigue test specimen (material of the invention) and the frequency of occurrence of peeling.
フロントページの続き (56)参考文献 特開 平3−285041(JP,A) 特開 平1−129952(JP,A) 特開 平2−125841(JP,A)Continuation of the front page (56) References JP-A-3-285041 (JP, A) JP-A-1-129952 (JP, A) JP-A-2-125841 (JP, A)
Claims (4)
い限り質量%を意味する) Mn:0.2〜1.5% Si:2.0%以下(0%を含む) Al:0.005〜0.06% P :0.03%以下(0%を含む) S :0.03%以下(0%を含む) Ti:0.005%以下(0%を含む) O :0.0020%以下(0%を含む) 残部:Feおよび不可避的不純物 の要件を満足すると共に、線状または棒状圧延材におけ
る軸心を通る縦断面の中心線において、該縦断面の軸心
を含み該軸心線から片側に夫々1/8・D(Dは該縦断面の
幅を表わす)以内の中心領域に現われる厚さ2μm以上
の炭化物の総断面積が、前記縦断面積に対して0.3%
以下であることを特徴とする転動疲労特性に優れた軸受
鋼。1. C: 0.6 to 1.2% (hereinafter, mass% unless otherwise specified) Mn: 0.2 to 1.5% Si: 2.0% or less (including 0%) Al: 0.005 to 0.06% P: 0.03% or less (including 0%) S: 0.03% or less (including 0%) Ti: 0.005% or less (including 0%) O : 0.0020% or less (including 0%) Remainder: Fe and unavoidable impurities are satisfied, and the center of the longitudinal section passing through the axis of the linear or rod-shaped rolled material is the axis of the longitudinal section. The total cross-sectional area of carbides having a thickness of 2 μm or more and appearing in a central region within 1/8 · D (D represents the width of the vertical section) on each side from the axis is 0.3%
A bearing steel having excellent rolling fatigue characteristics, characterized in that:
%以下(0%を含まない)、Ni:2.0%以下(0%
を含まない)、Mo:1.0%以下(0%を含まな
い)、Cu:1.0%以下(0%を含まない)、V:
0.3%以下(0%を含まない)、Nb:0.1%以下
(0%を含まない)よりなる群から選択される少なくと
も一種を含有するものである請求項1に記載の軸受鋼。2. The steel according to claim 1, wherein the other element is Cr: 2.0
% Or less (excluding 0%), Ni: 2.0% or less (0%
, Mo: 1.0% or less (excluding 0%), Cu: 1.0% or less (excluding 0%), V:
2. The bearing steel according to claim 1, wherein the bearing steel contains at least one selected from the group consisting of 0.3% or less (excluding 0%) and Nb: 0.1% or less (excluding 0%). .
%以下(0%を含まない)、Ca:0.01%以下(0
%を含まない)、Te:0.1%以下(0%を含まな
い)、Bi:0.1%以下(0%を含まない)よりなる
群から選択される少なくとも一種を含有するものである
請求項1または2に記載の軸受鋼。3. The steel according to claim 1, wherein Pb: 0.1 as another element.
% Or less (not including 0%), Ca: 0.01% or less (0%
%), Te: 0.1% or less (excluding 0%), Bi: 0.1% or less (excluding 0%). The bearing steel according to claim 1.
下記(1)式の関係を満足するものである請求鋼1〜3
のいずれかに記載の軸受鋼。 [C]1/2+0.12 ×[Mn]+ 0.11×[Cr]+ 0.05×[Ni]+ 0.03×[Mo]≧1.05……(1) (式中、[元素]は鋼材中の各元素の質量%を表わす)4. The content of an alloy element contained in a steel material is as follows:
Claims 1 to 3 satisfy the relationship of the following formula (1).
The bearing steel according to any one of the above. [C] 1/2 +0.12 × [Mn] + 0.11 × [Cr] + 0.05 × [Ni] + 0.03 × [Mo] ≧ 1.05 ... (1) (where [element] is each element in the steel material Represents the mass% of
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP7323357A JP3007834B2 (en) | 1995-12-12 | 1995-12-12 | Bearing steel with excellent rolling fatigue characteristics |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP7323357A JP3007834B2 (en) | 1995-12-12 | 1995-12-12 | Bearing steel with excellent rolling fatigue characteristics |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH09165643A JPH09165643A (en) | 1997-06-24 |
JP3007834B2 true JP3007834B2 (en) | 2000-02-07 |
Family
ID=18153883
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP7323357A Expired - Fee Related JP3007834B2 (en) | 1995-12-12 | 1995-12-12 | Bearing steel with excellent rolling fatigue characteristics |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP3007834B2 (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2013046678A1 (en) | 2011-09-30 | 2013-04-04 | Jfeスチール株式会社 | Ingot for bearing and production process |
US9139887B2 (en) | 2010-08-31 | 2015-09-22 | Jfe Steel Corporation | Bearing steel and ingot material for bearing having excellent rolling contact fatigue life characteristics and method for manufacturing the same |
Families Citing this family (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6666931B2 (en) * | 2001-02-23 | 2003-12-23 | Ntn Corporation | Rolling part and power transmission part |
JP4616148B2 (en) * | 2005-10-18 | 2011-01-19 | 株式会社神戸製鋼所 | Bearing steel |
JP5820326B2 (en) | 2012-03-30 | 2015-11-24 | 株式会社神戸製鋼所 | Steel for bearings with excellent rolling fatigue characteristics and method for producing the same |
GB2532761A (en) * | 2014-11-27 | 2016-06-01 | Skf Ab | Bearing steel |
CN112226682A (en) * | 2020-09-22 | 2021-01-15 | 石横特钢集团有限公司 | Titanium microalloying production process for deformed steel bar |
Family Cites Families (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH01129952A (en) * | 1987-11-13 | 1989-05-23 | Sanyo Special Steel Co Ltd | Steel for rotating parts having longer service life and exellent chip treatability |
JP2885829B2 (en) * | 1988-07-11 | 1999-04-26 | 日本精工株式会社 | Rolling bearing |
JP2522457B2 (en) * | 1989-09-19 | 1996-08-07 | 住友金属工業株式会社 | Steel pipe for bearing race suitable for cold rolling |
-
1995
- 1995-12-12 JP JP7323357A patent/JP3007834B2/en not_active Expired - Fee Related
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US9139887B2 (en) | 2010-08-31 | 2015-09-22 | Jfe Steel Corporation | Bearing steel and ingot material for bearing having excellent rolling contact fatigue life characteristics and method for manufacturing the same |
WO2013046678A1 (en) | 2011-09-30 | 2013-04-04 | Jfeスチール株式会社 | Ingot for bearing and production process |
KR20140073506A (en) | 2011-09-30 | 2014-06-16 | 제이에프이 스틸 가부시키가이샤 | Ingot for bearing and production process |
US9732395B2 (en) | 2011-09-30 | 2017-08-15 | Jfe Steel Corporation | Ingot for bearing and production process |
Also Published As
Publication number | Publication date |
---|---|
JPH09165643A (en) | 1997-06-24 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP4252837B2 (en) | Steel material with excellent rolling fatigue life and method for producing the same | |
JP2956324B2 (en) | Bearing steel with excellent workability and rolling fatigue | |
US10597765B2 (en) | Steel, carburized steel component, and method for manufacturing carburized steel component | |
EP3382051A1 (en) | Steel, carburized steel component, and carburized steel component production method | |
US8540934B2 (en) | Lead free free-cutting steel and its use | |
EP3492614A1 (en) | Steel for machine structures | |
CN113661019B (en) | Composite roll for rolling produced by centrifugal casting method and method for producing same | |
JP4502929B2 (en) | Case hardening steel with excellent rolling fatigue characteristics and grain coarsening prevention characteristics | |
JP3007834B2 (en) | Bearing steel with excellent rolling fatigue characteristics | |
JP3587348B2 (en) | Machine structural steel with excellent turning workability | |
JP3268210B2 (en) | High-speed cast iron with graphite | |
CN110651060B (en) | Steel and component | |
JP2001026836A (en) | Steel for induction hardening and parts for machine structure excellent in cold workability, rolling fatigue strength and twisting fatigue strength | |
JP2021127504A (en) | Steel material for bearing raceway and bearing raceway | |
JPH03254342A (en) | Manufacture of raw material for bearing having excellent service life to rolling fatigue | |
WO2018047444A1 (en) | Roll outer layer material for hot rolling and composite roll for hot rolling | |
JP2905241B2 (en) | Manufacturing method of bearing material with excellent rolling fatigue life | |
JP2001279367A (en) | Roll for hot rolling made by centrifugal casting | |
JP7464821B2 (en) | Steel for bearing raceways and bearing raceways | |
JP4280923B2 (en) | Steel materials for carburized parts or carbonitrided parts | |
JP2905242B2 (en) | Method for producing low Cr bearing steel material with excellent rolling fatigue life | |
JP3579558B2 (en) | Bearing steel with excellent resistance to fire cracking | |
JP3233674B2 (en) | Bearing steel | |
JP2005307257A5 (en) | ||
JP3409276B2 (en) | High carbon steel with low heat treatment strain |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A02 | Decision of refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A02 Effective date: 19980310 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20081126 Year of fee payment: 9 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20081126 Year of fee payment: 9 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20091126 Year of fee payment: 10 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20091126 Year of fee payment: 10 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20101126 Year of fee payment: 11 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20111126 Year of fee payment: 12 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20121126 Year of fee payment: 13 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20131126 Year of fee payment: 14 |
|
LAPS | Cancellation because of no payment of annual fees |