JP2004131793A - Part made of niobium-containing low alloy heat resistant steel, and production method therefor - Google Patents

Part made of niobium-containing low alloy heat resistant steel, and production method therefor Download PDF

Info

Publication number
JP2004131793A
JP2004131793A JP2002297445A JP2002297445A JP2004131793A JP 2004131793 A JP2004131793 A JP 2004131793A JP 2002297445 A JP2002297445 A JP 2002297445A JP 2002297445 A JP2002297445 A JP 2002297445A JP 2004131793 A JP2004131793 A JP 2004131793A
Authority
JP
Japan
Prior art keywords
less
nbc
niobium
resistant steel
solid solution
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2002297445A
Other languages
Japanese (ja)
Inventor
Kazuho Suzuki
鈴木 寿穂
Norio Honjo
本庄 則夫
Tsuneo Ito
伊藤 恒夫
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Daido Steel Co Ltd
Original Assignee
Daido Steel Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Daido Steel Co Ltd filed Critical Daido Steel Co Ltd
Priority to JP2002297445A priority Critical patent/JP2004131793A/en
Publication of JP2004131793A publication Critical patent/JP2004131793A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Forging (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a heat resistant steel part in which cracks on forging frequently occurring in the production of a part made of niobium-containing low alloy heat resistant steel are eliminated, and the occurrence of cracks in a working process including forging is prevented, and to provide a production method therefor. <P>SOLUTION: When, with niobium-containing low alloy heat resistant steel containing 0.01 to 0.10% Nb as an object, at least a part of crystallized NbC is made to form a solid solution in a matrix by soaking, and next and forging and required mechanical working are performed, ≥60% of the crystallized NbC is allowed to form the solid solution. The progress rate into the solid solution is estimated by the formula, S=1-exp[ä-2.72×10<SP>16</SP>exp(-6.41×10<SP>5</SP>/RT)}×t] (wherein S is the progress rate into the solid solution; T is the temperature (K) of a steel ingot; t is the time (s), and R is a gas constant of 8.3114), and the heating temperature and time are decided, so that the soaking is efficiently performed. <P>COPYRIGHT: (C)2004,JPO

Description

【0001】
【発明の属する技術分野】
本発明は、ニオブ含有低合金耐熱鋼の鋼塊に、鍛造を含む加工を施して製造した機械構造用の部品に関する。本発明はまた、そのような部品の、工業的に有利な製造方法にも関する。本発明において「部品」とは、最終的な機械部品に限らず、さらなる加工を加える余地のある素材を包含する。
【0002】
【従来の技術】
たとえば発電用ガスタービンのディスク(翼車板)を製造する工程をとり上げてみると、低合金耐熱鋼の比較的大きな鋼塊を用意し、それに鍛造を含む加工を施してほぼ製品サイズの素材とし、それを機械加工することによって部品としている。低合金耐熱鋼としては、所定量のニオブを添加した合金が好んで使用されている。よく知られているとおり、Nbは鋼の組織を微細にし、靱性を高くする作用があるからである。
【0003】
ところが、Nbの添加は、その炭化物NbCの生成を招く。上記のように、鋼塊は比較的大きく、代表的なものは15トン程度あるから、鋳造後の冷却は速やかに進まず、生成したNbCのかなりの部分が晶出する。NbCが晶出した鋼塊をそのまま鍛造すると、ワレが生じやすい。内部にワレをもつ加工品は使用中に破損して大事故につながる危険があるから、加工後に超音波検査をして見つけだし、不良品として再溶解に回すしかない。かなりな程度に加工を施した後に不良品であることが判明するのでは、そのしわ寄せを受ける良品の製造コストが高くなることはいうまでもなく、そのような事態はなるべく避けたい。
【0004】
そこで、鋼塊を加工するに先立ってソーキングを行ない、晶出したNbCを鋼の基地中に固溶させて、ワレを予防することが行なわれている。通常は、1200℃以上の温度に、少なくとも20時間保持する熱処理を行なう。しかし、十分な固溶を実現しようとして、高温かつ長時間のソーキングを行なうことが省エネルギーの要請に反し、コストの観点からも不利であることは当然であり、効果的な改善策が求められていた。
【0005】
【発明が解決しようとする課題】
本発明の目的は、ニオブ含有低合金耐熱鋼製の部品を製造するときの懸案であった上記の問題を解決し、鍛造を含む加工工程におけるワレの発生を予防した耐熱鋼部品と、その製造方法を提供することにある。
【0006】
【課題を解決するための手段】
上記の目的を達成する本発明のニオブ含有低合金耐熱鋼部品は、重量で、C:0.3〜1.0%、Nb:0.01〜0.10%、Ni:1.0%以下、Cr:3.0%以下、Mo:1.5%以下およびV:0.5%以下を含有し、残部がFeおよび不純物からなる合金組成のニオブ含有低合金耐熱鋼を、鍛造を含む加工により成形してなる部品であって、その中のNbCの面積率が0.004%以下の部品である。
【0007】
上記のようなニオブ含有低合金耐熱鋼の部品を製造する本発明の方法は、重量で、C:0.3〜1.0%、Nb:0.01〜0.10%、Ni:1.0%以下、Cr:3.0%以下、Mo:1.5%以下およびV:0.5%以下を含有し、残部がFeおよび不純物からなる合金組成のニオブ含有低合金耐熱鋼を鋼塊に鋳造し、晶出したNbCの少なくとも一部をソーキングによりマトリクス中に固溶させ、ついで鍛造および必要な機械加工を施すことからなる部品の製造方法において、晶出したNbCの60%以上を固溶させることにより、鍛造時に生じ得るワレを防止して部品を得ることを特徴とする。
【0008】
【発明の実施形態】
本発明の部品の材料となるニオブ含有低合金耐熱鋼の合金組成を上記のように定めた理由は、つぎのとおりである。
【0009】
C:0.3〜1.0%
部品に要求される強度を確保する上で、0.3%以上のCが必要である。過大なCの存在は、NbCの晶出量を増し、固溶による消失を困難にするから、1.0%を超える多量のCを添加すべきでない。
【0010】
Nb:0.01〜0.10%
前述のように、Nbは結晶粒度を微細にする作用があり、部品の靱性を高める上で重要な成分である。Cr−Mo−V鋼において、0.07%のNbを添加したものは、無添加のものにくらべて、焼き入れ温度910〜970℃の範囲において、結晶粒度が0.5〜1程度高くなるということが知られている。この結晶粒微細化効果は、Nb:0.01%以上の添加でみとめられるが、添加量を増しても飽和する。好ましい添加量の範囲は、0.04〜0.08%である。
【0011】
Ni:1.0%以下
Niは焼き入れ性を高めて、部品の強度を増す。効果が飽和することと、コストの面から、1.0%を添加量の上限とする。
【0012】
Cr:3.0%以下
Crは、焼き入れ性を高め、焼き戻し抵抗を増す。上限値3.0%は、コストの観点から設定した。
【0013】
Mo:1.5%以下
Moは高温における硬さと強度を高める元素であり、耐熱鋼にとって重要な成分である。費用対効果の観点から、添加量は1.5%までに止めるのが得策である。
【0014】
V:0.5%以下
Nbとともに、結晶粒の微細化に役立つ。この効果は、0.5%を超える添加では飽和する。
【0015】
晶出したNbCの60%以上を固溶させることの意義は、もちろん、NbCの面積率0.004%以下の鋼材を得ることにあるが、この60%という限界は、後記するつぎの実験結果から得られた知見である。すなわち、固溶進行率と欠陥率との関係をプロットして得た図1のグラフに見るように、固溶進行率が60%以上になれば、欠陥率が実質上ゼロになるというデータである。
【0016】
固溶進行率が60%以上となったことが確実であれば、それ以上ソーキングを続ける意味はなくなるが、問題は、それを如何にして決定するかである。発明者らは、ソーキング中におけるNbCの固溶の進行状況は、下記の固溶進行率の式に基づいて推定できることを見出し、
S=1−exp[{−2.72×1016exp(−6.41×10/RT)}×t]
ここで、S:固溶進行率 T:鋼塊の温度(K)
t:時間(秒) R:気体定数=8.3114
それに基づいてソーキングの温度および時間を決定することにより、効率のよいエネルギー消費量をもって、欠陥のない、または欠陥を生じるおそれのない鍛造用の素材を取得する技術を確立した。
【0017】
上記の式において、鋼塊の温度(T)は、定常状態においては加熱炉の雰囲気温度であるが、ソーキングの開始時には冷えた鋼塊を装入するわけで、それが実質上雰囲気温度に到達するまでには、当然に時間がかかる。容易に理解されるとおり、鋳型に注がれた溶鋼が凝固して鋼塊となったばかりは、まだ高温であるから、なるべく早くソーキングに移行することが、消費熱量の点で有利である。ところが、早期の加熱炉装入は、単に、冷えたものを再度高温にするのが容易であるという効果を超えた、欠陥率の低減をもたらすことが判明した。これは、いったん冷えて晶出したNbCを固溶させるより、NbCの晶出をできるだけ抑えるのが有利であることを物語っている。
【0018】
【実施例】
下記の合金組成(重量%、残部Feおよび不純物)をもつNb含有低合金耐熱鋼を溶製し、
C:0.31%、Si:0.1%、Mn:0.7%、Ni:0.7%、Cr:2.35%、Mo:1.02%、V:0.20%およびNb:0.05%
15トンの鋼塊に鋳造したものを対象に、1240〜1350℃の範囲で種々の温度において、5〜10時間にわたるソーキングを行なった。鋼塊を輪切りにして四分し、それらについてNbCの面積率を測定した結果にもとづき、固溶進行率を算出した。
【0019】
「NbCの面積率A」は、10mm×10mmの顕微鏡視野を観察して、つぎのように算出する。
A=B/B×100(%)
ここで、B:視野に存在するNbCの面積の合計
:視野の面積=100mm
固溶進行率Sは、つぎのように定義する。
S=(A−A)/A×100(%)
ここで、A:ソーキング前のNbC面積率
:ソーキング後のNbC面積率
【0020】
さまざまな固溶進行率における合金の欠陥の有無を、超音波探傷器でしらべ、欠陥率を算出した。NbCの固溶進行率と鋼片の欠陥率との関係をプロットして得たのが、図1のグラフである。NbC面積率から算出した固溶進行率Sと、ソーキングの条件である鋼材温度(加熱炉雰囲気温度)Tおよび加熱時間tとの関係を二重回帰分析によって導いたのが、前記したS=f(T,t)の式である。
【0021】
速やかなNbCの固溶を実現するには、従来のソーキングより若干高い温度を採用する方が有利であることが、発明者らの経験により明らかになった。具体的には、従来のソーキングが、経験的に定めた、代表的には1200℃内外に20〜24時間加熱するという条件を採用していたのに対し、本発明の実施に当たっては、1240〜1350℃の温度で、5〜10時間の加熱を行なうのがよい。より高い加熱温度の採用は、単位時間の消費エネルギー量を増すが、加熱時間の短縮により、補って余りある節約ができる。
【0022】
前掲のS=f(T,t)式は、Nb含有量が0.01〜0.10%のニオブ含有低合金耐熱鋼に一般に適用されるので、ソーキングの加熱炉雰囲気温度Tを決定すれば、時間tの進行に伴う固溶進行率Sが算出される。Sが60%を超えるために必要なソーキング時間の例を示せば、つぎのとおりである。
ソーキング温度(℃) 1200 1240 1260 1280 1300 1320 1340
ソーキング時間(hr)  625  155  85  42  23  13   7
【0023】
【発明の効果】
本発明にしたがうニオブ含有低合金耐熱鋼製の部品は、晶出しているNbCの量を、面積率にして0.004%という臨界的な値以下におさえることにより、加工工程において鍛造を行なっても割れを生じる危険が、画期的に低くなったものである。割れにくい材料を加工することにより、加工中に割れて不良品が発生する率を、顕著に低減することができる。良品歩留まりの向上が、生産の効率化とコストの低減に寄与することはいうまでもない。
【0024】
割れにくいニオブ含有低合金耐熱鋼製の部品を製造する本発明の方法は、晶出したNbCをソーキングによりマトリクス中に固溶させるに当り、固溶進行率が60%以上になれば、欠陥率つまり加工中に割れをもたらすNbCが、問題のない程度に減少するという臨界的な事実の発見を基礎として、固溶進行率を推定する式を二重回帰分析により見出して、ムダのないソーキングを実施できるようにした製造方法である。これにより、単に経験的に割り出したソーキング温度および時間の条件を採用してきたため、エネルギーのムダが多いという従来技術の欠点が解消し、省エネの要請に応えることができた。これもまた、耐熱鋼製部品の製造コスト低減に役立つ。
【図面の簡単な説明】
【図1】本発明の成立の過程で得た実験データであって、ニオブ含有低合金耐熱鋼に晶出したNbCの固溶進行率と、鋼片の欠陥率との関係をプロットしたグラフ。
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a component for a machine structure manufactured by subjecting a steel ingot of a niobium-containing low alloy heat-resistant steel to a process including forging. The invention also relates to an industrially advantageous method for producing such components. In the present invention, “parts” include not only final mechanical parts but also materials that have room for further processing.
[0002]
[Prior art]
For example, taking up the process of manufacturing a disk (blade plate) for a gas turbine for power generation, a relatively large ingot of low-alloy heat-resistant steel is prepared and subjected to processing, including forging, to produce a material of almost product size. It is made into a part by machining it. As the low-alloy heat-resistant steel, an alloy containing a predetermined amount of niobium is preferably used. This is because, as is well known, Nb has the effect of making the structure of steel finer and increasing the toughness.
[0003]
However, the addition of Nb causes the generation of the carbide NbC. As described above, since the steel ingot is relatively large and the typical one is about 15 tons, cooling after casting does not proceed quickly, and a considerable portion of the generated NbC crystallizes. If the steel ingot crystallized with NbC is forged as it is, cracks are likely to occur. Processed products with cracks inside may be damaged during use, leading to a serious accident. Therefore, after processing, they must be found by ultrasonic inspection and then re-dissolved as defective. If it turns out that the product is defective after processing to a considerable extent, it goes without saying that the cost of manufacturing a good product that suffers from the wrinkling increases, and such a situation should be avoided as much as possible.
[0004]
Therefore, soaking is performed prior to processing a steel ingot, and the crystallized NbC is dissolved in a steel matrix to prevent cracking. Normally, heat treatment is performed at a temperature of 1200 ° C. or higher for at least 20 hours. However, it is natural that conducting soaking at a high temperature for a long time to achieve a sufficient solid solution is disadvantageous from the viewpoint of cost, contrary to the demand for energy saving, and effective improvement measures are required. Was.
[0005]
[Problems to be solved by the invention]
An object of the present invention is to provide a heat-resistant steel part which solves the above-mentioned problem which has been a concern when manufacturing a niobium-containing low-alloy heat-resistant steel part, and prevents the occurrence of cracks in a processing step including forging, and a method of manufacturing the same. It is to provide a method.
[0006]
[Means for Solving the Problems]
The niobium-containing low-alloy heat-resistant steel part of the present invention that achieves the above objects achieves, by weight, C: 0.3 to 1.0%, Nb: 0.01 to 0.10%, and Ni: 1.0% or less. , Cr: 3.0% or less, Mo: 1.5% or less, and V: 0.5% or less, with the balance being Fe and impurities. And a component having an area ratio of NbC of 0.004% or less.
[0007]
The method of the present invention for producing a niobium-containing low-alloy heat-resistant steel component as described above comprises, by weight, C: 0.3 to 1.0%, Nb: 0.01 to 0.10%, Ni: 1. A niobium-containing low-alloy heat-resistant steel containing 0% or less, Cr: 3.0% or less, Mo: 1.5% or less, and V: 0.5% or less, with the balance being Fe and impurities. In a part manufacturing method, at least a part of the crystallized NbC is solid-dissolved in a matrix by soaking, and then forged and subjected to necessary machining, at least 60% of the crystallized NbC is solidified. By melting, cracks that may occur during forging are prevented to obtain a component.
[0008]
DETAILED DESCRIPTION OF THE INVENTION
The reason why the alloy composition of the niobium-containing low-alloy heat-resistant steel used as the material of the component of the present invention is determined as described above is as follows.
[0009]
C: 0.3-1.0%
In order to secure the strength required for the component, 0.3% or more of C is required. Since the presence of excessive C increases the amount of NbC crystallized and makes it difficult to disappear by solid solution, a large amount of C exceeding 1.0% should not be added.
[0010]
Nb: 0.01 to 0.10%
As described above, Nb has an effect of reducing the crystal grain size, and is an important component for increasing the toughness of parts. In the Cr-Mo-V steel, the one in which 0.07% of Nb is added has a crystal grain size higher by about 0.5 to 1 in a quenching temperature range of 910 to 970 ° C than the non-added one. It is known that. This crystal grain refining effect is observed when Nb is added in an amount of 0.01% or more, but is saturated even when the added amount is increased. The preferred range of the amount added is 0.04 to 0.08%.
[0011]
Ni: 1.0% or less Ni enhances hardenability and increases the strength of parts. From the viewpoint of saturation of the effect and cost, 1.0% is made the upper limit of the addition amount.
[0012]
Cr: 3.0% or less Cr enhances hardenability and increases tempering resistance. The upper limit of 3.0% was set from the viewpoint of cost.
[0013]
Mo: 1.5% or less Mo is an element that increases the hardness and strength at high temperatures, and is an important component for heat-resistant steel. From the viewpoint of cost effectiveness, it is advisable to limit the amount of addition to 1.5%.
[0014]
V: 0.5% or less Helps to refine crystal grains together with Nb. This effect saturates at more than 0.5% addition.
[0015]
The significance of dissolving 60% or more of the crystallized NbC is, of course, to obtain a steel material having an area ratio of NbC of 0.004% or less, but the limit of 60% is due to the following experimental results described below. It is the knowledge obtained from. In other words, as shown in the graph of FIG. 1 obtained by plotting the relationship between the solid solution progress rate and the defect rate, the data shows that the defect rate becomes substantially zero when the solid solution progress rate becomes 60% or more. is there.
[0016]
If it is certain that the solid solution progress rate has reached 60% or more, there is no point in continuing soaking, but the problem is how to determine it. The inventors have found that the progress of solid solution of NbC during soaking can be estimated based on the following formula of solid solution progress rate,
S = 1-exp [{− 2.72 × 10 16 exp (−6.41 × 10 5 / RT)} × t]
Here, S: solid solution progress rate T: temperature of steel ingot (K)
t: time (seconds) R: gas constant = 8.3114
By determining the temperature and time of soaking based on this, a technique for obtaining a forging material free of defects or having no risk of generating defects was established with efficient energy consumption.
[0017]
In the above equation, the temperature of the steel ingot (T) is the ambient temperature of the heating furnace in a steady state, but a cold steel ingot is charged at the start of soaking, and the temperature substantially reaches the ambient temperature. It takes time to do so. As will be easily understood, since the molten steel poured into the mold has just solidified into a steel ingot, the temperature is still high, so it is advantageous in terms of heat consumption to shift to soaking as soon as possible. However, it has been found that early heating furnace loading results in a reduced defect rate beyond the effect of simply raising the temperature of the cold one again. This indicates that it is more advantageous to suppress the crystallization of NbC as much as possible, rather than dissolving the NbC crystallized once cooled.
[0018]
【Example】
Melting Nb-containing low-alloy heat-resistant steel having the following alloy composition (% by weight, balance Fe and impurities)
C: 0.31%, Si: 0.1%, Mn: 0.7%, Ni: 0.7%, Cr: 2.35%, Mo: 1.02%, V: 0.20% and Nb : 0.05%
Soaking was performed on the cast ingot of 15 tons at various temperatures in the range of 1240 to 1350 ° C for 5 to 10 hours. The steel ingot was cut into quarters and divided into quarters, and the solid solution progression rate was calculated based on the results of measuring the area ratio of NbC for these.
[0019]
The “area ratio A of NbC” is calculated as follows by observing a visual field of a microscope of 10 mm × 10 mm.
A = B 0 / B t × 100 (%)
Here, B 0 : the total area of NbC present in the visual field B t : the area of the visual field = 100 mm 2
The solid solution progress rate S is defined as follows.
S = (A 0 −A 1 ) / A 0 × 100 (%)
Here, A 0 : NbC area ratio before soaking A 1 : NbC area ratio after soaking
The presence or absence of defects in the alloy at various solid solution progress rates was examined by an ultrasonic flaw detector, and the defect rates were calculated. FIG. 1 is a graph obtained by plotting the relationship between the solid solution progression rate of NbC and the defect rate of the steel slab. The relationship between the solid solution progress rate S calculated from the NbC area ratio and the soaking conditions of the steel material temperature (heating furnace atmosphere temperature) T and the heating time t was derived by a double regression analysis. (T, t).
[0021]
The inventors' experience has shown that it is more advantageous to employ a slightly higher temperature than conventional soaking in order to realize rapid solid solution of NbC. Specifically, while the conventional soaking employs the condition that heating is performed empirically, typically at 1200 ° C. inside and outside for 20 to 24 hours, in the practice of the present invention, it is 1240 to 120 ° C. The heating is preferably performed at a temperature of 1350 ° C. for 5 to 10 hours. The use of higher heating temperatures increases the amount of energy consumed per unit time, but the savings can be made much more by shortening the heating time.
[0022]
The above-mentioned S = f (T, t) equation is generally applied to a niobium-containing low-alloy heat-resistant steel having an Nb content of 0.01 to 0.10%, so if the soaking furnace atmosphere temperature T is determined. , The solid solution progress rate S with the progress of the time t is calculated. An example of the soaking time required for S to exceed 60% is as follows.
Soaking temperature (° C) 1200 1240 1260 1280 1300 1320 1340
Soaking time (hr) 625 155 85 42 23 13 7
[0023]
【The invention's effect】
The niobium-containing low-alloy heat-resistant steel part according to the present invention is forged in the processing step by controlling the amount of crystallized NbC to a critical value of 0.004% or less in area ratio. The risk of cracking has also been significantly reduced. By processing a hard-to-break material, the rate of occurrence of defective products due to cracking during processing can be significantly reduced. It goes without saying that an improvement in the yield of non-defective products contributes to efficiency of production and reduction of cost.
[0024]
The method of the present invention for producing a niobium-containing low-alloy heat-resistant steel component that is difficult to crack is used in the process of soaking the crystallized NbC into the matrix by soaking. In other words, based on the discovery of the critical fact that NbC, which causes cracking during processing, decreases to a negligible degree, a double regression analysis was used to find an equation for estimating the rate of solid solution progression, and to reduce waste soaking. This is a manufacturing method that can be implemented. As a result, since the conditions of the soaking temperature and the time which are simply determined empirically have been adopted, the disadvantage of the conventional technology that wastes a lot of energy has been solved, and the demand for energy saving has been met. This also helps reduce the cost of manufacturing heat resistant steel parts.
[Brief description of the drawings]
FIG. 1 is a graph showing experimental data obtained in the process of establishing the present invention and plotting a relationship between a solid solution progression rate of NbC crystallized in a niobium-containing low alloy heat-resistant steel and a defect rate of a steel slab.

Claims (4)

重量で、C:0.3〜1.0%、Nb:0.01〜0.10%、Ni:1.0%以下、Cr:3.0%以下、Mo:1.5%以下およびV:0.5%以下を含有し、残部がFeおよび不純物からなる合金組成のニオブ含有低合金耐熱鋼を、鍛造を含む加工により成形してなる部品であって、その中のNbCの面積率が0.004%以下である部品。By weight, C: 0.3 to 1.0%, Nb: 0.01 to 0.10%, Ni: 1.0% or less, Cr: 3.0% or less, Mo: 1.5% or less, and V : A component formed by forming a niobium-containing low-alloy heat-resistant steel having an alloy composition of 0.5% or less, with the balance being Fe and impurities, by processing including forging, wherein the area ratio of NbC is Parts that are 0.004% or less. Nb:0.04〜0.08%である請求項1の部品。The component according to claim 1, wherein Nb is 0.04 to 0.08%. 重量で、C:0.3〜1.0%、Nb:0.01〜0.10%、Ni:1.0%以下、Cr:3.0%以下、Mo:1.5%以下およびV:0.5%以下を含有し、残部がFeおよび不純物からなる合金組成のニオブ含有低合金耐熱鋼を鋼塊に鋳造し、晶出したNbCの少なくとも一部をソーキングによりマトリクス中に固溶させ、ついで鍛造および必要な機械加工を施すことからなる部品の製造方法において、晶出したNbCの60%以上を固溶させることにより、鍛造時に生じ得るワレを防止して部品を得ることを特徴とするニオブ含有低合金耐熱鋼の部品の製造方法。By weight, C: 0.3 to 1.0%, Nb: 0.01 to 0.10%, Ni: 1.0% or less, Cr: 3.0% or less, Mo: 1.5% or less, and V : Niobium-containing low-alloy heat-resistant steel containing 0.5% or less, with the balance being Fe and impurities, is cast into a steel ingot, and at least a portion of the crystallized NbC is dissolved in a matrix by soaking. Then, in a method for producing a part, which comprises forging and performing necessary machining, a component is obtained by dissolving 60% or more of the crystallized NbC to thereby prevent cracking that may occur at the time of forging. For producing parts of niobium-containing low alloy heat resistant steel. ソーキング中におけるNbCの固溶の進行状況を下記の固溶進行率の式に基づいて推定し、
S=1−exp[{−2.72×1016exp(−6.41×10/RT)}×t]
ここで、S:固溶進行率 T:鋼塊の温度(K)
t:時間(秒) R:気体定数=8.3114
ソーキングの温度および時間を決定して実施する請求項3の製造方法。
Estimating the progress of solid solution of NbC during soaking based on the following formula of solid solution progress rate,
S = 1-exp [{− 2.72 × 10 16 exp (−6.41 × 10 5 / RT)} × t]
Here, S: solid solution progress rate T: temperature of steel ingot (K)
t: time (seconds) R: gas constant = 8.3114
4. The method according to claim 3, wherein the soaking temperature and time are determined.
JP2002297445A 2002-10-10 2002-10-10 Part made of niobium-containing low alloy heat resistant steel, and production method therefor Pending JP2004131793A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002297445A JP2004131793A (en) 2002-10-10 2002-10-10 Part made of niobium-containing low alloy heat resistant steel, and production method therefor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002297445A JP2004131793A (en) 2002-10-10 2002-10-10 Part made of niobium-containing low alloy heat resistant steel, and production method therefor

Publications (1)

Publication Number Publication Date
JP2004131793A true JP2004131793A (en) 2004-04-30

Family

ID=32287141

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002297445A Pending JP2004131793A (en) 2002-10-10 2002-10-10 Part made of niobium-containing low alloy heat resistant steel, and production method therefor

Country Status (1)

Country Link
JP (1) JP2004131793A (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60245772A (en) * 1984-05-21 1985-12-05 Mitsubishi Heavy Ind Ltd Low alloy steel for rotor of integrated high and low pressure type steam turbine
JPS62192536A (en) * 1986-02-18 1987-08-24 Nippon Chiyuutankou Kk Manufacture of turbine rotor
JPH03254339A (en) * 1990-03-03 1991-11-13 Kawasaki Steel Corp Manufacture of raw material for bearing having excellent service life to rolling fatigue
JP2000087177A (en) * 1998-09-16 2000-03-28 Daido Steel Co Ltd Steel casting of cold-working tool steel excellent in machinability, and its production

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60245772A (en) * 1984-05-21 1985-12-05 Mitsubishi Heavy Ind Ltd Low alloy steel for rotor of integrated high and low pressure type steam turbine
JPS62192536A (en) * 1986-02-18 1987-08-24 Nippon Chiyuutankou Kk Manufacture of turbine rotor
JPH03254339A (en) * 1990-03-03 1991-11-13 Kawasaki Steel Corp Manufacture of raw material for bearing having excellent service life to rolling fatigue
JP2000087177A (en) * 1998-09-16 2000-03-28 Daido Steel Co Ltd Steel casting of cold-working tool steel excellent in machinability, and its production

Similar Documents

Publication Publication Date Title
JP4414983B2 (en) Titanium material manufacturing method and hot rolling material
CN113106206B (en) Manufacturing method of 1Cr11Ni2W2MoV heat-resistant steel forging for fastener
JP2016128172A (en) Titanium hot rolling ingot being hard to cause surface flaw and its manufacturing method
JP3959667B2 (en) Manufacturing method of high strength steel pipe
CN108441613A (en) A kind of anti-white point control method of age-hardening plastic mould steel
JP6075387B2 (en) Titanium slab for hot rolling in which surface flaws are unlikely to occur and method for producing the same
JP2008127665A (en) Method for producing aluminum alloy cylinder block
JP3606404B2 (en) Consumable electrode type remelting method of super heat-resistant alloy
JP2004131793A (en) Part made of niobium-containing low alloy heat resistant steel, and production method therefor
JP5778158B2 (en) Heat treatment of martensitic stainless steel after remelting under slag layer
JP2009214122A (en) Composite roll for hot rolling and its manufacturing method
JPH07251265A (en) Method for scarfing cast steel slab
JP6171836B2 (en) Titanium alloy slab for hot rolling and manufacturing method thereof
CN114769545A (en) Production method for reducing mountain scales on hot-rolled edge of 200-series stainless steel
JP2001140039A (en) Wear resistant cast steel and producing method therefor
JP3881793B2 (en) Hot forging method for mold steel or tool steel
JPS5852444B2 (en) Method for suppressing steel billet surface cracking during hot rolling
JP2004269981A (en) Production method of steel bar
JPH08104920A (en) Production of high-strength austenitic stainless steel sheet
JP2024090674A (en) Wear-resistant cast steel and its manufacturing method
JP3709794B2 (en) Manufacturing method of high strength and high toughness steel sheet
JP2002161334A (en) Adamite roll for hot rolling
JP2001059137A (en) High carbon slab for seamless steel pipe and its production
JP4771394B2 (en) Method for producing high-purity Fe-Cr alloy
WO2024053276A1 (en) Steel cast slab, continuous casting method, and method for producing steel cast slab

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050826

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070222

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070306

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20070703