JP3983502B2 - Mold with excellent resistance to aluminum erosion and its processing method - Google Patents

Mold with excellent resistance to aluminum erosion and its processing method Download PDF

Info

Publication number
JP3983502B2
JP3983502B2 JP2001176002A JP2001176002A JP3983502B2 JP 3983502 B2 JP3983502 B2 JP 3983502B2 JP 2001176002 A JP2001176002 A JP 2001176002A JP 2001176002 A JP2001176002 A JP 2001176002A JP 3983502 B2 JP3983502 B2 JP 3983502B2
Authority
JP
Japan
Prior art keywords
mold
aluminum
resistance
nitriding
hardness
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2001176002A
Other languages
Japanese (ja)
Other versions
JP2002363705A (en
Inventor
大円 横井
幸生 舘
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanyo Special Steel Co Ltd
Original Assignee
Sanyo Special Steel Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanyo Special Steel Co Ltd filed Critical Sanyo Special Steel Co Ltd
Priority to JP2001176002A priority Critical patent/JP3983502B2/en
Publication of JP2002363705A publication Critical patent/JP2002363705A/en
Application granted granted Critical
Publication of JP3983502B2 publication Critical patent/JP3983502B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Solid-Phase Diffusion Into Metallic Material Surfaces (AREA)
  • Heat Treatment Of Articles (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、低圧鋳造法で成形されるアルミダイカスト製品の製造に用いられる耐アルミ溶損性に優れた金型およびその加工方法に関するものである。
【0002】
【従来の技術】
一般に、アルミダイカスト用の金型は、高温、高圧に繰り返しさらされるので、その金型表面には圧縮および引張の熱応力が負荷され、この熱応力が繰り返し負荷されるため、金属表面に熱疲労クラックや型割れが発生し、被加工材に転写されるようになる。この熱疲労クラックや型割れが激しくなり、金型が使用できなくなる。そのため、上記金型には、熱疲労クラックや型割れに対する抵抗性が要求される。
【0003】
上述した金型において、熱疲労クラックに対して抵抗性を持たせるには、硬さを向上させることが有効である。また、型割れに対しては抵抗性を持たせるには、靱性を向上させることが有効である。そこで、通常、市販されているJIS規格のSKD61のように、適当な硬さに焼入れ、焼戻しが行われ、最後に仕上げ加工が施されることにより作製されている。このようにSKD61は、優れた焼入性を有しているので、焼入れ、焼戻し工程により金型を十分硬くすることが出来ると共に靱性を向上させることができる。そのため、得られた金型は、熱疲労クラックおよび型割れの発生が少ないものとなる。
【0004】
一方、特開平5−140695号公報のように、アルミ押出しダイス用鋼として硬さHRC50以上に焼入れ焼戻しした後、窒化処理をして使用するものや、特開平7−207414号公報のように、アルミ鍛造用金型鋼として硬さHRC46以上で使用するもの等が開示されている。いずれも、ダイスに加工した時、靱性が高く、焼戻し軟化抵抗に優れ、ダイス全体にたわみ、熱疲労クラックおよび型割れの発生が少ないアルミ成形用金型として知られている。
【0005】
【発明が解決しようとする課題】
上述したように、従来におけるアルミ成形用金型は、いずれも焼入れ、焼戻し材、あるいは焼入れ、焼戻しした後、窒化処理をして使用するものであり、確かに型寿命は長くなるが、しかしながら、焼入れ、焼戻し工程、仕上加工工程が必要となり、コストアップという最大の問題がある。
【0006】
【課題を解決するための手段】
上述したような問題を解消するために、発明者らは鋭意開発を進めた結果、焼入れ、焼戻し工程、ないし仕上加工工程を省略し、焼鈍と繰り返し窒化によりトータルコストを低減した耐アルミ溶損性に優れた金型およびその加工方法を提供することにある。
その発明の要旨とするところは、
(1)質量%で、C:0.3〜0.5%、Si:≦2.0%、Cr:3.0〜6.0%、Mo:1.0〜3.0%、V:0.2〜1.5%を含み、残部Feならびに不可避的不純物からなる熱間工具鋼において、母材硬さ80〜102HRBを有し、焼入れ焼戻しを行うことなく窒化処理したときの窒化層の30μm内部の硬さが600HV以上であり、該窒化深さ50〜250μmであることを特徴とする低圧鋳造法で成形されるアルミダイカスト製品の製造に用いられる耐アルミ溶損性に優れた金型。
(2)前記(1)に記載の金型であって、繰り返し窒化処理を施すことを特徴とする低圧鋳造法で成形されるアルミダイカスト製品の製造に用いられる耐アルミ溶損性に優れた金型。
(3)前記(1)に記載の金型であって、繰り返し窒化処理を施すことを特徴とする低圧鋳造法で成形されるアルミダイカスト製品の製造に用いられる耐アルミ溶損性に優れた金型の加工方法にある。
【0007】
【発明の実施の形態】
以下、本発明について詳細に説明する。
本発明に係る熱間工具鋼としては、特に限定するものでないが、Cr−Mo−V系熱間工具鋼が望ましく、例えば以下実施例に示すような、C:0.3〜0.5%、Si:≦2.0%、Cr:3.0〜6.0%、Mo:1.0〜3.0%、V:0.2〜1.5%を含み、残部Feならびに不可避的不純物からなる熱間工具鋼を用いる。必要に応じて、Nb,Ni,W,CoおよびSなどの快削元素を含む熱間工具鋼を用いることも可能である。Cは、高温硬さを維持し、また、Mo、V、Crなどの炭化物を形成し、結晶粒の微細化効果、耐摩耗性、高温硬さを与えるために添加する元素である。Siは、脱酸材であると共に本発明の硬さ80〜102HRBを保持し、ダイス用鋼として必要な強度を得るために必要な元素である。
【0008】
Crは、適正な添加量の設定により、高温強度の向上、Cと結合して炭化物を形成することによる耐摩耗性の向上、さらに、窒化処理のとき、Nと結合して窒化物を形成し、本発明の最大の特徴とする耐溶損性を付与する。これは窒化物が母材に高密度で分布することによって、母材と溶融金属の反応界面を小さくすることにより、溶損が進行しにくくなるためである。Mo、Vは、窒化処理のとき、Nと結合して窒化物を形成し、Crと同様に母材と溶融金属の反応界面を小さくすることにより、溶損が進行しにくくなるためである。また、耐熱疲労クラック性を向上させる成分である。
【0009】
次に、母材硬さ80〜102HRBとした理由は、母材硬さは金型強度として必要であり、80HRB未満では最適な金型強度を得ることが出来ず、また、102HRBを超えると被削性が低下するため、その範囲を80〜102HRBとした。窒化層の30μm内部の硬さが600HV以上とした理由は、耐アルミ溶損性のため必要で600HV未満ではその効果が不十分であることから、その下限を定めた。また、窒化深さ50〜250μmとした理由は、耐アルミ溶損性のため必要で、50μm未満ではその効果が得られず、また、250μmを超えると大割れする危険性が高くなることから、その範囲を50〜250μmとした。
【0010】
【実施例】
以下、本発明について実施例によって具体的に説明する。
供試材として、C:0.3〜0.5%、Si:≦2.0%、Cr:3.0〜6.0%、Mo:1.0〜3.0%、V:0.2〜1.5%なる鋼を用い、300kgを真空誘導溶解炉で溶解し、インゴットに鋳造した後1100℃に加熱し、φ30mmに鍛伸し、870℃焼鈍(供試材Dは省略)してアルミ溶損試験片を作製した。一方、角30×100×100mmに鍛伸し、870℃焼鈍して被削性試験片を作製した。さらに、φ65mmに鍛伸し、870℃焼鈍後金型を作製し実機評価を行った。その結果を表1および表2に示す。
【0011】
なお、試験片の窒化処理条件としては、窒化方法:イオン(プラズマ)窒化、N/H比:25/75、ガス圧:6Torr、処理温度:500〜600℃、処理時間:2〜15時間で行なった。窒化深さは、マイクロビッカース硬度計を用いて、窒化層の最表面から硬さ測定を行い、母材硬さと一致するまでの距離とした。また、母材硬さは、ロックウェル硬度計Bスケールを用いて測定した。その時のアルミ溶損試験条件としては、アルミ合金:ADC12(Al−12Si−2Cu)、溶湯温度:720℃、回転数:25rpm(回転半径10cm)、浸漬時間:60分、浸漬深さ:50mm、n数:2なる条件で行った。その場合のアルミ溶損試験機の概略図を図1に示す。
【0012】
図1に示すように、溶解槽1内にアルミ合金2をヒーター3により加熱してアルミ合金2を溶解すると共に、試験片4をアルミ合金2の表面50mmの深さにホルダー5により回転させながらアルミ溶損の試験を行った。被削性評価は、φ12のハイス製エンドミルを用い、回転数900rpm、切削速度50m/min、1刃削り0.1mm/刃、切削油なしの条件で行った。また、被削性指数として工具摩耗量が0.2mmのときの切削長を指数化したものである。実機テストは、Al合金:ADC12、型内圧:1.2気圧、製品1個の成形時間:2分/ショットの条件で行った。
【0013】
【表1】

Figure 0003983502
【0014】
【表2】
Figure 0003983502
【0015】
表1および表2に示すように、供試材Aは本発明例であり、供試材B〜Eは比較例である。表1に示す溶損試験結果によれば、本発明例Aは比較例B〜Eに比較して、溶損減量率が低く、特に比較例B、Cは溶損減量率が高い。また、本発明例Aの被削性指数100に対し、比較例は、いずれも切削長が長く、特に比較例D、Eは被削性の悪いことが分かる。さらに、表2には実機試験の結果を示すように、本発明供試材Aは、比較例である供試材Eと比べて型寿命は同等であるが、しかし、型作製コストは大幅に低いものである。
【0016】
【発明の効果】
以上述べたように、本発明による焼入れ、焼戻しを省略して焼鈍と窒化処理によるダイカスト金型を作製することが出来、得られた金型の耐熱疲労クラック性は良好で、しかも金型作製コストを大幅に低減することが可能となり、生産コストを大幅に削減できる耐アルミ溶損性に優れた金型を提供するもので工業的に極めて優れた効果を奏するものである。
【図面の簡単な説明】
【図1】アルミ溶損試験機の概略図である。
【符号の説明】
1 溶解槽
2 アルミ合金
3 ヒーター3
4 試験片
5 ホルダー[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a mold having excellent resistance to aluminum erosion used for manufacturing an aluminum die-cast product formed by a low-pressure casting method, and a processing method thereof .
[0002]
[Prior art]
In general, molds for aluminum die casting are repeatedly exposed to high temperatures and high pressures, so the surface of the mold is subjected to compressive and tensile thermal stress, and this thermal stress is repeatedly applied. Cracks and mold cracks occur and are transferred to the workpiece. The thermal fatigue cracks and mold cracks become severe and the mold cannot be used. Therefore, the mold is required to have resistance to thermal fatigue cracks and mold cracks.
[0003]
In the above-described mold, it is effective to improve hardness in order to provide resistance to thermal fatigue cracks. In order to provide resistance to mold cracking, it is effective to improve toughness. Therefore, it is usually produced by quenching and tempering to an appropriate hardness, and finally finishing, like the commercially available JIS standard SKD61. Thus, since SKD61 has excellent hardenability, the mold can be sufficiently hardened by the quenching and tempering steps and the toughness can be improved. Therefore, the obtained mold is less likely to generate thermal fatigue cracks and mold cracks.
[0004]
On the other hand, as disclosed in Japanese Patent Laid-Open No. 5-140695, after being tempered to a hardness of HRC50 or higher as steel for an aluminum extrusion die, it is used after nitriding, or as disclosed in Japanese Patent Laid-Open No. 7-207414. A die steel for forging aluminum that has a hardness of HRC 46 or higher is disclosed. Both are known as aluminum molds that have high toughness, excellent temper softening resistance when processed into dies, and are less susceptible to deflection, thermal fatigue cracks, and mold cracks throughout the dies.
[0005]
[Problems to be solved by the invention]
As described above, all of the conventional aluminum molds are quenched, tempered, or quenched, tempered, and then used for nitriding treatment. Quenching, tempering processes, and finishing processes are required, and there is the biggest problem of cost increase.
[0006]
[Means for Solving the Problems]
In order to solve the above-mentioned problems, the inventors have made extensive developments, and as a result, the quenching, tempering process, or finishing process is omitted, and the total cost is reduced by annealing and repeated nitriding. Is to provide an excellent mold and a processing method thereof.
The gist of the invention is that
(1) By mass%, C: 0.3 to 0.5%, Si: ≦ 2.0%, Cr: 3.0 to 6.0%, Mo: 1.0 to 3.0%, V: In hot tool steel comprising 0.2 to 1.5% and the balance Fe and unavoidable impurities, the base material hardness is 80 to 102HRB , and the nitrided layer when nitrided without quenching and tempering . Mold having excellent resistance to aluminum erosion used for the manufacture of aluminum die-cast products formed by low-pressure casting, characterized in that the internal hardness of 30 μm is 600 HV or more and the nitridation depth is 50 to 250 μm .
(2) the A mold according to (1), excellent resistance to aluminum corrosion resistance for use in the production of aluminum die cast product molded by low-pressure casting method characterized by applying Repetitive returns nitriding Mold.
(3) the A mold according to (1), excellent resistance to aluminum corrosion resistance for use in the production of aluminum die cast product molded by low-pressure casting method characterized by applying Repetitive returns nitriding In the processing method of the mold.
[0007]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, the present invention will be described in detail.
Although it does not specifically limit as hot tool steel which concerns on this invention, Cr-Mo-V type hot tool steel is desirable, for example, as shown in an Example below, C: 0.3-0.5% Si: ≦ 2.0%, Cr: 3.0-6.0%, Mo: 1.0-3.0%, V: 0.2-1.5%, the balance Fe and inevitable impurities Hot tool steel consisting of If necessary, it is also possible to use hot tool steel containing free cutting elements such as Nb, Ni, W, Co and S. C is an element added to maintain high-temperature hardness and to form carbides such as Mo, V, and Cr, and to provide a crystal grain refining effect, wear resistance, and high-temperature hardness. Si is a deoxidizer and is an element necessary for maintaining the hardness of 80 to 102HRB of the present invention and obtaining the strength necessary for steel for dies.
[0008]
Cr is improved in high-temperature strength by setting an appropriate addition amount, and improved in wear resistance by forming carbide by combining with C. Further, during nitriding, it combines with N to form nitride. The melt resistance, which is the greatest feature of the present invention, is imparted. This is because when the nitride is distributed at a high density in the base material, the reaction interface between the base material and the molten metal is made small, so that the melting damage is difficult to proceed. This is because Mo and V combine with N during nitriding to form nitrides and reduce the reaction interface between the base material and the molten metal in the same manner as Cr, so that the melting damage is less likely to proceed. Moreover, it is a component which improves heat-resistant fatigue crack property.
[0009]
Next, the reason why the base material hardness is 80 to 102 HRB is that the base material hardness is necessary as the mold strength, and if it is less than 80 HRB, the optimum mold strength cannot be obtained. Since the machinability deteriorates, the range is set to 80 to 102HRB. The reason why the hardness inside the 30 μm nitride layer is set to 600 HV or more is necessary for resistance to aluminum erosion, and since the effect is insufficient when it is less than 600 HV, the lower limit is set. The reason why the nitriding depth is 50 to 250 μm is necessary for resistance to aluminum erosion, and if it is less than 50 μm, the effect cannot be obtained, and if it exceeds 250 μm, the risk of large cracks increases. The range was 50 to 250 μm.
[0010]
【Example】
Hereinafter, the present invention will be specifically described with reference to examples.
As test materials, C: 0.3 to 0.5%, Si: ≦ 2.0%, Cr: 3.0 to 6.0%, Mo: 1.0 to 3.0%, V: 0.00. Using 2 to 1.5% steel, 300 kg was melted in a vacuum induction melting furnace, cast into an ingot, heated to 1100 ° C., forged to φ30 mm, and annealed to 870 ° C. (sample D is omitted). Thus, an aluminum erosion test piece was produced. On the other hand, it was forged to 30 × 100 × 100 mm and annealed at 870 ° C. to produce a machinability test piece. Further, it was forged to 65 mm, a mold was fabricated after annealing at 870 ° C., and the actual machine was evaluated. The results are shown in Tables 1 and 2.
[0011]
The nitriding treatment conditions of the test piece are as follows: nitriding method: ion (plasma) nitriding, N / H ratio: 25/75, gas pressure: 6 Torr, processing temperature: 500 to 600 ° C., processing time: 2 to 15 hours I did it. The nitriding depth was measured by measuring the hardness from the outermost surface of the nitrided layer using a micro Vickers hardness tester, and was taken as the distance until it matched with the base material hardness. The base material hardness was measured using a Rockwell hardness meter B scale. As the aluminum melt damage test conditions at that time, aluminum alloy: ADC12 (Al-12Si-2Cu), molten metal temperature: 720 ° C., rotation speed: 25 rpm (rotation radius 10 cm), immersion time: 60 minutes, immersion depth: 50 mm, n number: It carried out on condition of 2. A schematic diagram of the aluminum erosion tester in that case is shown in FIG.
[0012]
As shown in FIG. 1, the aluminum alloy 2 is heated in the melting tank 1 by the heater 3 to melt the aluminum alloy 2, and the test piece 4 is rotated to a depth of 50 mm on the surface of the aluminum alloy 2 by the holder 5. An aluminum melting test was conducted. The machinability evaluation was performed using a φ12 high-speed end mill under the conditions of a rotation speed of 900 rpm, a cutting speed of 50 m / min, a 1-blade cutting of 0.1 mm / blade, and no cutting oil. Further, the cutting length when the tool wear amount is 0.2 mm is indexed as the machinability index. The actual machine test was performed under the conditions of Al alloy: ADC12, in-mold pressure: 1.2 atm, and molding time for one product: 2 minutes / shot.
[0013]
[Table 1]
Figure 0003983502
[0014]
[Table 2]
Figure 0003983502
[0015]
As shown in Table 1 and Table 2, sample material A is an example of the present invention, and sample materials B to E are comparative examples. According to the results of the erosion test shown in Table 1, Invention Example A has a lower erosion loss rate than Comparative Examples B to E, and Comparative Examples B and C in particular have a higher erosion loss rate. Further, it can be seen that the comparative example has a long cutting length with respect to the machinability index 100 of Example A of the present invention, and in particular, Comparative Examples D and E have poor machinability. Furthermore, as shown in Table 2, the test results A of the present invention have the same mold life as that of the test sample E, which is a comparative example, but the mold production cost is greatly increased. It is low.
[0016]
【The invention's effect】
As described above, it is possible to produce a die-casting die by annealing and nitriding treatment by omitting quenching and tempering according to the present invention, and the obtained die has good heat fatigue crack resistance, and the die production cost Therefore, it is possible to significantly reduce the production cost, and it is possible to provide a mold having excellent resistance to aluminum erosion that can greatly reduce the production cost.
[Brief description of the drawings]
FIG. 1 is a schematic view of an aluminum erosion tester.
[Explanation of symbols]
1 Melting tank 2 Aluminum alloy 3 Heater 3
4 Test piece 5 Holder

Claims (3)

質量%で、
C:0.3〜0.5%、
Si:≦2.0%、
Cr:3.0〜6.0%、
Mo:1.0〜3.0%、
V:0.2〜1.5%
を含み、残部Feならびに不可避的不純物からなる熱間工具鋼において、母材硬さ80〜102HRBを有し、焼入れ焼戻しを行うことなく窒化処理したときの窒化層の30μm内部の硬さが600HV以上であり、該窒化深さ50〜250μmであることを特徴とする低圧鋳造法で成形されるアルミダイカスト製品の製造に用いられる耐アルミ溶損性に優れた金型。
% By mass
C: 0.3-0.5%
Si: ≦ 2.0%,
Cr: 3.0-6.0%,
Mo: 1.0-3.0%,
V: 0.2-1.5%
In the hot tool steel consisting of the balance Fe and inevitable impurities, the base material has a hardness of 80 to 102 HRB , and the hardness inside the 30 μm nitride layer when nitriding without quenching and tempering is 600 HV or more A die having excellent aluminum erosion resistance used for manufacturing an aluminum die cast product formed by a low pressure casting method, characterized in that the nitriding depth is 50 to 250 μm.
請求項1に記載の金型であって、繰り返し窒化処理を施すことを特徴とする低圧鋳造法で成形されるアルミダイカスト製品の製造に用いられる耐アルミ溶損性に優れた金型。A mold according to claim 1, Repetitive returns superior mold resistance aluminum corrosion resistance for use in the production of aluminum die cast product molded by low-pressure casting method characterized by applying the nitriding treatment. 請求項1に記載の金型であって、繰り返し窒化処理を施すことを特徴とする低圧鋳造法で成形されるアルミダイカスト製品の製造に用いられる耐アルミ溶損性に優れた金型の加工方法。A mold according to claim 1, Repetitive returns of aluminum die cast product molded by low-pressure casting method characterized by performing a nitriding treatment of superior mold resistance aluminum corrosion resistance for use in the production Processing method.
JP2001176002A 2001-06-11 2001-06-11 Mold with excellent resistance to aluminum erosion and its processing method Expired - Fee Related JP3983502B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001176002A JP3983502B2 (en) 2001-06-11 2001-06-11 Mold with excellent resistance to aluminum erosion and its processing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001176002A JP3983502B2 (en) 2001-06-11 2001-06-11 Mold with excellent resistance to aluminum erosion and its processing method

Publications (2)

Publication Number Publication Date
JP2002363705A JP2002363705A (en) 2002-12-18
JP3983502B2 true JP3983502B2 (en) 2007-09-26

Family

ID=19017055

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001176002A Expired - Fee Related JP3983502B2 (en) 2001-06-11 2001-06-11 Mold with excellent resistance to aluminum erosion and its processing method

Country Status (1)

Country Link
JP (1) JP3983502B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5028502B2 (en) 2010-01-22 2012-09-19 株式会社豊田中央研究所 Mold, solidified body and production method thereof

Also Published As

Publication number Publication date
JP2002363705A (en) 2002-12-18

Similar Documents

Publication Publication Date Title
KR102017553B1 (en) Mold steel for long life cycle die casting having high hardenability and superior nitriding property
JP5276330B2 (en) Cold mold steel and cold press mold
JP5143531B2 (en) Cold mold steel and molds
JP7335680B2 (en) Steel, products made from the steel, and methods for making the same
CN101294259A (en) Hot die steel for die-casting
TW201718880A (en) Steel for molds and molding tool
JP5093010B2 (en) Hot working mold
EP2660348A1 (en) Die steel having superior rusting resistance and thermal conductivity, and method for producing same
CN110343947B (en) Steel for mold and mold
CN102732793A (en) Cold work tool steel
JP3410303B2 (en) Fe-Ni-Cr-Al ferrite alloy excellent in molten metal erosion resistance and wear resistance and method for producing the same
JP2014025103A (en) Hot tool steel
JP3228440B2 (en) Hot working mold with excellent heat crack resistance
JP3608546B2 (en) Mold for casting and manufacturing method thereof
JP3983502B2 (en) Mold with excellent resistance to aluminum erosion and its processing method
KR20190130979A (en) Steel for die-casting die and die-casting die
JP3252969B2 (en) Hot tool steel
CN112899559B (en) Steel for mold and mold
JPH1190611A (en) Die for die casting and manufacture thereof
JP3191008B2 (en) Hot tool steel
KR102495092B1 (en) Steel for mold, and mold
JPH0243346A (en) Tool steel for hot working
JP2000297351A (en) Steel for diecasting die and diecasting die
JP2022118887A (en) Cold tool steel excellent in surface treatment characteristics and tool
JP2022180207A (en) Steel for die-casting mold

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050112

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070126

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070213

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070405

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070515

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070605

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070703

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070704

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100713

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100713

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110713

Year of fee payment: 4

LAPS Cancellation because of no payment of annual fees