JP2001214238A - Powder hot tool steel excellent in heat crack resistance and wear resistance and hot die - Google Patents

Powder hot tool steel excellent in heat crack resistance and wear resistance and hot die

Info

Publication number
JP2001214238A
JP2001214238A JP2000020561A JP2000020561A JP2001214238A JP 2001214238 A JP2001214238 A JP 2001214238A JP 2000020561 A JP2000020561 A JP 2000020561A JP 2000020561 A JP2000020561 A JP 2000020561A JP 2001214238 A JP2001214238 A JP 2001214238A
Authority
JP
Japan
Prior art keywords
steel
tool steel
hot
resistance
hot tool
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2000020561A
Other languages
Japanese (ja)
Inventor
Makoto Komori
誠 小森
Isao Tamura
庸 田村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Proterial Ltd
Original Assignee
Hitachi Metals Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Metals Ltd filed Critical Hitachi Metals Ltd
Priority to JP2000020561A priority Critical patent/JP2001214238A/en
Publication of JP2001214238A publication Critical patent/JP2001214238A/en
Pending legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To provide hot tool steel capable of simultaneously attaining the improvement of the lives of a die and a tool and the reduction of the production cost by improving its resistance to heat cracks and wear and its machinability. SOLUTION: This powder hot tool steel has a composition containing, by mass, >0.35 to <0.45% C, <1.0% Si, 0.2 to 1.5% Mn, 0.05 to 0.30% S, 2.35 to 5.65% Cr and one or two kinds of W and Mo by (1.2W+Mo): 1.5 to 3.5%, 0.5 to 1.5% V, in which the contents of Si and Cr satisfy the relational inequality of Si<; (18.7/Cr) -3.3, and the balance Fe with inevitable impurities. Alternatively, the powder hot tool steel contains <=1.5% Ni or <=5.0% Co as well. Then, the powder hot tool steel has hardness of >50 HRC, and the hot die is composed of the same powder hot tool steel.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、鉄あるいは銅、ア
ルミニウム、マグネシウムなどの非鉄金属の成形におい
て、ダイカスト、低圧鋳造などを含む鋳造や熱間鍛造、
熱間押出し成形などに用いられる熱間金型用の熱間工具
鋼、そしてその熱間金型に関するものである。
The present invention relates to a method for forming non-ferrous metals such as iron, copper, aluminum, and magnesium, including casting including die casting and low pressure casting, hot forging, and the like.
The present invention relates to a hot tool steel for a hot die used for hot extrusion molding and the like, and a hot die for the hot tool steel.

【0002】[0002]

【従来の技術】従来、鉄あるいは銅、アルミニウム、マ
グネシウムなどの非鉄金属の成形において、ダイカス
ト、低圧鋳造などを含む鋳造や熱間鍛造、熱間押出し成
形などに用いられる熱間金型用の熱間工具鋼としては、
JIS−SKD6やJIS−SKD61が主に用いられ
てきた。しかし、近年の熱間加工技術の進歩、例えばダ
イカストの分野では高圧ダイカスト法、鍛造技術の分野
では精密鍛造の適用が進み、金型表面に作用する熱的ま
たは機械的な負荷が増大し、金型表面にヒートクラック
が生成したり、あるいは摩耗したりして、JIS−SK
D6やJIS−SKD61を使用した金型は早期に使用
不可能となる場合が多くなった。
2. Description of the Related Art Conventionally, in forming non-ferrous metals such as iron or copper, aluminum, magnesium, etc., a heat including a die casting, a low pressure casting and the like, a hot forging, a hot extrusion and a hot die used for a hot extrusion. As a tool steel,
JIS-SKD6 and JIS-SKD61 have been mainly used. However, recent advances in hot working technology, such as the high-pressure die casting method in the field of die casting and the application of precision forging in the field of forging technology, have increased the thermal or mechanical load acting on the die surface, Heat cracks are generated or abraded on the mold surface, resulting in JIS-SK
Molds using D6 or JIS-SKD61 often became unusable early.

【0003】そこで、耐ヒートクラック性や耐摩耗性を
高めるためにJIS−SKD6やJIS−SKD61の
高温強度や靭性を改善したものが提案されて実用化され
てきた。例えば、特開昭54−6807には、低C−5
Cr−中〜高Mo(W)−V−Nの高温強度と靭性を改
善した熱間工具鋼が提案されている。特公平3−533
84には、Si量を0.10%未満に規定することによ
り靭性が改善されて耐ヒートチェック性を向上させた熱
間工具鋼が提案されている。
Therefore, JIS-SKD6 and JIS-SKD61 having improved high-temperature strength and toughness have been proposed and put to practical use in order to enhance heat crack resistance and wear resistance. For example, JP-A-54-6807 discloses a low C-5.
A hot tool steel with improved high-temperature strength and toughness of Cr-medium to high Mo (W) -VN has been proposed. Tokuhei 3-533
No. 84 proposes a hot work tool steel in which the toughness is improved by regulating the Si content to less than 0.10% to improve the heat check resistance.

【0004】[0004]

【発明が解決しようとする課題】上述した高温強度や靭
性を改善させた熱間工具鋼は金型や工具として使用する
場合はその効果を大いに発揮するが、その工具や金型を
切削加工によって製作する場合、その組成の最適化によ
って達成された高温強度や靭性の改善効果が反って災い
して、従来のJIS−SKD6やJIS−SKD61に
比べて被削性が低下して切削加工コストが大きくなるこ
とが難点である。通常、金型や工具は、焼なまし状態の
熱間工具鋼を粗形状に加工した後、所定の硬さに焼入れ
焼戻しして最後に主に放電加工により仕上げ加工する
が、高温強度や靭性の改善を組成の最適化で達成した熱
間工具鋼は、従来のJIS−SKD6やJIS−SKD
61に比べて被削性が劣っており切削加工コストが上が
る傾向にある。このことは、高温強度や靭性を改善し
た、従来提案された熱間工具鋼の適用を困難にしてい
る。
The above-mentioned hot tool steel with improved high-temperature strength and toughness has a great effect when used as a mold or a tool, but the tool or the mold is formed by cutting. In the case of manufacturing, the improvement effect of high temperature strength and toughness achieved by optimizing the composition is distorted, and the machinability is reduced as compared with the conventional JIS-SKD6 and JIS-SKD61, and the cutting cost is reduced. The difficulty is that it gets bigger. Normally, molds and tools are made by processing hot tool steel in an annealed state into a rough shape, then quenching and tempering to a predetermined hardness, and finally finishing mainly by electric discharge machining, but it has high temperature strength and toughness. Hot tool steel that achieves the improvement of the composition by optimizing the composition is the same as conventional JIS-SKD6 or JIS-SKD
As compared with No. 61, the machinability is inferior and the cutting cost tends to increase. This makes it difficult to apply the conventionally proposed hot tool steel with improved high-temperature strength and toughness.

【0005】本発明の目的は、金型や工具を使用する場
合に問題となるヒートクラックや摩耗に対する抵抗力を
向上させて金型の寿命向上を達成するとともに、金型や
工具を製作する場合に問題となる被削性を向上させて加
工コストの低減が達成できる熱間工具鋼を提供すること
である。また、所定の硬さを有した状態においても被削
性を向上させて、従来困難であった切削加工を可能とす
る、つまり加工時間に多大な時間を要する放電加工を使
わないでも加工できる熱間工具鋼を提供することであ
る。
[0005] An object of the present invention is to improve the resistance to heat cracks and abrasion, which are problems when using a mold or a tool, to improve the life of the mold, and to manufacture a mold or a tool. Another object of the present invention is to provide a hot work tool steel capable of improving the machinability, which is a problem, and reducing the machining cost. In addition, even in a state having a predetermined hardness, the machinability is improved, and cutting that has been difficult in the past can be performed. That is, heat that can be processed without using electric discharge machining that requires a large amount of processing time is required. It is to provide a tool steel.

【0006】[0006]

【課題を解決するための手段】本発明者は、被削性向上
および耐ヒートクラック性、耐摩耗性向上に関して検討
を重ね、被削性を向上させるためには、 Sを適量添加することが最も効果的であること S添加による靭性の低下を抑制するためには粉末冶金
法を採用することが最も効果的であることまた、耐ヒー
トクラック性や耐摩耗性を向上させるには、 組成の最適化で高靭性化が達成され、高硬度で使用す
ることさらに好ましくは、 特に従来鋼では設定が困難であった、50HRCを越
える硬さに設定することが効果的であることを新たに見
出し本発明に到達した。
Means for Solving the Problems The present inventor has studied the improvement of machinability, heat crack resistance, and abrasion resistance, and in order to improve machinability, it is necessary to add an appropriate amount of S. To be most effective It is most effective to use powder metallurgy to suppress the decrease in toughness due to the addition of S. To improve heat crack resistance and abrasion resistance, It has been newly found that it is effective to achieve high toughness by optimizing and use at high hardness, and it is more preferable to set the hardness to more than 50HRC, which is particularly difficult to set with conventional steel. The present invention has been reached.

【0007】すなわち本発明は、質量%で、C:0.3
5を越え0.45%未満、Si:1.0%未満、Mn:
0.2〜1.5%、S:0.05〜0.30%、Cr:
2.35〜5.65%、WとMoを1種または2種で
(1/2W+Mo):1.5〜3.5%、V:0.5〜
1.5%で、Si、Cr量がSi<(18.7/Cr)
−3.3の関係式を満たし、残部Feおよび不可避的不
純物からなる耐ヒートクラック性、耐摩耗性に優れる粉
末熱間工具鋼である。望ましくは、Ni:1.5%以下
である上記の粉末熱間工具鋼である。また、望ましく
は、Co:5.0%以下である上記の粉末熱間工具鋼で
ある。
That is, according to the present invention, C: 0.3% by mass.
More than 5 and less than 0.45%, Si: less than 1.0%, Mn:
0.2-1.5%, S: 0.05-0.30%, Cr:
2.35 to 5.65%, one or two types of W and Mo (1 / 2W + Mo): 1.5 to 3.5%, V: 0.5 to
1.5%, the amount of Si and Cr is Si <(18.7 / Cr)
It is a powdered hot tool steel which satisfies the relational expression of -3.3 and is excellent in heat crack resistance and abrasion resistance comprising the balance of Fe and inevitable impurities. Desirably, the powdered hot tool steel described above is Ni: 1.5% or less. Desirably, the powdered hot tool steel is Co: 5.0% or less.

【0008】さらに本発明は、望ましくは、50HRC
を越える硬さを有することを特徴とする上記の耐ヒート
クラック性、耐摩耗性に優れる粉末熱間工具鋼である。
そして、これら本発明の粉末熱間工具鋼よりなる熱間金
型である。
[0008] Further, the present invention desirably includes 50 HRC.
It is a powdered hot tool steel excellent in heat crack resistance and abrasion resistance as described above, having a hardness exceeding.
And it is a hot metal mold which consists of these powdered hot tool steels of the present invention.

【0009】[0009]

【発明の実施の形態】上述したように、本発明の重要な
特徴はSを0.05〜0.30%添加して、かつ素材の
製造方法として粉末冶金法を採用したことにある。Sは
Mnと結びついてMnSとなるが、これが鋼中に存在す
ると被削性を向上させる。その効果は0.05%以上の
添加で顕著に現れる。一般的に熱間工具鋼は、所定の組
成を有する鋼塊を鋳造により作製して、その鋼塊を熱間
加工して製造する。鋼塊で生成したMnSは熱間加工時
に鍛伸方向に塑性変形して線状の形態となる。線状にな
ると容易に破壊の起点となりやすく、鍛伸方向に直角の
方向の靭性値を大きく低下させる。JIS−SKD6や
JIS−SKD61はS量を0.03%以下に規定して
いる理由もそこにある。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS As described above, important features of the present invention reside in that 0.05 to 0.30% of S is added, and that powder metallurgy is employed as a method for producing a material. S is combined with Mn to form MnS, and when present in steel, machinability is improved. The effect is remarkable when added at 0.05% or more. In general, hot tool steel is produced by casting a steel ingot having a predetermined composition and hot working the steel ingot. MnS generated in the steel ingot is plastically deformed in the forging direction at the time of hot working to have a linear form. If it is linear, it easily becomes a starting point of fracture, and the toughness in the direction perpendicular to the forging direction is greatly reduced. This is also the reason that JIS-SKD6 and JIS-SKD61 regulate the S content to 0.03% or less.

【0010】しかしSを0.05〜0.30%含有する
合金粒子を、熱間静水圧で圧密して製造した鋼塊を素材
製造のスタートとするとMnSは微細球状に存在するた
め、その後の熱間加工によっても線状になりにくい。従
って、鍛伸方向に直角の方向の靭性値を大きく低下させ
ない。しかし、0.30%を越えるSの過度の添加は大
粒径のMnSを存在させて靭性値を低下させるので上限
を0.30%とする。なお、合金粒子の製造方法として
は、水アトマイズ法やガスアトマイズ法が望ましい。鋼
塊の密度を理論密度に近づけるために、合金粒子の圧密
は鋼板製のカプセルなどに封入後、980℃以上、70
MPa以上の熱間静水圧で行うことが望ましい。さら
に、圧密後に鋼塊を900〜1250℃の温度でプレ
ス、ハンマ、圧延機などにより熱間加工して鍛練および
成形することが望ましい。
However, when starting the production of a steel ingot produced by consolidating alloy particles containing 0.05 to 0.30% of S by hot isostatic pressure, MnS exists in the form of fine spheres. It is hard to be linear even by hot working. Therefore, the toughness in the direction perpendicular to the forging direction is not significantly reduced. However, excessive addition of S exceeding 0.30% causes MnS having a large grain size to be present and lowers the toughness value. Therefore, the upper limit is set to 0.30%. In addition, as a manufacturing method of the alloy particles, a water atomizing method and a gas atomizing method are preferable. In order to bring the density of the steel ingot close to the theoretical density, the compaction of the alloy particles is carried out at 980 ° C. or higher after encapsulation in a steel plate capsule or the like.
It is desirable to carry out at a hot isostatic pressure of MPa or more. Further, it is preferable that the ingot is subjected to hot working with a press, a hammer, a rolling mill or the like at a temperature of 900 to 1250 ° C. after forging and forging and forming.

【0011】次に、合金元素量の規定理由について述べ
る。Cは本発明鋼の優れた焼入性、焼戻し硬さ、および
高温硬さを維持し、またW、Mo、V、Crなどの炭化
物形成元素と結合して炭化物を形成し、結晶粒の微細化
効果、耐摩耗性、焼戻し軟化抵抗、高温硬さを与えるた
めに添加するものである。多すぎると過度の炭化物の析
出を招き靭性を低下させるので0.45%未満とする。
また本発明鋼の特徴である50HRCを越える焼入れ焼
戻し硬さを保持するためなど上記目的の達成のために含
有量0.35%を越えるものとする。
Next, the reasons for defining the amounts of alloying elements will be described. C maintains excellent hardenability, temper hardness, and high-temperature hardness of the steel of the present invention, combines with carbide-forming elements such as W, Mo, V, and Cr to form carbides, It is added in order to provide a softening effect, abrasion resistance, tempering softening resistance, and high-temperature hardness. If it is too large, precipitation of excessive carbides is caused and the toughness is reduced, so the content is made less than 0.45%.
Further, in order to achieve the above-mentioned object, for example, to maintain the quenching and tempering hardness exceeding 50 HRC, which is a feature of the steel of the present invention, the content should exceed 0.35%.

【0012】Siは、耐酸化性を付与するために1.0
%未満添加する。詳細はCrの項でまとめて述べる。M
nは、本発明鋼の特徴であるS:0.05〜0.30%
の添加によりMnSを形成して被削性を向上させる。さ
らに焼入性を向上させる。多すぎるとA1変態点を過度
に低下させ、焼なまし硬さを過度に高くし、被削性を低
下させるので0.2〜1.5%とする。
Si is added in an amount of 1.0 to impart oxidation resistance.
%. The details will be collectively described in the section of Cr. M
n is a characteristic of the steel of the present invention, S: 0.05 to 0.30%
Adds MnS to improve machinability. Furthermore, hardenability is improved. If it is too large, the A1 transformation point is excessively decreased, the annealing hardness is excessively increased, and the machinability is decreased.

【0013】Crは適正な添加量の設定により焼戻し軟
化抵抗および高温強度の向上、Cと結合して炭化物を形
成することによる耐摩耗性の向上、焼入性の向上および
迅速窒化性付与の効果を有するものであり、2.35%
以上添加する。特に焼入れ性を重視する場合は4.35
%以上が望ましい。ただしCrは本発明鋼のように50
HRCを越える高い焼入れ焼戻し硬さで使用される場
合、本発明鋼の高い靭性値を確保するためにはその含有
量を制限する必要がある。これは以下に述べる作用に基
づくものである。
The effect of Cr improves temper softening resistance and high-temperature strength by setting an appropriate amount of addition, improves wear resistance by forming carbides by combining with C, improves hardenability, and provides rapid nitriding. 2.35%
Add above. 4.35 especially when quenching property is emphasized.
% Or more is desirable. However, Cr is 50 as in the steel of the present invention.
When used with a high quenching and tempering hardness exceeding HRC, it is necessary to limit the content of the steel of the present invention in order to ensure a high toughness value. This is based on the operation described below.

【0014】本発明鋼のように50HRCを越える高い
焼入れ焼戻し硬さで使用される場合、焼戻し温度は60
0℃前後またはさらに低くなるが、この温度域では焼戻
しによって基地中に極微細に析出する特殊炭化物の分布
密度が極めて大きく、基地の靭性が著しく低下する。一
方、Cr、Siはその前段階で析出するセメンタイト炭
化物の析出を抑制する作用があるので、逆にCr、Si
の含有量を抑えることによってセメンタイト炭化物を適
量析出させることにより基地の靭性の低下させる特殊炭
化物の分布密度を小さくすることができる。このためS
i量は1.0%未満、Crは5.65%以下とするが、
CrとSiは上記の作用に複合的に作用するため、金型
用として必要な靭性値を得るべく、Si<(18.7/
Cr)−3.3の関係式を満たすように添加する。
When the steel of the present invention is used with a high quenching and tempering hardness exceeding 50 HRC, the tempering temperature is 60.
At around 0 ° C. or even lower, in this temperature range, the distribution density of special carbides extremely finely precipitated in the matrix due to tempering is extremely large, and the toughness of the matrix is significantly reduced. On the other hand, Cr and Si have the effect of suppressing the precipitation of cementite carbide that precipitates in the previous stage, so that Cr and Si
By suppressing the content of, a proper amount of cementite carbide can be precipitated, whereby the distribution density of the special carbide that lowers the toughness of the matrix can be reduced. Therefore S
The i content is less than 1.0% and the Cr content is 5.65% or less.
Since Cr and Si act in combination with the above-mentioned effects, in order to obtain a toughness value required for a mold, Si <(18.7 /
Cr) is added so as to satisfy the relational expression of -3.3.

【0015】この関係式からも分かるようにCr含有量
を多くしたい場合(例えばCr>5.5%)には、Si
量を0.1%未満とする必要がある。ただしSiはCo
の項で述べるように、これが低すぎると酸化皮膜が厚く
なり過ぎやすいので0.1%以上であることが望まし
い。Coの添加で補う場合も同様である。
As can be seen from this relational expression, when it is desired to increase the Cr content (for example, Cr> 5.5%), Si
The amount must be less than 0.1%. Where Si is Co
As described in the section, if the content is too low, the oxide film tends to be too thick, so that the content is preferably 0.1% or more. The same applies to the case where the addition is made by adding Co.

【0016】W、Mo量の設定は本発明鋼の用途に必要
である高温強度、軟化抵抗を保つ上で重要である。W、
Moは、焼戻し時に微細な特殊炭化物を析出して、軟化
抵抗、高温強度を高める。ただし過度の添加は過度の炭
化物の析出を招き靭性を低下させるので、用途に応じて
1種または2種を(1/2W+Mo)で1.5〜3.5
%添加する。
The setting of the amounts of W and Mo is important for maintaining the high temperature strength and the softening resistance required for the use of the steel of the present invention. W,
Mo precipitates fine special carbides during tempering to increase softening resistance and high-temperature strength. However, excessive addition causes excessive precipitation of carbides and lowers the toughness. Therefore, depending on the application, one or two of them are (1 / 2W + Mo) in the range of 1.5 to 3.5.
%Added.

【0017】Vは、固溶しにくい炭化物を形成して耐摩
耗性および耐焼付き性の向上に効果がある。また焼入加
熱時に基地に一部固溶して焼戻し時に微細な凝集しにく
い炭化物を析出して高い温度域における軟化抵抗や高温
耐力を大きくする重要な役割を有する。さらに結晶粒を
微細化して靭性を向上させるとともに、A1変態点を上
げて、優れた高温耐力とあいまって耐ヒートクラック性
を向上させる効果をもたらすものである。本発明鋼の特
徴である優れた靭性と高温強度の兼備のためにV量の設
定は非常に重要である。多すぎると靭性を大きく低下さ
せるので1.5%以下とし、低すぎると金型表層部の早
期摩耗を招くなど、上記添加の効果が得られないので
0.5%以上とする。
V forms a carbide which hardly forms a solid solution and is effective in improving wear resistance and seizure resistance. In addition, it has an important role of increasing the softening resistance and high temperature proof stress in a high temperature range by precipitating a small amount of carbide that hardly agglomerates during tempering and partially forming a solid solution in the matrix during quenching and heating. Further, while improving the toughness by refining the crystal grains, the A1 transformation point is increased, and the effect of improving the heat crack resistance in combination with the excellent high temperature proof stress is brought. The setting of the amount of V is very important for the combination of excellent toughness and high-temperature strength, which are features of the steel of the present invention. If the content is too large, the toughness is greatly reduced, so that the content is set to 1.5% or less. If the content is too low, the effect of the addition cannot be obtained, such as early wear of the surface layer of the mold.

【0018】NiはC、Cr、Mn、Mo、Wなどとと
もに本発明鋼に優れた焼入性を付与し、緩やかな焼入れ
冷却速度の場合にもマルテンサイト主体の組織を形成さ
せ、靭性の低下を防ぐために重要な添加元素であり、ま
た基地の本質的な靭性改善効果を与えるために好ましく
は0.1%以上添加する。しかし過度の添加はA1変態
点を過度に低下させ、へたり寿命の低下を招き、焼なま
し硬さを過度に高くして被削性を低下させるので1.5
%以下とする。
Ni, together with C, Cr, Mn, Mo, W, etc., imparts excellent hardenability to the steel of the present invention, forms a martensite-based structure even at a slow quenching cooling rate, and reduces toughness. Is an important additive element for preventing the occurrence of a crack, and is preferably added in an amount of 0.1% or more to give an essential effect of improving the toughness of the matrix. However, excessive addition excessively lowers the A1 transformation point, lowers the set life, and excessively increases the annealing hardness, thereby reducing machinability.
% Or less.

【0019】Coは、使用中の昇温時に極めて緻密で密
着性の良い保護酸化皮膜を形成し、これにより相手材と
の間の金属接触を防ぎ、金型表面の温度上昇を防ぐとと
もに優れた耐摩耗性をもたらすものである。ただし、こ
の酸化皮膜は厚くなりすぎると金型表面の肌荒れを招き
逆効果となるが、Coは酸化皮膜の形成速度や厚みを抑
制する効果を持つ。本発明鋼のようにSi量が少ない鋼
の場合、酸化皮膜が厚くなり過ぎやすいため、Coの添
加は保護酸化皮膜特性の向上の点で特に有効である。C
oは上記効果を付与するために添加するが、多すぎると
靭性を低下させるので5.0%以下とし、低すぎると上
記効果が得られないので好ましくは0.3%以上とす
る。
Co forms an extremely dense protective oxide film having good adhesion at the time of raising the temperature during use, thereby preventing metal contact with a counterpart material, preventing a temperature rise on the mold surface and excellent. It provides wear resistance. However, if the oxide film is too thick, the surface of the mold surface becomes rough, which has an adverse effect, but Co has the effect of suppressing the formation speed and thickness of the oxide film. In the case of steel having a small amount of Si such as the steel of the present invention, the oxide film tends to be too thick, and therefore, the addition of Co is particularly effective in improving the properties of the protective oxide film. C
o is added to impart the above effect, but if it is too much, the toughness is reduced, so that it is made 5.0% or less. If it is too low, the above effect is not obtained, so it is preferably made 0.3% or more.

【0020】その他、硬さや耐蝕性向上のためN:0.
1%以下、結晶粒微細化のためNb:0.1%以下、窒
化硬さ向上のためAl:0.3%以下、加工性向上のた
めCu:5%以下を含有してもよい。
In addition, in order to improve hardness and corrosion resistance, N: 0.
It may contain 1% or less, Nb: 0.1% or less for grain refinement, Al: 0.3% or less for improvement of nitriding hardness, and Cu: 5% or less for workability improvement.

【0021】[0021]

【実施例】(実施例1)以下、本発明の実施例に基づき
詳細に説明する。表1にテストに供した本発明鋼および
比較鋼の化学組成を示す。表1において、比較鋼27は
溶製法で製造したJIS−SKD61である。テスト
は、正面フライス加工による被削性試験、シャルピー衝
撃試験、ヒートクラック試験を行った。
(Embodiment 1) Hereinafter, the present invention will be described in detail based on an embodiment of the present invention. Table 1 shows the chemical compositions of the steels of the present invention and the comparative steels subjected to the test. In Table 1, Comparative Steel 27 is JIS-SKD61 manufactured by a melting method. For the test, a machinability test by face milling, a Charpy impact test, and a heat crack test were performed.

【0022】[0022]

【表1】 [Table 1]

【0023】被削性試験の仕様を次に述べる。表1に示
す化学組成を有する鋼を860℃で焼なましを行った試
料を用意した。直径160mmのカッターに超硬コーテ
ィングのチップを1枚取り付け、切削速度120m/m
in、送り量0.15mm/回転、切削幅120mm、
切削深さ3mmの条件で切削を行い、チップ寿命までに
切削した体積を寿命切削体積としてこの大小で被削性を
評価した。寿命切削体積が大きいほど被削性が良い。
The specifications of the machinability test will be described below. A sample was prepared by annealing steel having the chemical composition shown in Table 1 at 860 ° C. Attach one carbide coated chip to a 160mm diameter cutter, cutting speed 120m / m
in, feed rate 0.15 mm / rotation, cutting width 120 mm,
The cutting was performed under the condition of a cutting depth of 3 mm, and the machinability was evaluated based on the magnitude of the cut size up to the life of the chip as the life cut volume. The larger the life cutting volume, the better the machinability.

【0024】シャルピー衝撃試験の仕様を次に述べる。
試験片はJIS4号試験片とした。試験片は素材鍛伸方
向に対して直角方向より採取した。表1に示す化学組成
を有する鋼を1020℃のオーステナイト化温度に保持
した後に、半冷15分の冷却速度で焼入れを行った。こ
こで半冷15分とは1020℃から520℃まで冷却す
るのに15分かかる冷却速度のことである。その後、焼
戻しを2回行って51HRCの硬さにした。シャルピー
衝撃試験は室温で行った。なお、半冷15分の焼入冷却
速度を採用したのは、実際の金型の焼入れ冷却速度は、
同じ冷却方法で冷却した試験片よりも寸法の効果で遅く
なるためである。熱間工具鋼の靭性値は焼入冷却速度の
影響を大きく受けるので、このテストでは実際の金型に
近い冷却速度であえて試験片を熱処理した。
The specification of the Charpy impact test is described below.
The test piece was a JIS No. 4 test piece. The test piece was taken from a direction perpendicular to the material forging direction. After maintaining the steel having the chemical composition shown in Table 1 at an austenitizing temperature of 1020 ° C., quenching was performed at a cooling rate of half-cooling for 15 minutes. Here, semi-cooling for 15 minutes refers to a cooling rate that takes 15 minutes to cool from 1020 ° C. to 520 ° C. Thereafter, tempering was performed twice to a hardness of 51 HRC. The Charpy impact test was performed at room temperature. The quenching cooling rate of the semi-cooled 15 minutes was adopted because the actual quenching cooling rate of the mold was:
This is because the size is slower than that of the test piece cooled by the same cooling method. Since the toughness value of the hot work tool steel is greatly affected by the quenching cooling rate, in this test, the test piece was heat treated at a cooling rate close to the actual die.

【0025】ヒートクラック試験の仕様を次に述べる。
試験片の形状は直径90mm、高さ50mmの円柱であ
る。表1に示す化学組成を有する鋼より、それぞれ硬さ
の違う3個の試験片を用意した。試験片は1020℃の
オーステナイト化温度に保持した後に、半冷15分の冷
却速度で焼入れを行った。その後、焼戻しを2回行って
それぞれ51HRC、48HRC、45HRCの硬さに
した。試験片の直径90mm端面中心部の直径45mm
円部分を高周波誘導加熱により600℃まで急速加熱し
た後、試験片の加熱部分を噴霧水で冷却するのを1回と
数えて、何回目でヒートクラックが発生するかを評価し
た。
The specifications of the heat crack test are described below.
The shape of the test piece is a cylinder having a diameter of 90 mm and a height of 50 mm. Three test pieces having different hardnesses were prepared from steels having the chemical compositions shown in Table 1. After the test piece was maintained at the austenitizing temperature of 1020 ° C., it was quenched at a cooling rate of half a minute for 15 minutes. Thereafter, tempering was performed twice to obtain a hardness of 51 HRC, 48 HRC, and 45 HRC, respectively. 90mm diameter of test piece 45mm diameter at center of end face
After rapidly heating the circular portion to 600 ° C. by high-frequency induction heating, cooling the heated portion of the test piece with spray water was counted as one time, and the number of times of occurrence of heat crack was evaluated.

【0026】[0026]

【表2】 [Table 2]

【0027】表2にテスト結果を示す。耐ヒートクラッ
ク性は化学組成の影響も大きいが、最も明らかなのは、
50HRCを越える硬さに設定することが効果として大
きいことである。耐摩耗性も硬さが高いほど有利なのは
明らかである。しかし、このように50HRCを越える
ような極端に高い硬さにおいてはシャルピー衝撃値が小
さくなり、金型の割れ、欠けを発生しやすくさせる。従
って、50HRCを越える硬さで使用できる鋼は化学成
分の最適化が必要であることが分かる。本発明鋼は化学
成分が最適化されているがゆえ、50HRCを越える高
い硬さにおいても高いシャルピー衝撃値を有している。
Table 2 shows the test results. Heat crack resistance is greatly affected by chemical composition, but the most obvious is that
Setting the hardness to more than 50 HRC is a great effect. Obviously, the higher the hardness and the higher the abrasion resistance, the more advantageous. However, when the hardness is extremely high, such as exceeding 50 HRC, the Charpy impact value becomes small, and the mold is easily cracked or chipped. Therefore, it can be seen that steel which can be used with a hardness exceeding 50 HRC requires optimization of the chemical composition. The steel of the present invention has a high Charpy impact value even at a high hardness exceeding 50 HRC due to the optimized chemical composition.

【0028】本発明で最も重要なS添加の効果を見てみ
る。溶製法で製造した鋼塊をスタートとした素材におい
て、S量の小さい比較鋼27(JIS−SKD61)と
比較鋼22を比較すると、比較鋼22は優れたシャルピ
ー衝撃値を有し、かつヒートクラック発生までのサイク
ル数が遅いが、寿命切削体積は小さい。比較鋼22は組
成の最適化により高温強度、靭性がJIS−SKD61
より改善されているが、反面被削性が大幅に低下するこ
とが分かる。比較鋼25、比較鋼26は、それぞれ比較
鋼22、比較鋼27(JIS−SKD61)にSを添加
したものに相当するが、寿命切削体積はS添加の効果が
大きく、S添加が被削性改善に非常に効果があることが
分かる。しかし、シャルピー衝撃値は非常に小さい。
The most important effect of the addition of S in the present invention will be examined. In comparison with the comparative steel 27 (JIS-SKD61) having a small S content and the comparative steel 22 in the material starting from the ingot produced by the smelting method, the comparative steel 22 has an excellent Charpy impact value and a heat crack. Although the number of cycles until generation is slow, the life cutting volume is small. The comparative steel 22 has high-temperature strength and toughness according to JIS-SKD61 by optimizing the composition.
It can be seen that although it is more improved, the machinability is greatly reduced. Comparative steel 25 and comparative steel 26 correspond to those obtained by adding S to comparative steel 22 and comparative steel 27 (JIS-SKD61), respectively. It can be seen that the improvement is very effective. However, the Charpy impact value is very small.

【0029】これらの比較例は溶製法で製造された鋼塊
からスタートした素材であるが、単に溶製法で製造した
ものにSを添加しても被削性は改善されるが、本来の目
的である耐ヒートクラック性にはマイナスである。また
50HRCを越える硬さにおけるシャルピー衝撃値が低
いことより、50HRCを越える硬さに設定できないた
め耐摩耗性の向上も望めない。本発明鋼1は溶製法によ
る比較鋼25に相当する化学成分を有し、粉末冶金法で
製造した鋼塊をスタートとした素材のものであるが、S
添加による被削性の著しい改善効果が認められるだけで
なく、シャルピー衝撃値も高い値を有している。
Although these comparative examples are materials starting from a steel ingot manufactured by the smelting method, the machinability is improved by simply adding S to the steel ingot manufactured by the smelting method. Is negative for heat crack resistance. Further, since the Charpy impact value at a hardness exceeding 50 HRC is low, the hardness cannot be set to a value exceeding 50 HRC, so that improvement in wear resistance cannot be expected. The steel 1 of the present invention has a chemical composition equivalent to that of the comparative steel 25 produced by the smelting method, and is a material starting from a steel ingot produced by the powder metallurgy method.
Not only a remarkable improvement in the machinability due to the addition is observed, but also the Charpy impact value is high.

【0030】(実施例2)表1に示す本発明鋼1と比較
鋼14で実際に金型を製作して鋳造を行った例を以下に
示す。本発明鋼1は焼入れ焼戻しにより50.5HRC
の硬さのブロックを直接切削加工により仕上げ加工し
た。比較鋼14は焼なまし材を切削加工により粗加工を
行い、焼入れ焼戻しにより45.3HRCの硬さにした
後に、主に放電加工により仕上げ加工を行った。この両
金型を型締め力350tのダイカストマシンに装着し、
680℃のADC12合金の鋳造を行った。
(Example 2) An example in which a mold was actually produced from the steel 1 of the present invention and the comparative steel 14 shown in Table 1 and casting was performed is shown below. Invention steel 1 is 50.5HRC by quenching and tempering.
A block having a hardness of 5 mm was finished by direct cutting. For the comparative steel 14, the annealed material was roughly processed by cutting, and after quenching and tempering to a hardness of 45.3 HRC, finishing was mainly performed by electric discharge machining. These two dies are mounted on a die casting machine with a clamping force of 350 t,
ADC12 alloy casting at 680 ° C. was performed.

【0031】[0031]

【表3】 [Table 3]

【0032】ヒートクラックの発生はゲート部近傍の溝
部にて確認した。表3のように本発明鋼1の金型は比較
鋼14の金型に比べて大幅にヒートクラック発生寿命が
延びている。特に本発明鋼1の金型はヒートクラックの
開口が比較鋼14の金型に比べて小さいのも特徴であっ
た。ヒートクラックの開口は製品へ転写されるので小さ
い方が良い。また金型製作コストも14%程度低下し
た。特にコストに大きく影響する放電加工による仕上げ
加工が切削加工で可能となった点が大きい。これは放電
加工電極製作をも省略できるメリットがあった。また焼
入れ焼戻しを省略できることにより型製作期間の短縮も
可能となった。この結果より本発明鋼の優位性が確認さ
れた。
The occurrence of heat crack was confirmed in the groove near the gate. As shown in Table 3, the mold of the steel 1 of the present invention has a significantly longer heat crack generation life than the mold of the comparative steel 14. Particularly, the mold of the steel 1 of the present invention was characterized in that the opening of the heat crack was smaller than that of the mold of the comparative steel 14. Since the opening of the heat crack is transferred to the product, the smaller the better. Also, the die manufacturing cost was reduced by about 14%. In particular, it is significant that the finishing process by electric discharge machining, which greatly affects the cost, is enabled by the cutting process. This has an advantage that the production of the electric discharge machining electrode can be omitted. In addition, the quenching and tempering can be omitted, thereby shortening the mold manufacturing period. From these results, the superiority of the steel of the present invention was confirmed.

【0033】以上のように、本発明鋼は、化学組成の最
適化、Sの適量添加、粉末冶金法の採用により、耐ヒー
トクラック性、耐摩耗性向上に効果がある50HRCを
越える硬さの設定が可能になり、かつ優れた被削性を有
することが確認された。
As described above, the steel of the present invention has a hardness exceeding 50 HRC which is effective in improving heat crack resistance and wear resistance by optimizing the chemical composition, adding an appropriate amount of S, and employing powder metallurgy. It was confirmed that the setting was possible and that it had excellent machinability.

【0034】[0034]

【発明の効果】本発明によれば、金型や工具を使用する
場合に問題となるヒートクラックや摩耗に対する抵抗力
と、金型や工具を製作する場合に問題となる被削性を飛
躍的に改善することができ、金型の寿命向上と金型製作
コストの低減の両者を同時に達成することができる。
According to the present invention, the resistance to heat cracks and abrasion, which is a problem when using a mold or a tool, and the machinability, which is a problem when a mold or a tool is manufactured, are dramatically improved. , And both the improvement of the life of the mold and the reduction of the mold manufacturing cost can be achieved at the same time.

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】 質量%で、C:0.35を越え0.45
%未満、Si:1.0%未満、Mn:0.2〜1.5
%、S:0.05〜0.30%、Cr:2.35〜5.
65%、WとMoを1種または2種で(1/2W+M
o):1.5〜3.5%、V:0.5〜1.5%で、S
i、Cr量がSi<(18.7/Cr)−3.3の関係
式を満たし、残部Feおよび不可避的不純物からなる耐
ヒートクラック性、耐摩耗性に優れる粉末熱間工具鋼。
(1) In mass%, C: more than 0.35 and 0.45
%, Si: less than 1.0%, Mn: 0.2 to 1.5
%, S: 0.05 to 0.30%, Cr: 2.35 to 5.
65%, W and Mo in one or two kinds (1 / 2W + M
o): 1.5-3.5%, V: 0.5-1.5%, S
A powdered hot tool steel in which the amounts of i and Cr satisfy the relational expression of Si <(18.7 / Cr) -3.3, and are excellent in heat crack resistance and wear resistance comprising the balance of Fe and inevitable impurities.
【請求項2】 質量%で、Ni:1.5%以下であるこ
とを特徴とする請求項1に記載の耐ヒートクラック性、
耐摩耗性に優れる粉末熱間工具鋼。
2. The heat crack resistance according to claim 1, wherein Ni is not more than 1.5% by mass%.
Powdered hot tool steel with excellent wear resistance.
【請求項3】 質量%で、Co:5.0%以下であるこ
とを特徴とする請求項1または2に記載の耐ヒートクラ
ック性、耐摩耗性に優れる粉末熱間工具鋼。
3. The powdered hot tool steel according to claim 1, wherein the content of Co is 5.0% or less by mass%.
【請求項4】 50HRCを越える硬さを有することを
特徴とする請求項1ないし3のいずれかに記載の耐ヒー
トクラック性、耐摩耗性に優れる粉末熱間工具鋼。
4. The powdered hot tool steel according to claim 1, which has a hardness exceeding 50 HRC.
【請求項5】 請求項1ないし4のいずれかに記載の粉
末熱間工具鋼からなること特徴とする熱間金型。
5. A hot die comprising the powdered hot tool steel according to any one of claims 1 to 4.
JP2000020561A 2000-01-28 2000-01-28 Powder hot tool steel excellent in heat crack resistance and wear resistance and hot die Pending JP2001214238A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000020561A JP2001214238A (en) 2000-01-28 2000-01-28 Powder hot tool steel excellent in heat crack resistance and wear resistance and hot die

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000020561A JP2001214238A (en) 2000-01-28 2000-01-28 Powder hot tool steel excellent in heat crack resistance and wear resistance and hot die

Publications (1)

Publication Number Publication Date
JP2001214238A true JP2001214238A (en) 2001-08-07

Family

ID=18547102

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000020561A Pending JP2001214238A (en) 2000-01-28 2000-01-28 Powder hot tool steel excellent in heat crack resistance and wear resistance and hot die

Country Status (1)

Country Link
JP (1) JP2001214238A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015221933A (en) * 2014-05-23 2015-12-10 大同特殊鋼株式会社 Steel for metal mold and metal mold
JP2015224363A (en) * 2014-05-27 2015-12-14 大同特殊鋼株式会社 Steel for metallic mold and metallic mold
WO2017111680A1 (en) * 2015-12-22 2017-06-29 Uddeholms Ab Hot work tool steel
CN109913768A (en) * 2019-04-30 2019-06-21 浙江自贸区北重金属科技有限公司 A kind of electroslag remelting hot die steel and preparation method thereof
KR20200144508A (en) * 2019-06-18 2020-12-29 다이도 토쿠슈코 카부시키가이샤 Powder for additive manufacturing, and die-casting die part
CN115558843A (en) * 2021-09-08 2023-01-03 僖昴晰(上海)新材料有限公司 Alloy steel composition

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015221933A (en) * 2014-05-23 2015-12-10 大同特殊鋼株式会社 Steel for metal mold and metal mold
JP2015224363A (en) * 2014-05-27 2015-12-14 大同特殊鋼株式会社 Steel for metallic mold and metallic mold
WO2017111680A1 (en) * 2015-12-22 2017-06-29 Uddeholms Ab Hot work tool steel
JP2019504197A (en) * 2015-12-22 2019-02-14 ウッデホルムズ アーベー Hot work tool steel
KR20190034491A (en) * 2015-12-22 2019-04-02 우데홀름스 악티에보라그 Hot working tool steel
US11131012B2 (en) 2015-12-22 2021-09-28 Uddeholms Ab Hot work tool steel
JP7045315B2 (en) 2015-12-22 2022-03-31 ウッデホルムズ アーベー Hot tool steel
KR102435470B1 (en) * 2015-12-22 2022-08-23 우데홀름스 악티에보라그 hot working tool steel
CN109913768A (en) * 2019-04-30 2019-06-21 浙江自贸区北重金属科技有限公司 A kind of electroslag remelting hot die steel and preparation method thereof
KR20200144508A (en) * 2019-06-18 2020-12-29 다이도 토쿠슈코 카부시키가이샤 Powder for additive manufacturing, and die-casting die part
KR102367803B1 (en) 2019-06-18 2022-02-24 다이도 토쿠슈코 카부시키가이샤 Powder for additive manufacturing, and die-casting die part
CN115558843A (en) * 2021-09-08 2023-01-03 僖昴晰(上海)新材料有限公司 Alloy steel composition

Similar Documents

Publication Publication Date Title
JP5618978B2 (en) Steel, steel blank manufacturing method, and method of manufacturing this steel part
CN109252104B (en) High-speed steel and production method thereof
CN100482842C (en) High malleable high wear-resisting cold process mould steel
EP3050649B1 (en) Steel powder and mold using the same
JP2010503770A (en) Steel alloys, holders or holder details for plastic forming tools, toughened blanks for holders or holder details, steel alloy production methods
JP7172275B2 (en) Hot stamping die steel, hot stamping die and manufacturing method thereof
WO2016075951A1 (en) Hot work tool steel
JP2007224418A (en) Hot tool steel having excellent toughness
JP2001214238A (en) Powder hot tool steel excellent in heat crack resistance and wear resistance and hot die
JP3228440B2 (en) Hot working mold with excellent heat crack resistance
JP3616204B2 (en) Cold tool steel suitable for surface treatment, its mold and tool
JP2005336553A (en) Hot tool steel
WO2021187484A1 (en) Steel for hot working die, die for hot working, and manufacturing method for same
CN109371330A (en) A kind of high tenacity high-speed steel and its preparation process
JP4322239B2 (en) Cold tool steel and manufacturing method thereof
WO2011102402A1 (en) Steel for molds with excellent hole processability and reduced processing deformation, and method for producing same
JPH07179997A (en) High speed steel type powder alloy
JPH06172943A (en) Die for hot working excellent in wear resistance
JPH07166300A (en) High speed steel type powder alloy
JP2002088450A (en) Hot work tool steel
JPH0143017B2 (en)
CN112899559B (en) Steel for mold and mold
JP3191008B2 (en) Hot tool steel
JP6345945B2 (en) Powdered high-speed tool steel with excellent wear resistance and method for producing the same
TWI766454B (en) Steel for mold, and mold