JP3548317B2 - Method for manufacturing porous mold - Google Patents

Method for manufacturing porous mold Download PDF

Info

Publication number
JP3548317B2
JP3548317B2 JP03627196A JP3627196A JP3548317B2 JP 3548317 B2 JP3548317 B2 JP 3548317B2 JP 03627196 A JP03627196 A JP 03627196A JP 3627196 A JP3627196 A JP 3627196A JP 3548317 B2 JP3548317 B2 JP 3548317B2
Authority
JP
Japan
Prior art keywords
sintered body
treatment
electric discharge
discharge machining
mold
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP03627196A
Other languages
Japanese (ja)
Other versions
JPH09225580A (en
Inventor
泰 伊勢田
正 岡田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Honda Motor Co Ltd
Original Assignee
Honda Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Honda Motor Co Ltd filed Critical Honda Motor Co Ltd
Priority to JP03627196A priority Critical patent/JP3548317B2/en
Publication of JPH09225580A publication Critical patent/JPH09225580A/en
Application granted granted Critical
Publication of JP3548317B2 publication Critical patent/JP3548317B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Electrical Discharge Machining, Electrochemical Machining, And Combined Machining (AREA)
  • Molds, Cores, And Manufacturing Methods Thereof (AREA)
  • Powder Metallurgy (AREA)
  • Solid-Phase Diffusion Into Metallic Material Surfaces (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、連続空孔を有する焼結体に表面処理を施す多孔質金型の製造方法に関する。
【0002】
【従来の技術】
近年、鋳造用金型として、ガス抜き性や保温性に優れるという利点から、多孔質金型が使用されつつある。この種の多孔質金型を製造する際には、先ず、連続空孔を有する焼結体を成形した後、この焼結体に切削または研削加工を施して所定形状のキャビテイ面成形部位を設ける。さらに、鋳造される溶融金属、例えば、アルミニウムと金型材とが冶金的に反応し、焼付けや溶損等が生じて金型の耐久性が低下することを阻止するため、キャビテイ面成形部位に、塩浴窒化法、ガス窒化法または流動層窒化法等の窒化処理や、PVDまたはCVD等の蒸着処理等の表面処理が施されている。
【0003】
【発明が解決しようとする課題】
しかしながら、上記のように、焼結体の形状加工に砥石等による研削加工や切削加工が施されると、この焼結体の表面にばり等が発生する。このため、焼結体の表面側の空孔が塞がってしまい、通気性が低下するという問題が指摘されている。
【0004】
さらに、多孔質金型の表面処理として、塩浴窒化法を用いると、焼結体内の連続空孔を通じて処理塩がこの焼結体の内部まで浸透し、前記焼結体内部まで窒化されて多孔質金型全体の靭性が低下してしまう。しかも、焼結体内部に侵入した処理塩を除去する作業が相当に煩雑なものになるという問題がある。また、ガス窒化法を用いると、処理ガスが焼結体の内部まで侵入してしまい、この焼結体全体が窒化され、多孔質金型全体の靭性が低下するおそれがある。
【0005】
さらにまた、流動層窒化法を用いると、加熱媒体の砂礫が焼結体表面の空孔に侵入してしまい、その除去作業に多数の工程を要するという不具合がある。
【0006】
一方、表面処理として、PVDやCVD等の蒸着法を用いると、処理時に高真空度(10−4〜10−2torr)を要するため、焼結体の洗浄および乾燥に相当に長時間を要してしまう。焼結体の加工時に、この焼結体内部に侵入した切削液や研削液を確実に除去していないと、蒸着処理装置の内部が汚染されるとともに、所望の真空度を得ることができないからである。
【0007】
本発明は、この種の問題を解決するものであり、所望の通気性および靭性を確保するとともに、簡単かつ効率的に表面処理を行うことが可能な多孔質金属の製造方法を提供することを目的とする。
【0008】
【課題を解決するための手段】
前記の課題を解決するために、本発明は、連続空孔を有する焼結体のキャビテイ面成形部位に放電加工を施して所定形状に成形するため、ばり等が発生することがなく、前記焼結体におけるキャビテイ面成形部位の表面に設けられている空孔が閉塞されることを阻止できる。さらに、放電加工後のキャビテイ面成形部位にイオン窒化処理が施される。このイオン窒化処理は、例えば、グロー放電によりなされ、キャビテイ面成形部位の表面にのみ窒化が行われる。これにより、多孔質金型全体の靭性を有効に維持することができるとともに、表面処理が迅速かつ簡単に遂行される。
【0009】
【発明の実施の形態】
図1は、本実施形態に係る製造方法により製造された多孔質金型である下型10と上型12とを組み込む低圧鋳造金型14の縦断説明図である。下型10は、下型ベース16に保持されており、そのキャビテイ面18には湯口20が連通している。上型12は、上型ベース22に支持されるとともに、そのキャビテイ面24が下型10のキャビテイ面18に対向して設けられている。
【0010】
キャビテイ面18、24間にキャビテイ26が形成され、このキャビテイ26には、上型ベース22に摺動自在に設けられている押出ピン28が臨入自在である。下型10および上型12には、それぞれ所望の位置に冷却経路30が設けられている。
【0011】
図2には、放電加工装置40の概略構成図が示されている。放電加工装置40は、導電性を有する焼結体42を浸漬する絶縁性放電加工液44が貯留された槽体46と、NC装置48を介して所定方向に移動自在な放電電極50とを備える。放電電極50と焼結体42とは、パルス電源52に接続されるとともに、NC装置48は、NC制御部54に接続されている。
【0012】
図3には、放電加工後の焼結体42a、42bのキャビテイ面成形部位56a、56bに、それぞれ下型10、上型12のキャビテイ面18、24に対応してイオン窒化処理を行うためのイオン窒化装置60が示されている。
【0013】
イオン窒化装置60は、焼結体42a、42bを載置するための受台62が配置された真空容器64を備える。この真空容器64の室66には、反応ガス流量調整弁68に接続された供給管70が連通するとともに、圧力調整弁72および真空排気装置74に接続された排気管76が連通する。真空容器64には、プラズマ電源78が接続されている。
【0014】
次に、本実施形態に係る製造方法について、図4に示すフローチャートを参照しながら、以下に説明する。
【0015】
先ず、鉄系材料を主成分とする粉末を用い、圧粉プレス成形により成形した後、真空炉で焼結して連続空孔を有する焼結体42が成形される(ステップS1)。次に、ステップS2に進んで、焼結体42に必要部分に機械加工を施し、例えば、冷却経路30に対応する加工を行った後、放電加工装置40によりキャビテイ部の放電加工が行われる(ステップS3)。
【0016】
放電加工装置40では、図2に示すように、焼結体42が放電加工液44中に浸漬された状態で、パルス電源52から放電電極50と前記焼結体42とに通電するとともに、NC制御部54を介してNC装置48が所定の方向に移動される。これにより、焼結体42は、そのキャビテイ部側に放電加工が施されて所定形状に成形される。
【0017】
このように、焼結体42のキャビテイ部側には、放電加工装置40を介して放電加工が施されるため、この焼結体42の表面に設けられている空孔を閉塞することがない。従って、研削加工や切削加工等の従来の処理のように、焼結体42の表面にばり等が生じてこの表面側の空孔が塞がれることにより通気性が低下するという不具合がなく、電解研摩やエッチング等のような開孔処理が不要になる。
【0018】
これにより、所望の通気性を維持して効率的に焼結体42を加工することができるという効果が得られる。しかも、焼結体42の表面には、放電加工による変質層が存在しており、この変質層が実質的に高硬度となって、耐摩耗性を向上させるという機能を有する。
【0019】
放電加工後の焼結体42a、42bには、洗浄および乾燥処理が施された後(ステップS4)、イオン窒化装置60によるイオン窒化処理が行われる(ステップS5)。
【0020】
イオン窒化装置60では、図3に示すように、受台62上に焼結体42a、42bが配置された後、真空排気装置74および圧力調整弁72を介して真空容器64の室66内が減圧される。一方、室66内には、反応ガス流量調整弁68を介して供給管70から反応ガスが供給されるとともに、プラズマ電源78が駆動されてグロー放電が行われる。なお、雰囲気温度は、500℃〜600℃の範囲内に設定されている。これにより、受台62上の焼結体42a、42bの表面部(キャビテイ面成形部位56a、56b)には、イオン窒化処理が施されることになる。
【0021】
このように、本実施形態では、焼結体42a、42bの表面処理として、グロー放電を利用したイオン窒化処理が施されるため、前記焼結体42a、42bの表面部にのみ窒化が行われ、該焼結体42a、42bの内部まで窒化されることがない。
【0022】
従って、塩浴窒化法やガス窒化法等の従来の窒化処理のように、被処理材の内部まで窒化されて該被処理材全体の靭性が低下することがなく、焼結体42a、42b全体の靭性を有効に維持することができる。さらに、塩浴窒化法のように、被処理材内部に処理塩が含浸することがなく、窒化処理後に前記処理塩の除去等の後処理が不要になり、窒化処理作業が効率的かつ容易に遂行されるという効果がある。また、処理雰囲気も減圧ガス雰囲気であり、焼結体42a、42bの清浄度もCVDやPVD等の蒸着法ほど要求されず、窒化処理が簡素化されるという利点がある。
【0023】
イオン窒化処理によりキャビテイ面成形部位56a、56bがイオン窒化された焼結体42a、42bである下型10、上型12は、図1に示すように、低圧鋳造金型14に組み込まれて調整が行われる(ステップS6)。次いで、湯口20から、例えば、溶融アルミニウムがキャビテイ26に注湯され、このキャビテイ26でアルミニウム製成形品が成形されることになる。
【0024】
【実施例】
実施例1
試料として、SUS430系粉末を圧粉成形プレスにより成形した後、真空炉で焼結して空孔率が25vol%の連続空孔を有する焼結体を得た。次に、この焼結体の表面に放電加工を施した後、580℃で10時間、ガス圧力が2torr(N50:H50)の条件下でイオン窒化処理を施した。
【0025】
このようにして得られた試料の寸法は、50mm×50mm×10mmであり、窒化層の厚さが60μmで、その硬さがHmV1200であった。そして、前記試料を710℃のアルミニウム(AC2B)溶湯中に4時間浸漬した。
【0026】
比較例として、上記と同一条件で成形および焼結した試料を用い、この試料の表面に機械加工を施した状態で、すなわち、表面処理を行うことなくアルミニウム溶湯中に浸漬した。この浸漬後、機械加工かつ表面処理なしの試料は、図5Aに示すように、多孔質層90の表面に製品であるアルミニウム合金92との溶着層94が存在するとともに、この多孔質層90に溶損が惹起されていた。
【0027】
これに対し、放電加工およびイオン窒化処理を施した試料では、図5Bに示すように、多孔質層100の表層部にイオン窒化層102が設けられており、このイオン窒化層102の表面とアルミニウム製品104との間には、空間SPが存在した。すなわち、実施例1では、多孔質層100に溶損や溶着が発生しなかった。
実施例2
試料として、SUS434系多孔質焼結体(新東工業社製 ポーセラックス2PM35)を用い、そのキャビテイ部表面を放電加工した後、530℃で6時間、ガス圧力が2torr(N50:H50)の条件下でイオン窒化処理を施した。この試料を鋳造型の湯口近傍に入れ子として挿入した。比較例として、上記の焼結体の表面を放電加工しただけの試料を用意し、同様に、鋳造型の湯口近傍に入れ子として挿入した。この鋳造型では、700℃のAC2B材を注湯してアルミニウム製品を鋳造した。
【0028】
その結果、図6Aに示すように、表面に放電加工を施しただけの入れ子110では、800ショットで溶損部位112および溶着が発生したが、放電加工面にイオン窒化処理を施した入れ子120では、5000ショットの鋳造後にも溶損および溶着の発生がなかった。
【0029】
【発明の効果】
本発明に係る多孔質金型の製造方法では、連続空孔を有する焼結体のキャビテイ面成形部位に放電加工を施して所定形状に成形するため、研削加工や切削加工におけるばり等の発生がなく、前記焼結体におけるキャビテイ面成形部位の表面に設けられている空孔を閉塞することがない。これにより、通気性の低下を阻止するとともに、開孔処理等の後処理が不要になる。
【0030】
さらに、放電加工後のキャビテイ面成形部位にイオン窒化処理が施されるため、このキャビテイ面成形部位表面にのみ窒化が行われ、その内部が窒化されることを阻止することができる。従って、多孔質金型全体の靭性を有効に維持するとともに、窒化処理後の後処理が不要になり、前記多孔質金型を効率的かつ高精度に製造することが可能になる。
【図面の簡単な説明】
【図1】本発明の実施形態に係る製造方法により製造される多孔質金型を組み込む低圧鋳造金型の縦断説明図である。
【図2】前記製造方法に使用される放電加工装置の概略説明図である。
【図3】前記製造方法に使用されるイオン窒化装置の概略説明図である。
【図4】前記製造方法を説明するフローチャートである。
【図5】図5Aは、機械加工を行いかつ表面処理がなされていない試料をアルミニウム溶湯中に浸漬した後の溶着状態を示す拡大図であり、
図5Bは、放電加工およびイオン窒化処理を施した試料をアルミニウム溶湯中に浸漬した後の拡大図である。
【図6】図6Aは、放電加工のみを施した入れ子の鋳造後における一部拡大図であり、
図6Bは、放電加工面にイオン窒化処理を施した入れ子の鋳造後における一部拡大図である。
【符号の説明】
10…下型 12…上型
14…低圧鋳造金型 18、24…キャビテイ面
26…キャビテイ 40…放電加工装置
42、42a、42b…焼結体 44…放電加工液
50…放電電極 60…イオン窒化装置
64…真空容器 68…反応ガス流量調整弁
78…プラズマ電源
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a method for manufacturing a porous mold for performing a surface treatment on a sintered body having continuous pores.
[0002]
[Prior art]
In recent years, porous dies have been used as casting dies because of their advantages of excellent gas release and heat retention. When manufacturing a porous mold of this type, first, after forming a sintered body having continuous holes, the sintered body is subjected to cutting or grinding to provide a cavity surface forming portion of a predetermined shape. . Furthermore, in order to prevent the molten metal to be cast, for example, aluminum and the mold material from reacting in a metallurgical manner and causing baking or erosion or the like to reduce the durability of the mold, the cavity surface forming portion includes: A surface treatment such as a nitriding treatment such as a salt bath nitriding method, a gas nitriding method or a fluidized bed nitriding method, and a vapor deposition treatment such as PVD or CVD is performed.
[0003]
[Problems to be solved by the invention]
However, as described above, when grinding or cutting with a grindstone or the like is performed on the shape processing of the sintered body, burrs or the like are generated on the surface of the sintered body. For this reason, it has been pointed out that the pores on the surface side of the sintered body are closed and the air permeability is reduced.
[0004]
Further, when a salt bath nitriding method is used as a surface treatment of the porous mold, the treated salt penetrates into the inside of the sintered body through continuous pores in the sintered body, and is nitrided into the inside of the sintered body to form a porous body. The toughness of the whole quality mold is reduced. In addition, there is a problem that the operation of removing the treatment salt that has entered the inside of the sintered body becomes considerably complicated. In addition, when the gas nitriding method is used, the processing gas enters the inside of the sintered body, and the whole sintered body is nitrided, and the toughness of the entire porous mold may be reduced.
[0005]
Furthermore, when the fluidized-bed nitriding method is used, there is a problem in that sand and gravel of the heating medium enter pores on the surface of the sintered body, and a number of steps are required for the removal operation.
[0006]
On the other hand, when a deposition method such as PVD or CVD is used as the surface treatment, a high degree of vacuum (10 −4 to 10 −2 torr) is required at the time of the treatment, so that it takes a considerably long time to wash and dry the sintered body. Resulting in. Unless the cutting fluid or grinding fluid that has entered the inside of the sintered body is reliably removed during the processing of the sintered body, the inside of the vapor deposition processing apparatus is contaminated and the desired degree of vacuum cannot be obtained. It is.
[0007]
The present invention solves this kind of problem, and provides a method for producing a porous metal capable of easily and efficiently performing a surface treatment while securing desired air permeability and toughness. Aim.
[0008]
[Means for Solving the Problems]
In order to solve the above-mentioned problems, the present invention provides a method of forming a cavity surface of a sintered body having continuous pores by performing electrical discharge machining to form a predetermined shape. It is possible to prevent the holes provided on the surface of the cavity surface forming portion in the binding from being closed. Further, an ion nitriding treatment is applied to the cavity surface forming portion after the electric discharge machining. This ion nitriding treatment is performed, for example, by glow discharge, and nitriding is performed only on the surface of the cavity surface forming portion. Thereby, the toughness of the entire porous mold can be effectively maintained, and the surface treatment is quickly and easily performed.
[0009]
BEST MODE FOR CARRYING OUT THE INVENTION
FIG. 1 is a vertical sectional view of a low-pressure casting mold 14 incorporating a lower mold 10 and an upper mold 12 which are porous molds manufactured by the manufacturing method according to the present embodiment. The lower die 10 is held by a lower die base 16, and a gate 20 communicates with a cavity surface 18 thereof. The upper mold 12 is supported by an upper mold base 22, and has a cavity surface 24 facing the cavity surface 18 of the lower mold 10.
[0010]
A cavity 26 is formed between the cavity surfaces 18 and 24, and an extrusion pin 28 slidably provided on the upper die base 22 can enter the cavity 26. The lower mold 10 and the upper mold 12 are each provided with a cooling path 30 at a desired position.
[0011]
FIG. 2 shows a schematic configuration diagram of the electric discharge machine 40. The electric discharge machining device 40 includes a tank body 46 in which an insulating electric discharge machining fluid 44 for immersing a sintered body 42 having conductivity is stored, and a discharge electrode 50 that is movable in a predetermined direction via an NC device 48. . The discharge electrode 50 and the sintered body 42 are connected to a pulse power source 52, and the NC device 48 is connected to an NC control unit 54.
[0012]
FIG. 3 shows that the ion-nitriding process is performed on the cavity surface forming portions 56a and 56b of the sintered bodies 42a and 42b after the electric discharge machining in correspondence with the cavity surfaces 18 and 24 of the lower mold 10 and the upper mold 12, respectively. An ion nitriding device 60 is shown.
[0013]
The ion nitriding apparatus 60 includes a vacuum vessel 64 in which a receiving table 62 for placing the sintered bodies 42a and 42b is arranged. A supply pipe 70 connected to a reaction gas flow control valve 68 communicates with a chamber 66 of the vacuum vessel 64, and an exhaust pipe 76 connected to a pressure control valve 72 and a vacuum exhaust device 74. A plasma power supply 78 is connected to the vacuum container 64.
[0014]
Next, the manufacturing method according to the present embodiment will be described below with reference to the flowchart shown in FIG.
[0015]
First, using a powder mainly composed of an iron-based material, the compact is formed by compaction press molding, and then sintered in a vacuum furnace to form a sintered body 42 having continuous pores (step S1). Next, proceeding to step S2, machining is performed on a necessary portion of the sintered body 42, for example, machining corresponding to the cooling path 30 is performed, and then electric discharge machining of the cavity portion is performed by the electric discharge machine 40 ( Step S3).
[0016]
In the electric discharge machining apparatus 40, as shown in FIG. 2, in a state where the sintered body 42 is immersed in the electric discharge machining fluid 44, a current is supplied from the pulse power source 52 to the discharge electrode 50 and the sintered body 42, The NC device 48 is moved in a predetermined direction via the control unit 54. As a result, the sintered body 42 is subjected to electric discharge machining on the side of the cavity and formed into a predetermined shape.
[0017]
As described above, since the electric discharge machining is performed on the cavity portion side of the sintered body 42 through the electric discharge machine 40, the holes provided on the surface of the sintered body 42 are not closed. . Therefore, unlike the conventional processing such as grinding and cutting, there is no problem that burrs and the like are generated on the surface of the sintered body 42 and pores on this surface side are closed, thereby reducing air permeability. Opening processes such as electrolytic polishing and etching are not required.
[0018]
Thereby, an effect is obtained that the sintered body 42 can be efficiently processed while maintaining desired air permeability. Moreover, a deteriorated layer due to electric discharge machining is present on the surface of the sintered body 42, and the deteriorated layer has a function of substantially increasing hardness and improving wear resistance.
[0019]
After cleaning and drying are performed on the sintered bodies 42a and 42b after the electric discharge machining (step S4), an ion nitriding process is performed by the ion nitriding device 60 (step S5).
[0020]
In the ion nitriding apparatus 60, as shown in FIG. 3, after the sintered bodies 42 a and 42 b are arranged on the receiving table 62, the inside of the chamber 66 of the vacuum vessel 64 is evacuated via the vacuum exhaust device 74 and the pressure adjusting valve 72. The pressure is reduced. On the other hand, the reaction gas is supplied into the chamber 66 from the supply pipe 70 via the reaction gas flow control valve 68, and the plasma power supply 78 is driven to perform glow discharge. Note that the ambient temperature is set in the range of 500 ° C to 600 ° C. As a result, the surface portions of the sintered bodies 42a and 42b on the receiving table 62 (cavity surface forming portions 56a and 56b) are subjected to ion nitriding.
[0021]
As described above, in the present embodiment, as the surface treatment of the sintered bodies 42a and 42b, the ion nitriding treatment using glow discharge is performed, so that only the surface portions of the sintered bodies 42a and 42b are nitrided. Therefore, the inside of the sintered bodies 42a and 42b is not nitrided.
[0022]
Therefore, unlike the conventional nitriding treatments such as the salt bath nitriding method and the gas nitriding method, the inside of the material to be treated is not nitrided and the toughness of the entire material to be treated is not reduced. Toughness can be effectively maintained. Further, unlike the salt bath nitriding method, the treatment salt is not impregnated inside the material to be treated, and post-treatment such as removal of the treatment salt after the nitriding treatment becomes unnecessary, so that the nitriding treatment operation is performed efficiently and easily. It has the effect of being performed. Further, the processing atmosphere is also a reduced pressure gas atmosphere, the cleanliness of the sintered bodies 42a and 42b is not required as much as the vapor deposition method such as CVD or PVD, and there is an advantage that the nitriding treatment is simplified.
[0023]
The lower mold 10 and the upper mold 12, which are the sintered bodies 42a and 42b in which the cavity surface forming portions 56a and 56b are ion-nitrided by the ion nitriding treatment, are assembled into the low-pressure casting mold 14 and adjusted as shown in FIG. Is performed (step S6). Next, for example, molten aluminum is poured into the cavity 26 from the gate 20, and an aluminum molded product is formed in the cavity 26.
[0024]
【Example】
Example 1
As a sample, a SUS430-based powder was formed by a compacting press and then sintered in a vacuum furnace to obtain a sintered body having continuous pores having a porosity of 25 vol%. Next, after the electric discharge machining was performed on the surface of the sintered body, an ion nitriding treatment was performed at 580 ° C. for 10 hours at a gas pressure of 2 torr (N 2 50: H 2 50).
[0025]
The dimensions of the sample thus obtained were 50 mm × 50 mm × 10 mm, the thickness of the nitride layer was 60 μm, and the hardness was HmV1200. Then, the sample was immersed in a molten aluminum (AC2B) at 710 ° C. for 4 hours.
[0026]
As a comparative example, a sample molded and sintered under the same conditions as above was used, and the sample was immersed in molten aluminum without surface treatment, ie, without surface treatment. After the immersion, as shown in FIG. 5A, the sample without the mechanical processing and the surface treatment has a welded layer 94 with the aluminum alloy 92 as a product on the surface of the porous layer 90, and the porous layer 90 Melting had been induced.
[0027]
On the other hand, in the sample subjected to the electric discharge machining and the ion nitriding treatment, as shown in FIG. 5B, the ion nitride layer 102 is provided on the surface portion of the porous layer 100, and the surface of the ion nitride layer 102 and the aluminum There was a space SP between the product 104. That is, in Example 1, no erosion or welding occurred in the porous layer 100.
Example 2
As a sample, using a SUS434-based porous sintered body (Sintokogio Co. Poserakkusu 2PM35), after discharge machining the cavity section surface, 6 hours at 530 ° C., the gas pressure is 2torr (N 2 50: H 2 An ion nitriding treatment was performed under the condition of 50). This sample was inserted as a nest near the gate of the casting mold. As a comparative example, a sample was prepared by simply subjecting the surface of the above sintered body to electrical discharge machining, and similarly inserted as a nest near the gate of the casting mold. In this casting mold, an aluminum product was cast by pouring an AC2B material at 700 ° C.
[0028]
As a result, as shown in FIG. 6A, in the nest 110 in which only the surface was subjected to electric discharge machining, the erosion site 112 and welding occurred in 800 shots, but in the nest 120 in which the electric discharge machining surface was subjected to ion nitriding, No erosion or welding occurred after 5000 shot casting.
[0029]
【The invention's effect】
In the method for manufacturing a porous mold according to the present invention, since a cavity surface forming portion of a sintered body having continuous holes is subjected to electric discharge machining to be formed into a predetermined shape, generation of burrs and the like in grinding and cutting work is caused. In addition, the holes provided on the surface of the cavity surface forming portion of the sintered body are not closed. This prevents a decrease in air permeability and eliminates the need for a post-treatment such as a hole opening treatment.
[0030]
Further, since the ion nitriding treatment is performed on the cavity surface forming portion after the electric discharge machining, nitriding is performed only on the surface of the cavity surface forming portion, and the inside thereof can be prevented from being nitrided. Therefore, while maintaining the toughness of the entire porous mold effectively, the post-treatment after the nitriding treatment is not required, and the porous mold can be efficiently and accurately manufactured.
[Brief description of the drawings]
FIG. 1 is a longitudinal sectional view illustrating a low-pressure casting mold incorporating a porous mold manufactured by a manufacturing method according to an embodiment of the present invention.
FIG. 2 is a schematic explanatory view of an electric discharge machine used in the manufacturing method.
FIG. 3 is a schematic explanatory view of an ion nitriding apparatus used in the manufacturing method.
FIG. 4 is a flowchart illustrating the manufacturing method.
FIG. 5A is an enlarged view showing a welded state after immersing a sample subjected to machining and not subjected to surface treatment in a molten aluminum,
FIG. 5B is an enlarged view after immersing the sample subjected to the electric discharge machining and the ion nitriding treatment in the molten aluminum.
FIG. 6A is a partially enlarged view of a nest subjected to only electric discharge machining after casting.
FIG. 6B is a partially enlarged view of a nest obtained by subjecting an electric discharge machining surface to an ion nitriding treatment after casting.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 10 ... Lower mold 12 ... Upper mold 14 ... Low pressure casting metal mold 18, 24 ... Cavity surface 26 ... Cavity 40 ... Electric discharge machine 42, 42a, 42b ... Sintered body 44 ... Electric discharge machining liquid 50 ... Discharge electrode 60 ... Ion nitriding Apparatus 64: Vacuum container 68: Reaction gas flow control valve 78: Plasma power supply

Claims (3)

鉄系材料を主成分とする粉末を用いて連続空孔を有する焼結体を成形する工程と、
前記焼結体のキャビテイ面成形部位に放電加工を施して所定形状に成形する工程と、
前記放電加工後のキャビテイ面成形部位にイオン窒化処理を施す工程と、
を有することを特徴とする多孔質金型の製造方法。
A step of forming a sintered body having continuous pores using a powder mainly composed of an iron-based material,
A step of subjecting the cavity surface molding portion of the sintered body to electrical discharge machining and molding it into a predetermined shape,
Performing an ion nitriding treatment on the cavity surface forming portion after the electric discharge machining,
A method for producing a porous mold, comprising:
請求項1記載の製造方法において、前記鉄系材料は、フェライト系またはマルテンサイト系であることを特徴とする多孔質金型の製造方法。2. The method according to claim 1, wherein the iron-based material is a ferrite-based material or a martensite-based material. 請求項1又は2記載の製造方法において、前記イオン窒化処理は、グロー放電によりなされることを特徴とする多孔質金型の製造方法。 3. The method according to claim 1, wherein the ion nitriding is performed by glow discharge.
JP03627196A 1996-02-23 1996-02-23 Method for manufacturing porous mold Expired - Fee Related JP3548317B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP03627196A JP3548317B2 (en) 1996-02-23 1996-02-23 Method for manufacturing porous mold

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP03627196A JP3548317B2 (en) 1996-02-23 1996-02-23 Method for manufacturing porous mold

Publications (2)

Publication Number Publication Date
JPH09225580A JPH09225580A (en) 1997-09-02
JP3548317B2 true JP3548317B2 (en) 2004-07-28

Family

ID=12465111

Family Applications (1)

Application Number Title Priority Date Filing Date
JP03627196A Expired - Fee Related JP3548317B2 (en) 1996-02-23 1996-02-23 Method for manufacturing porous mold

Country Status (1)

Country Link
JP (1) JP3548317B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103492106B (en) * 2011-02-14 2015-08-05 新东工业株式会社 Mould section bar, the mould manufacture method of gas permeability component and mould section bar and mould gas permeability component
CN109266998A (en) * 2018-11-13 2019-01-25 河源佳祺金属塑胶科技有限公司 A kind of metal die high temperature resistant processing method

Also Published As

Publication number Publication date
JPH09225580A (en) 1997-09-02

Similar Documents

Publication Publication Date Title
JP3258201B2 (en) Method for producing casting from molten metal of reactive metal and mold
US20110129380A1 (en) Method and device for producing a workpiece, particularly a shaping tool or a part of a shaping tool
JPH09509101A (en) Permanent mold casting of reactive melt
JP5638062B2 (en) Method for manufacturing an article having a cavity
CN107974682A (en) A kind of method that die casting surface peening and reparation remanufacture
JP3548317B2 (en) Method for manufacturing porous mold
CN110786742B (en) Manufacturing method of cooking utensil and cooking utensil
JPWO2004002658A1 (en) Vacuum die casting method and apparatus for aluminum alloy and aluminum alloy product
JP6094948B2 (en) Manufacturing method of breathable member for mold
RU2325257C2 (en) Method of metallic product manufacture, metallic product, method of connection of metallic parts, and design with connection
US3905415A (en) Method of casting parts of high melting point metal in molds
RU2319580C2 (en) Method for producing thin-wall articles or articles with inner cavity of composite material on base of carbide
JPH01237065A (en) Low pressure casting method and casting die
JPH02270944A (en) Roll stock having wear resistance and resistance to surface roughness and its production
RU2725531C1 (en) Method of making composite materials
US5524705A (en) Method for casting oxidization-active metal under oxygen-free conditions
GB2393678A (en) Method for envelopment casting
JP2003033859A (en) Manufacturing method for cylinder block
JP2004237301A (en) Member made of steel material with layer and method for manufacturing member
US2775811A (en) Methods for forming contact surfaces
JP3171825B2 (en) Manufacturing method of air-permeable mold
KR20190134047A (en) Method for producing cobalt-chromium-molybdenum artificial joint using vacuum precision casting and HIP process
RU2740446C1 (en) Method of manufacturing composite materials
US20230382016A1 (en) Injection mold insert and manufacturing method for injection mold insert
JPS6313781B2 (en)

Legal Events

Date Code Title Description
TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20040413

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20040416

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080423

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090423

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090423

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100423

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110423

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110423

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130423

Year of fee payment: 9

LAPS Cancellation because of no payment of annual fees