JPH09225580A - Manufacture of porous metallic mold - Google Patents

Manufacture of porous metallic mold

Info

Publication number
JPH09225580A
JPH09225580A JP3627196A JP3627196A JPH09225580A JP H09225580 A JPH09225580 A JP H09225580A JP 3627196 A JP3627196 A JP 3627196A JP 3627196 A JP3627196 A JP 3627196A JP H09225580 A JPH09225580 A JP H09225580A
Authority
JP
Japan
Prior art keywords
sintered body
electric discharge
treatment
mold
discharge machining
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP3627196A
Other languages
Japanese (ja)
Other versions
JP3548317B2 (en
Inventor
Yasushi Iseda
泰 伊勢田
Tadashi Okada
正 岡田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Honda Motor Co Ltd
Original Assignee
Honda Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Honda Motor Co Ltd filed Critical Honda Motor Co Ltd
Priority to JP03627196A priority Critical patent/JP3548317B2/en
Publication of JPH09225580A publication Critical patent/JPH09225580A/en
Application granted granted Critical
Publication of JP3548317B2 publication Critical patent/JP3548317B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Solid-Phase Diffusion Into Metallic Material Surfaces (AREA)
  • Electrical Discharge Machining, Electrochemical Machining, And Combined Machining (AREA)
  • Molds, Cores, And Manufacturing Methods Thereof (AREA)
  • Powder Metallurgy (AREA)

Abstract

PROBLEM TO BE SOLVED: To secure desired gas permeability and toughness and to simply and efficiently execute a surface treatment. SOLUTION: A sintered body having continuous pores is formed by using powder consisting essentially of ferrous material (step S1). After executing a specified processing (step S2), an electric discharge machining is executed (step S3). Further, after washing and drying (step S4), an iron-nitriding treatment (step S5) is conducted and further assembling-adjusting work is executed (step S6).

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、連続空孔を有する
焼結体に表面処理を施す多孔質金型の製造方法に関す
る。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for producing a porous mold for surface-treating a sintered body having continuous pores.

【0002】[0002]

【従来の技術】近年、鋳造用金型として、ガス抜き性や
保温性に優れるという利点から、多孔質金型が使用され
つつある。この種の多孔質金型を製造する際には、先
ず、連続空孔を有する焼結体を成形した後、この焼結体
に切削または研削加工を施して所定形状のキャビテイ面
成形部位を設ける。さらに、鋳造される溶融金属、例え
ば、アルミニウムと金型材とが冶金的に反応し、焼付け
や溶損等が生じて金型の耐久性が低下することを阻止す
るため、キャビテイ面成形部位に、塩浴窒化法、ガス窒
化法または流動層窒化法等の窒化処理や、PVDまたは
CVD等の蒸着処理等の表面処理が施されている。
2. Description of the Related Art In recent years, a porous mold has been used as a casting mold because it has excellent gas releasing property and heat retaining property. When manufacturing this type of porous mold, first, a sintered body having continuous pores is formed, and then the sintered body is cut or ground to provide a cavity surface forming portion having a predetermined shape. . Further, the molten metal to be cast, for example, metallurgically reacts with aluminum and the mold material, in order to prevent the durability of the mold from decreasing due to baking and melting loss, in the cavity surface molding site, Surface treatment such as nitriding treatment such as salt bath nitriding method, gas nitriding method or fluidized bed nitriding method and vapor deposition treatment such as PVD or CVD is performed.

【0003】[0003]

【発明が解決しようとする課題】しかしながら、上記の
ように、焼結体の形状加工に砥石等による研削加工や切
削加工が施されると、この焼結体の表面にばり等が発生
する。このため、焼結体の表面側の空孔が塞がってしま
い、通気性が低下するという問題が指摘されている。
However, as described above, when the shape of the sintered body is ground or cut with a grindstone or the like, burrs or the like are generated on the surface of the sintered body. For this reason, it has been pointed out that the pores on the surface side of the sintered body are closed and the air permeability is lowered.

【0004】さらに、多孔質金型の表面処理として、塩
浴窒化法を用いると、焼結体内の連続空孔を通じて処理
塩がこの焼結体の内部まで浸透し、前記焼結体内部まで
窒化されて多孔質金型全体の靭性が低下してしまう。し
かも、焼結体内部に侵入した処理塩を除去する作業が相
当に煩雑なものになるという問題がある。また、ガス窒
化法を用いると、処理ガスが焼結体の内部まで侵入して
しまい、この焼結体全体が窒化され、多孔質金型全体の
靭性が低下するおそれがある。
Further, when the salt bath nitriding method is used as the surface treatment of the porous mold, the treated salt permeates into the inside of the sintered body through the continuous pores in the sintered body and nitrides the inside of the sintered body. As a result, the toughness of the entire porous mold is reduced. Moreover, there is a problem that the work of removing the treated salt that has penetrated into the inside of the sintered body becomes considerably complicated. Further, when the gas nitriding method is used, the processing gas may enter the inside of the sintered body, and the entire sintered body may be nitrided, so that the toughness of the entire porous mold may be reduced.

【0005】さらにまた、流動層窒化法を用いると、加
熱媒体の砂礫が焼結体表面の空孔に侵入してしまい、そ
の除去作業に多数の工程を要するという不具合がある。
Furthermore, when the fluidized bed nitriding method is used, there is a problem that the gravel of the heating medium enters the pores on the surface of the sintered body, and a large number of steps are required for the removal work.

【0006】一方、表面処理として、PVDやCVD等
の蒸着法を用いると、処理時に高真空度(10-4〜10
-2torr)を要するため、焼結体の洗浄および乾燥に
相当に長時間を要してしまう。焼結体の加工時に、この
焼結体内部に侵入した切削液や研削液を確実に除去して
いないと、蒸着処理装置の内部が汚染されるとともに、
所望の真空度を得ることができないからである。
On the other hand, if a vapor deposition method such as PVD or CVD is used as the surface treatment, a high degree of vacuum (10 −4 to 10 −10) is applied during the treatment.
Since it requires -2 torr), it takes a considerably long time to clean and dry the sintered body. If the cutting fluid or grinding fluid that has entered the inside of the sintered body is not reliably removed during processing of the sintered body, the inside of the vapor deposition processing device will be contaminated and
This is because the desired degree of vacuum cannot be obtained.

【0007】本発明は、この種の問題を解決するもので
あり、所望の通気性および靭性を確保するとともに、簡
単かつ効率的に表面処理を行うことが可能な多孔質金属
の製造方法を提供することを目的とする。
The present invention solves this kind of problem, and provides a method for producing a porous metal which can secure desired air permeability and toughness and can perform surface treatment easily and efficiently. The purpose is to do.

【0008】[0008]

【課題を解決するための手段】前記の課題を解決するた
めに、本発明は、連続空孔を有する焼結体に放電加工を
施して所定形状に成形するため、ばり等が発生すること
がなく、前記焼結体の表面に設けられている空孔が閉塞
されることを阻止できる。さらに、放電加工後のキャビ
テイ面成形部位にイオン窒化処理が施される。このイオ
ン窒化処理は、例えば、グロー放電によりなされ、キャ
ビテイ面成形部位の表面にのみ窒化が行われる。これに
より、多孔質金型全体の靭性を有効に維持することがで
きるとともに、表面処理が迅速かつ簡単に遂行される。
In order to solve the above problems, according to the present invention, a sintered body having continuous pores is subjected to electric discharge machining to be molded into a predetermined shape, so that burrs or the like may occur. It is possible to prevent the pores provided on the surface of the sintered body from being blocked. Further, the nitriding treatment is applied to the cavity surface forming portion after the electric discharge machining. This ion nitriding treatment is performed by glow discharge, for example, and nitriding is performed only on the surface of the cavity surface forming portion. As a result, the toughness of the entire porous mold can be effectively maintained, and the surface treatment can be performed quickly and easily.

【0009】[0009]

【発明の実施の形態】図1は、本実施形態に係る製造方
法により製造された多孔質金型である下型10と上型1
2とを組み込む低圧鋳造金型14の縦断説明図である。
下型10は、下型ベース16に保持されており、そのキ
ャビテイ面18には湯口20が連通している。上型12
は、上型ベース22に支持されるとともに、そのキャビ
テイ面24が下型10のキャビテイ面18に対向して設
けられている。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS FIG. 1 shows a lower mold 10 and an upper mold 1 which are porous molds manufactured by a manufacturing method according to this embodiment.
It is a longitudinal section explanatory view of the low pressure casting metallic mold 14 which incorporates 2 and.
The lower die 10 is held by a lower die base 16, and a cavity surface 18 thereof communicates with a sprue 20. Upper mold 12
Is supported by the upper die base 22, and its cavity surface 24 is provided so as to face the cavity surface 18 of the lower die 10.

【0010】キャビテイ面18、24間にキャビテイ2
6が形成され、このキャビテイ26には、上型ベース2
2に摺動自在に設けられている押出ピン28が臨入自在
である。下型10および上型12には、それぞれ所望の
位置に冷却経路30が設けられている。
A cavity 2 is provided between the cavity surfaces 18 and 24.
6 is formed, and in this cavity 26, the upper mold base 2
A push-out pin 28 slidably provided in 2 is freely enterable. The lower mold 10 and the upper mold 12 are each provided with a cooling path 30 at a desired position.

【0011】図2には、放電加工装置40の概略構成図
が示されている。放電加工装置40は、導電性を有する
焼結体42を浸漬する絶縁性放電加工液44が貯留され
た槽体46と、NC装置48を介して所定方向に移動自
在な放電電極50とを備える。放電電極50と焼結体4
2とは、パルス電源52に接続されるとともに、NC装
置48は、NC制御部54に接続されている。
FIG. 2 shows a schematic configuration diagram of the electric discharge machine 40. The electric discharge machine 40 includes a tank body 46 in which an insulating electric discharge machine liquid 44 in which a conductive sintered body 42 is dipped is stored, and a discharge electrode 50 movable in a predetermined direction via an NC device 48. . Discharge electrode 50 and sintered body 4
2 is connected to the pulse power supply 52, and the NC device 48 is connected to the NC control unit 54.

【0012】図3には、放電加工後の焼結体42a、4
2bのキャビテイ面成形部位56a、56bに、それぞ
れ下型10、上型12のキャビテイ面18、24に対応
してイオン窒化処理を行うためのイオン窒化装置60が
示されている。
FIG. 3 shows sintered bodies 42a, 4 after electrical discharge machining.
An ion nitriding apparatus 60 for performing an ion nitriding treatment on the cavity surface forming portions 56a and 56b of 2b corresponding to the cavity surfaces 18 and 24 of the lower mold 10 and the upper mold 12, respectively is shown.

【0013】イオン窒化装置60は、焼結体42a、4
2bを載置するための受台62が配置された真空容器6
4を備える。この真空容器64の室66には、反応ガス
流量調整弁68に接続された供給管70が連通するとと
もに、圧力調整弁72および真空排気装置74に接続さ
れた排気管76が連通する。真空容器64には、プラズ
マ電源78が接続されている。
The ion nitriding apparatus 60 comprises sintered bodies 42a, 4
Vacuum container 6 in which pedestal 62 for placing 2b is arranged
4 is provided. A supply pipe 70 connected to a reaction gas flow rate adjusting valve 68 is connected to the chamber 66 of the vacuum container 64, and an exhaust pipe 76 connected to a pressure adjusting valve 72 and a vacuum exhaust device 74 is connected to the chamber 66. A plasma power supply 78 is connected to the vacuum container 64.

【0014】次に、本実施形態に係る製造方法につい
て、図4に示すフローチャートを参照しながら、以下に
説明する。
Next, the manufacturing method according to this embodiment will be described below with reference to the flowchart shown in FIG.

【0015】先ず、鉄系材料を主成分とする粉末を用
い、圧粉プレス成形により成形した後、真空炉で焼結し
て連続空孔を有する焼結体42が成形される(ステップ
S1)。次に、ステップS2に進んで、焼結体42に必
要部分に機械加工を施し、例えば、冷却経路30に対応
する加工を行った後、放電加工装置40によりキャビテ
イ部の放電加工が行われる(ステップS3)。
First, a powder containing an iron-based material as a main component is used, the powder is compacted by compaction press molding, and then sintered in a vacuum furnace to compact a sintered body 42 having continuous pores (step S1). . Next, the process proceeds to step S2, where necessary parts of the sintered body 42 are machined, for example, the machining corresponding to the cooling path 30 is performed, and then the electrical discharge machining of the cavity portion is performed by the electrical discharge machining device 40 ( Step S3).

【0016】放電加工装置40では、図2に示すよう
に、焼結体42が放電加工液44中に浸漬された状態
で、パルス電源52から放電電極50と前記焼結体42
とに通電するとともに、NC制御部54を介してNC装
置48が所定の方向に移動される。これにより、焼結体
42は、そのキャビテイ部側に放電加工が施されて所定
形状に成形される。
In the electric discharge machine 40, as shown in FIG. 2, in a state where the sintered body 42 is immersed in the electric discharge machining liquid 44, the electric discharge electrode 50 and the sintered body 42 are supplied from the pulse power source 52.
And the NC device 48 is moved in a predetermined direction via the NC control unit 54. As a result, the sintered body 42 is formed into a predetermined shape by electrical discharge machining on the cavity portion side.

【0017】このように、焼結体42のキャビテイ部側
には、放電加工装置40を介して放電加工が施されるた
め、この焼結体42の表面に設けられている空孔を閉塞
することがない。従って、研削加工や切削加工等の従来
の処理のように、焼結体42の表面にばり等が生じてこ
の表面側の空孔が塞がれることにより通気性が低下する
という不具合がなく、電解研摩やエッチング等のような
開孔処理が不要になる。
As described above, since the electric discharge machining is performed on the cavity portion side of the sintered body 42 through the electric discharge machine 40, the holes provided on the surface of the sintered body 42 are closed. Never. Therefore, unlike the conventional processing such as grinding and cutting, there is no problem that the surface of the sintered body 42 is burred and the pores on the surface side are closed to lower the air permeability, There is no need for opening treatment such as electrolytic polishing and etching.

【0018】これにより、所望の通気性を維持して効率
的に焼結体42を加工することができるという効果が得
られる。しかも、焼結体42の表面には、放電加工によ
る変質層が存在しており、この変質層が実質的に高硬度
となって、耐摩耗性を向上させるという機能を有する。
As a result, the effect that the desired air permeability can be maintained and the sintered body 42 can be processed efficiently can be obtained. Moreover, an altered layer formed by electric discharge machining exists on the surface of the sintered body 42, and this altered layer has a substantially high hardness, and has a function of improving wear resistance.

【0019】放電加工後の焼結体42a、42bには、
洗浄および乾燥処理が施された後(ステップS4)、イ
オン窒化装置60によるイオン窒化処理が行われる(ス
テップS5)。
After the electric discharge machining, the sintered bodies 42a and 42b are
After the cleaning and drying processes are performed (step S4), the ion nitriding device 60 performs the ion nitriding process (step S5).

【0020】イオン窒化装置60では、図3に示すよう
に、受台62上に焼結体42a、42bが配置された
後、真空排気装置74および圧力調整弁72を介して真
空容器64の室66内が減圧される。一方、室66内に
は、反応ガス流量調整弁68を介して供給管70から反
応ガスが供給されるとともに、プラズマ電源78が駆動
されてグロー放電が行われる。なお、雰囲気温度は、5
00℃〜600℃の範囲内に設定されている。これによ
り、受台62上の焼結体42a、42bの表面部(キャ
ビテイ面成形部位56a、56b)には、イオン窒化処
理が施されることになる。
In the ion nitriding apparatus 60, as shown in FIG. 3, after the sintered bodies 42a and 42b are arranged on the pedestal 62, the chamber of the vacuum container 64 is evacuated via the vacuum exhaust device 74 and the pressure adjusting valve 72. The pressure inside 66 is reduced. On the other hand, the reaction gas is supplied from the supply pipe 70 into the chamber 66 through the reaction gas flow rate adjusting valve 68, and the plasma power supply 78 is driven to perform glow discharge. The ambient temperature is 5
It is set within the range of 00 ° C to 600 ° C. As a result, the surface portions (cavity surface forming portions 56a, 56b) of the sintered bodies 42a, 42b on the pedestal 62 are subjected to the ion nitriding treatment.

【0021】このように、本実施形態では、焼結体42
a、42bの表面処理として、グロー放電を利用したイ
オン窒化処理が施されるため、前記焼結体42a、42
bの表面部にのみ窒化が行われ、該焼結体42a、42
bの内部まで窒化されることがない。
As described above, in this embodiment, the sintered body 42 is used.
Since the surface treatment of a and 42b is performed by ion nitriding treatment using glow discharge, the sintered bodies 42a and 42b
Nitriding is performed only on the surface portion of b, and the sintered bodies 42a, 42
The inside of b is not nitrided.

【0022】従って、塩浴窒化法やガス窒化法等の従来
の窒化処理のように、被処理材の内部まで窒化されて該
被処理材全体の靭性が低下することがなく、焼結体42
a、42b全体の靭性を有効に維持することができる。
さらに、塩浴窒化法のように、被処理材内部に処理塩が
含浸することがなく、窒化処理後に前記処理塩の除去等
の後処理が不要になり、窒化処理作業が効率的かつ容易
に遂行されるという効果がある。また、処理雰囲気も減
圧ガス雰囲気であり、焼結体42a、42bの清浄度も
CVDやPVD等の蒸着法ほど要求されず、窒化処理が
簡素化されるという利点がある。
Therefore, unlike the conventional nitriding treatment such as the salt bath nitriding method or the gas nitriding method, the inside of the material to be treated is not nitrided and the toughness of the entire material to be treated is not lowered, and the sintered body 42 is not deteriorated.
The toughness of the entire a and 42b can be effectively maintained.
Further, unlike the salt bath nitriding method, the treatment salt is not impregnated into the material to be treated, and post-treatment such as removal of the treatment salt is not required after the nitriding treatment, which makes the nitriding treatment work efficient and easy It has the effect of being carried out. Further, the processing atmosphere is also a reduced pressure gas atmosphere, the cleanliness of the sintered bodies 42a and 42b is not required as much as the vapor deposition methods such as CVD and PVD, and there is an advantage that the nitriding treatment is simplified.

【0023】イオン窒化処理によりキャビテイ面成形部
位56a、56bがイオン窒化された焼結体42a、4
2bである下型10、上型12は、図1に示すように、
低圧鋳造金型14に組み込まれて調整が行われる(ステ
ップS6)。次いで、湯口20から、例えば、溶融アル
ミニウムがキャビテイ26に注湯され、このキャビテイ
26でアルミニウム製成形品が成形されることになる。
Sintered bodies 42a, 4a in which the cavity surface forming portions 56a, 56b are ion-nitrided by the ion nitriding treatment.
The lower mold 10 and the upper mold 12 which are 2b are, as shown in FIG.
It is incorporated into the low-pressure casting mold 14 and adjustment is performed (step S6). Next, for example, molten aluminum is poured into the cavities 26 from the sprue 20, and the cavities 26 form an aluminum molded product.

【0024】[0024]

【実施例】実施例1 試料として、SUS430系粉末を圧粉成形プレスによ
り成形した後、真空炉で焼結して空孔率が25vol%
の連続空孔を有する焼結体を得た。次に、この焼結体の
表面に放電加工を施した後、580℃で10時間、ガス
圧力が2torr(N2 50:H2 50)の条件下でイ
オン窒化処理を施した。
Example 1 As a sample, SUS430 series powder was molded by a powder compacting press and then sintered in a vacuum furnace to have a porosity of 25 vol%.
A sintered body having continuous voids was obtained. Next, the surface of this sintered body was subjected to electric discharge machining, and then subjected to ion nitriding treatment at 580 ° C. for 10 hours under a gas pressure of 2 torr (N 2 50: H 2 50).

【0025】このようにして得られた試料の寸法は、5
0mm×50mm×10mmであり、窒化層の厚さが6
0μmで、その硬さがHmV1200であった。そし
て、前記試料を710℃のアルミニウム(AC2B)溶
湯中に4時間浸漬した。
The size of the sample thus obtained is 5
0 mm x 50 mm x 10 mm, and the nitride layer has a thickness of 6
The hardness was 0 μm and the hardness was HmV1200. Then, the sample was immersed in a molten aluminum (AC2B) at 710 ° C. for 4 hours.

【0026】比較例として、上記と同一条件で成形およ
び焼結した試料を用い、この試料の表面に機械加工を施
した状態で、すなわち、表面処理を行うことなくアルミ
ニウム溶湯中に浸漬した。この浸漬後、機械加工かつ表
面処理なしの試料は、図5Aに示すように、多孔質層9
0の表面に製品であるアルミニウム合金92との溶着層
94が存在するとともに、この多孔質層90に溶損が惹
起されていた。
As a comparative example, a sample molded and sintered under the same conditions as above was used, and the surface of this sample was machined, that is, immersed in a molten aluminum without surface treatment. After this dipping, the sample without machining and surface treatment had a porous layer 9 as shown in FIG. 5A.
There was a welded layer 94 with the aluminum alloy 92, which was a product, on the surface of No. 0, and the porous layer 90 was suffered from melting loss.

【0027】これに対し、放電加工およびイオン窒化処
理を施した試料では、図5Bに示すように、多孔質層1
00の表層部にイオン窒化層102が設けられており、
このイオン窒化層102の表面とアルミニウム製品10
4との間には、空間SPが存在した。すなわち、実施例
1では、多孔質層100に溶損や溶着が発生しなかっ
た。実施例2 試料として、SUS434系多孔質焼結体(新東工業社
製 ポーセラックス2PM35)を用い、そのキャビテ
イ部表面を放電加工した後、530℃で6時間、ガス圧
力が2torr(N2 50:H2 50)の条件下でイオ
ン窒化処理を施した。この試料を鋳造型の湯口近傍に入
れ子として挿入した。比較例として、上記の焼結体の表
面を放電加工しただけの試料を用意し、同様に、鋳造型
の湯口近傍に入れ子として挿入した。この鋳造型では、
700℃のAC2B材を注湯してアルミニウム製品を鋳
造した。
On the other hand, in the sample subjected to the electric discharge machining and the ion nitriding treatment, as shown in FIG. 5B, the porous layer 1
An ion nitride layer 102 is provided on the surface layer of 00,
The surface of the ion nitride layer 102 and the aluminum product 10
Between 4 and 4, there was a space SP. That is, in Example 1, the porous layer 100 was not melted or welded. Example 2 As a sample, a SUS434-based porous sintered body (Porcellax 2PM35 manufactured by Shinto Kogyo Co., Ltd.) was used, and the surface of the cavity portion thereof was subjected to electric discharge machining. After that, the gas pressure was 2 torr (N 2 50 : H 2 50). This sample was inserted as a nest near the gate of the casting mold. As a comparative example, a sample in which the surface of the above-mentioned sintered body was simply electric discharge machined was prepared and similarly inserted as a nest near the gate of the casting die. In this casting mold,
Aluminum products were cast by pouring AC2B material at 700 ° C.

【0028】その結果、図6Aに示すように、表面に放
電加工を施しただけの入れ子110では、800ショッ
トで溶損部位112および溶着が発生したが、放電加工
面にイオン窒化処理を施した入れ子120では、500
0ショットの鋳造後にも溶損および溶着の発生がなかっ
た。
As a result, as shown in FIG. 6A, in the insert 110 having only the surface subjected to the electric discharge machining, the melt-damaged portion 112 and the welding were generated in 800 shots, but the electric discharge machined surface was subjected to the ion nitriding treatment. 500 for nested 120
No melting loss or welding occurred even after 0 shot casting.

【0029】[0029]

【発明の効果】本発明に係る多孔質金型の製造方法で
は、連続空孔を有する焼結体に放電加工を施して所定形
状に成形するため、研削加工や切削加工におけるばり等
の発生がなく、前記焼結体の表面に設けられている空孔
を閉塞することがない。これにより、通気性の低下を阻
止するとともに、開孔処理等の後処理が不要になる。
In the method for manufacturing a porous mold according to the present invention, since a sintered body having continuous pores is subjected to electric discharge machining to be formed into a predetermined shape, burrs or the like are not generated in grinding or cutting. In addition, the holes provided on the surface of the sintered body are not blocked. This prevents a decrease in air permeability and eliminates the need for post-processing such as opening processing.

【0030】さらに、放電加工後の成形部位にイオン窒
化処理が施されるため、この成形部位表面にのみ窒化が
行われ、その内部が窒化されることを阻止することがで
きる。従って、多孔質金型全体の靭性を有効に維持する
とともに、窒化処理後の後処理が不要になり、前記多孔
質金型を効率的かつ高精度に製造することが可能にな
る。
Further, since the formed portion after the electric discharge machining is subjected to the ion nitriding treatment, it is possible to prevent only the surface of the formed portion from being nitrided and nitriding the inside thereof. Therefore, it is possible to effectively maintain the toughness of the entire porous mold, and to eliminate the need for post-treatment after the nitriding treatment, so that the porous mold can be manufactured efficiently and highly accurately.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の実施形態に係る製造方法により製造さ
れる多孔質金型を組み込む低圧鋳造金型の縦断説明図で
ある。
FIG. 1 is a vertical cross-sectional explanatory view of a low-pressure casting mold incorporating a porous mold manufactured by a manufacturing method according to an embodiment of the present invention.

【図2】前記製造方法に使用される放電加工装置の概略
説明図である。
FIG. 2 is a schematic explanatory view of an electric discharge machine used in the manufacturing method.

【図3】前記製造方法に使用されるイオン窒化装置の概
略説明図である。
FIG. 3 is a schematic explanatory view of an ion nitriding device used in the manufacturing method.

【図4】前記製造方法を説明するフローチャートであ
る。
FIG. 4 is a flowchart illustrating the manufacturing method.

【図5】図5Aは、機械加工を行いかつ表面処理がなさ
れていない試料をアルミニウム溶湯中に浸漬した後の溶
着状態を示す拡大図であり、図5Bは、放電加工および
イオン窒化処理を施した試料をアルミニウム溶湯中に浸
漬した後の拡大図である。
FIG. 5A is an enlarged view showing a welded state after immersing a sample which has been machined and not surface-treated in an aluminum melt, and FIG. 5B is an electric discharge machine and an ion nitriding treatment. It is an enlarged view after immersing the prepared sample in molten aluminum.

【図6】図6Aは、放電加工のみを施した入れ子の鋳造
後における一部拡大図であり、図6Bは、放電加工面に
イオン窒化処理を施した入れ子の鋳造後における一部拡
大図である。
FIG. 6A is a partially enlarged view after casting of the insert that has only been subjected to electric discharge machining, and FIG. 6B is a partially enlarged view after casting of the insert that has been subjected to ion nitriding treatment on the electric discharge machined surface. is there.

【符号の説明】[Explanation of symbols]

10…下型 12…上型 14…低圧鋳造金型 18、24…キ
ャビテイ面 26…キャビテイ 40…放電加工
装置 42、42a、42b…焼結体 44…放電加工
液 50…放電電極 60…イオン窒
化装置 64…真空容器 68…反応ガス
流量調整弁 78…プラズマ電源
10 ... Lower mold 12 ... Upper mold 14 ... Low-pressure casting mold 18, 24 ... Cavity surface 26 ... Cavity 40 ... Electric discharge machine 42, 42a, 42b ... Sintered body 44 ... Electric discharge liquid 50 ... Discharge electrode 60 ... Ion nitriding Apparatus 64 ... Vacuum container 68 ... Reaction gas flow rate adjusting valve 78 ... Plasma power supply

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.6 識別記号 庁内整理番号 FI 技術表示箇所 C23C 8/38 B22F 5/00 F ─────────────────────────────────────────────────── ─── Continuation of the front page (51) Int.Cl. 6 Identification code Office reference number FI technical display location C23C 8/38 B22F 5/00 F

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】鉄系材料を主成分とする粉末を用いて連続
空孔を有する焼結体を成形する工程と、 前記焼結体に放電加工を施して所定形状に成形する工程
と、 前記放電加工後のキャビテイ面成形部位にイオン窒化処
理を施す工程と、 を有することを特徴とする多孔質金型の製造方法。
1. A step of forming a sintered body having continuous pores using a powder containing an iron-based material as a main component, a step of subjecting the sintered body to electric discharge machining, and forming the sintered body into a predetermined shape, And a step of subjecting the cavity surface forming portion after electric discharge machining to an ion nitriding treatment, the method for producing a porous mold.
【請求項2】請求項1記載の製造方法において、前記鉄
系材料は、フェライト系またはマルテンサイト系である
ことを特徴とする多孔質金型の製造方法。
2. The method for manufacturing a porous mold according to claim 1, wherein the iron-based material is a ferrite-based material or a martensite-based material.
【請求項3】請求項1記載の製造方法において、前記イ
オン窒化処理は、グロー放電によりなされることを特徴
とする多孔質金型の製造方法。
3. The method for manufacturing a porous mold according to claim 1, wherein the ion nitriding treatment is performed by glow discharge.
JP03627196A 1996-02-23 1996-02-23 Method for manufacturing porous mold Expired - Fee Related JP3548317B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP03627196A JP3548317B2 (en) 1996-02-23 1996-02-23 Method for manufacturing porous mold

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP03627196A JP3548317B2 (en) 1996-02-23 1996-02-23 Method for manufacturing porous mold

Publications (2)

Publication Number Publication Date
JPH09225580A true JPH09225580A (en) 1997-09-02
JP3548317B2 JP3548317B2 (en) 2004-07-28

Family

ID=12465111

Family Applications (1)

Application Number Title Priority Date Filing Date
JP03627196A Expired - Fee Related JP3548317B2 (en) 1996-02-23 1996-02-23 Method for manufacturing porous mold

Country Status (1)

Country Link
JP (1) JP3548317B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103492106A (en) * 2011-02-14 2014-01-01 新东工业株式会社 Mold and die metallic material, air-permeable member for mold and die use, and method for manufacturing the same
CN109266998A (en) * 2018-11-13 2019-01-25 河源佳祺金属塑胶科技有限公司 A kind of metal die high temperature resistant processing method

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103492106A (en) * 2011-02-14 2014-01-01 新东工业株式会社 Mold and die metallic material, air-permeable member for mold and die use, and method for manufacturing the same
US9545736B2 (en) 2011-02-14 2017-01-17 Sintokogio, Ltd. Mold and die metallic material, air-permeable member for mold and die use, and method for manufacturing the same
CN109266998A (en) * 2018-11-13 2019-01-25 河源佳祺金属塑胶科技有限公司 A kind of metal die high temperature resistant processing method

Also Published As

Publication number Publication date
JP3548317B2 (en) 2004-07-28

Similar Documents

Publication Publication Date Title
US5950706A (en) Process for manufacture of cast parts made of reactive metals and reusable casting forms for performing the process
US4023966A (en) Method of hot isostatic compaction
CA2859656C (en) As-sintered 17-4ph steel part
CN110405214B (en) Preparation method of stainless steel material
US20110129380A1 (en) Method and device for producing a workpiece, particularly a shaping tool or a part of a shaping tool
CN106513685A (en) Powder near-molten state hot isostatic pressing net forming method
JPH09509101A (en) Permanent mold casting of reactive melt
CN107974682B (en) Method for surface strengthening, repairing and remanufacturing of die-casting die
CN109663911A (en) A kind of hard alloy 3-edge surgical knife tool thermal sintering integrated mould and preparation method
US5956561A (en) Net shaped dies and molds and method for producing the same
WO2004039517A1 (en) Mold for casting and method of surface treatment thereof
JP6094948B2 (en) Manufacturing method of breathable member for mold
CN110786742B (en) Manufacturing method of cooking utensil and cooking utensil
RU2325257C2 (en) Method of metallic product manufacture, metallic product, method of connection of metallic parts, and design with connection
JPH09225580A (en) Manufacture of porous metallic mold
US1575122A (en) Mold, die, and the like and method of making the same
RU2319580C2 (en) Method for producing thin-wall articles or articles with inner cavity of composite material on base of carbide
JPH09194905A (en) Production of cutting tool and so on
CN109093118B (en) Equipment for quickly manufacturing die by injection molding and method for manufacturing die
CN113560573A (en) Surface treatment method for metal powder injection molding pre-sintering blank
JP2003033859A (en) Manufacturing method for cylinder block
KR20190134047A (en) Method for producing cobalt-chromium-molybdenum artificial joint using vacuum precision casting and HIP process
EP3763841A1 (en) Forming element of a mould for thermoforming articles made from foamed thermoplastic polymers and method for the manufacture thereof
KR100340800B1 (en) A Making Method of Sintering Alloy Dipersed TiC within Steel Matrix by Canning-Hot Isotatic Pressing
CN109128159B (en) Method and die for reducing surface roughness of rough material

Legal Events

Date Code Title Description
TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20040413

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20040416

R150 Certificate of patent (=grant) or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080423

Year of fee payment: 4

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 5

Free format text: PAYMENT UNTIL: 20090423

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 5

Free format text: PAYMENT UNTIL: 20090423

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100423

Year of fee payment: 6

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110423

Year of fee payment: 7

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110423

Year of fee payment: 7

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 9

Free format text: PAYMENT UNTIL: 20130423

LAPS Cancellation because of no payment of annual fees