KR20130069545A - A method for surface treatment of a die-casting die - Google Patents

A method for surface treatment of a die-casting die Download PDF

Info

Publication number
KR20130069545A
KR20130069545A KR1020127023330A KR20127023330A KR20130069545A KR 20130069545 A KR20130069545 A KR 20130069545A KR 1020127023330 A KR1020127023330 A KR 1020127023330A KR 20127023330 A KR20127023330 A KR 20127023330A KR 20130069545 A KR20130069545 A KR 20130069545A
Authority
KR
South Korea
Prior art keywords
nitrogen
treatment
mold
compound
die
Prior art date
Application number
KR1020127023330A
Other languages
Korean (ko)
Inventor
야스시 히라오카
유지 코바야시
Original Assignee
신토고교 가부시키가이샤
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 신토고교 가부시키가이샤 filed Critical 신토고교 가부시키가이샤
Publication of KR20130069545A publication Critical patent/KR20130069545A/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C8/00Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals
    • C23C8/80After-treatment
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C8/00Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals
    • C23C8/06Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using gases
    • C23C8/08Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using gases only one element being applied
    • C23C8/24Nitriding
    • C23C8/26Nitriding of ferrous surfaces
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C8/00Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals
    • C23C8/06Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using gases
    • C23C8/08Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using gases only one element being applied
    • C23C8/24Nitriding
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C8/00Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals
    • C23C8/06Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using gases
    • C23C8/28Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using gases more than one element being applied in one step
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C8/00Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals
    • C23C8/06Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using gases
    • C23C8/28Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using gases more than one element being applied in one step
    • C23C8/30Carbo-nitriding
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C8/00Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals
    • C23C8/06Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using gases
    • C23C8/28Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using gases more than one element being applied in one step
    • C23C8/30Carbo-nitriding
    • C23C8/32Carbo-nitriding of ferrous surfaces
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C8/00Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals
    • C23C8/06Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using gases
    • C23C8/34Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using gases more than one element being applied in more than one step
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C8/00Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals
    • C23C8/06Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using gases
    • C23C8/36Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using gases using ionised gases, e.g. ionitriding
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C8/00Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals
    • C23C8/06Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using gases
    • C23C8/36Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using gases using ionised gases, e.g. ionitriding
    • C23C8/38Treatment of ferrous surfaces

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Solid-Phase Diffusion Into Metallic Material Surfaces (AREA)
  • Molds, Cores, And Manufacturing Methods Thereof (AREA)

Abstract

본 발명은, 히트 체크나 마모의 원인이 되는 질소 화합물층을 금형에 실질적으로 제공하지 않는 한편, 금형 내부에 질소를 다량으로 도입하여, 결과적으로, 내히트 체크성 및 내마모성이 우수한 다이캐스트 금형을 제조할 수 있는 표면 처리 방법을 제공하는 것이다. 상기 방법은, 가열로 내에 적어도 암모니아 가스를 포함하는 가스를 도입하여 다이캐스트 금형의 의장면에 적어도 질소 화합물로 이루어진 화합물층을 포함하는 질화층을 형성하는 질화 처리 단계와, 가열로 내로부터 암모니아 가스를 배출하며 가열로 내에 분위기 가스를 도입하여 가열 처리를 행함으로써 질소 화합물을 분해시키는 화합물 분해 단계와, 금형의 의장면에 쇼트 피닝 처리를 행하는 쇼트 피닝 처리 단계를 포함한다. 질화 처리 단계에서 형성된 질소층에 포함된 화합물층의 두께는 2㎛ 내지 7㎛의 범위 내이다.The present invention does not substantially provide the mold with a nitrogen compound layer that causes heat check or abrasion, while introducing a large amount of nitrogen into the mold, resulting in a die cast mold having excellent heat check resistance and wear resistance. It is to provide a surface treatment method which can be performed. The method includes a nitriding treatment step of introducing a gas containing at least ammonia gas into a heating furnace to form a nitride layer including a compound layer composed of at least nitrogen compounds on a design surface of a die casting mold, and ammonia gas from the heating furnace. A compound decomposition step of decomposing the nitrogen compound by discharging the gas by introducing an atmosphere gas into the heating furnace and performing a heat treatment; and a shot peening treatment step of performing a short peening treatment on the surface of the mold. The thickness of the compound layer included in the nitrogen layer formed in the nitriding treatment step is in the range of 2 μm to 7 μm.

Description

다이캐스트 금형의 표면 처리 방법{A METHOD FOR SURFACE TREATMENT OF A DIE-CASTING DIE}Surface treatment method of die cast mold {A METHOD FOR SURFACE TREATMENT OF A DIE-CASTING DIE}

본 발명은, 쇼트 피닝 처리를 이용하여 다이캐스트 금형의 의장면에 압축 잔류 응력을 부여함으로써 제공되는 다이캐스트 금형의 표면 처리 방법에 관한 것이다.TECHNICAL FIELD This invention relates to the surface treatment method of the die-cast die provided by giving compressive residual stress to the design surface of a die-cast die using shot peening.

금속 용탕의 주입, 응고, 및 성형품의 틀 제거를 포함하는 성형 사이클을 반복하는 다이캐스트 조형에서는, 성형 사이클에 의해 부여되는 열 이력에 의해 다이캐스트 금형의 의장면에 미세한 히트 체크가 형성되기 쉽다. 따라서, 기계적 접촉에 의한 마모도 발생하기 쉽다. 이러한 히트 체크는 크랙 또는 크랙들로 성장하여 금형을 손상시키며, 마모는 성형품의 치수 정밀도를 저하시킬 수도 있다. 따라서, 내히트 체크성이나 내마모성을 향상시켜 제품의 수명을 연장하기 위해, 금형의 의장면의 경도를 높이는 표면 질화 처리 및 의장면에 압축 잔류 응력을 부여하는 쇼트 피닝 처리 등의 처리가 행해진다.In diecast molding which repeats the molding cycle including injection of the molten metal, solidification, and mold removal of the molded article, a fine heat check is likely to be formed on the design surface of the diecast mold due to the thermal history imparted by the molding cycle. Therefore, wear due to mechanical contact is also likely to occur. Such heat checks grow into cracks or cracks, which damage the mold, and wear may degrade the dimensional accuracy of the molded article. Therefore, in order to improve heat check resistance and abrasion resistance and prolong the life of the product, treatments such as surface nitriding treatment for increasing the hardness of the design surface of the mold and short peening treatment for imparting compressive residual stress to the design surface are performed.

금형에서의 표면 질화 처리는, 주로 가스 질화 처리에 의해 행해진다. 그 주된 이유는 처리의 용이함 및 처리 비용면에 있다. 가스 질화 처리에 의해, 암모니아 가스가 고온하에서 분해되며, 발생된 질소가 금형의 의장면으로부터 금형 내부로 확산되어, 확산 경화층이 제공된다.Surface nitriding in a metal mold | die is mainly performed by gas nitriding. The main reason is the ease of processing and the cost of processing. By gas nitriding, ammonia gas is decomposed under high temperature, and the generated nitrogen diffuses from the design surface of the mold into the mold, thereby providing a diffusion hardened layer.

금형에서의 쇼트 피닝 처리는, 주로 1㎜ 이하의 세라믹이나 경질 금속으로 이루어진 소형 구(球)를 투사 장치로 가속하여 금형의 의장면에 투사함으로써 행해지고 있다. 금형의 의장면에는, 소형 구의 충돌에 의한 가공 경화 처리에 기초하여 압축 잔류 응력이 부여된다.The shot peening process in a metal mold | die is performed by accelerating the small sphere which consists mainly of ceramic or hard metal of 1 mm or less with a projection apparatus, and projects it on the design surface of a metal mold | die. Compression residual stress is given to the design surface of a metal mold | die based on the work hardening process by the collision of a small sphere.

예를 들면, 특허문헌 1에는, 우선 금형의 의장면에 표면 질화 처리를 행하여 질소 확산 경화층을 형성한 후에, 쇼트 피닝 처리를 행하여, 확산 경화층의 표면에 높은 압축 잔류 응력을 부여하는 것이 개시되어 있다. 표면 질화 처리와 쇼트 피닝 처리를 조합하여 행함으로써 금형의 제품 수명을 상당히 연장할 수도 있다.For example, Patent Document 1 discloses that, first, surface nitriding treatment is performed on a design surface of a mold to form a nitrogen diffusion hardened layer, followed by shot peening to impart high compressive residual stress to the surface of the diffusion hardened layer. It is. By combining the surface nitriding treatment and the shot peening treatment, the product life of the mold can be significantly extended.

질화 처리에 의해, 질소 확산 경화층의 표면에 소성 변형능(plastic deformability)이 부족한 화합물층이 형성되는 것으로 알려져 있다. 이러한 화합물층은 히트 체크에 의한 크랙 또는 크랙들로의 성장이나, 박리에 의한 마모의 원인이 되기 때문에, 화합물층의 형성을 방지하거나, 혹은 가능한 한 얇게 형성하는 질화 처리 방법이 제안되어 있다.It is known that the nitriding treatment forms a compound layer lacking plastic deformability on the surface of the nitrogen diffusion hardened layer. Since such a compound layer causes crack or crack growth by heat check, and wear by peeling, the nitriding treatment method which prevents formation of a compound layer or forms it as thin as possible is proposed.

예를 들면, 특허문헌 2에서는, 우선 450~530℃의 비교적 낮은 온도 범위에서 암모니아 가스 질화 처리가 행해지는 2단 처리가 개시되어 있다. 그런 다음, 암모니아의 공급이 저감 또는 정지되는 한편, 550~590℃의 처리 온도 범위에서 질소가 내부 확산된다. 일반적으로, 비교적 낮은 온도 범위하의 암모니아 가스 질화 처리에 의해서는, 화합물층이 얇게 형성된다. 그러나, 질소 확산층의 깊이도 얕아지게 된다. 따라서, 질소 확산층의 질소를 금형에 깊이 확산시켜 두꺼운 질소 확산층을 제공하는 한편, 화합물층을 얇게 유지하고 있다.For example, Patent Literature 2 discloses a two-stage treatment in which ammonia gas nitriding is first performed in a relatively low temperature range of 450 to 530 ° C. Then, while supply of ammonia is reduced or stopped, nitrogen diffuses internally in the process temperature range of 550-590 degreeC. In general, ammonia gas nitriding under a relatively low temperature range forms a thin compound layer. However, the depth of the nitrogen diffusion layer also becomes shallow. Accordingly, nitrogen in the nitrogen diffusion layer is diffused deeply into the mold to provide a thick nitrogen diffusion layer, while keeping the compound layer thin.

마찬가지로, 특허문헌 3에는, 우선 570℃ 미만의 온도의 감압하에서 암모니아 가스 질화 처리가 행해지는 2단 처리가 개시되어 있다. 그런 다음, 암모니아의 공급이 저감 또는 정지되는 한편, 570℃~650℃의 처리 온도 범위에서 질소가 내부 확산된다. 특허문헌 3에는, 질소 화합물층을 얇고 비공성(non-porous) 상태로 할 수 있는 한편, 가열 처리에 의해 질소 화합물층의 깊이를 질소 확산층의 깊이보다 깊게 할 수 있음이 기재되어 있다.Similarly, Patent Document 3 discloses a two-stage treatment in which ammonia gas nitriding treatment is first performed under a reduced pressure at a temperature of less than 570 ° C. Then, while supply of ammonia is reduced or stopped, nitrogen diffuses internally in the process temperature range of 570 degreeC-650 degreeC. Patent document 3 describes that the nitrogen compound layer can be made thin and non-porous, while the depth of the nitrogen compound layer can be made deeper than the depth of the nitrogen diffusion layer by heat treatment.

일본국 공개특허공보 제2004-148362호Japanese Laid-Open Patent Publication No. 2004-148362 일본국 공개특허공보 평10-306364호Japanese Unexamined Patent Publication No. 10-306364 일본국 공개특허공보 평11-100655호Japanese Patent Application Laid-Open No. 11-100655

특허문헌 2 및 3에 개시된 바와 같이, 질소 화합물층을 얇게 형성하기 위한 암모니아 가스 질화 처리에서는, 금형에 공급되는 질소의 절대량이 적기 때문에, 가열 처리에 의해 질소 확산층의 질소를 금형에 더 깊이 확산시키고자 할 때, 질소 화합물층이 충분한 경도를 가질 수 없다.As disclosed in Patent Literatures 2 and 3, in the ammonia gas nitriding process for forming the nitrogen compound layer thinly, since the absolute amount of nitrogen supplied to the mold is small, it is intended to diffuse the nitrogen in the nitrogen diffusion layer deeper into the mold by heat treatment. In this case, the nitrogen compound layer cannot have sufficient hardness.

본 발명은, 이러한 사정을 감안하여 이루어진 것이다. 본 발명의 목적은, 금형에 히트 체크나 마모의 원인이 되는 질소 화합물층을 실질적으로 제공하지 않는 한편, 금형의 내부에 질소를 다량으로 도입할 수 있는 표면 처리 방법을 제공하는 것이다. 결과적으로, 내히트 체크성 및 내마모성이 우수한 다이캐스트 금형을 제조할 수 있다.This invention is made | formed in view of such a situation. It is an object of the present invention to provide a surface treatment method capable of introducing a large amount of nitrogen into a mold while substantially not providing a nitrogen compound layer that causes heat check or wear to the mold. As a result, a die cast mold excellent in heat check resistance and wear resistance can be produced.

본 발명의 발명자들은, 가스 연질화 처리, 가스 침류 질화 처리, 및 플라즈마 질화 처리 등의 각종 질화 처리에 의해 형성되는 질소 화합물로 이루어진 최표층이 가열 처리에 의해 용이하게 분해될 수 있음을 찾아내었다. 금형에 질소 화합물층을 실질적으로 제공하지 않는 금형의 제조 방법에 대해 검토하던 중, 본 발명자들은 상기 분해에 의해 질소가 발생되며, 발생된 질소를 금형의 내부에 확산시킴으로써 금형에 공급되는 질소의 양을 증가시킬 수도 있음을 고안해 내었다.The inventors of the present invention have found that the outermost layer made of nitrogen compounds formed by various nitriding treatments such as gas soft nitriding treatment, gas immersion nitriding treatment, and plasma nitriding treatment can be easily decomposed by heat treatment. While investigating a method for manufacturing a mold that does not substantially provide a nitrogen compound layer to the mold, the inventors of the present invention found that nitrogen is generated by the decomposition, and the amount of nitrogen supplied to the mold is diffused by dispersing the generated nitrogen into the mold. It was designed to increase.

따라서, 쇼트 피닝 처리를 이용하여 다이캐스트 금형의 의장면에 압축 잔류 응력을 부여함으로써 제공되는 본 발명의 다이캐스트 금형의 표면 처리 방법은, 가열로 내에 적어도 암모니아 가스를 포함하는 가스를 도입하여 상기 다이캐스트 금형의 의장면에, 질화 처리, 예를 들어 가스 연질화, 가스 침류 질화, 및 플라즈마 질화에 의해 적어도 질소 화합물로 이루어진 화합물층을 포함하는 질화층을 형성하는 질화 처리 단계와, 상기 가열로 내로부터 암모니아 가스를 배출하며 상기 가열로 내에 분위기 가스를 도입하여 가열 처리를 행함으로써 상기 질소 화합물을 분해시키는 화합물 분해 단계와, 상기 금형의 의장면에 쇼트 피닝 처리를 행하는 쇼트 피닝 처리 단계를 포함한다. 상기 질화 처리 단계에서 형성된 상기 질소층에 포함된 상기 화합물층의 두께는 2㎛ 내지 7㎛의 범위 내이다.Therefore, in the die-casting surface treatment method of the present invention provided by applying a compressive residual stress to the design surface of a die-cast die by using a shot peening treatment, the die is introduced by introducing a gas containing at least ammonia gas into a heating furnace. A nitriding treatment step of forming a nitriding layer on the design surface of the cast die, the nitride layer comprising a compound layer made of at least nitrogen compounds by nitriding treatment, for example, gas soft nitriding, gas immersion nitriding, and plasma nitriding; A compound decomposition step of decomposing the nitrogen compound by discharging the ammonia gas and introducing an atmosphere gas into the heating furnace to perform a heat treatment, and a short peening treatment step of performing a short peening treatment on the surface of the mold. The thickness of the compound layer included in the nitrogen layer formed in the nitriding treatment step is in the range of 2 μm to 7 μm.

본 방법에 의하면, 적어도 암모니아 가스를 포함하는 가스를 가열로 내에 도입함으로써 질화 처리에 의해 형성되는 질소 화합물층의 두께가 소정 두께로 제어되어, 질소 화합물이 화합물 분해 단계에서 분해된다. 결과적으로, 질소 화합물층이 실질적으로 제공되지 않는다. 따라서, 질소가 대신 발생되어 금형에 공급되는 질소의 양이 증가함으로써, 높은 경도를 갖는 질소 확산층을 제공할 수 있다. 그런데, 실질적으로 소실되는 질소 화합물층은 다량의 공극을 포함하는 층으로서 남아 있어, 쇼트 피닝 처리에서의 쇼트의 충돌 에너지를 흡수 및 분산시킨다. 그렇지만, 질화 처리 단계에서 이 질소 화합물층의 두께가 또한 소정 두께로 제어되어, 쇼트 피닝 처리에 의한 압축 잔류 응력이 질소 확산층에 부여될 수 있다. 따라서, 높은 경도와 높은 압축 잔류 응력에 기초하여, 내마모성 및 내히트 체크성이 우수한 다이캐스트 금형을 제조할 수 있는 것이다.According to this method, by introducing a gas containing at least ammonia gas into the heating furnace, the thickness of the nitrogen compound layer formed by nitriding is controlled to a predetermined thickness, so that the nitrogen compound is decomposed in the compound decomposition step. As a result, the nitrogen compound layer is substantially not provided. Therefore, nitrogen is generated instead and the amount of nitrogen supplied to the mold is increased, thereby providing a nitrogen diffusion layer having a high hardness. However, the nitrogen compound layer substantially lost remains as a layer containing a large amount of voids, so as to absorb and disperse the impact energy of the shot in the shot peening treatment. However, in the nitriding treatment step, the thickness of this nitrogen compound layer is also controlled to a predetermined thickness so that the compressive residual stress due to the shot peening treatment can be applied to the nitrogen diffusion layer. Therefore, it is possible to manufacture a die-cast die having excellent wear resistance and heat check resistance based on high hardness and high compressive residual stress.

상기 방법에 있어서, 상기 화합물 분해 단계는, 상기 가열 처리를 상기 질화 처리 단계의 온도보다 낮은 온도로 행하는 것이 바람직하다. 이 경우, 보다 높은 경도와 높은 압축 잔류 응력을 다이캐스트 금형에 부여할 수 있어, 내마모성 및 내히트 체크성이 보다 우수한 다이캐스트 금형을 제조할 수 있는 것이다.In the above method, the compound decomposition step is preferably performed at a temperature lower than the temperature of the nitriding treatment step. In this case, higher hardness and higher compressive residual stress can be applied to the die cast mold, and a die cast mold having better wear resistance and heat check resistance can be produced.

도 1은 본 발명의 다이캐스트 금형의 표면 처리 방법의 실시형태에 이용되는 일 시험편의 사시도이다.
도 2는 도 1에 개시된 시험편의 강종 및 표면 처리 조건을 나타내는 도면이다.
도 3은 본 발명의 다이캐스트 금형의 표면 처리 방법의 실시형태에 이용되는 가열 및 냉각 시험 장치의 일례를 도시하는 도면이다.
도 4는 본 발명의 다이캐스트 금형의 표면 처리 방법에 있어서, 질화 처리 단계 이후의 시험편의 표면 근방의 변화(도 4의 (a)) 및 화합물 분해 단계 이후의 시험편의 표면 근방의 변화(도 4의 (b))를 도시하는 확대 단면도이다.
도 5는 도 4의 (a) 및 (b)의 시험편의 표면 근방의 질소 농도의 변화를 도시하는 확대 단면도이다.
도 6은 본 발명의 다이캐스트 금형의 표면 처리 방법이 적용된 시험편에 대한 화합물층 두께와 히트 체크(HC) 수 사이의 관계를 나타내는 그래프이다.
도 7은 본 발명의 다이캐스트 금형의 표면 처리 방법에서의 쇼트 피닝 처리 단계가 적용된 시험편에 대한 화합물층 두께와 잔류 응력 사이의 관계를 나타내는 그래프이다.
도 8은 질화 처리 단계 이후의 시험편(제 11 실시형태)의 단면 사진이다.
BRIEF DESCRIPTION OF THE DRAWINGS It is a perspective view of one test piece used for embodiment of the surface treatment method of the die cast metal mold of this invention.
It is a figure which shows the steel grade and surface treatment conditions of the test piece shown in FIG.
It is a figure which shows an example of the heating and cooling test apparatus used for embodiment of the surface treatment method of the die-cast die of this invention.
4 is a change in the vicinity of the surface of the test piece after the nitriding treatment step (FIG. 4A) and a change in the vicinity of the surface of the test piece after the compound decomposition step (FIG. 4) in the die-casting surface treatment method of the present invention. It is an expanded sectional drawing which shows (b)).
FIG. 5 is an enlarged cross-sectional view illustrating a change in nitrogen concentration near the surface of the test piece of FIGS. 4A and 4B.
6 is a graph showing the relationship between the compound layer thickness and the number of heat checks (HC) for a test piece to which the surface treatment method of the die cast mold of the present invention is applied.
7 is a graph showing the relationship between the compound layer thickness and the residual stress for the test piece to which the shot peening treatment step is applied in the surface treatment method of the die cast mold of the present invention.
8 is a cross-sectional photograph of a test piece (eleventh embodiment) after the nitriding treatment step.

본 발명의 다이캐스트 금형의 표면 처리 방법에 대해, 도 1 내지 도 8에 나타낸 바와 같은 실증 시험의 결과를 참조하여, 상세하게 설명한다. 실증 시험에 있어서, 다이캐스트 금형에 각각 대응하는 원통 형상의 시험편(1, 도 1 참조)을 준비하고, 각종 표면 처리를 행하여 이를 평가한다.The surface treatment method of the die cast die of the present invention will be described in detail with reference to the results of the demonstration test as shown in FIGS. 1 to 8. In the proof test, cylindrical test pieces 1 (see Fig. 1) corresponding to die cast molds are prepared, and various surface treatments are performed to evaluate them.

외경(D1, outer diameter)=15㎜, 내경(D2, inner diameter)=3㎜, 및 길이(L)=20㎜의 원통형 시험편(1)을 준비한다. 각 시험편(1)은, SKD61 상당의 합금 공구 강재인 일본 산업 표준(Japanese Industrial Standards(JIS))의 원형 바 스톡(bar stock)으로부터 가공된다. SKD61 상당재 대신에, 제 9 실시형태 및 제 10 실시형태에서의 시험편(1)은 SKD7 상당의 원형 바 스톡 및 SKH51 상당의 합금 공구 강재로부터 가공된다. 실시형태 및 비교예의 강종(steel classes)에 대해서는 도 2에 정리하여 나타낸다.A cylindrical test piece 1 having an outer diameter D1 of 15 mm, an inner diameter D2 of 3 mm, and a length L of 20 mm is prepared. Each test piece 1 is processed from a round bar stock of Japanese Industrial Standards (JIS), which is an alloy tool steel equivalent to SKD61. Instead of the SKD61 equivalent, the test piece 1 in the ninth and tenth embodiments is processed from a round bar stock equivalent to SKD7 and an alloy tool steel equivalent to SKH51. Steel classes of the embodiment and the comparative example are collectively shown in FIG. 2.

다음으로, 각 시험편(1)을 가열로 내에서 가열하면서 암모니아 가스를 가열로 내에 도입하여, 시험편(1)의 외주면(peripheral surface)을 가스 연질화 처리한다(질화 처리 단계). 가스 연질화 처리 대신에, 제 6 실시형태의 시험편은 가스 침류 질화 처리된다. 또한, 제 7 실시형태 및 제 5 비교예의 시험편은 모두 플라즈마 질화 처리된다. 실시형태 및 비교예에서의, 질화 처리의 종류, 가스의 종류, 온도, 및 시간에 대해 표 2에 정리하여 나타낸다.Next, ammonia gas is introduce | transduced into a heating furnace, heating each test piece 1 in a heating furnace, and the gas soft nitriding process of the peripheral surface of the test piece 1 is carried out (nitriding process step). Instead of the gas soft nitriding treatment, the test piece of the sixth embodiment is subjected to gas percolation nitriding treatment. In addition, all the test pieces of a 7th embodiment and a 5th comparative example are plasma nitridated. In embodiment and a comparative example, the kind of nitriding process, the kind of gas, temperature, and time are put together in Table 2, and are shown.

다음으로, 가열로 내로부터 암모니아 가스를 배출한 후, 가열로 내에 분위기 가스로서 질소를 도입하는 한편, 시험편을 가열로 내에서 계속 가열 처리하여 확산 처리한다. 따라서, 후술하는 바와 같이 질화 처리에 의해 발생한 화합물층(2, 도 4 참조) 내에서 질소 화합물이 완전하게 분해된다(화합물 분해 단계). 확산 처리의 온도 및 시간에 대해서도 도 2에 정리하여 나타낸다.Next, after discharging the ammonia gas from the inside of the heating furnace, nitrogen is introduced into the heating furnace as the atmosphere gas, while the test piece is continuously heated and diffused in the heating furnace. Therefore, the nitrogen compound is completely decomposed in the compound layer 2 (refer to FIG. 4) generated by the nitriding treatment as described later (compound decomposition step). The temperature and time of the diffusion treatment are also collectively shown in FIG. 2.

예컨대, 각각 직경 0.05㎜-0.2㎜의 비정질(amorphous) 합금으로 이루어진 소형 구를, 시험편(1)의 외주면에 0.3MPa의 투사압으로 투사하여, 쇼트 피닝 처리한다(쇼트 피닝 처리 단계).For example, a small sphere made of an amorphous alloy each having a diameter of 0.05 mm to 0.2 mm is projected on the outer circumferential surface of the test piece 1 at a projection pressure of 0.3 MPa to perform a shot peening treatment (short peening treatment step).

상기 처리에 의해 처리된 시험편(1)에 대해, 길이 방향 중앙부 근방 외주면의 잔류 응력을 측정한다.About the test piece 1 processed by the said process, the residual stress of the outer peripheral surface near a longitudinal center part is measured.

또한, 도 3에 도시한 바와 같이, 각 시험편(1)에 대해 시험 장치(20)로 반복하여 가열 및 냉각 시험을 행함으로써, 내히트 체크성을 평가한다. 보다 상세하게는, 시험편(1)의 관통 구멍(1a)에 시험 장치(20)의 지지 부재(22)의 소직경부(22a; small diameter portion)를 삽입하여, 시험편(1)을 상하로부터 홀더(23)에 의해 끼워 고정한다. 시험편(1)의 외주면을 고주파 코일(21)로 4초 동안 실온에서부터 700℃까지 가열한다. 그런 다음, 방수구(미도시; jet orifice)로부터 냉각수(24)를 분사하여, 시험편(1)을 3초 동안 실온까지 냉각한다. 다음으로, 가열 및 냉각된 시험편(1)을 1초 동안 에어 블로우로 건조한다. 이러한 가열, 냉각, 및 건조의 사이클을 합계 1000회 반복하여, 시험편(1)을 시험 장치(20)로부터 제거한다. 시험 장치(20)로부터 제거된 시험편(1)은, 길이 방향의 중앙부 근방을 그 중심축에 대해 수직인 평면으로 절단한다. 그런 다음, 시험편(1)을 수지 매립하여, 그 절단면을 경면 연마한다. 시험편의 절단면을 100배의 광학 현미경을 이용하여 관찰하여, 시험편(1)의 외주면에 발생한 히트 체크(HC)의 수를 측정한다.In addition, as shown in FIG. 3, heat check resistance is evaluated by repeatedly performing a heating and cooling test on each test piece 1 with the test apparatus 20. More specifically, the small diameter portion 22a of the support member 22 of the test apparatus 20 is inserted into the through hole 1a of the test piece 1, and the test piece 1 is placed from the top and the bottom of the holder ( 23) to fix it in place. The outer circumferential surface of the test piece 1 is heated from room temperature to 700 ° C. for 4 seconds with the high frequency coil 21. Then, the cooling water 24 is sprayed from a water jet (jet orifice) to cool the test piece 1 to room temperature for 3 seconds. Next, the heated and cooled test piece 1 is dried by air blow for 1 second. This cycle of heating, cooling, and drying is repeated 1000 times in total, and the test piece 1 is removed from the test apparatus 20. The test piece 1 removed from the test apparatus 20 cuts the vicinity of the center part of the longitudinal direction to the plane perpendicular | vertical to the center axis. Then, the test piece 1 is embedded in resin, and the cut surface is mirror polished. The cut surface of a test piece is observed using a 100-fold optical microscope, and the number of heat checks HC generated on the outer peripheral surface of the test piece 1 is measured.

덧붙여, 상기한 질화 처리 후의 시험편(1)의 일부를 가열로로부터 제거하여, 후술하는 바와 같이 화합물층(2, 도 4 참조)의 두께를 측정한다. 가열로로부터 제거한 시험편(1)을 그 길이 방향 중앙부 근방에서 그 중심축에 대해 수직인 평면으로 절단한다. 그런 다음, 절단된 시험편(1)의 절단면을 경면 연마한다. 다음으로, 연마된 절단면을 광학 현미경으로 관찰하여, 화합물층(2)의 두께를 측정한다.In addition, a part of test piece 1 after said nitriding process is removed from a heating furnace, and the thickness of the compound layer 2 (refer FIG. 4) is measured as mentioned later. The test piece 1 removed from the heating furnace is cut in a plane perpendicular to the central axis near the longitudinal center part thereof. Then, the cut surface of the cut test piece 1 is mirror polished. Next, the polished cut surface is observed with an optical microscope, and the thickness of the compound layer 2 is measured.

질화 처리에서는, 도 4의 (a) 및 도 5의 (a)에 도시한 바와 같이, 기상(gas phase) 중의 활성화된 질소가 시험편(1)의 외주면으로부터 내부(4, 기재)로 확산하여, 외주면 근방에 질화층(5)을 형성한다. 질화층(5)은, 최표층인 질소 화합물층(2) 및 그 내부측의 질소 확산층(3)으로 이루어진다. 화합물층(2)은, Fe나 Cr의 복합 질화물로 이루어지며, 매우 취약한 층이다. 참고로, 플라즈마 질화 처리에서의 화합물층의 성장 속도는 가스 질화 처리에서의 화합물층의 성장 속도보다 매우 늦다. 질소 확산층(3)은, 분산 및 석출된 질화물을 포함하는 질소의 고용층(solid solution layer)이다.In the nitriding treatment, as shown in Figs. 4A and 5A, activated nitrogen in the gas phase diffuses from the outer peripheral surface of the test piece 1 to the inside (4, base material), The nitride layer 5 is formed in the vicinity of the outer circumferential surface. The nitride layer 5 consists of the nitrogen compound layer 2 which is the outermost layer, and the nitrogen diffusion layer 3 inside it. The compound layer 2 consists of a composite nitride of Fe and Cr, and is a very weak layer. For reference, the growth rate of the compound layer in the plasma nitriding treatment is much slower than the growth rate of the compound layer in the gas nitriding treatment. The nitrogen diffusion layer 3 is a solid solution layer of nitrogen containing dispersed and precipitated nitride.

상기한 질화 처리에 계속해서 확산 처리에서는, 도 4의 (b) 및 도 5의 (b)에 도시한 바와 같이, 질화층(5)의 깊이가 확대된다. 보다 상세하게는, 기상 중으로부터 외주면을 통해 시험편(1)에 공급되는 질소의 플럭스가 저하되어, 질소 확산층(3)의 질소가 주로 시험편(1)의 내부로 확산된다. 이때, 화합물층(2)의 질소 화합물이 분해되어 질소가 발생되면, 발생된 질소도 시험편(1)의 내부로 확산된다. 화합물 중에 포함된 질소의 농도(도 5의 (a)의 부호 '3a' 참조)가 질소 확산층(3)과 같은 질소 고용체에 포함된 질소의 농도(도 5의 (b)의 부호 '3b' 참조)보다 매우 높기 때문에, 다량의 질소를 함유하는 질소 확산층(3)을 얻을 수 있다(도 5의 (b)의 부호 '31' 참조). 도 5의 (b)에 있어서, 부호 '32'는 질화 처리에 의해서만 얻어진 질소 확산층(3)만이 확산 처리된 경우를 나타낸다.In the diffusion process subsequent to the above-mentioned nitriding treatment, as shown in FIGS. 4B and 5B, the depth of the nitride layer 5 is enlarged. More specifically, the flux of nitrogen supplied to the test piece 1 from the gas phase through the outer circumferential surface decreases, and the nitrogen of the nitrogen diffusion layer 3 mainly diffuses into the test piece 1. At this time, when the nitrogen compound of the compound layer 2 is decomposed and nitrogen is generated, the generated nitrogen also diffuses into the test piece 1. The concentration of nitrogen contained in the compound (see symbol '3a' of FIG. 5 (a)) is the concentration of nitrogen contained in nitrogen solid solution such as nitrogen diffusion layer 3 (see symbol '3b' of FIG. 5 (b)). Since it is much higher than), a nitrogen diffusion layer 3 containing a large amount of nitrogen can be obtained (see reference numeral 31 in Fig. 5B). In Fig. 5B, reference numeral 32 denotes a case where only the nitrogen diffusion layer 3 obtained only by the nitriding treatment is diffused.

한편, 화합물층(2)의 복합 질화물이 분해하면, 그 체적 수축으로 인해, 다량의 공극을 포함하는 표면층(2')이 되어 버린다. 이러한 표면층(2')은, 쇼트 피닝 처리에서의 쇼트의 충돌 에너지를 흡수 및 소멸시켜, 압축 잔류 응력의 형성이 저해된다. 그 상세에 대해서는 후술한다.On the other hand, when the composite nitride of the compound layer 2 decomposes, it becomes the surface layer 2 'containing a large amount of voids due to the volume shrinkage. This surface layer 2 'absorbs and dissipates the collision energy of the shot in the shot peening treatment, and the formation of the compressive residual stress is inhibited. Details thereof will be described later.

이하에 상기한 측정의 결과에 대해 설명한다. 반복된 가열 및 냉각 시험 후의 히트 체크(HC)의 수와 화합물층(2)의 두께 사이의 관계에 대해 도 6에 나타낸다.The result of the above measurement is demonstrated below. 6 shows a relationship between the number of heat checks HC and the thickness of the compound layer 2 after repeated heating and cooling tests.

히트 체크의 수는, 화합물층(2)의 두께를 증가시킴에 따라 감소하여, 내히트 체크성을 향상시킬 수도 있음을 알 수 있다. 즉, 제 1 비교예에서의 두께 1.5㎛의 얇은 화합물층(2)은 히트 체크수가 597개이고, 제 5 비교예에서의 두께 1.0㎛의 얇은 화합물층(2)은 히트 체크수가 441개이다. 이에 대해, 제 1 내지 제 14 실시형태에서의 두께 2㎛ 내지 7㎛의 두꺼운 화합물층(2)은 히트 체크수가 13 내지 257개로 큰 폭으로 감소되어 있다. It can be seen that the number of heat checks decreases as the thickness of the compound layer 2 is increased, thereby improving the heat check resistance. That is, the thin compound layer 2 with a thickness of 1.5 mu m in the first comparative example has 597 heat checks, and the thin compound layer 2 with a thickness of 1.0 mu m in the fifth comparative example has 441 heat checks. In contrast, the thick compound layer 2 having a thickness of 2 μm to 7 μm in the first to fourteenth embodiments is greatly reduced to 13 to 257 heat checks.

특히, 확산 처리(가열 처리)를 질화 처리의 온도보다 낮은 온도로 행한 제 11 실시형태에서의 히트 체크수가 큰 폭으로 감소되어 있다. 따라서, 화합물 분해 단계에서의 가열 처리는 질화 처리 단계의 온도보다 낮은 온도로 행하는 것이 바람직함을 알 수 있다.In particular, the heat check number in the eleventh embodiment in which the diffusion treatment (heating treatment) is performed at a temperature lower than the temperature of the nitriding treatment is greatly reduced. Therefore, it can be seen that the heat treatment in the compound decomposition step is preferably performed at a temperature lower than the temperature of the nitriding treatment step.

상술한 바와 같이, 화합물층(2)의 두께를 증가시킴에 따라, 확산 처리에 의해 분해되는 질소 화합물의 양이 증가되기 때문에, 질소 확산층(3)에서의 질소의 양을 증가시킬 수 있으며, 확산 처리 후의 경도를 높여 내마모성을 향상시킬 수 있는 동시에, 내히트 체크성을 향상시킬 수 있다.As described above, as the thickness of the compound layer 2 is increased, the amount of nitrogen compounds decomposed by the diffusion treatment increases, so that the amount of nitrogen in the nitrogen diffusion layer 3 can be increased, and the diffusion treatment Abrasion resistance can be improved by increasing after hardness, and heat check resistance can be improved.

한편, 히트 체크의 수는, 화합물층(2)의 두께를 소정 두께 이상으로 증가시킴에 따라 급격하게 증가하여, 내히트 체크성이 큰 폭으로 저하될 수도 있음을 알 수 있다. 즉, 제 1, 제 2, 및 제 4 비교예에서의 두께 8.0㎛, 9.0㎛, 및 10.0㎛의 두꺼운 화합물층(2)의 형성에 의한 히트 체크수는 각각 706, 707, 및 840개이다. 이는 제 1 내지 제 14 실시형태와 비교하여 급격하게 증가하였다.On the other hand, it can be seen that the number of heat checks increases rapidly as the thickness of the compound layer 2 is increased to a predetermined thickness or more, so that the heat check resistance can be greatly reduced. That is, the number of heat checks by formation of the thick compound layer 2 of thickness 8.0 micrometers, 9.0 micrometers, and 10.0 micrometers in the 1st, 2nd, and 4th comparative example is 706, 707, and 840, respectively. This sharply increased in comparison with the first to fourteenth embodiments.

상기에 관해, 쇼트 피닝 처리에 의해 시험편(1)에 부여되는 잔류 응력과 화합물층(2)의 두께 사이의 관계에 대해 도 7에 나타낸다. 도 7에 있어서, 압축 응력은 음(negative)의 값으로 나타내고 있다.Regarding the above, Fig. 7 shows a relationship between the residual stress applied to the test piece 1 by the shot peening treatment and the thickness of the compound layer 2. In FIG. 7, the compressive stress is represented by a negative value.

압축 잔류 응력의 절대값은 화합물층(2)의 두께를 증가시킴에 따라 증가될 수도 있음을 알 수 있다. 즉, 제 1 및 제 5 비교예에서의 두께 1.5㎛ 및 1.0㎛의 얇은 화합물층(2)의 형성에 의한 압축 잔류 응력은 각각 -965MPa 및 -993MPa이다. 이에 대해, 제 1 내지 제 14 실시형태에서의 두께 2㎛ 내지 7㎛의 두꺼운 화합물층(2)의 형성에 의한 압축 잔류 응력은 -1350MPa 내지 -1755MPa로 큰 폭으로 증가하였다. 이는 제 1 및 제 5 비교예와 비교하여 상당히 증가하였다.It can be seen that the absolute value of the compressive residual stress may be increased by increasing the thickness of the compound layer 2. That is, the compressive residual stress due to the formation of the thin compound layer 2 having a thickness of 1.5 m and 1.0 m in the first and fifth comparative examples is -965 MPa and -993 MPa, respectively. In contrast, the compressive residual stress due to the formation of the thick compound layer 2 having a thickness of 2 μm to 7 μm in the first to fourteenth embodiments greatly increased from -1350 MPa to -1755 MPa. This was significantly increased compared to the first and fifth comparative examples.

한편, 압축 잔류 응력의 절대값은 화합물층(2)의 두께를 소정 두께 이상으로 증가시킴에 따라, 급격하게 저하될 수도 있음을 알 수 있다. 즉, 제 2, 제 3, 및 제 4 비교예에서의 두께 8.0㎛, 9.0㎛, 및 10.0㎛의 두꺼운 화합물층(2)의 형성에 의한 압축 잔류 응력은 각각 -1298MPa, -1251MPa, 및 -938MPa이다.On the other hand, it can be seen that the absolute value of the compressive residual stress may decrease rapidly as the thickness of the compound layer 2 is increased to a predetermined thickness or more. That is, the compressive residual stress due to the formation of the thick compound layer 2 having a thickness of 8.0 μm, 9.0 μm, and 10.0 μm in the second, third, and fourth comparative examples is -1298 MPa, -1251 MPa, and -938 MPa, respectively. .

상술한 바와 같이, 화합물층(2)의 두께를 소정 두께 이상으로 증가시키면 압축 잔류 응력의 절대값이 큰 폭으로 저하되며, 따라서 내히트 체크성이 큰 폭으로 저하된다. 이는 화합물층의 화합물이 분해함으로써 형성되는 다량의 공극을 포함하는 표면층(2', 도 4의 (b) 참조)에 기인한다. 보다 상세하게는, 두꺼운 화합물층(2)을 형성함으로써, 확산 처리에 의해 표면층(2')이 두꺼워져, 쇼트 피닝 처리에 의한 압축 잔류 응력의 형성이 급격하게 저해되며, 따라서, 내히트 체크성이 큰 폭으로 저하된다.As mentioned above, when the thickness of the compound layer 2 is increased more than predetermined thickness, the absolute value of a compressive residual stress will fall largely, and therefore, the heat resistance check resistance will fall largely. This is due to the surface layer 2 '(see FIG. 4B) containing a large amount of voids formed by decomposition of the compound of the compound layer. More specifically, by forming the thick compound layer 2, the surface layer 2 'is thickened by the diffusion treatment, and the formation of the compressive residual stress due to the shot peening treatment is rapidly inhibited. It is greatly reduced.

도 8의 (a)는, 제 11 실시형태에서의 질화 처리 후의 시험편(1)의 절단면의 광학 현미경 사진이다. 도 8의 (b)는, 제 11 실시형태에서의 질화 처리에 이은 확산 처리 후의 시험편(1)의 절단면의 광학 현미경 사진이다. 전자에서는, 화합물층(2) 및 질소 확산층(3)을 관찰할 수 있다. 후자에서는, 두께가 증가된 질소 확산층(3), 및 화합물이 분해함으로써, 특히 질소 확산층(3)에 근접하여 검게 공극을 포함하는 표면층(2')을 관찰할 수 있다.FIG. 8A is an optical micrograph of the cut surface of the test piece 1 after nitriding treatment in the eleventh embodiment. FIG. 8B is an optical micrograph of the cut surface of the test piece 1 after diffusion treatment following the nitriding treatment in the eleventh embodiment. In the former, the compound layer 2 and the nitrogen diffusion layer 3 can be observed. In the latter, it is possible to observe the nitrogen diffusion layer 3 having an increased thickness, and the surface layer 2 'including black pores, particularly near the nitrogen diffusion layer 3, by decomposing the compound.

상술한 바에 기초하여, 화합물층(2)의 두께, 및 그에 따라 화합물이 분해된 후에 남아 있는 공극을 포함하는 표면층(2')의 두께를 일정하게 제한함으로써, 쇼트 피닝 처리에 의한 압축 잔류 응력을 양호하게 부여하여, 내히트 체크성이 우수한 다이캐스트 금형을 얻을 수 있다. 특히, 실시형태에서와 같은 쇼트 피닝 처리의 일반적인 조건하에서는, 본 목적을 달성하기 위한 화합물층(2, 화합물이 분해된 후에 남아 있는 표면층(2'))의 두께는 2-7㎛이다.Based on the above, by limiting the thickness of the compound layer 2 and hence the thickness of the surface layer 2 'including the voids remaining after the compound is decomposed, the compressive residual stress due to the shot peening treatment is good. In addition, it is possible to obtain a die cast mold having excellent heat resistance. In particular, under the general conditions of the shot peening treatment as in the embodiment, the thickness of the compound layer 2 (surface layer 2 'remaining after the compound is decomposed) for achieving the present object is 2-7 mu m.

제 6 및 제 7 실시형태에서와 같은, 가스 연질화, 가스 침류 질화, 및 플라즈마 질화 등의 질화 처리 종류 간의 차이에 관계없이, 도 6 및 도 7의 화합물층(2)의 두께와 히트 체크수 또는 압축 잔류 응력 사이의 관계는 동일한 플롯 선상에 정렬된다. 또한, 제 9 및 제 10 실시형태에 있어서, SKD61 상당재, SKD7 상당재, 및 SKH51 상당재의 강재 간의 차이에도 관계없다. 즉, 이러한 결과는 질화 처리 종류 간의 차이, 및 일반적인 금형 재료 간의 차이에 관계없이, 본 발명의 방법을 적용할 수 있음을 시사한다.Regardless of the difference between the types of nitriding treatments such as gas soft nitriding, gas immersion nitriding, and plasma nitriding, as in the sixth and seventh embodiments, the thickness and heat check number of the compound layer 2 of FIGS. 6 and 7 or The relationship between the compressive residual stresses is aligned on the same plot line. Moreover, in 9th and 10th embodiment, it does not matter also with the difference between the steel materials of SKD61 equivalent material, SKD7 equivalent material, and SKH51 equivalent material. In other words, these results suggest that the method of the present invention can be applied irrespective of differences between kinds of nitriding treatments and differences between general mold materials.

상술한 바와 같이, 본 발명의 다이캐스트 금형의 표면 처리 방법의 실시형태는, 가열로 내에 적어도 암모니아 가스를 포함하는 가스를 도입하여 다이캐스트 금형의 의장면에, 질화 처리, 예를 들어 가스 연질화, 가스 침류 질화, 및 플라즈마 질화에 의해 적어도 질소 화합물로 이루어진 화합물층을 포함하는 질화층을 형성하는 질화 처리 단계와, 가열로 내로부터 암모니아 가스를 배출하며 가열로 내에 분위기 가스를 도입하여 가열 처리를 행함으로써 질소 화합물을 분해시키는 화합물 분해 단계와, 금형의 의장면에 쇼트 피닝 처리를 행하는 쇼트 피닝 처리 단계를 포함한다. 질화 처리 단계에서 형성된 질소층에 포함된 화합물층의 두께는 2㎛ 내지 7㎛의 범위 내이다.As mentioned above, embodiment of the surface treatment method of the die-cast die of this invention introduce | transduces the gas containing at least ammonia gas into a heating furnace, and nitriding process, for example, gas soft nitriding, to the design surface of a die-cast die. And a nitriding treatment step of forming a nitride layer including at least a compound layer made of a nitrogen compound by gas immersion nitriding and plasma nitriding, and ammonia gas is discharged from the heating furnace, and an atmospheric gas is introduced into the heating furnace to perform the heat treatment. Thereby including a compound decomposition step of decomposing the nitrogen compound and a shot peening treatment step of performing a shot peening treatment on the surface of the mold. The thickness of the compound layer included in the nitrogen layer formed in the nitriding treatment step is in the range of 2 μm to 7 μm.

적어도 암모니아 가스를 포함하는 가스를 가열로 내에 도입함으로써 질화 처리에 의해 형성되는 질소 화합물층의 두께가 소정 두께로 유지되어, 질소 화합물이 화합물 분해 단계에서 분해된다. 결과적으로, 질소 화합물층이 실질적으로 제공되지 않으며, 따라서 질소가 대신 발생되어 금형에 공급되는 질소의 양을 증가시킴으로써, 높은 경도를 갖는 질소 확산층을 제공할 수 있다. 그런데, 실질적으로 소실되는 질소 화합물층은 다량의 공극을 포함하는 층으로서 남아 있어, 쇼트 피닝 처리에서의 쇼트의 충돌 에너지를 흡수 및 분산시킨다. 그렇지만, 질화 처리 단계에서 질소 화합물층의 두께가 또한 소정 두께로 유지되어, 쇼트 피닝 처리에 의한 압축 잔류 응력이 질소 확산층에 부여될 수 있다. 따라서, 높은 경도와 높은 압축 잔류 응력에 기초하여, 내마모성 및 내히트 체크성이 우수한 다이캐스트 금형을 제조할 수 있는 것이다.By introducing a gas containing at least ammonia gas into the heating furnace, the thickness of the nitrogen compound layer formed by the nitriding treatment is maintained at a predetermined thickness so that the nitrogen compound is decomposed in the compound decomposition step. As a result, the nitrogen compound layer is substantially not provided, and thus nitrogen can be generated instead to increase the amount of nitrogen supplied to the mold, thereby providing a nitrogen diffusion layer having a high hardness. However, the nitrogen compound layer substantially lost remains as a layer containing a large amount of voids, so as to absorb and disperse the impact energy of the shot in the shot peening treatment. However, in the nitriding treatment step, the thickness of the nitrogen compound layer is also maintained at a predetermined thickness so that the compressive residual stress due to the shot peening treatment can be imparted to the nitrogen diffusion layer. Therefore, it is possible to manufacture a die-cast die having excellent wear resistance and heat check resistance based on high hardness and high compressive residual stress.

본 발명의 대표적인 실시형태 및 그 변형예에 대해 설명하였지만, 본 발명은 이에 한정되는 것은 아니다. 당업자라면, 첨부된 특허청구범위를 일탈하지 않고, 다양한 대체 실시형태 및 개변예를 찾아낼 수 있을 것이다.Representative embodiments of the present invention and modifications thereof have been described, but the present invention is not limited thereto. Those skilled in the art will be able to find various alternative embodiments and modifications without departing from the scope of the appended claims.

예를 들어, 상술한 설명에서는 각 시험편의 특정 형상 및 치수를 언급하였지만, 이는 단지 설명을 용이하게 하려는 의도에 지나지 않으며, 본 발명을 제한하려는 것은 아니다.For example, the foregoing description refers to specific shapes and dimensions of each test piece, but this is only intended to facilitate the description and is not intended to limit the invention.

1 : 시험편
2 : 화합물층
3 : 질소 확산층
20 : 시험 장치
1: test piece
2: compound layer
3: nitrogen diffusion layer
20: test device

Claims (2)

쇼트 피닝 처리를 이용하여 다이캐스트 금형의 의장면에 압축 잔류 응력을 부여함으로써 제공되는 다이캐스트 금형의 표면 처리 방법으로서,
가열로 내에 적어도 암모니아 가스를 포함하는 가스를 도입하여 상기 다이캐스트 금형의 의장면에 적어도 질소 화합물로 이루어진 화합물층을 포함하는 질화층을 형성하는 질화 처리 단계와,
상기 가열로 내로부터 암모니아 가스를 배출하며 상기 가열로 내에 분위기 가스를 도입하여 가열 처리를 행함으로써 상기 질소 화합물을 분해시키는 화합물 분해 단계와,
상기 금형의 의장면에 쇼트 피닝 처리를 행하는 쇼트 피닝 처리 단계를 포함하며,
상기 질화 처리 단계에서 형성된 상기 질소층에 포함된 상기 화합물층의 두께는 2㎛ 내지 7㎛의 범위 내인 것을 특징으로 하는 다이캐스트 금형의 표면 처리 방법.
A surface treatment method of a die cast mold provided by applying compressive residual stress to the design surface of the die cast mold using shot peening treatment,
A nitriding treatment step of introducing a gas containing at least ammonia gas into a heating furnace to form a nitride layer including a compound layer made of at least a nitrogen compound on a design surface of the die cast mold;
A compound decomposition step of decomposing the nitrogen compound by discharging ammonia gas from the heating furnace and introducing an atmosphere gas into the heating furnace to perform a heat treatment;
A short peening treatment step of performing a short peening treatment on the surface of the mold;
The thickness of the compound layer included in the nitrogen layer formed in the nitriding treatment step is in the range of 2㎛ to 7㎛ range surface treatment method of a die cast die.
제 1 항에 있어서,
상기 화합물 분해 단계는, 상기 질화 처리 단계의 온도보다 낮은 온도로 상기 가열 처리를 행하는 것을 특징으로 하는 다이캐스트 금형의 표면 처리 방법.
The method of claim 1,
In the compound decomposition step, the heat treatment is performed at a temperature lower than the temperature of the nitriding treatment step.
KR1020127023330A 2010-05-11 2011-05-11 A method for surface treatment of a die-casting die KR20130069545A (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2010109299A JP2011235318A (en) 2010-05-11 2010-05-11 Method for surface treatment of die-casting die
JPJP-P-2010-109299 2010-05-11
PCT/JP2011/061462 WO2011142479A1 (en) 2010-05-11 2011-05-11 A method for surface treatment of a die-casting die

Publications (1)

Publication Number Publication Date
KR20130069545A true KR20130069545A (en) 2013-06-26

Family

ID=44278850

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020127023330A KR20130069545A (en) 2010-05-11 2011-05-11 A method for surface treatment of a die-casting die

Country Status (7)

Country Link
US (1) US20130042992A1 (en)
JP (1) JP2011235318A (en)
KR (1) KR20130069545A (en)
CN (1) CN102812148A (en)
DE (1) DE112011101613T5 (en)
TW (1) TWI532547B (en)
WO (1) WO2011142479A1 (en)

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102560507A (en) * 2012-02-28 2012-07-11 东北大学 Surface treatment method for nitrided case of steel material
CN106068331B (en) * 2014-03-11 2018-07-24 本田技研工业株式会社 Steel part and its manufacturing method
JP6287390B2 (en) * 2014-03-13 2018-03-07 新日鐵住金株式会社 Gas soft nitriding method of low alloy steel
DE102015213068A1 (en) * 2015-07-13 2017-01-19 Robert Bosch Gmbh Process for nitriding a component
CN107849679B (en) * 2015-09-08 2020-09-08 日本制铁株式会社 Nitrided steel member and method for producing same
WO2017043609A1 (en) * 2015-09-08 2017-03-16 新日鐵住金株式会社 Nitrided steel component and manufacturing method thereof
CN105586564A (en) * 2015-12-25 2016-05-18 上海人本集团有限公司 Cooling process for nitriding steel nitrogen treatment
EP3416768B1 (en) * 2016-02-17 2020-10-14 Magna International Inc. Die casting die with removable inserts
CN106756759B (en) * 2016-12-05 2019-07-12 上海交通大学 Tough nitriding layer of a kind of ferrous alloy surface height and preparation method thereof
DE102017127299A1 (en) 2017-11-20 2019-05-23 Nemak, S.A.B. De C.V. Process for treating the surfaces of moldings made of a steel material for casting molds
JP7337646B2 (en) * 2019-10-17 2023-09-04 エア・ウォーターNv株式会社 Die casting mold and die casting mold surface treatment method
JP2022133587A (en) 2021-03-02 2022-09-14 新東工業株式会社 Shot-peening method
CN116463483A (en) * 2023-03-29 2023-07-21 宁波北仑博优模具技术有限公司 Shot peening strengthening method for die casting die surface

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2960421A (en) * 1958-11-10 1960-11-15 Nat Broach & Mach Elimination of white layer in nitrided steel
JPS5658963A (en) * 1979-10-20 1981-05-22 Kiyoichi Ogawa Method and device for nitrified-layer stabilizing vapor coating processing
JP3448608B2 (en) * 1993-03-10 2003-09-22 Jfeスチール株式会社 Nitriding method
JP3450426B2 (en) 1994-05-25 2003-09-22 株式会社日本テクノ Gas sulfide nitriding treatment method
JP3097536B2 (en) * 1995-12-30 2000-10-10 日本軽金属株式会社 Dice having nitride layer excellent in heat resistance and oxidation resistance and method for manufacturing the same
JP3303741B2 (en) * 1997-09-25 2002-07-22 トヨタ自動車株式会社 Gas nitrocarburizing method
JP3400934B2 (en) * 1997-10-21 2003-04-28 三菱製鋼室蘭特殊鋼株式会社 Nitriding steel and nitriding method
US20020104587A1 (en) * 2001-02-02 2002-08-08 Leo Medeiros Method for nitriding suspension components
JP3857213B2 (en) * 2002-10-30 2006-12-13 本田技研工業株式会社 Mold for casting and surface treatment method thereof
JP4615208B2 (en) * 2002-11-20 2011-01-19 中央発條株式会社 Manufacturing method of valve spring
US7384488B2 (en) * 2003-09-18 2008-06-10 Mahindra & Mahindra Ltd Method for producing gears and/or shaft components with superior bending fatigue strength and pitting fatigue life from conventional alloy steels

Also Published As

Publication number Publication date
JP2011235318A (en) 2011-11-24
WO2011142479A1 (en) 2011-11-17
TW201223660A (en) 2012-06-16
TWI532547B (en) 2016-05-11
US20130042992A1 (en) 2013-02-21
DE112011101613T5 (en) 2013-03-21
CN102812148A (en) 2012-12-05

Similar Documents

Publication Publication Date Title
KR20130069545A (en) A method for surface treatment of a die-casting die
JP5008944B2 (en) Mold
US9364894B2 (en) Method of treating the surface of a cavity of a die used for casting
US11731242B2 (en) Method for surface-treating mold
JP2011508715A (en) Highly mechanically required parts and special tool manufacturing methods from low cost ceramics or polymers such as concrete by casting into the desired shape and then coating with a metal or high performance ceramic layer
RU2011151789A (en) FILLING FORMS WITH A LOW THERMAL EXPANSION AND WITH A TEXTURED SURFACE AND A METHOD FOR CREATING AND USING SUCH FORMS
KR20110099105A (en) Method for manufacturing blasting material for shot-peening
JP5457000B2 (en) Surface treatment method of steel material, steel material and mold obtained thereby
JP6094948B2 (en) Manufacturing method of breathable member for mold
WO2004039517A1 (en) Mold for casting and method of surface treatment thereof
JP4157778B2 (en) Mold and mold manufacturing method
JP5833982B2 (en) Mold for casting and manufacturing method thereof
JP2016204754A (en) Tool, and its production
JPH1190611A (en) Die for die casting and manufacture thereof
TWI297365B (en)
JP3171825B2 (en) Manufacturing method of air-permeable mold
WO2004020685A1 (en) Member made of steel product having layers formed thereon and method for producing member
Kim et al. Evaluation of Strain-Rate Sensitivity of Selective Laser Melted H13 Tool Steel Using Nanoindentation Tests.
CN116213672A (en) Amorphous alloy casting and processing method thereof
JPS6147207B2 (en)
JP2000024927A (en) Surface treatment method of metallic product
JPH0941003A (en) Treatment of burr of injection molding of metallic powder
JP2011062844A (en) Heat control mold and method of producing the same

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E601 Decision to refuse application