JP3448608B2 - Nitriding method - Google Patents

Nitriding method

Info

Publication number
JP3448608B2
JP3448608B2 JP04938393A JP4938393A JP3448608B2 JP 3448608 B2 JP3448608 B2 JP 3448608B2 JP 04938393 A JP04938393 A JP 04938393A JP 4938393 A JP4938393 A JP 4938393A JP 3448608 B2 JP3448608 B2 JP 3448608B2
Authority
JP
Japan
Prior art keywords
temperature
nitriding
nitriding treatment
present
treatment
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP04938393A
Other languages
Japanese (ja)
Other versions
JPH06264211A (en
Inventor
哲夫 白神
守幸 石黒
均 椛澤
美博 桑原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
JFE Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JFE Steel Corp filed Critical JFE Steel Corp
Priority to JP04938393A priority Critical patent/JP3448608B2/en
Publication of JPH06264211A publication Critical patent/JPH06264211A/en
Application granted granted Critical
Publication of JP3448608B2 publication Critical patent/JP3448608B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Solid-Phase Diffusion Into Metallic Material Surfaces (AREA)

Description

【発明の詳細な説明】 【0001】 【産業上の利用分野】本発明は鋼材に対する窒化処理方
法に関し、詳しくは、疲労強度を向上させることができ
る窒化処理方法に関する。 【0002】 【従来の技術及び発明が解決しようとする課題】機械構
造用鋼の疲労強度向上のための表面硬化処理方法の一つ
として窒化処理がある。この窒化処理は同じ表面硬化処
理方法である高周波焼入れや浸炭焼入れに比べて熱処理
歪が小さいため有用な手法である。一般的には、機械構
造用鋼材(SC材やSCM材等)に窒化処理を行う場合
と、SACM645のような窒化鋼を用いる場合がある
が、いずれの鋼種においても窒化処理方法としては一段
窒化及び二段窒化が一般的に採用されている。 【0003】一段窒化は500℃程度の一定温度に一定
時間保持する方法であるが、一般に硬化深さが浅く、化
合物層が厚くなるため、耐摩耗性は優れているが、疲労
強度が低いという問題点がある。また、長時間処理によ
り硬化深さを大きくして疲労強度をある程度向上させる
ことも可能であるが、長時間化によりコストアップにつ
ながり現実的ではない。二段窒化は一段窒化の長時間化
を改善するものとして、一段目の加熱により窒化物層を
形成して窒素ポテンシャルを高くし、その後より高温に
して鋼材内部へ窒素をより速く拡散させようとしたもの
であるが、疲労強度を向上させるという点からは不十分
である。 【0004】一方、疲労強度を向上させるという観点か
ら、特開昭63−93821号公報には窒化処理後ショ
ットピーニングを施す方法が、特開平2−294463
号公報にはイオン窒化処理時に2段窒化を施す方法が夫
々開示されている。しかし、前者はショットピーニング
という別工程を付加する必要があり、後者はイオン窒化
という高価な方法を用いる必要があるため、いずれもコ
ストアップにつながってしまう。本発明は、かかる事情
に鑑みてなされたものであって、低コストで疲労強度を
向上させることができる窒化処理方法を提供することを
目的とする。 【0005】 【課題を解決するための手段及び作用】本発明は、鋼材
に窒化処理を施すにあたり、窒化処理開始温度を480
〜550℃の範囲に設定し、窒化処理終了温度を560
〜630℃の範囲に設定して、窒化処理開始から窒化処
理終了までを連続的に昇温させることを特徴とする窒化
処理方法を提供する。 【0006】本願発明者らは、通常の窒化処理のみで、
しかも低コストで疲労強度を向上させることができる窒
化処理方法について鋭意研究を行った結果、窒化処理開
始温度及び窒化処理終了温度をある特定の温度範囲に規
定し、その間を連続的に昇温すればよいことを見出し
た。すなわち、窒化処理開始温度及び窒化終了温度を特
定範囲に設定し、その間を連続的に昇温することによ
り、低温で化合物が形成されてもすぐに昇温されて化合
物層が消滅しやすく、また大きな硬化深さが得られ、結
果として疲労強度を向上させ得ることを見出したのであ
る。上記構成を有する本発明は本願発明者らのこのよう
な知見に基づいて完成されたものである。以下、本発明
について具体的に説明する。 【0007】窒化処理は、鋼材の表面に窒化物層(化合
物層)を生成させ、同時に内部に窒素を拡散させて窒化
物を形成することにより、α−鉄格子内に大きな歪を生
じさせて鋼材の表面を硬化させるものである。 【0008】本発明においては、このような窒化処理を
行うにあたり、窒化処理開始温度を480〜550℃の
範囲に設定し、窒化処理終了温度を560〜630℃の
範囲に設定して、窒化処理開始から窒化処理終了までを
連続的に昇温させる(このような方法を以下傾斜窒化法
と呼ぶ。)。 【0009】窒化処理開始温度に関しては、その温度が
480℃未満では窒化反応が遅いため有効な硬化深さが
得られず、一方、550℃を超えると化合物層厚さが大
きくなり、疲労強度に悪影響を及ぼす。従って窒化処理
開始温度は480℃〜550℃の範囲に規定する。 【0010】窒化処理終了温度に関しては、その温度が
560℃未満では窒素の拡散が遅いため有効な硬化深さ
が得られず、一方、630℃を超えると窒素がより内部
まで拡散するため表面硬さが低下し疲労強度が劣化す
る。従って窒化処理終了温度は560〜630℃の範囲
に規定する。なお、窒化処理終了温度が鋼の焼もどし温
度を超える場合には内部が軟化してしまうので、焼戻し
温度を超えないようにすることが必要である。 【0011】本発明では窒化処理開始から窒化処理終了
までを連続的に昇温させるのであり、連続的に昇温させ
る限りその態様は限定されないが、直線的に昇温するこ
とが好ましい。 【0012】本発明でいう窒化処理には、通常行われて
いるガス窒化法のみならず、イオン窒化法、塩浴窒化法
などを適用することができ、いずれの方法の場合にも本
発明の効果を得ることができる。なお、本発明の方法に
適用される鋼の組成については特に制限がないが、通常
の窒化鋼をベースにした組成の鋼に主に適用される。 【0013】 【実施例】以下、本発明の実施例について説明する。 【0014】表1の組成を有する窒化鋼SACM645
(JISG4202アルミニウム・クロム・モリブデン
鋼)の熱間圧延丸棒(30mmφ)を用い、900℃×
1時間油焼入れ、650℃×1時間水冷の焼入れ焼もど
しを行った後、平行部8mmφの小野式回転曲げ疲労試
験片を加工し、供試材とした。 【0015】 【表1】 【0016】この供試材について窒化処理を施した。窒
化処理は、N2 −NH3 −CO2 雰囲気のガス窒化炉を
用い、図1に示す3つの窒化温度パターンで、処理時間
を20時間に設定して行った。図1中、傾斜窒化法は温
度を連続的に上げるもの、二段窒化法は第一段窒化の後
第二段の窒化を行うもの、一段窒化法は一定温度に保持
するものである。 【0017】この窒化処理の処理条件と、処理結果とを
表2に示す。表2中、表面硬さは表面から0.05mm
位置の硬さ、化合物厚さは表面に形成された窒化物層の
厚さ、有効硬化深さはHV550となる距離、疲労強度
は繰返し数107 回での応力値で評価した。なお、表2
中、番号1〜3は本発明の範囲内に含まれる実施例であ
り、番号4〜13は比較例である。比較例のうち、番号
4〜7は昇温方法は本発明と同様であるが、窒化処理開
始温度又は窒化処理終了温度が本発明の条件から外れて
いるもの、番号8、9は二段窒化法を採用したもの、番
号10〜13は一段窒化方を採用したものである。 【0018】 【表2】 【0019】表2から明らかなように、本発明の範囲内
である番号1〜3はいずれも化合物層が小さく、表面硬
さが適度であり、有効硬化深さが大きいため疲労強度に
優れている。 【0020】比較例の番号4〜7は本発明と同様の傾斜
窒化法を採用しているが、処理開始温度あるいは処理終
了温度が本発明の範囲から外れており、有効硬化深さが
小さいか、化合物層厚さが大きく、疲労強度が低下して
いる。比較例の番号6〜11は従来の窒化処理方法であ
り、化合物層厚さ、有効硬化深さのいずれかが劣るた
め、疲労強度が低下している。 【0021】 【発明の効果】以上のように本発明によれば、窒化処理
開始温度と窒化処理終了温度とを特定温度範囲に設定
後、その間を連続昇温させるだけで、化合物層を小さ
く、かつ有効硬化深さを大きくすることができ、結果と
して低コストで疲労強度を向上させることができる。
Description: BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method of nitriding steel, and more particularly, to a method of nitriding which can improve fatigue strength. 2. Description of the Related Art As one of surface hardening methods for improving the fatigue strength of mechanical structural steel, there is a nitriding treatment. This nitriding treatment is a useful method because the heat treatment distortion is smaller than that of induction hardening or carburizing quenching, which is the same surface hardening method. Generally, there are cases where nitriding treatment is performed on steel materials for machine structures (SC material, SCM material, etc.) and cases where nitriding steel such as SACM645 is used. And two-stage nitriding is commonly employed. One-step nitriding is a method of maintaining a constant temperature of about 500 ° C. for a certain period of time. Generally, the depth of cure is small and the thickness of the compound layer is large, so that the wear resistance is excellent, but the fatigue strength is low. There is a problem. Further, it is possible to increase the hardening depth by long-term treatment to improve the fatigue strength to some extent, but it is not realistic because the long-term treatment leads to an increase in cost. Two-stage nitriding improves the length of the one-stage nitridation by increasing the nitrogen potential by forming a nitride layer by heating in the first stage, and then increasing the temperature to a higher temperature to allow nitrogen to diffuse into the steel faster. However, it is insufficient from the viewpoint of improving the fatigue strength. On the other hand, from the viewpoint of improving fatigue strength, Japanese Patent Application Laid-Open No. 63-93821 discloses a method of performing shot peening after nitriding treatment.
Japanese Patent Application Laid-Open Publication No. H11-157, respectively, discloses a method of performing two-stage nitriding at the time of ion nitriding. However, the former requires an additional step of shot peening, and the latter requires the use of an expensive method of ion nitriding, which leads to an increase in cost. The present invention has been made in view of such circumstances, and an object of the present invention is to provide a nitriding treatment method capable of improving fatigue strength at low cost. According to the present invention, when a steel material is subjected to a nitriding treatment, the temperature at which the nitriding treatment is started is set to 480.
To 550 ° C., and the nitriding treatment end temperature is 560.
A nitriding method is provided in which the temperature is set to a range of from about 630 ° C. to continuously raise the temperature from the start of the nitriding treatment to the end of the nitriding treatment. [0006] The inventors of the present application have performed only ordinary nitriding treatment,
In addition, as a result of intensive research on a nitriding treatment method that can improve fatigue strength at low cost, the nitriding treatment start temperature and nitriding treatment end temperature are specified in a certain temperature range, and the temperature is continuously raised during that period. I found something to do. That is, by setting the nitriding treatment start temperature and the nitridation end temperature to specific ranges and continuously increasing the temperature between them, even if the compound is formed at a low temperature, the temperature is immediately increased and the compound layer easily disappears, and It has been found that a large hardening depth can be obtained, and as a result, fatigue strength can be improved. The present invention having the above configuration has been completed based on such findings of the present inventors. Hereinafter, the present invention will be described specifically. In the nitriding treatment, a nitride layer (compound layer) is formed on the surface of a steel material, and at the same time, nitrogen is diffused inside to form a nitride, thereby causing a large strain in the α-iron lattice to generate a steel material. Is to harden the surface. In the present invention, in performing such a nitriding treatment, the nitriding treatment starting temperature is set in the range of 480 to 550 ° C., and the nitriding treatment end temperature is set in the range of 560 to 630 ° C. The temperature is continuously increased from the start to the end of the nitriding treatment (such a method is hereinafter referred to as a gradient nitriding method). [0009] Regarding the nitriding treatment starting temperature, if the temperature is lower than 480 ° C, the nitriding reaction is slow, so that an effective hardening depth cannot be obtained. On the other hand, if the temperature exceeds 550 ° C, the thickness of the compound layer increases, and the fatigue strength decreases. Adversely affect. Therefore, the nitriding treatment start temperature is specified in the range of 480 ° C to 550 ° C. [0010] Regarding the nitriding treatment end temperature, if the temperature is lower than 560 ° C, diffusion of nitrogen is slow, so that an effective hardening depth cannot be obtained. And fatigue strength deteriorates. Therefore, the nitriding treatment end temperature is specified in the range of 560 to 630 ° C. If the nitriding treatment end temperature exceeds the tempering temperature of the steel, the inside is softened, so it is necessary not to exceed the tempering temperature. In the present invention, the temperature is continuously increased from the start of the nitriding treatment to the end of the nitriding treatment, and the mode is not limited as long as the temperature is continuously increased. In the nitriding treatment according to the present invention, not only a gas nitriding method which is usually performed, but also an ion nitriding method, a salt bath nitriding method and the like can be applied. The effect can be obtained. The composition of the steel applied to the method of the present invention is not particularly limited, but is mainly applied to steel having a composition based on ordinary nitrided steel. An embodiment of the present invention will be described below. A nitrided steel SACM645 having the composition shown in Table 1
(JISG4202 aluminum-chromium-molybdenum steel) hot rolled round bar (30mmφ), 900 ° C ×
After oil quenching for 1 hour and water cooling quenching and tempering for 1 hour at 650 ° C., an Ono-type rotary bending fatigue test piece having a parallel portion of 8 mmφ was processed to obtain a test material. [Table 1] The specimen was subjected to a nitriding treatment. The nitriding treatment was performed using a gas nitriding furnace in an N 2 —NH 3 —CO 2 atmosphere with the three nitriding temperature patterns shown in FIG. 1 and the treatment time set to 20 hours. In FIG. 1, the gradient nitriding method is to raise the temperature continuously, the two-step nitriding method is to perform the second-stage nitriding after the first-stage nitriding, and the one-step nitriding method is to keep the temperature at a constant temperature. Table 2 shows the processing conditions of the nitriding treatment and the processing results. In Table 2, the surface hardness is 0.05 mm from the surface
The hardness of the position, the thickness of the compound are the thickness of the nitride layer formed on the surface, the effective hardening depth is the distance at which the HV550 is obtained, and the fatigue strength is 10 7. Evaluation was based on the stress value at each time. Table 2
Among them, numbers 1 to 3 are examples included in the scope of the present invention, and numbers 4 to 13 are comparative examples. Among the comparative examples, Nos. 4 to 7 have the same temperature raising method as the present invention, but the nitriding treatment start temperature or the nitriding treatment end temperature is out of the conditions of the present invention. Nos. 10 to 13 adopting the single-stage nitriding method. [Table 2] As is clear from Table 2, all of Nos. 1 to 3 within the scope of the present invention have a small compound layer, an appropriate surface hardness, and a large effective hardening depth, and thus have excellent fatigue strength. I have. In Comparative Examples Nos. 4 to 7, the same gradient nitriding method as that of the present invention is employed. However, the processing start temperature or the processing end temperature is out of the range of the present invention, and the effective hardening depth is small. In addition, the thickness of the compound layer is large, and the fatigue strength is reduced. Nos. 6 to 11 of the comparative examples are conventional nitriding treatment methods, in which either the compound layer thickness or the effective hardening depth is inferior, and the fatigue strength is reduced. As described above, according to the present invention, after setting the nitriding treatment start temperature and the nitriding treatment end temperature within a specific temperature range, the temperature is continuously increased only between them, and the compound layer can be made smaller. In addition, the effective hardening depth can be increased, and as a result, the fatigue strength can be improved at low cost.

【図面の簡単な説明】 【図1】実施例及び比較例の窒化処理の温度パターンを
示す図。
BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 is a view showing a temperature pattern of a nitriding treatment in Examples and Comparative Examples.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 桑原 美博 新潟県長岡市新保4丁目11−10 (56)参考文献 特開 平2−294463(JP,A) 特開 昭63−255355(JP,A) 特開 平4−198464(JP,A) 特開 平4−198463(JP,A) 特開 平4−202754(JP,A) 特開 昭49−125234(JP,A) 特開 昭49−17328(JP,A) (58)調査した分野(Int.Cl.7,DB名) C23C 8/26 ──────────────────────────────────────────────────続 き Continuation of the front page (72) Inventor Yoshihiro Kuwahara 4-11-10, Shinbo, Nagaoka-shi, Niigata (56) References JP-A-2-294463 (JP, A) JP-A-63-255355 (JP, A) JP-A-4-198464 (JP, A) JP-A-4-198463 (JP, A) JP-A-4-202754 (JP, A) JP-A-49-125234 (JP, A) JP-A-49-125 17328 (JP, A) (58) Field surveyed (Int. Cl. 7 , DB name) C23C 8/26

Claims (1)

(57)【特許請求の範囲】 【請求項1】 鋼材に窒化処理を施すにあたり、窒化処
理開始温度を480〜550℃の範囲に設定し、窒化処
理終了温度を560〜630℃の範囲に設定して、窒化
処理開始から窒化処理終了までを連続的に昇温させるこ
とを特徴とする窒化処理方法。
(57) [Claim 1] When nitriding a steel material, the nitriding treatment start temperature is set in the range of 480 to 550 ° C, and the nitriding treatment end temperature is set in the range of 560 to 630 ° C. And continuously raising the temperature from the start of the nitriding treatment to the end of the nitriding treatment.
JP04938393A 1993-03-10 1993-03-10 Nitriding method Expired - Fee Related JP3448608B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP04938393A JP3448608B2 (en) 1993-03-10 1993-03-10 Nitriding method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP04938393A JP3448608B2 (en) 1993-03-10 1993-03-10 Nitriding method

Publications (2)

Publication Number Publication Date
JPH06264211A JPH06264211A (en) 1994-09-20
JP3448608B2 true JP3448608B2 (en) 2003-09-22

Family

ID=12829503

Family Applications (1)

Application Number Title Priority Date Filing Date
JP04938393A Expired - Fee Related JP3448608B2 (en) 1993-03-10 1993-03-10 Nitriding method

Country Status (1)

Country Link
JP (1) JP3448608B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011235318A (en) * 2010-05-11 2011-11-24 Daido Steel Co Ltd Method for surface treatment of die-casting die

Also Published As

Publication number Publication date
JPH06264211A (en) 1994-09-20

Similar Documents

Publication Publication Date Title
US6059898A (en) Induction hardening of heat treated gear teeth
JP2006200003A (en) Heat-treated article and heat treatment method
JP3448608B2 (en) Nitriding method
JPH09279295A (en) Steel for soft-nitriding excellent in cold forgeability
JP3193320B2 (en) Heat treatment method for machine parts
JP2549039B2 (en) Carbonitriding heat treatment method for high strength gears with small strain
JP2000063935A (en) Production of nitrided part
EP1291445B1 (en) Steel material production method
JP3395252B2 (en) Manufacturing method of steel with excellent fatigue strength
JPH07102343A (en) Production of nitrided parts
JP2885061B2 (en) Method for producing nitrided steel member excellent in fatigue characteristics
KR101823907B1 (en) complex heat treated gear having excellent machinability and low deformability for heat treatment and method for manufacturing the same
JP4526616B2 (en) Gear made of spheroidal graphite cast iron material and manufacturing method thereof
JP4184147B2 (en) NITRIDED TOOL, DIE AND ITS MANUFACTURING METHOD
JPH1025539A (en) Press formed member with high fatigue strength
JPH11200010A (en) Surface treatment of metallic multilayered belt for automobile
JP2878331B2 (en) Manufacturing method of nitrided steel member
JP2907011B2 (en) Method for producing nitrided steel member with less heat treatment distortion
JP2636661B2 (en) High-strength steel part with excellent fatigue strength and method of manufacturing the same
RU2134726C1 (en) Method of hardening of steel parts
JPH0130913B2 (en)
JPH0545665B2 (en)
JPH0849058A (en) Production of wear resistant nitrided steel member small in heat treating strain
JPH08104924A (en) Manufacture of power transmission part
JP3477030B2 (en) Carburized members

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees