JP2636661B2 - High-strength steel part with excellent fatigue strength and method of manufacturing the same - Google Patents

High-strength steel part with excellent fatigue strength and method of manufacturing the same

Info

Publication number
JP2636661B2
JP2636661B2 JP3970693A JP3970693A JP2636661B2 JP 2636661 B2 JP2636661 B2 JP 2636661B2 JP 3970693 A JP3970693 A JP 3970693A JP 3970693 A JP3970693 A JP 3970693A JP 2636661 B2 JP2636661 B2 JP 2636661B2
Authority
JP
Japan
Prior art keywords
residual
treatment
carburizing
amount
strength
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP3970693A
Other languages
Japanese (ja)
Other versions
JPH0673523A (en
Inventor
淳 稲田
浩 家口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kobe Steel Ltd
Original Assignee
Kobe Steel Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kobe Steel Ltd filed Critical Kobe Steel Ltd
Priority to JP3970693A priority Critical patent/JP2636661B2/en
Publication of JPH0673523A publication Critical patent/JPH0673523A/en
Application granted granted Critical
Publication of JP2636661B2 publication Critical patent/JP2636661B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Solid-Phase Diffusion Into Metallic Material Surfaces (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は、自動車,建設機械およ
び産業機械等の各種シャフト類として用いられる高強度
鋼部品およびその製造方法に関するものであり、詳細に
は上記鋼部品の使用性能、特に疲労破壊に対する抵抗力
を高めた高強度鋼部品、およびその様な高強度鋼部品を
製造する為の有用な方法に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a high-strength steel part used for various shafts of automobiles, construction machines, industrial machines, and the like, and a method of manufacturing the same. TECHNICAL FIELD The present invention relates to a high-strength steel part having increased resistance to fatigue fracture and a useful method for manufacturing such a high-strength steel part.

【0002】[0002]

【従来の技術】自動車,建設機械および産業機械等の各
種シャフト類の様に、高い繰り返し応力や面圧のかかる
機械構造用部品に対しては、浸炭や浸炭浸窒或は窒化等
の表面強化処理がその寿命を延ばすのに有効であるとさ
れ、広く適用されている。
2. Description of the Related Art Surface strengthening such as carburizing, carburizing, nitriding or nitriding is applied to mechanical structural parts which are subjected to high repetitive stress or surface pressure, such as various shafts of automobiles, construction machines and industrial machines. Processing is said to be effective in extending its life and is widely applied.

【0003】ところで鋼部品内の残留オーステナイト
(以下、残留γと略称する)相が材料の疲労寿命に対し
てどの様な影響をおよぼすのかについては、未だ明らか
にされていない点が多いものの、それが亀裂伝播の抵抗
になり得ることが数多く報告されている。しかしなが
ら、軟質相である残留γ相は亀裂の発生に関してはこれ
を助長するといわれている。
[0003] By the way, although much has not been clarified as to what effect the retained austenite (hereinafter abbreviated as residual γ) phase in a steel part has on the fatigue life of a material, it is not clear yet. Has been reported to be able to be a resistance to crack propagation. However, it is said that the residual γ phase, which is a soft phase, promotes crack generation.

【0004】上記の様な知見に基づき、本発明者らは曲
げ疲労や面疲労等の様に表面から内部に向かって破壊が
進行する様な鋼部品に対しては、亀裂発生の起こりやす
い最表面付近は残留γを少なくし、亀裂伝播と関わりの
深い材料内部では残留γを多くすることによって、材料
寿命を向上できると考えた。しかしながら、通常の浸炭
や浸炭浸窒或は窒化等の表面処理によれば、炭素・窒素
濃度は表面ほど多量となるのでこれに対応して残留γ量
も表面に近づくほど増え、上記の考え方と逆の分布をと
ることになる。
[0004] Based on the above findings, the inventors of the present invention have determined that steel parts whose fracture progresses from the surface toward the inside such as bending fatigue and surface fatigue are most likely to crack. It was considered that the life of the material can be improved by reducing the residual γ near the surface and increasing the residual γ inside the material that is closely related to crack propagation. However, according to the surface treatment such as ordinary carburizing, carburizing or nitriding, or nitriding, the concentration of carbon and nitrogen becomes larger at the surface. The opposite distribution will be taken.

【0005】一方、浸炭等の表面処理後にショットピー
ニング処理を施せば、最表面付近の残留γは加工誘起変
態を起こしてマルテンサイト相に変化するため、希望す
る疲労強度を発揮する様な残留γ分布に近づくことにな
ることが予想される。しかしながら、後記実施例に示す
様に、通常の浸炭や浸炭浸窒或は窒化等を施した表面処
理材にハードショットピーニング処理をほどこした程度
では、目的とする残留γ分布は達成されず、従って希望
する疲労強度を得ることができないことが分かった。
On the other hand, if a shot peening treatment is performed after a surface treatment such as carburization, the residual γ near the outermost surface undergoes a work-induced transformation and changes to a martensite phase, so that the residual γ that exhibits a desired fatigue strength is obtained. It is expected that it will approach the distribution. However, as shown in the examples described below, the target residual γ distribution is not achieved at the extent that hard shot peening is applied to a surface treatment material that has been subjected to ordinary carburization, carburization, nitriding, or the like. It was found that the desired fatigue strength could not be obtained.

【0006】ところで特開昭62−185826号公報
には、浸炭時の炭素ポテンシャルを通常より高めに設定
して全体の残留γ量を増やしておき、その後ハードショ
ットピーニングなどの強加工を施す技術も提案されてい
る。しかしながら、単に浸炭のポテンシャルを高めただ
けでは、内部残留γが増えるにつれて最表面の残留γ量
も更に多くなるため、ショットピーニングでその一部分
を変態させても、最表面には尚数10%の残留γが残存
してしまう。この様な残留γ分布を有する鋼部品では、
圧縮残留応力の増加は認められるが、本発明の目的であ
る亀裂発生の抑制という効果は達成されず、疲労強度の
向上効果は十分でない。これは上記技術の目的が圧縮残
留応力の増加にあり、最表面の残留γ量について何ら考
慮されていない為である。また浸炭ポテンシャルの増加
は、浸炭処理中に粗大炭化物を析出させ、却って疲労強
度低下を招く恐れがある。逆にポテンシャルを低くして
浸炭(浸炭浸窒)処理を行った後ショットピーニングを
施した場合は、当然最表面付近の残留γは非常に少なく
なるが、同時に内部の残留γ量も少なくなっているた
め、残留γによる耐亀裂伝播性の効果が得られない。
Japanese Patent Application Laid-Open No. Sho 62-185826 also discloses a technique in which the carbon potential during carburization is set higher than usual to increase the total amount of residual γ, and then hard machining such as hard shot peening is performed. Proposed. However, simply increasing the potential of carburization also increases the amount of residual γ on the outermost surface as the internal residual γ increases. Therefore, even if part of the surface is transformed by shot peening, the outermost surface still has a few tens of percent. Residual γ remains. In steel parts having such a residual γ distribution,
Although an increase in compressive residual stress is recognized, the effect of suppressing crack generation, which is the object of the present invention, is not achieved, and the effect of improving fatigue strength is not sufficient. This is because the purpose of the above technique is to increase the compressive residual stress, and the residual γ amount on the outermost surface is not considered at all. In addition, an increase in the carburizing potential may cause coarse carbides to precipitate during the carburizing treatment, which may lead to a reduction in fatigue strength. Conversely, when shot peening is performed after carburizing (carburizing and carburizing) treatment with a reduced potential, the residual γ near the outermost surface is naturally very small, but at the same time, the amount of residual γ inside is also small. Therefore, the effect of crack propagation resistance due to residual γ cannot be obtained.

【0007】[0007]

【発明が解決しようとする課題】本発明はこうした状況
のもとになされたものであって、その目的は、亀裂の発
生・伝播の両方を抑制できる残留γ分布を達成すること
によって、優れた疲労強度を示す高強度鋼部品、および
その様な高強度鋼部品を得る為の最適な方法を提供する
ことにある。
SUMMARY OF THE INVENTION The present invention has been made under such a circumstance, and an object of the present invention is to achieve an excellent γ distribution by suppressing both generation and propagation of cracks. It is an object of the present invention to provide a high-strength steel part exhibiting fatigue strength and an optimum method for obtaining such a high-strength steel part.

【0008】[0008]

【課題を解決するための手段】上記目的を達成し得た本
発明の高強度鋼部品とは、炭素原子および/または窒素
原子の鋼部品内への導入を伴う表面処理をその製造工程
の一つまたはそれ以上として含んで製造されたものであ
り、最表面から40μm深さまでの残留γ量が15体積
%以下であり、且つ最表面から100〜400μm深さ
での残留γ量が20〜40体積%である点に要旨を有す
るものである。
The high-strength steel part of the present invention, which has achieved the above-mentioned object, includes a surface treatment involving the introduction of carbon atoms and / or nitrogen atoms into a steel part in one of its manufacturing steps. One or more of them, the residual γ amount from the outermost surface to a depth of 40 μm is 15% by volume or less, and the residual γ amount at a depth of 100 to 400 μm from the outermost surface is 20 to 40. The point is volume%.

【0009】上記高強度鋼部品はその残留γ分布を規定
することによって、希望する高強度が得られたものであ
り、上記の様な残留γ分布が達成できればその製造方法
については特に限定されるものではないが、最適な製造
方法としては下記の様な構成が挙げられる。即ち、本発
明に係る高強度鋼部品の製造方法とは、浸炭用鋼によっ
て作成した部品に、表面炭素濃度:0.7重量%以上、
表面窒素濃度:0.2重量%以上、且つ(表面炭素濃度
+表面窒素濃度):1.3重量%以下となる様に、浸炭
浸窒処理をT時間施した後、900℃以上で表面炭素濃
度:0.4〜0.9重量%となる様な浸炭処理を0.2
〜0.6T時間施すことによって、最表面から40μm
深さまでの残留γ量を40体積%以下とし、更にアーク
ハイト0.6mmA以上のショットピーニング処理を施
して前記残留オーステナイト量を15体積%以下とする
点に要旨を有するものである。
The above high-strength steel part has a desired high strength by defining its residual γ distribution, and its production method is particularly limited as long as the above residual γ distribution can be achieved. Although not intended, an optimum manufacturing method includes the following configuration. That is, the method for producing a high-strength steel part according to the present invention means that a part made of carburizing steel has a surface carbon concentration of 0.7% by weight or more,
Surface nitrogen concentration: 0.2% by weight or more and (surface carbon concentration + surface nitrogen concentration): 1.3% by weight or less, after performing carburizing and nitriding treatment for T hours, and surface carbonizing at 900 ° C. or more. Concentration: Carburizing treatment to be 0.4-0.9% by weight
0.60.6T from the outermost surface
The gist is that the residual γ amount up to the depth is set to 40% by volume or less, and shot peening at an arc height of 0.6 mmA or more is performed to reduce the residual austenite amount to 15% by volume or less.

【0010】[0010]

【作用】本発明者らは、亀裂の発生・伝播の両方を抑制
できる様な鋼部品の残留γ分布について様々な角度から
検討した。その結果、最表面から40μm深さまでの残
留γ量を15体積%以下に抑えた上で、最表面から10
0〜400μm深さでの残留γ量を20〜40体積%と
したとき、最も両者の効果が相乗的に発揮されて良好な
疲労強度を示すことを見出し、本発明を完成した。ここ
で、「最表面から40μm深さまでの残留γ量が15体
積%以下である」とは、最表面から40μm深さまでの
いずれの部分においても、残留γ量が常に15体積%以
下であることを意味する。また上記鋼部品のいずれの領
域においても、残留γ組織以外は、マルテンサイト組織
やベイナイト組織を主体とするものである。
The present inventors have studied from various angles the residual γ distribution of a steel part that can suppress both the initiation and propagation of cracks. As a result, the amount of residual γ from the outermost surface to a depth of 40 μm was suppressed to 15% by volume or less, and
When the amount of residual γ at a depth of 0 to 400 μm is set to 20 to 40% by volume, it has been found that both effects are most synergistically exhibited and good fatigue strength is exhibited, and the present invention has been completed. Here, “the residual γ amount from the outermost surface to a depth of 40 μm is 15 vol% or less” means that the residual γ amount is always 15 vol% or less in any part from the outermost surface to a depth of 40 μm. Means In any of the regions of the above steel parts, a martensite structure or a bainite structure is mainly used except for the residual γ structure.

【0011】本発明の高強度鋼部品において、残留γ分
布を上述の様に規定した詳細は、下記の通りである。即
ち、疲労による初期段階亀裂の発生範囲は、最表面から
50μm深さまで、特に40μm深さまでであり、この
部分における残留γ量が15体積%を超えると基地組織
よりも軟質な残留γに歪が集中し、亀裂の発生を促進す
るからである。また鋼部品の疲労亀裂伝播は、最表面か
ら100〜400μm深さでの残留γ量が重要であり、
この部分の残留γ量を20〜40体積%としたとき、疲
労亀裂伝播抑制作用が最も効果的に発揮されるからであ
る。
[0011] In the high-strength steel part of the present invention, the details defining the residual γ distribution as described above are as follows. That is, the range of initial stage crack generation due to fatigue is from the outermost surface to a depth of 50 μm, particularly to a depth of 40 μm. If the amount of residual γ in this part exceeds 15% by volume, the residual γ softer than the base structure is distorted. This is because they concentrate and promote the generation of cracks. For fatigue crack propagation of steel parts, the amount of residual γ at a depth of 100 to 400 μm from the outermost surface is important,
This is because, when the residual γ amount in this portion is set to 20 to 40% by volume, the effect of suppressing fatigue crack propagation is most effectively exhibited.

【0012】本発明の高強度鋼部品は、上記の様な残留
γ分布が達成されれば本発明の効果が発揮され、その製
造方法については、特に制限されるものではないが、例
えば下記(1)〜(3)の各方法によって製造すること
ができる。尚下記の各製造法法の構成から明らかな様
に、本発明の高強度鋼部品を製造するためには、炭素原
子および/または窒素原子の鋼部品内への導入を伴う表
面処理をその製造工程の一つまたはそれ以上として含ん
で、鋼部品表層部の炭素や窒素濃度を高めてやる必要が
あり、これを表面処理によらずに部品全体の炭素濃度や
窒素濃度を高める方法では、靭性が損なわれて却って寿
命を縮める上、加工性も損なわれることになる。
The high-strength steel part of the present invention exerts the effects of the present invention as long as the above-mentioned residual γ distribution is achieved. The production method is not particularly limited. It can be manufactured by each method of 1) to (3). As is apparent from the constitutions of the following production methods, in order to produce the high-strength steel part of the present invention, a surface treatment involving the introduction of carbon atoms and / or nitrogen atoms into the steel part is performed. It is necessary to increase the concentration of carbon and nitrogen in the surface layer of steel parts by including it as one or more of the steps. Is impaired, shortening the service life, and also impairing workability.

【0013】(1)鋼部品に窒化処理(塩浴等の方法を
用い、Feやその他の合金元素の窒化物の形成を主目的
とする処理)を施した後、窒化物が分解する程度の高温
で浸炭処理等を行ない、固溶窒素を内部に拡散させると
ともに、最表面付近の窒素や炭素の濃度を調整し、その
後ショットピーニング等の強加工を施す方法。 (2)後に詳述する本発明に係る最適な製造方法におい
て、2段階の処理を段階を分けずに連続的に行なう方
法、即ち温度の上昇またはポテンシャルの低減を徐々に
行う方法。 (3)残留γ量が比較的多量となる様に浸炭焼入れを行
なった鋼部品に対し、急速にサブゼロ処理および室温ま
での加熱を行い、最表面近傍のみの残留γのみを変態さ
せる。
(1) After subjecting a steel part to nitriding treatment (a treatment mainly for the formation of nitrides of Fe and other alloy elements using a method such as a salt bath), the nitride is decomposed to such an extent that the nitrides are decomposed. A method in which carburizing treatment or the like is performed at a high temperature to diffuse solid-solution nitrogen into the interior, adjust the concentration of nitrogen and carbon near the outermost surface, and then perform strong processing such as shot peening. (2) In the optimum manufacturing method according to the present invention, which will be described in detail later, a method in which two-stage processing is performed continuously without dividing the steps, that is, a method in which the temperature is raised or the potential is gradually reduced. (3) A steel part that has been carburized and quenched so that the amount of residual γ becomes relatively large is rapidly subjected to sub-zero treatment and heating to room temperature to transform only the residual γ near the outermost surface.

【0014】その他、好ましい条件としては、材料内の
介在物や浸炭等で生じる酸化層或は熱処理時の脱炭層の
材料欠陥はできるだけ少ない方が好ましい。これは、本
発明においては亀裂発生を抑制するべく組織が調整され
てるので、亀裂発生サイトがそうした材料欠陥に移行し
やすくなるからである。またショットピーニング等の圧
縮残留応力を増加させる処理は本発明の効果をより一層
大きくするという観点からして効果的である。これは、
残留圧縮応力が亀裂発生・伝播ともに制御する効果を有
するからである本発明者らは、上記の様な残留γ分布を
達成するための最適な製造方法についても、様々な角度
から検討した。その結果、各処理条件を適切に規定する
ことによって、希望する残留γ分布が容易に得られるこ
とを見いだした。本発明に係る製造方法における各製造
条件について説明する。
As another preferable condition, it is preferable that the material defect of the oxide layer generated by inclusions or carburization in the material or the decarburized layer at the time of heat treatment is as small as possible. This is because, in the present invention, the structure is adjusted to suppress the occurrence of cracks, so that the crack initiation site is likely to shift to such a material defect. Further, a treatment for increasing the compressive residual stress such as shot peening is effective from the viewpoint of further increasing the effect of the present invention. this is,
The present inventors have studied from various angles also an optimal manufacturing method for achieving the above-mentioned residual γ distribution because the residual compressive stress has an effect of controlling both crack generation and propagation. As a result, it has been found that a desired residual γ distribution can be easily obtained by appropriately defining each processing condition. Each manufacturing condition in the manufacturing method according to the present invention will be described.

【0015】本発明方法における処理は、大まかに3段
階に分けられる。まず第1段階は、浸炭浸窒処理によっ
て炭素および窒素原子を材料内へ効率よく大量に導入す
る段階である。こうした観点から、少なくとも表面炭素
濃度:0.7重量%以上および表面窒素濃度:0.2重
量%以上となる条件で処理を行う必要がある。しかしな
がら、炭素および窒素原子を過剰に導入すると、次段階
(浸炭処理)において、最表面付近の炭素および窒素濃
度を減少させる作用が不十分となり、結果として最表面
付近の残留γ量が目的の量より多くなってしまい、本発
明の目的が達成されなくなる。また炭素および窒素原子
の過剰導入は、しばしば粗大炭化物の析出を招き、この
粗大炭化物は次段階での侵入原子の拡散の妨げとなる
上、これらが全過程終了後にも残存した場合はそれ自体
が亀裂の発生源となって疲労強度を低下させることにな
る。こうした観点から、浸炭浸窒処理は(表面炭素濃度
+表面窒素濃度)が1.3重量%以下となる様な条件で
処理を行う必要がある。尚処理温度については、特に限
定するものではないが、炭素および窒素原子を効率よく
取り込む目的から、800℃〜900℃の温度で行うこ
とが望ましい。
The process in the method of the present invention is roughly divided into three stages. First, the first step is a step of efficiently introducing a large amount of carbon and nitrogen atoms into a material by carburizing and nitriding. From such a viewpoint, it is necessary to perform the treatment under the condition that the surface carbon concentration is at least 0.7% by weight and the surface nitrogen concentration is at least 0.2% by weight. However, if carbon and nitrogen atoms are excessively introduced, the action of reducing the carbon and nitrogen concentrations near the outermost surface in the next step (carburizing treatment) becomes insufficient, and as a result, the residual γ amount near the outermost surface becomes the target amount. And the object of the present invention cannot be achieved. Also, excessive introduction of carbon and nitrogen atoms often leads to precipitation of coarse carbides, which hinder the diffusion of interstitial atoms in the next step, and if these survive after completion of the entire process, they themselves will be removed. It becomes a source of cracks and reduces fatigue strength. From such a viewpoint, it is necessary to perform the carburizing and nitriding treatment under the condition that (surface carbon concentration + surface nitrogen concentration) is 1.3% by weight or less. The treatment temperature is not particularly limited, but is desirably performed at a temperature of 800 ° C. to 900 ° C. for the purpose of efficiently taking in carbon and nitrogen atoms.

【0016】次に第2段階は、前段階で取り込んだ各原
子を内部へ拡散して内部残留γを高める条件を整える一
方、最表面の炭素および窒素濃度を比較的低く調整する
ことによって、最表面の残留γの増加および粗大炭化物
の析出を抑制するための処理である。浸炭の効率および
前段階で取り込んだ原子の拡散の2点を考慮して、処理
温度は900℃以上とする必要がある。この処理温度の
上限については、あまりに高温にすると結晶粒粗大化な
どの問題が生じるので、素材や加工履歴に合わせて適当
な温度を選定すれば良い。また処理時間は前段階に要し
た時間の0.20〜0.60倍程度とするのが良い。こ
れより短時間では各原子の内部への拡散量が不十分とな
り、これより長時間では拡散が進みすぎて各位置での炭
素および窒素濃度が希薄になってしまうため目的の効果
が達成されない。尚処理時間に関しては、第1,2段階
の時間比のみを規定したが、各々の時間の絶対値は対象
とする部品の大きさに応じて適宜設定すれば良い。また
第2段階の浸炭処理は、少なくとも表面炭素濃度が0.
9重量%以下となる条件で行なう必要がある。即ち、表
面炭素濃度が0.9重量%を超えると、熱処理後の残留
γ量が40体積%よりも大きくなり、ショットピーニン
グを施しても最表面付近の残留γ量を15体積%以下と
することはできない。一方表面炭素濃度の下限について
は、表面強化効果を得るという観点から0.4重量%以
上とするのが良い。但し、耐ピッチング性や耐摩耗性を
要する部品では、0.7重量%程度以上の比較的高い濃
度での浸炭処理によって表面の硬度を高く保つ必要があ
り、実操業に当たっては、当該部品の要求特性に応じて
最適な表面炭素濃度を上記範囲内で決定する必要がある
のは言うまでもない。
Next, in the second step, while adjusting the conditions for increasing the internal residual γ by diffusing each atom taken in in the previous step into the inside, the carbon and nitrogen concentrations on the outermost surface are adjusted to be relatively low, thereby making the most possible. This is a treatment for suppressing an increase in surface residual γ and precipitation of coarse carbides. The treatment temperature needs to be 900 ° C. or higher in consideration of the carburization efficiency and the diffusion of atoms taken in at the previous stage. Regarding the upper limit of the processing temperature, if the temperature is too high, a problem such as coarsening of crystal grains occurs. Therefore, an appropriate temperature may be selected according to the material and the processing history. The processing time is preferably about 0.20 to 0.60 times the time required in the previous stage. If the time is shorter than this, the amount of diffusion of each atom into the inside becomes insufficient, and if the time is longer than this, the diffusion proceeds too much and the concentration of carbon and nitrogen at each position becomes thin, so that the intended effect cannot be achieved. As for the processing time, only the first and second time ratios are specified, but the absolute value of each time may be appropriately set according to the size of the target component. In the second stage carburizing treatment, at least the surface carbon concentration is set to 0.1.
It is necessary to carry out the reaction under the condition of 9% by weight or less. That is, when the surface carbon concentration exceeds 0.9% by weight, the amount of residual γ after heat treatment becomes larger than 40% by volume, and the amount of residual γ near the outermost surface is reduced to 15% by volume or less even after shot peening. It is not possible. On the other hand, the lower limit of the surface carbon concentration is preferably 0.4% by weight or more from the viewpoint of obtaining a surface strengthening effect. However, for parts requiring pitting resistance and wear resistance, the surface hardness must be kept high by carburizing at a relatively high concentration of about 0.7% by weight or more. Needless to say, it is necessary to determine the optimum surface carbon concentration within the above range according to the characteristics.

【0017】上記第1,2段階の処理を施した直後の材
料最表面直下(即ち、最表面から40μm深さまで)の
残留γ量が40体積%以下となっていれば、この後最終
段階(焼入後)としてアークハイト0.60mmA以上
のショットピーニングを施すことによって、最表面付近
の残留γは加工誘起変態を起こし、疲労亀裂の発生を助
長することが無い程度(15体積%以下)まで低減さ
れ、且つ100〜400μm深さにおいては20〜40
%程度の残留γ相が残った状態が得られる。
If the residual γ amount immediately below the outermost surface of the material (ie, from the outermost surface to a depth of 40 μm) immediately after the first and second stage treatments is 40 vol% or less, then the final stage ( By performing shot peening with an arc height of 0.60 mmA or more as after (quenching), the residual γ near the outermost surface causes work-induced transformation and does not promote the generation of fatigue cracks (up to 15% by volume or less). Reduced and 20-40 at 100-400 μm depth
% Of the residual γ phase is obtained.

【0018】第3段階のショットピーニング処理につい
ては、本来の表面強化と圧縮残留応力付与の効果以外
に、表面残留γの低減が本発明においては重要な目的と
なるため、特に0.60mmA以上の高いアークハイト
によって処理を施すことを条件とした。尚必要であれ
ば、従来の浸炭処理においてもよく行われているよう
に、第2段階の浸炭焼入れ後に残留γが変態しない程度
の低温(200℃前後)で焼戻しを行ってもよい。
In the third step of the shot peening treatment, in addition to the original effects of surface strengthening and compressive residual stress, reduction of surface residual γ is an important object in the present invention. The condition was that the treatment be performed with a high arc height. If necessary, tempering may be performed at a low temperature (about 200 ° C.) at which residual γ does not transform after the second stage of carburizing and quenching, as is often done in conventional carburizing.

【0019】また本発明は、亀裂発生抑制と亀裂伝播抑
制の両特性を満足させようとするものであるから、更に
表面を強化させる手段として、上記のショットピーニン
グ処理を施した後、該処理で用いたショット粒子よりも
小さい粒子を用いてショットピーニング処理を施すこと
はさらに大きな効果を示すことが確認された。
Further, the present invention is intended to satisfy both the characteristics of crack generation suppression and crack propagation suppression. Therefore, as a means for further strengthening the surface, after the above-mentioned shot peening treatment is performed, this treatment is performed. It was confirmed that performing shot peening treatment using particles smaller than the used shot particles exhibited a greater effect.

【0020】本発明方法は上述の如く、浸炭浸窒処理と
浸炭処理を2段階に行なった後、ショットピーニング処
理を施すものであるが、例えば特開平3−24258号
公報には多段処理によって窒素の侵入深さを高める技術
が提案されている。しかしながらこの技術は、従来の浸
炭浸窒処理の時間の短縮化および炭素と窒素侵入深さの
ギャップの解消が目的であり、好ましい表面炭素濃度を
1.2〜1.8重量%としていること、およびショット
ピーニングに関して何ら言及されていないことからも解
るように、表面の残留γの低減という考え方が含まれて
いない。従って、こうした方法は表面残留γ量が増えす
ぎる上に、粗大炭化物が析出しやすく、本発明で技術課
題としている繰り返し曲げ応力や引張圧縮応力に起因す
る疲労破壊に対する抵抗力の向上には逆効果であるこ
と、浸炭浸窒ではなく浸窒を単独で行うことを特徴とし
ているために効率が劣ることなどが問題と言える。
In the method of the present invention, as described above, the carburizing and nitriding treatment and the carburizing treatment are performed in two steps, and then the shot peening treatment is performed. For example, Japanese Patent Application Laid-Open No. 3-24258 discloses a multistage treatment. A technique has been proposed to increase the penetration depth. However, this technique is aimed at shortening the time of the conventional carburizing and nitriding treatment and eliminating the gap between the depth of carbon and nitrogen penetration, and the preferred surface carbon concentration is 1.2 to 1.8% by weight. As can be seen from the fact that no mention is made of shot peening, the concept of reducing residual γ on the surface is not included. Therefore, such a method not only increases the amount of residual surface γ excessively, but also tends to precipitate coarse carbides, which is an adverse effect on improving the resistance to fatigue fracture caused by repeated bending stress and tensile compression stress, which is the technical subject of the present invention. In addition, it is a problem that the method is characterized by performing nitriding alone instead of carburizing and nitriding, resulting in poor efficiency.

【0021】以下本発明を実施例によって更に詳細に説
明するが、下記実施例は本発明を限定する性質のもので
はなく、前・後記の趣旨に徴して設計変更することはい
ずれも本発明の技術的範囲に含まれるものである。
Hereinafter, the present invention will be described in more detail with reference to Examples. However, the following Examples are not intended to limit the present invention, and any design change in the spirit of the foregoing or the following is not limited to the present invention. It is included in the technical scope.

【0022】[0022]

【実施例】実施例1 供試材として、SCM420鋼(A)およぼSCR42
0鋼(B)用い、これら供試材を鍛造後、焼きならし処
理を施して、試験片に加工した後、(a)低ポテンシャ
ルで長時間の浸炭を施した後、ショットピーニング(S
P)する方法、および(b)軟窒化後通常の浸炭処理を
施し、更にショットピーニングする方法、等によって表
面処理した。
EXAMPLES Example 1 SCM420 steel (A) and SCR42 were used as test materials.
No. 0 steel (B), these test materials were forged, subjected to normalizing treatment, processed into test pieces, and (a) subjected to long-term carburization at a low potential, followed by shot peening (S
P) and (b) ordinary carburizing after nitrocarburizing, followed by shot peening.

【0023】即ち下記表1および図2に示す様に、SC
M420鋼についてはNH3 流量を徐々に少なくしなが
ら浸炭浸窒処理を種々の炭素ポテンシャルおよび窒素ポ
テンシャル(NP)条件で10時間施し、その後アーク
ハイト0.84mmAにてショットピーニング処理を施
した(No. 1〜3)。尚No. 1〜3の炭素ポテンシャル
は、夫々No. 1=0.6%,No. 2=0.8%およびN
o. 3=0.5%であった。一方SCR420鋼につい
ては、570℃で下記表2に示す種々の時間軟窒化処理
した後、950℃で同表2に示す時間でガス浸炭処理
し、その後アークハイト0.84mmAにてショットピ
ーニング処理を施した(No. 4〜7)。
That is, as shown in Table 1 below and FIG.
The M420 steel was subjected to carburizing and nitriding under various carbon potential and nitrogen potential (NP) conditions for 10 hours while gradually reducing the NH 3 flow rate, and then subjected to shot peening at an arc height of 0.84 mmA (No. 1-3). The carbon potentials of No. 1 to No. 3 were No. 1 = 0.6%, No. 2 = 0.8% and N
o. 3 = 0.5%. On the other hand, for SCR420 steel, after nitrocarburizing treatment at 570 ° C. for various times shown in Table 2 below, gas carburizing treatment at 950 ° C. for the time shown in Table 2 and then shot peening at an arc height of 0.84 mmA. (Nos. 4 to 7).

【0024】処理を行なった後の鋼部品について、小野
式回転曲げ疲労試験機によって疲労試験を行なった。本
発明は亀裂が最表面またはその直下で発生する場合に特
に有効であるから、疲労試験はノッチ付きの疲労試験片
を使用して行ない、その応力集中係数は2.0とした。
その結果を表1に併記する。また処理を行なった後の鋼
部材について、X線回折装置によって残留γ分布(即
ち、最表面からの深さと残留γ量の関係)を調査した。
その結果を図1に示す。
The steel parts after the treatment were subjected to a fatigue test using an Ono-type rotary bending fatigue tester. Since the present invention is particularly effective when a crack occurs at or just below the outermost surface, the fatigue test was performed using a notched fatigue test piece, and the stress concentration factor was 2.0.
The results are also shown in Table 1. Further, the residual γ distribution (that is, the relationship between the depth from the outermost surface and the residual γ amount) of the steel member after the treatment was examined by an X-ray diffractometer.
The result is shown in FIG.

【0025】[0025]

【表1】 [Table 1]

【0026】[0026]

【表2】 [Table 2]

【0027】これらの結果から次の様に考察できた。即
ち、本発明で規定する様な残留γ分布を有するのは、N
o. 1と4の鋼部品であり、これらのものだけが疲労特
性に優れていることがわかる。即ち、残留γ分布を適切
に調整することが、鋼部品の疲労強度向上に有効である
ことが確認された。
From these results, the following can be considered. That is, N has a residual γ distribution as defined in the present invention.
o. The steel parts of Nos. 1 and 4 indicate that only these parts have excellent fatigue properties. That is, it was confirmed that appropriately adjusting the residual γ distribution is effective for improving the fatigue strength of the steel part.

【0028】これに対しNo. 2,3、5〜7のものは本
発明で規定する要件のいずれかを満足しないものであ
り、いずれも疲労限はNo. 1,4に比べ劣っている。こ
れらは次の様に考えることができる。
On the other hand, Nos. 2, 3 and 5 to 7 do not satisfy any of the requirements specified in the present invention, and all of them are inferior in fatigue limit to Nos. 1 and 4. These can be considered as follows.

【0029】まずNo. 2は浸炭浸窒処理前半における窒
素ポテンシャルが高いので、No. 1と同様に最表面から
100〜400μm深さでの残留γ量を20〜40体積
%とすることができるが、浸炭浸窒処理後半における窒
素ポテンシャルが高過ぎるので、最表面から40μm深
さまでの残留γ量を15体積%以下とすることができな
い。No. 3は浸炭浸窒処理前半における窒素ポテンシャ
ルが低過ぎるので、最表面から100〜400μm深さ
での残留γ量を20〜40体積%とすることができな
い。No. 5は軟窒化前時間が長過ぎて侵入窒素量が過大
であるので、最表面から40μm深さまでの残留γ量を
15体積%以下とすることができない。No. 6,7は軟
窒化前時間が短過ぎて侵入窒素量が過小であるので、最
表面から100〜400μm深さでの残留γ量を20〜
40体積%とすることができない。
First, since No. 2 has a high nitrogen potential in the first half of the carburizing and nitriding treatment, the amount of residual γ at a depth of 100 to 400 μm from the outermost surface can be made 20 to 40% by volume as in No. 1. However, since the nitrogen potential in the latter half of the carburizing and nitriding treatment is too high, the amount of residual γ from the outermost surface to a depth of 40 μm cannot be set to 15% by volume or less. In No. 3, the nitrogen potential in the first half of the carburizing and nitriding treatment is too low, so that the residual γ amount at a depth of 100 to 400 μm from the outermost surface cannot be 20 to 40% by volume. In No. 5, since the pre-nitrocarburizing time was too long and the amount of invading nitrogen was excessive, the amount of residual γ from the outermost surface to a depth of 40 μm could not be reduced to 15% by volume or less. In Nos. 6 and 7, since the pre-nitrocarburizing time was too short and the amount of invading nitrogen was too small, the residual γ amount at a depth of 100 to 400 μm from the outermost surface was 20 to
It cannot be 40% by volume.

【0030】実施例2 供試材として、典型的な浸炭用鋼のSCR420鋼
(B)、および比較的残留γの得やすい材料のSNCM
420鋼(C)を用いた。これら供試材を鍛造後、焼き
ならし処理を施して、試験片に加工した後、浸炭および
浸炭浸窒処理等を施してγ域より油焼入れした。続いて
いずれも180℃で2時間の焼戻しを行い、その後にシ
ョットピーニング処理を施した。尚この実施例では第1
段階の浸炭浸窒処理と第2段階の浸炭処理を同一の炉で
連続的に実施したが、浸炭浸窒用と浸炭用の2台の炉を
用いること、または浸炭浸窒処理後一旦温度を室温まで
下げた後再び昇温して浸炭処理を行うこと等のいずれの
手順も採用してもよい。
Example 2 As test materials, SCR420 steel (B), a typical carburizing steel, and SNCM, a material having a relatively high residual γ, were used.
420 steel (C) was used. These test materials were forged, subjected to normalizing treatment, processed into test pieces, and then subjected to carburizing and carburizing-nitriding treatments and oil-quenched from the γ region. Subsequently, tempering was performed at 180 ° C. for 2 hours, and thereafter, shot peening treatment was performed. In this embodiment, the first
The carburizing and nitriding treatment of the second stage and the carburizing treatment of the second stage were continuously performed in the same furnace, but two furnaces for carburizing and nitriding were used, or the temperature was temporarily reduced after the carburizing and nitriding treatment. Any procedure, such as lowering the temperature to room temperature and then raising the temperature again to perform carburization, may be employed.

【0031】ショットピーニング処理は、その強度によ
って大きく疲労強度を左右するので、各処理間において
なるべく条件を揃えて比較するように配慮した。その結
果、1段目のショットピーニングに関しては、ショット
材は全て0.6mm径のものを使用し、必要に応じて投
射初速度を変えることでアークハイトを変化させること
にした。また2段ショットピーニングを施す場合には、
2段目のショット材は径0.15mmのものを使用し、
アークハイトは全て0.2mmAに統一した。処理条件
を表3に示す。
Since the fatigue strength of the shot peening treatment largely depends on the strength, consideration was given to making the comparison between the treatments as uniform as possible. As a result, regarding the first-stage shot peening, all shot materials having a diameter of 0.6 mm were used, and the arc height was changed by changing the initial projection speed as necessary. When performing two-stage shot peening,
The shot material of the second stage uses the thing of diameter 0.15mm,
All arc heights were unified to 0.2 mmA. Table 3 shows the processing conditions.

【0032】[0032]

【表3】 [Table 3]

【0033】処理を行なった後の浸炭鋼部品について、
実施例1と同様にして疲労試験を行なった。表4に、浸
炭(浸窒)処理直後およびショットピーニング処理後の
残留γ量のX線回折装置による測定値、さらに各処理材
の疲労限値を示した。尚残留γ量については、浸炭(浸
窒)処理後ショットピーニング前の深さ40μm位置で
の残留γ体積率、ショットピーニング後の同位置での残
留γ体積率、およびショットピーニング後の深さ300
μm内部での残留γ体積率の3種の測定値をそれぞれ示
した。
For the carburized steel part after the treatment,
A fatigue test was performed in the same manner as in Example 1. Table 4 shows the measured values of the residual γ amount by an X-ray diffractometer immediately after the carburizing (nitriding) treatment and after the shot peening treatment, and also shows the fatigue limit of each treated material. Note that the residual γ content is as follows: the residual γ volume ratio at a depth of 40 μm after carburizing (nitriding) treatment and before shot peening, the residual γ volume ratio at the same position after shot peening, and a depth of 300 after shot peening.
Three types of measured values of the residual γ volume ratio inside μm are shown.

【0034】[0034]

【表4】 [Table 4]

【0035】表4の結果から次の様に考察できる。まず
No. 8〜11はいずれも本発明方法で規定する要件をす
べて満足するものであり、優秀な疲労限値を示してい
る。特にNo. 9は2段ショットピーニングを適用したも
のであり、その疲労強度は顕著に優秀である。またNo.
10およびNo. 11は、処理時間比(u/t)の値がそ
れぞれ規定の範囲内の低めおよび高めになるよう処理時
間を調整したものであるが、いずれも同程度の良好な疲
労強度を示している。
From the results shown in Table 4, the following can be considered. First
Nos. 8 to 11 all satisfy all the requirements specified by the method of the present invention, and show excellent fatigue limit values. In particular, No. 9 was obtained by applying two-stage shot peening, and its fatigue strength was remarkably excellent. No.
In Nos. 10 and 11, the processing time was adjusted so that the value of the processing time ratio (u / t) became lower and higher within the specified ranges, respectively. Is shown.

【0036】これに対し、No. 12〜No. 18は、本発
明方法で規定する要件のいずれかを満足しないものであ
り、いずれも疲労限はNo. 8〜11に比べ劣っている。
これらは次の様に考えることができる。
On the other hand, No. 12 to No. 18 do not satisfy any of the requirements specified in the method of the present invention, and all of them are inferior in fatigue limit to No. 8 to No. 11.
These can be considered as follows.

【0037】まずNo. 12およびNo. 13は第1段階で
の表面炭素濃度および表面窒素濃度が、それぞれ本発明
方法で規定する範囲より低いものであり、これによって
表面残留γは低く抑えられているが、内部残留γ量も1
0体積%余りと非常に低くなっているため、目的の効果
が得られず、特に良好な疲労強度は得られていない。N
o. 14は第2段階での表面炭素濃度が高すぎたため、
熱処理後の表面残留γが本発明の規定範囲を大きく上回
る54.8%となってしまい、ショットピーニング後に
もなお30%以上の残留γが表面に残って疲労強度を低
下させている。No. 15はu/tの値が本発明の規定範
囲よりも小さく、第1段階に取り込んだ原子の拡散が不
十分となる結果、表面残留γ量が多い一方内部の残留γ
量は少なく、目的の効果が得られていない。No. 16は
No. 15とは逆にu/tの値が大きく、第1段階で取り
込んだ原子の拡散が進みすぎて特に窒素原子が全体的に
希薄となってしまい、目的とする効果が得られていな
い。No. 17は第1段階での(表面炭素濃度+表面窒素
濃度)が、本発明を規定する範囲よりも高いものであ
り、結果的に熱処理後表面残留γ量が本発明で規定する
値よりも大きくなってしまったもので、これもNo. 14
と同様に疲労強度は低くなっている。No. 18はショッ
トピーニング強度の弱かったものであり、残留γが充分
変態しなかったために低強度を示している。
First, No. 12 and No. 13 are those in which the surface carbon concentration and the surface nitrogen concentration in the first stage are respectively lower than the ranges specified by the method of the present invention, whereby the surface residual γ is suppressed low. However, the amount of internal residual γ is also 1
Since it is very low, that is, more than 0% by volume, the intended effect cannot be obtained, and particularly good fatigue strength has not been obtained. N
o.14 is because the surface carbon concentration in the second stage was too high,
The surface residual γ after the heat treatment is 54.8%, which greatly exceeds the specified range of the present invention. Even after the shot peening, the residual γ of 30% or more remains on the surface to reduce the fatigue strength. In No. 15, the value of u / t is smaller than the specified range of the present invention, and the diffusion of atoms taken in the first stage becomes insufficient.
The amount is small and the desired effect has not been obtained. No. 16
Contrary to No. 15, the value of u / t is large, and the diffusion of the atoms taken in in the first stage progresses too much, particularly the nitrogen atoms are totally diluted, and the intended effect is not obtained. . In No. 17, (surface carbon concentration + surface nitrogen concentration) in the first stage was higher than the range specified in the present invention, and as a result, the amount of surface residual γ after heat treatment was higher than the value specified in the present invention. Is also larger, this is also No. 14
The fatigue strength is low as well. No. 18 had a low shot peening strength, indicating a low strength because the residual γ was not sufficiently transformed.

【0038】No. 19〜No. 26は典型的な従来技術を
取り上げたものである。No. 19は浸炭処理単独を通常
の表面炭素濃度で行ったものである。表面・内部ともに
非常に残留γ量が低くなっており、十分な強度を示して
いない。No. 20は浸炭浸窒の単独処理である。表面窒
素濃度を0.3重量%としたところ、熱処理後の内部残
留γ量は本発明で規定するのと同程度の値を示したが、
それに対応して表面残留γ量も53体積%と多量にな
り、ショットピーニングを施した後もなお31.6体積
%残存した。この結果、疲労限は単独浸炭材よりは改善
されているものの、本発明例に比べると劣る結果となっ
た。これに2段ショットピーニングを適用したものがN
o. 21である。No. 21では、シングルショットピー
ニング材よりははるかに高い疲労限値を示すが、本発明
例材の2段ショットピーニング材(No. 9)と比べると
非常に低い値である。特記すべきは、シングルショット
ピーニング時の疲労限値の差(No. 8またはNo. 10
と、No. 20の差:62〜69MPa)に比べ、2段ピ
ーニング時の疲労限値の差(No. 9とNo. 21の差:9
3MPa)が大きくなっている点であり、この事実は本
発明の効果が2段ピーニングを適用した際さらに顕著に
発揮されることを示している。
Nos. 19 to 26 cover typical prior art. No. 19 is obtained by performing carburizing treatment alone at a normal surface carbon concentration. The residual γ content is extremely low on both the surface and the inside, and does not show sufficient strength. No. 20 is a single treatment of carburizing and nitriding. When the surface nitrogen concentration was set to 0.3% by weight, the amount of internal residual γ after the heat treatment showed a value similar to that specified in the present invention.
Correspondingly, the surface residual γ amount was as large as 53% by volume, and 31.6% by volume still remained after shot peening. As a result, although the fatigue limit was improved as compared with the single carburized material, the result was inferior to the example of the present invention. The result of applying two-stage shot peening to this is N
o. No. 21 shows a much higher fatigue limit than the single shot peened material, but it is a very low value as compared with the two-stage shot peened material of the present invention (No. 9). It should be noted that the difference in fatigue limit during single shot peening (No. 8 or No. 10)
And the difference between No. 20 and 62: 69 MPa), the difference in the fatigue limit value during two-step peening (the difference between No. 9 and No. 21: 9).
3MPa), which shows that the effect of the present invention is more remarkably exhibited when two-stage peening is applied.

【0039】No. 22は特開昭62−185826号公
報に示されている高濃度浸炭+ハードショットピーニン
グの例である。ここでは表2に記載されているように、
2段階(2段目で温度を下げ、過剰浸炭を行う)の浸炭
を行った。ショットピーニング処理も、公報に記載され
た条件を満たす様に行なった。この結果は表3に示すよ
うに、内部残留γを高めることには成功したが、非常に
多量に残存した最表面の残留γ量をショットピーニング
によっても低減しきれず、良好な疲労強度を得ることは
できなかった。No. 23〜25は、特開平3−2425
8号公報に示されている浸炭・浸窒・浸炭浸窒の組合せ
による多段処理であり、いずれも浸窒単独処理を750
〜800℃で行うことから始まっている。公報記載の条
件は表面炭素濃度:1.2〜1.8重量%、表面窒素濃
度:0.3〜1.0重量%と非常に高いポテンシャルで
あり、No. 23〜25はこの条件どおりに処理を行った
ところ、熱処理後の表面残留γ量がいずれも70体積%
以上となり、さらに粗大炭化物が大量に析出したため、
疲労試験条件下では著しい疲労強度の低下を招いてい
た。
No. 22 is an example of high-concentration carburization + hard shot peening disclosed in JP-A-62-185826. Here, as described in Table 2,
Carburization was performed in two stages (temperature was lowered in the second stage and excess carburization was performed). Shot peening was also performed so as to satisfy the conditions described in the gazette. As shown in Table 3, although the internal residual γ was successfully increased as shown in Table 3, the amount of residual γ on the outermost surface that remained in a very large amount could not be reduced even by shot peening, and good fatigue strength was obtained. Could not. Nos. 23 to 25 are disclosed in JP-A-3-2425.
No. 8 discloses a multi-stage treatment using a combination of carburizing, carbonitriding and carbonitriding.
Starting at ~ 800 ° C. The conditions described in the publication are very high potentials with a surface carbon concentration of 1.2 to 1.8% by weight and a surface nitrogen concentration of 0.3 to 1.0% by weight. After treatment, the amount of surface residual γ after heat treatment was 70% by volume.
As described above, furthermore, a large amount of coarse carbides precipitated,
Under the conditions of the fatigue test, the fatigue strength was significantly reduced.

【0040】ところで上記No. 23およびNo. 25は最
終段階が浸炭浸窒処理であるため、改良を加えても最表
面の残留γ量を低減させることは期待できないが、No.
24は最終段階が単独浸炭処理であり、本発明方法に近
い処理であると考えられる。そこでこうした方法によっ
て、本発明方法と同様の効果が得られるかどうかについ
て検討すべく条件を調整することを試みた。その結果を
示したのが、No. 26およびNo. 27である。
By the way, No. 23 and No. 25 cannot be expected to reduce the amount of residual γ on the outermost surface even if the improvement is made since the final step is carburizing and nitriding.
24 is a single stage carburizing process, which is considered to be a process similar to the method of the present invention. Therefore, an attempt was made to adjust the conditions in order to examine whether the same effect as the method of the present invention can be obtained by such a method. No. 26 and No. 27 show the results.

【0041】No. 26は、処理のトータル時間がなるべ
く本発明方法に近くなるように配慮した上で、第1段階
の窒素ポテンシャルを0.8重量%と高くし、さらに第
2段階の炭素ポテンシャルを0.8重量%に調整したも
のである。その結果、浸炭後の最表面の残留γ量が本発
明で規定する範囲を大幅に超過する57.2体積%とな
ったため、疲労強度は向上しなかった。これは、この方
法を用いると前半で導入した窒素の濃度勾配が非常に大
きくなっており、これに対して後半の拡散が足りなかっ
たためと思われる。そこで、後半の浸炭時間を延長し、
十分拡散をさせることにした。その結果はNo. 27に示
す様に、後半の浸炭処理時間を4.5時間とすること
で、本発明で規定する残留γ分布が得られることが分か
った(本発明例)。但し、本発明方法で規定する要件を
欠いているので、No. 8〜11のものに比べて疲労強度
が若干劣っている。またトータル時間としては本発明方
法より長くせざるを得ないうえ、特に炉の高温での使用
時間が圧倒的に長くなるため、炉の耐久性の点でも若干
劣ることになる。更に前半と後半の処理を同一の炉で連
続的に行う場合には、第1段階と第2段階での処理温度
差が大きいので昇温にも時間がかかり、さらにトータル
時間が増すこととなる。以上の点で本発明方法は、単独
浸窒→単独浸炭なる処理と比べても効率よく目的が達せ
られることが分かる。
In No. 26, the nitrogen potential in the first stage was increased to 0.8% by weight, and the carbon potential in the second stage was further increased, considering that the total processing time was as close as possible to the method of the present invention. Was adjusted to 0.8% by weight. As a result, the amount of residual γ on the outermost surface after carburization was 57.2% by volume, which greatly exceeded the range specified in the present invention, and thus the fatigue strength was not improved. This is presumably because when this method was used, the concentration gradient of nitrogen introduced in the first half was very large, and diffusion in the second half was insufficient. Therefore, we extended the carburizing time in the second half,
I decided to spread enough. As a result, as shown in No. 27, it was found that the residual γ distribution specified in the present invention can be obtained by setting the latter half carburizing time to 4.5 hours (Example of the present invention). However, due to the lack of the requirements specified by the method of the present invention, the fatigue strength is slightly inferior to those of Nos. 8 to 11. In addition, the total time must be longer than that of the method of the present invention, and in particular, the use time at a high temperature of the furnace is overwhelmingly long, so that the durability of the furnace is slightly inferior. Further, when the first half and the second half are continuously performed in the same furnace, the temperature difference between the first stage and the second stage is large, so that it takes time to raise the temperature, and the total time further increases. . In view of the above, it can be seen that the method of the present invention can achieve the object more efficiently than the single nitriding → single carburizing treatment.

【0042】実施例3 残留γ量が比較的多量となる様に、供試材として前記S
NCM420鋼(C)を使用し、表面炭素濃度=0.9
5%、表面窒素濃度=0.33%となる様に、870℃
で3時間浸炭窒化処理を施した(前記表2の処理No. 1
0の第1段階までの処置に相当)。このとき焼戻し後で
の最表面から40μm深さまでの残留γ量は50体積%
であった。その後、供試材を液体窒素中に1秒間だけ浸
漬し、引き上げた後、室温に急速に戻る様に温風をかけ
た。その結果、最表面から40μm深さまでの残留γ量
は13体積%まで低減されていた。また最表面から30
0μm深さでの残留γ量は28.7体積%であり、表面
に比べて残留γ量の減少量は少なかった。こうして得ら
れた鋼部品の疲労限は921MPaと良好であった。
Example 3 The above S was used as a test material so that the amount of residual γ was relatively large.
Using NCM420 steel (C), surface carbon concentration = 0.9
870 ° C so that 5% and surface nitrogen concentration = 0.33%
For 3 hours (treatment No. 1 in Table 2 above).
0 to the first stage treatment). At this time, the residual γ amount from the outermost surface to a depth of 40 μm after tempering is 50% by volume.
Met. Thereafter, the test material was immersed in liquid nitrogen for only 1 second, pulled up, and then heated with hot air to quickly return to room temperature. As a result, the amount of residual γ from the outermost surface to a depth of 40 μm was reduced to 13% by volume. Also, 30 from the outermost surface
The residual γ amount at a depth of 0 μm was 28.7% by volume, and the amount of decrease in the residual γ amount was smaller than that of the surface. The fatigue limit of the steel part thus obtained was as good as 921 MPa.

【0043】[0043]

【発明の効果】本発明は以上の様に構成されており、優
れた疲労強度を示す高強度鋼部品、およびその様な高強
度鋼部品を得る為の最適な方法が実現できた。
The present invention has been configured as described above, and a high-strength steel part exhibiting excellent fatigue strength and an optimum method for obtaining such a high-strength steel part have been realized.

【図面の簡単な説明】[Brief description of the drawings]

【図1】 実施例1において処理を行った後の鋼部材に
ついての残留γ分布を示すグラフである。
FIG. 1 is a graph showing a residual γ distribution of a steel member subjected to a treatment in Example 1.

【図2】 実施例1における浸炭浸窒処理の条件を説明
するためのグラフである。
FIG. 2 is a graph for explaining conditions of carburizing and nitriding in Example 1.

Claims (5)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 炭素原子および/または窒素原子の鋼部
品内への導入を伴う表面処理をその製造工程の一つまた
はそれ以上として含んで製造されたものであり、最表面
から40μm深さまでの残留オーステナイト量が15体
積%以下であり、且つ最表面から100〜400μm深
さでの残留オーステナイト量が20〜40体積%である
ことを特徴とする疲労強度に優れた高強度鋼部品。
Claims: 1. A method for manufacturing a semiconductor device comprising a surface treatment involving the introduction of carbon atoms and / or nitrogen atoms into a steel part as one or more of its manufacturing steps. A high-strength steel part excellent in fatigue strength, characterized in that the amount of retained austenite is 15% by volume or less and the amount of retained austenite at a depth of 100 to 400 µm from the outermost surface is 20 to 40% by volume.
【請求項2】 浸炭用鋼によって作成した部品に、表面
炭素濃度:0.7重量%以上、表面窒素濃度:0.2重
量%以上、且つ(表面炭素濃度+表面窒素濃度):1.
3重量%以下となる様に、浸炭浸窒処理をT時間施した
後、900℃以上で表面炭素濃度:0.4〜0.9重量
%となる様な浸炭処理を0.2〜0.6T時間施すこと
によって、最表面から40μm深さまでの残留オーステ
ナイト量を40体積%以下とし、更にアークハイト0.
6mmA以上のショットピーニング処理を施して前記残
留オーステナイト量を15体積%以下とすることを特徴
とする疲労強度に優れた高強度鋼部品の製造方法。
2. A part made of carburizing steel has a surface carbon concentration of 0.7% by weight or more, a surface nitrogen concentration of 0.2% by weight or more, and (surface carbon concentration + surface nitrogen concentration): 1.
After performing the carburizing and nitriding treatment for 3 hours by weight so as to be 3% by weight or less, the carburizing treatment is performed at a temperature of 900 ° C. or more so that the surface carbon concentration becomes 0.4 to 0.9% by weight. By performing the treatment for 6 T hours, the amount of retained austenite from the outermost surface to a depth of 40 μm is reduced to 40% by volume or less, and the arc height is reduced to 0.1%.
The residue provide Reinforced above shot peening 6mmA
A method for producing a high-strength steel part having excellent fatigue strength, characterized in that the amount of retained austenite is 15% by volume or less .
【請求項3】 請求項2に記載の処理を施した後、前記
ショットピーニング処理で用いたショット粒子よりも小
さい粒子を用いて再度ショットピーニング処理を施すこ
とを特徴とする疲労強度に優れた高強度鋼部品の製造方
法。
3. A high-strength steel with excellent fatigue strength, characterized in that after the treatment according to claim 2, shot peening is performed again using particles smaller than the shot particles used in the shot peening. Manufacturing method for high strength steel parts.
【請求項4】 請求項2または3に記載の方法によって
得られたものである請求項1に記載の疲労強度に優れた
高強度鋼部品。
4. A high-strength steel part excellent in fatigue strength according to claim 1, which is obtained by the method according to claim 2 or 3.
【請求項5】 請求項2または3に記載の方法によっ
て、請求項1に記載の高強度鋼部品を製造することを特
徴とする疲労強度に優れた高強度鋼部品の製造方法。
5. A method for producing a high-strength steel part having excellent fatigue strength, comprising producing the high-strength steel part according to claim 1 by the method according to claim 2 or 3.
JP3970693A 1992-06-24 1993-03-01 High-strength steel part with excellent fatigue strength and method of manufacturing the same Expired - Lifetime JP2636661B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3970693A JP2636661B2 (en) 1992-06-24 1993-03-01 High-strength steel part with excellent fatigue strength and method of manufacturing the same

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP4-191624 1992-06-24
JP19162492 1992-06-24
JP3970693A JP2636661B2 (en) 1992-06-24 1993-03-01 High-strength steel part with excellent fatigue strength and method of manufacturing the same

Publications (2)

Publication Number Publication Date
JPH0673523A JPH0673523A (en) 1994-03-15
JP2636661B2 true JP2636661B2 (en) 1997-07-30

Family

ID=26379081

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3970693A Expired - Lifetime JP2636661B2 (en) 1992-06-24 1993-03-01 High-strength steel part with excellent fatigue strength and method of manufacturing the same

Country Status (1)

Country Link
JP (1) JP2636661B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5635316B2 (en) * 2010-07-08 2014-12-03 Jfe条鋼株式会社 Gear having excellent fatigue strength and method for manufacturing the same

Also Published As

Publication number Publication date
JPH0673523A (en) 1994-03-15

Similar Documents

Publication Publication Date Title
JP5129564B2 (en) Carburized induction hardening parts
JP5251868B2 (en) Carbonitriding induction-hardened steel parts with excellent surface pressure fatigue strength at high temperatures and methods for producing the same
JP5614426B2 (en) Manufacturing method of machine parts
JP5639064B2 (en) Method for producing carbonitrided member
JP5530763B2 (en) Carburized steel parts with excellent low cycle bending fatigue strength
JP3387427B2 (en) Heat treatment method for steel
EP2085493A1 (en) Process for producing high-concentration carburized steel
US6059898A (en) Induction hardening of heat treated gear teeth
JPH0234766A (en) Carburizing and hardening method
JP4354277B2 (en) Method for manufacturing carburized and quenched members
JP4655528B2 (en) Manufacturing method of high-strength machine structure parts and high-strength machine structure parts
JP2005163173A (en) Gear part and method of producing thereof
JP3006034B2 (en) High strength mechanical structural members with excellent surface pressure strength
JP4102866B2 (en) Gear manufacturing method
JP5198765B2 (en) Rolling member and manufacturing method thereof
JP2006348321A (en) Steel for nitriding treatment
JP2000129347A (en) Production of high strength parts
JP2636661B2 (en) High-strength steel part with excellent fatigue strength and method of manufacturing the same
JP2000204464A (en) Surface treated gear, its production and producing device therefor
JP2934485B2 (en) High-strength gear steel and high-strength gear that can be rapidly carburized
JP2723150B2 (en) Surface treatment method for steel members
JP3271659B2 (en) High strength gear and manufacturing method thereof
JP4617783B2 (en) Manufacturing method of hot forged parts for high temperature carburizing
JPH0754050A (en) High strength gear excellent in root of tooth bending fatigue strength and tooth surface pitching resistance and manufacture therefor
JP6953871B2 (en) Carburized parts and carburized nitride parts

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 19970311

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080425

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090425

Year of fee payment: 12

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100425

Year of fee payment: 13

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100425

Year of fee payment: 13

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110425

Year of fee payment: 14

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120425

Year of fee payment: 15

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130425

Year of fee payment: 16

EXPY Cancellation because of completion of term