JPH0130913B2 - - Google Patents

Info

Publication number
JPH0130913B2
JPH0130913B2 JP21443783A JP21443783A JPH0130913B2 JP H0130913 B2 JPH0130913 B2 JP H0130913B2 JP 21443783 A JP21443783 A JP 21443783A JP 21443783 A JP21443783 A JP 21443783A JP H0130913 B2 JPH0130913 B2 JP H0130913B2
Authority
JP
Japan
Prior art keywords
crankshaft
strength
less
cold pressing
internal combustion
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP21443783A
Other languages
Japanese (ja)
Other versions
JPS60106641A (en
Inventor
Isao Machida
Tatsuya Iwamura
Yasushi Kawahito
Haruo Matsuyama
Yukimare Kishida
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Honda Motor Co Ltd
Original Assignee
Honda Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Honda Motor Co Ltd filed Critical Honda Motor Co Ltd
Priority to JP21443783A priority Critical patent/JPS60106641A/en
Publication of JPS60106641A publication Critical patent/JPS60106641A/en
Publication of JPH0130913B2 publication Critical patent/JPH0130913B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Shafts, Cranks, Connecting Bars, And Related Bearings (AREA)
  • Forging (AREA)
  • Preventing Corrosion Or Incrustation Of Metals (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明は、内燃機関用クランク軸の機械的特性
改善処理方法に関する。 内燃機関の高出力化を達成するためには、それ
に耐え得るようにクランク軸の強度を向上させる
必要がある。従来は、クランク軸全体に焼入れお
よび焼戻し処理を施す、または高周波焼入れ、窒
化処理等の表面硬化処理を施すといつた手段を採
用しているが、前者の場合は後の切削加工時被削
性の悪化により生産性の低下を来たし、また面粗
度の悪化に伴い強度の低下をもたらすという不具
合がある。一方、後者の場合は処理時間が長くな
り、生産性の低下および生産コストの上昇を招来
するといつた不具合がある。 本発明は上記不具合を解消し得る前記改善処理
方法を提供することを目的とし、鉄材料より成形
されたクランク軸における軸状部分の応力集中箇
所に、加工深さが軸状部分の直径の100分の1以
上となるような冷間押圧加工を施し、次いでクラ
ンク軸全体に軟窒化処理を施すことを特徴とす
る。 下記の表は各種鋼種を示す。
The present invention relates to a processing method for improving the mechanical characteristics of a crankshaft for an internal combustion engine. In order to achieve higher output from internal combustion engines, it is necessary to improve the strength of the crankshaft to withstand the higher output. Conventionally, methods such as hardening and tempering the entire crankshaft, or surface hardening treatments such as induction hardening and nitriding have been adopted, but in the former case, machinability during subsequent machining The deterioration of the surface roughness causes a decrease in productivity, and the deterioration of the surface roughness causes a decrease in strength. On the other hand, in the latter case, processing time becomes longer, resulting in lower productivity and higher production costs. An object of the present invention is to provide the above-mentioned improved processing method capable of eliminating the above-mentioned problems.The present invention aims to provide an improved treatment method capable of eliminating the above-mentioned problems. It is characterized in that it is cold-pressed so that it becomes more than one-fold, and then the entire crankshaft is subjected to nitrocarburizing treatment. The table below shows various steel types.

【表】【table】

【表】 本発明を適用して所期の効果を得ることのでき
る鋼種としてはJIS S43C〜S48C等の機械構造用
炭素鋼、新規炭素鋼およびJIS FCD50で代表さ
れる球状黒鉛鋳鉄である。 新規炭素鋼C〜Fは、必須化学成分として、
C0.30〜0.60%、Cr0.50%以下、Al0.20%以下、
V0.30%以下を含むことが必要である。 Cはクランク軸の芯部強度と軟窒化時の表面硬
化に不可決な成分であり、0.30%を下回ると硬度
が不足して十分な強度を図ることができず、一方
0.60%を上回ると芯部硬度が高くなり、被削性が
低下する。 Cr、Alは軟窒化性を向上させる特性を有する
が、Crが0.50%を、Alが0.20%をそれぞれ上回る
と硬化深さが増大し、歪み取り等の矯正能が低下
する。 Vは中炭素鋼ベースに添加されて熱間鍛造後の
適切な空冷処理にて内外均一な析出硬化を生起
し、焼入れ焼戻し等の熱処理を行うことなく、そ
れを行つた場合と同等の硬度を得る上に有効な成
分である。したがつてクランク軸における軸状部
分の応力集中箇所に冷間押圧加工としてのロール
加工を施した場合、一層の加工硬化が得られ、以
後の軟窒化処理時にも材料自体の優れた焼戻し軟
化抵抗性に起因して、処理温度が600℃以下であ
れば芯部を含めたクランク軸全体の硬度が低下す
るようなことはない。ただし、Vが0.30%を上回
ると、靭性の低下を招来する。 なお、上記必須化学成分に、下記グループ(a)〜
(c)より選択される化学成分を単独または二種以上
組合せて添加することもある。 (a) Ti、Zr、Nb+Taより選択される一種また
は二種の化学成分を、何れについても0.30化下
添加すると、析出硬化を利用して強度を向上さ
せることができるが、0.30%を上回ると軟窒化
性が低下する。 (b) Si、Mn、Cu、Mo、W、Coをそれぞれ1.5%
以下添加すると、基地を強化することができる
が、1.5%を上回ると軟窒化性が低下する。 (c) S0.15%以下、Pb0.30%以下、Te0.10%以下、
Se0.30%以下添加すると被削性が向上するが、
各化学成分が前記値を上回ると靭性が低下す
る。 表の比較炭素鋼は、強度または被削性の何れ
かの点において劣るためクランク軸の構成材料と
しては不適切である。 前記FC35等のねずみ鋳鉄、FCD50等の球状黒
鉛鋳鉄を用いると、炭素鋼を用いて鍛造によりク
ランク軸を成形する場合に比べて成形法および材
料費の面で有利であるだけでなく、冷間押圧加工
と軟窒化処理を施した鋳鉄製クランク軸は冷間押
圧加工のみを施した鍛造クランク軸に比べて強度
の面においても優れていることが確認された。こ
れは鋳鉄においては、冷間押圧加工による加工硬
化と同時に黒鉛が凝集されるため以後の軟窒化処
理時における窒化品質の向上と黒鉛による切欠感
受性の低下が図られるためである。ただし、引張
強さが40Kg/mm2以下では、低価格であつても鋳鉄
自体の強度が低過ぎ、内燃機関の高出力化に対応
した要求特性を満足し得ないことから、引張強さ
は40Kg/mm2以上であることが必要である。このこ
とからFCD50等の球状黒鉛鋳鉄が最適である。 第1図は表の鋼種Aを用いて製造されたクラ
ンク軸1を示し、そのクランク軸1は、圧延によ
り得られた直径80mmの棒鋼を1200℃に加熱して鍛
造し、次いでコンベア上で鍛造空冷処理を施し、
さらに内外部の硬度および組織の均一化を図るた
め900℃、60分間の焼準処理を施して得られたも
のである。 上記クランク軸1における軸状部分の応力集中
箇所、即ちクランク主軸部2、クランクピン部3
およびプーリ軸部4のフイレツト部には冷間押圧
加工としてのロール加工により環状凹入部5が形
成されている。 このロール加工は、クランク軸1の両端部を心
出しを行つて支持部材に支持し、その後各フイレ
ツト部を、それにロールを圧接して第2図鎖線示
の状態により実線示の状態に凹入するものであ
る。 第3図は、ロール加工後におけるフイレツト部
の深さ方向の硬度分布を示し、線x1はロール加工
を行わなかつた場合、線x2〜x4はそれぞれロール
の押圧力を430、600、820Kg/mm2とした場合であ
り、第3図から明らかなようにロール加工を行う
ことにより表面から所定の深さに亘つて硬度が著
しく増大することが判る。 この場合、ロールの押圧力が増加すれば、硬度
も増大するが、その押圧力が800Kg/mm2を上回る
と異常面圧により“むしれ”を発生し強度がばら
つくという不具合が生じるので好ましくない。 下記の表は、フイレツト部の加工深さ、面粗
度およびクランク軸の曲りの関係を示す。各加工
深さは、例えばクランク主軸部2について言え
ば、その直径Dに対する加工量t(第2図)の比
t/Dで表わしたものであり、またクランク軸の
曲りは、その両端部を支持した状態における、中
央部のクランク主軸部2の振れにより表わしたも
のである。
[Table] Examples of steel types to which the present invention can be applied to obtain the desired effect are carbon steels for mechanical structures such as JIS S43C to S48C, new carbon steels, and spheroidal graphite cast iron represented by JIS FCD50. New carbon steels C to F have the following essential chemical components:
C0.30~0.60%, Cr0.50% or less, Al0.20% or less,
It is necessary to contain V0.30% or less. C is an essential component for the core strength of the crankshaft and surface hardening during nitrocarburizing, and if it is less than 0.30%, the hardness will be insufficient and sufficient strength cannot be achieved.
If it exceeds 0.60%, the core hardness increases and machinability decreases. Cr and Al have the property of improving soft-nitriding properties, but when Cr exceeds 0.50% and Al exceeds 0.20%, the hardening depth increases and the straightening ability such as strain relief decreases. V is added to the medium carbon steel base and causes uniform precipitation hardening on the inside and outside through appropriate air cooling treatment after hot forging, and achieves hardness equivalent to that obtained without heat treatment such as quenching and tempering. It is an effective ingredient in obtaining Therefore, when roll processing is applied as a cold pressing process to the stress concentration area of the axial portion of the crankshaft, further work hardening can be obtained, and the material itself has excellent resistance to temper softening during subsequent nitrocarburizing treatment. Due to its nature, if the processing temperature is 600°C or less, the hardness of the entire crankshaft including the core will not decrease. However, when V exceeds 0.30%, toughness decreases. In addition, the above essential chemical components include the following groups (a) ~
Chemical components selected from (c) may be added alone or in combination. (a) If one or two chemical components selected from Ti, Zr, and Nb+Ta are added at a concentration of 0.30%, strength can be improved by utilizing precipitation hardening, but if the content exceeds 0.30% Soft-nitriding property decreases. (b) 1.5% each of Si, Mn, Cu, Mo, W, and Co
If less than 1% is added, the base can be strengthened, but if it exceeds 1.5%, the nitrocarburizability will decrease. (c) S0.15% or less, Pb0.30% or less, Te 0.10% or less,
Adding less than 0.30% Se improves machinability, but
When each chemical component exceeds the above value, toughness decreases. Comparison in the table Carbon steel is inferior in either strength or machinability and is therefore unsuitable as a constituent material for crankshafts. Using gray cast iron such as FC35 and spheroidal graphite cast iron such as FCD50 is not only advantageous in terms of forming method and material cost compared to forming the crankshaft by forging using carbon steel, but also has advantages in cold forming. It was confirmed that a cast iron crankshaft that had been subjected to pressing and nitrocarburizing was superior in terms of strength compared to a forged crankshaft that had only been subjected to cold pressing. This is because in cast iron, graphite is agglomerated at the same time as work hardening due to cold pressing, thereby improving the nitriding quality during the subsequent soft nitriding treatment and reducing the notch sensitivity due to graphite. However, if the tensile strength is less than 40Kg/ mm2 , the strength of the cast iron itself is too low even if it is low-priced, and it cannot meet the required characteristics for the high output of internal combustion engines. It must be 40Kg/mm2 or more . For this reason, spheroidal graphite cast iron such as FCD50 is optimal. Figure 1 shows a crankshaft 1 manufactured using steel type A in the table.The crankshaft 1 is made by heating a steel bar with a diameter of 80 mm obtained by rolling to 1200°C for forging, and then forging it on a conveyor. Air-cooled,
Furthermore, in order to make the internal and external hardness and structure uniform, the material was normalized at 900°C for 60 minutes. Stress concentration points in the axial portion of the crankshaft 1, namely the crank main shaft portion 2 and the crank pin portion 3
An annular recessed portion 5 is formed in the fillet portion of the pulley shaft portion 4 by roll processing as cold pressing processing. In this roll processing, both ends of the crankshaft 1 are centered and supported on a support member, and then each fillet is pressed into contact with a roll and recessed from the state shown by the chain line in Fig. 2 to the state shown by the solid line. It is something to do. Figure 3 shows the hardness distribution in the depth direction of the fillet part after roll processing, where line x 1 indicates the pressure force of the roll when no roll processing is performed, lines x 2 to x 4 indicate the pressure force of the roll of 430, 600, 600, 820 Kg/mm 2 , and as is clear from FIG. 3, by performing roll processing, the hardness increases significantly from the surface to a predetermined depth. In this case, if the pressing force of the roll increases, the hardness will also increase, but if the pressing force exceeds 800 kg/ mm2 , abnormal surface pressure will cause "peeling" and the strength will vary, which is not desirable. . The table below shows the relationship between the machining depth of the fillet portion, surface roughness, and crankshaft curvature. For example, in the case of the crankshaft 2, each machining depth is expressed as the ratio t/D of the machining amount t (Fig. 2) to its diameter D. This is expressed by the deflection of the crank main shaft section 2 at the center in the supported state.

【表】 表から明らかなように、加工深さが1/100〜
1/30の範囲にあれば、ロールの面粗度が転写され
て、0.8μ程度の良好な面粗度が得られるが、加工
深さが1/150の場合はフイレツト部の面の粗さが
部分的に残存し、強度の改善効果が乏しいことが
判明した。 一方、クランク軸の曲りは、加工深さが大きく
なる程増加する傾向にあり、例えば加工深さを1/
30にすると、約0.16mmの振れが発生し、次工程の
研磨加工において部分的に研磨代が増加したり、
軟窒化処理後の曲り取りにおいて特別な配慮が必
要であるといつた不具合を生じ、生産性および品
質保証面において不利となる。 したがつて、加工深さは1/100以上、1/30未満
の範囲が適当である。 下記の表は、表の鋼種Dを用いて第1図と
同様のクランク軸を熱間鍛造、コンベア上での鍛
造空冷処理を経て製造し、そのクランク軸のフイ
レツト部にそれぞれ押圧力150、200、400、800、
900Kg/mm2のロール加工を施し、次いで各クラン
ク軸全体に塩浴を用いて580℃、60分間の軟窒化
処理を施し、各クランク軸の強度向上比率および
表面傷を調べたものである。 強度評価方法は、油圧サーボ型疲れ試験機を用
いて各クランク軸に両振りの繰返し曲げ荷重を与
え、N=1.0×107回の荷重レベルを以て評価し
た。また強度向上比率は、表の鋼種AまたはB
を用いて製造された第1図と同様のクランク軸に
ロール加工を施さずに、前記同様の軟窒化処理の
みを施し、これに前記同様の疲れ試験を行い、こ
れから得られる荷重レベルを基準として算出し
た。
[Table] As is clear from the table, the machining depth is 1/100~
If it is in the range of 1/30, the surface roughness of the roll will be transferred and a good surface roughness of about 0.8μ can be obtained, but if the machining depth is 1/150, the surface roughness of the fillet part will be transferred. It was found that some parts remained and the strength improvement effect was poor. On the other hand, the bending of the crankshaft tends to increase as the machining depth increases.
If it is set to 30, a runout of about 0.16 mm will occur, and the polishing allowance will increase partially in the next polishing process.
This causes problems such as the need for special consideration when removing bends after soft nitriding, which is disadvantageous in terms of productivity and quality assurance. Therefore, the appropriate machining depth is in the range of 1/100 or more and less than 1/30. The table below shows that a crankshaft similar to that shown in Figure 1 was manufactured using steel type D in the table through hot forging and forging air cooling treatment on a conveyor, and the fillet portion of the crankshaft was manufactured with a pressing force of 150 and 200, respectively. ,400,800,
Each crankshaft was rolled at a rate of 900Kg/mm 2 and then subjected to nitrocarburizing treatment at 580°C for 60 minutes using a salt bath, and the strength improvement ratio and surface flaws of each crankshaft were investigated. The strength was evaluated using a servohydraulic fatigue tester to apply a repeated bending load to each crankshaft at a load level of N=1.0×10 7 times. In addition, the strength improvement ratio is steel type A or B in the table.
A crankshaft similar to the one shown in Fig. 1 manufactured using the same method as shown in Fig. 1 was subjected to only the same nitrocarburizing treatment as described above without being subjected to roll processing, and was then subjected to the same fatigue test as described above, and the load level obtained from this was used as a reference. Calculated.

【表】 上記表から明らかなように、押圧力が200
Kg/mm2を下回る、例えば150Kg/mm2では強度向上
比率が5%と低く効果が乏しく、一方800Kg/mm2
を上回る、例えば900Kg/mm2では“むしれ”を発
生し、この“むしれ”の切欠効果により強度のば
らつきを生じて強度向上比率が低くなる。 したがつて押圧力が200〜800Kg/mm2の範囲にあ
れば、強度向上比率も20〜40%と向上し、また表
面傷も無いことから、高品質なものが得られる。 前記表の鋼種Kを用いて鋳造され、鋳放し状
態のクランク軸のフイレツト部に押圧力400Kg/
mm2のロール加工を施し、次いで前記同様の軟窒化
処理を施したところ20%の強度向上比率が認めら
れたが、ロール加工のみの場合には強度上の変化
が認められなかつた。 また鋼種Jの場合はロール加工および軟窒化処
理を行つた場合とロール加工のみの場合とでは強
度上の変化が認められなかつた。 第4図は、前記表の鋼種Dを用いて前記同様
の工程を経て得られたクランク軸のフイレツト部
にロール加工を施す、または施さずに次工程で前
記同様の軟窒化処理を施した場合におけるフイレ
ツト部の深さ方向の硬度分布を示し、線y1はロー
ル加工を施さない場合、線y2〜y4はそれぞれロー
ルの押圧力を250,430,600Kg/mm2とした場合で
あり、第4図によりロール加工と軟窒化処理を組
合せるとロール加工無しに比べて硬度の向上が認
められた。 なお、冷間押圧加工と軟窒化処理を組合せた場
合、冷間押圧加工により得られた残留応力が熱処
理とも言い得る軟窒化処理時に消失し、強度低下
を来たすと一般に考えられているが、本発明にお
いて強度の向上が認められるのは、材料自体の特
性にもよるが、冷間押圧加工を施された部分に窒
素が拡散すると、その部分の再結晶化が妨げら
れ、これにより残留応力が消失しにくくなること
も一因であると考えられる。 以上のように本発明によれば、クランク軸にお
ける軸状部分の応力集中箇所に冷間押圧加工を施
し、次いで全体に軟窒化処理を施すことにより、
内燃機関の高出力化に十分に耐えることのできる
高強度で、且つ耐摩耗性の優れたクランク軸を得
ることができる。また冷間押圧加工および軟窒化
処理の採用により、それらに要する時間を短縮し
て生産性を向上させ、また生産コストを低減する
ことができる。
[Table] As is clear from the table above, the pressing force is 200
Below Kg/ mm2 , for example 150Kg/ mm2, the strength improvement ratio is as low as 5% and the effect is poor, while at 800Kg/ mm2
If it exceeds 900 kg/mm 2 , for example, "peeling" will occur, and the notch effect of this "peeling" will cause variations in strength, resulting in a low strength improvement ratio. Therefore, if the pressing force is in the range of 200 to 800 Kg/mm 2 , the strength improvement ratio will increase to 20 to 40%, and there will be no surface scratches, so a high quality product can be obtained. A pressing force of 400 kg/kg is applied to the fillet part of the as-cast crankshaft, which is cast using steel type K in the table above.
When roll processing of mm 2 was performed and then soft nitriding treatment similar to the above was performed, a strength improvement ratio of 20% was observed, but no change in strength was observed when only roll processing was performed. In addition, in the case of steel type J, no change in strength was observed between when roll processing and nitrocarburizing were performed and when only roll processing was performed. Figure 4 shows the case in which the fillet portion of a crankshaft obtained through the same process as above using steel type D in the table above is subjected to roll processing, or is subjected to the same nitrocarburizing treatment in the next step without roll processing. shows the hardness distribution in the depth direction of the fillet part, where line y 1 is when no roll processing is applied, and lines y 2 to y 4 are when the pressing force of the roll is 250, 430, and 600 kg/mm 2 , respectively. , FIG. 4 shows that when rolling and nitrocarburizing were combined, the hardness was improved compared to the case without rolling. In addition, when cold pressing and soft nitriding are combined, it is generally believed that the residual stress obtained by cold pressing disappears during the soft nitriding, which can also be called heat treatment, resulting in a decrease in strength. The reason why the strength is improved in the invention depends on the characteristics of the material itself, but when nitrogen diffuses into the part that has been subjected to cold pressing, recrystallization of that part is hindered, which reduces residual stress. It is thought that one reason is that it becomes difficult to disappear. As described above, according to the present invention, by applying cold pressing to the stress concentrated portion of the shaft-like portion of the crankshaft, and then performing nitrocarburizing treatment to the entire part,
It is possible to obtain a crankshaft with high strength and excellent wear resistance that can sufficiently withstand the high output of an internal combustion engine. Furthermore, by employing cold pressing and soft nitriding, the time required for these processes can be shortened, productivity can be improved, and production costs can be reduced.

【図面の簡単な説明】[Brief explanation of drawings]

第1図はクランク軸の正面図、第2図は第1図
矢示部の拡大断面図、第3図は冷間押圧加工後
のフイレツト部表面からの距離と硬度の関係を示
すグラフ、第4図は冷間押圧加工後軟窒化処理を
施した場合のフイレツト部表面からの距離と硬度
の関係を示すグラフである。 1……クランク軸、2,3……軸状部分として
のクランク主軸部、クランクピン部。
Figure 1 is a front view of the crankshaft, Figure 2 is an enlarged sectional view of the part indicated by the arrow in Figure 1, Figure 3 is a graph showing the relationship between the distance from the fillet surface after cold pressing and hardness, and Figure 2 is a graph showing the relationship between hardness and distance from the fillet surface after cold pressing. FIG. 4 is a graph showing the relationship between the distance from the fillet surface and hardness when nitrocarburizing treatment is performed after cold pressing. 1... Crankshaft, 2, 3... Crank main shaft portion as a shaft-shaped portion, crank pin portion.

Claims (1)

【特許請求の範囲】 1 鉄材料より成形されたクランク軸における軸
状部分の応力集中箇所に、加工深さが前記軸状部
分の直径の100分の1以上となるような冷間押圧
加工を施し、次いで前記クランク軸全体に軟窒化
処理を施すことを特徴とする、内燃機関用クラン
ク軸の機械的特性改善処理方法。 2 前記冷間押圧加工は、押圧力200Kg/mm2以上
の条件の下に行われるロール加工である、特許請
求の範囲第1項記載の内燃機関用クランク軸の機
械的特性改善処理方法。 3 前記鉄系材料は、C0.30%以上、Cr0.50%以
下、Al0.20%以下、V0.30%以下を含む炭素鋼で
ある、前記特許請求の範囲第1または第2項記載
の内燃機関用クランク軸の機械的特性改善処理方
法。
[Scope of Claims] 1. A cold pressing process is applied to a stress concentration area of a shaft-like part of a crankshaft formed from iron material so that the machining depth is 1/100 or more of the diameter of said shaft-like part. 1. A method for improving the mechanical properties of a crankshaft for an internal combustion engine, the method comprising: applying nitriding to the entire crankshaft. 2. The method for improving mechanical properties of a crankshaft for an internal combustion engine according to claim 1, wherein the cold pressing process is roll processing performed under conditions of a pressing force of 200 kg/mm 2 or more. 3. The method according to claim 1 or 2, wherein the iron-based material is carbon steel containing 0.30% or more of C, 0.50% or less of Cr, 0.20% or less of Al, and 0.30% or less of V. A treatment method for improving the mechanical properties of a crankshaft for an internal combustion engine.
JP21443783A 1983-11-15 1983-11-15 Method of improving mechanical characteristic of crank shaft for internal-combustion engine Granted JPS60106641A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP21443783A JPS60106641A (en) 1983-11-15 1983-11-15 Method of improving mechanical characteristic of crank shaft for internal-combustion engine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP21443783A JPS60106641A (en) 1983-11-15 1983-11-15 Method of improving mechanical characteristic of crank shaft for internal-combustion engine

Publications (2)

Publication Number Publication Date
JPS60106641A JPS60106641A (en) 1985-06-12
JPH0130913B2 true JPH0130913B2 (en) 1989-06-22

Family

ID=16655762

Family Applications (1)

Application Number Title Priority Date Filing Date
JP21443783A Granted JPS60106641A (en) 1983-11-15 1983-11-15 Method of improving mechanical characteristic of crank shaft for internal-combustion engine

Country Status (1)

Country Link
JP (1) JPS60106641A (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0757406B2 (en) * 1985-11-18 1995-06-21 マシ−ネンフアブリ−ク・アルフインク・ケツセラ−・ゲ−・エム・ベ−・ハ− Fatigue strength improvement device
DE3916421C1 (en) * 1989-05-19 1990-08-30 Man Nutzfahrzeuge Ag, 8000 Muenchen, De
JP5585758B2 (en) * 2009-12-04 2014-09-10 大同特殊鋼株式会社 Crankshaft manufacturing method
US8826773B2 (en) 2012-05-29 2014-09-09 Honda Motor Co., Ltd. Middle web crankshaft having forged stress relief

Also Published As

Publication number Publication date
JPS60106641A (en) 1985-06-12

Similar Documents

Publication Publication Date Title
US4871268A (en) Rolling bearing
US20040149359A1 (en) Method of fabricating a steel forging, and a forging obtained thereby
JP4632931B2 (en) Induction hardening steel excellent in cold workability and its manufacturing method
JPS6043431B2 (en) Manufacturing method of nitrided machine parts for light loads
JP2001254143A (en) Soft-nitriding non-thermally refined crank shaft and its producing method
JPH09279295A (en) Steel for soft-nitriding excellent in cold forgeability
JPH0130913B2 (en)
JPS5967365A (en) Production of machine parts
JP2007146233A (en) Method for manufacturing structural parts for automobile made from steel
US20230304528A1 (en) Crankshaft
JPH03254342A (en) Manufacture of raw material for bearing having excellent service life to rolling fatigue
JP2000204464A (en) Surface treated gear, its production and producing device therefor
JP2001206002A (en) Axle for rolling stock and its manufacturing method
JPH10226817A (en) Production of steel for soft-nitriding and soft-nitrided parts using this steel
US6391124B1 (en) Non-heat treated, soft-nitrided steel parts
JPH07102343A (en) Production of nitrided parts
JP2614653B2 (en) Manufacturing method of carburized parts with little heat treatment distortion
JPH0853711A (en) Surface hardening treating method
JPH09279296A (en) Steel for soft-nitriding excellent in cold forgeability
JPH05140726A (en) Manufacture of driving system machine parts having high fatigue strength
JP7310723B2 (en) Steel part and its manufacturing method
JPH03267347A (en) High speed rotating member
KR100501680B1 (en) Heat treatment method of boron alloys for gear
WO2021230384A1 (en) Steel component
JPH08174340A (en) Part for machine structure having excellent surface fatigue strength and manufacture thereof

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees