JP3303741B2 - Gas nitrocarburizing method - Google Patents

Gas nitrocarburizing method

Info

Publication number
JP3303741B2
JP3303741B2 JP26026997A JP26026997A JP3303741B2 JP 3303741 B2 JP3303741 B2 JP 3303741B2 JP 26026997 A JP26026997 A JP 26026997A JP 26026997 A JP26026997 A JP 26026997A JP 3303741 B2 JP3303741 B2 JP 3303741B2
Authority
JP
Japan
Prior art keywords
nitriding
temperature
ammonia gas
atmosphere
diffusion
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP26026997A
Other languages
Japanese (ja)
Other versions
JPH11100655A (en
Inventor
善美 青山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP26026997A priority Critical patent/JP3303741B2/en
Publication of JPH11100655A publication Critical patent/JPH11100655A/en
Application granted granted Critical
Publication of JP3303741B2 publication Critical patent/JP3303741B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明はガス軟窒化処理方法
に関する。
The present invention relates to a gas nitrocarburizing method.

【0002】[0002]

【従来の技術】表面硬化法として、高周波焼入、浸炭焼
入、ガス軟窒化などが知られている。なかでも、アンモ
ニアガスが分解した窒素を素材の内部に拡散浸透させる
ガス軟窒化は、適度な硬度をもつ硬化層を形成でき、し
かも、非変態処理であるため、部材の形状の高精度化を
期待できる利点がある。
2. Description of the Related Art Induction hardening, carburizing, gas nitrocarburizing and the like are known as surface hardening methods. Above all, gas nitrocarburizing, in which ammonia gas decomposed and diffuses nitrogen into the material, can form a hardened layer with appropriate hardness and is a non-transformation treatment, so that the shape of the member can be made more precise. There are promising benefits.

【0003】このようなガス軟窒化方法において、次の
第1の方法〜第3の方法が従来より知られている。第1
の方法は、アンモニアガスと窒素ガスと二酸化炭素ガス
とを含む窒化雰囲気中で素材を550〜590℃の窒化
温度に加熱して窒化を行う方法である。
In such a gas nitrocarburizing method, the following first to third methods are conventionally known. First
Is a method in which a material is heated to a nitriding temperature of 550 to 590 ° C. in a nitriding atmosphere containing an ammonia gas, a nitrogen gas, and a carbon dioxide gas to perform nitriding.

【0004】第2の方法は、アンモニアガスを含む窒化
雰囲気中で素材を、500〜530℃の窒化温度に4〜
6時間加熱して第1段階目の窒化を行ない、その後、5
70〜590℃の温度の窒化温度に昇温して2〜3時間
加熱保持して第2段階目の窒化を行なう2段窒化方法で
ある。
In a second method, a material is heated in a nitriding atmosphere containing ammonia gas to a nitriding temperature of 500 to 530 ° C. for 4 to 4 hours.
The first stage nitridation is performed by heating for 6 hours,
This is a two-stage nitriding method in which the temperature is raised to a nitriding temperature of 70 to 590 ° C., and is heated and held for 2 to 3 hours to perform the second nitriding.

【0005】第3の方法は、アンモニアガスを含む窒化
雰囲気中で素材を、500〜530℃の温度の窒化温度
に20〜50時間加熱保持する低温窒化方法である。
The third method is a low-temperature nitriding method in which a material is heated and held at a nitriding temperature of 500 to 530 ° C. for 20 to 50 hours in a nitriding atmosphere containing ammonia gas.

【0006】更に、特開平7−286256号公報に
は、窒化処理の開始から終了にかけて窒化温度を連続的
に上昇させる窒化鋼部材の製造方法が開示されている。
Further, Japanese Patent Application Laid-Open No. 7-286256 discloses a method for producing a nitrided steel member in which the nitriding temperature is continuously increased from the start to the end of the nitriding treatment.

【0007】さらに、本出願人は、洗浄処理した鉄鋼部
品を真空または窒素雰囲気中で昇温した後、NH3、N2、
CO2を含む窒化雰囲気中で鉄鋼部品を500〜600
Torrの減圧下で窒化する方法を提案している(特開
平4−364号公報)。この公報に係る方法によれば、
減圧状態の窒化雰囲気が採用されているため、鉄鋼部品
の表面に生成する化合物層における薄肉化、非ポーラス
化に有利である。
Further, the present applicant raises the temperature of a cleaned steel part in a vacuum or nitrogen atmosphere, and then sets NH 3 , N 2,
500-600 steel parts in nitriding atmosphere containing CO 2
A method of nitriding under a reduced pressure of Torr has been proposed (JP-A-4-364). According to the method according to this publication,
Since a nitriding atmosphere in a reduced pressure state is employed, it is advantageous for making the compound layer formed on the surface of the steel part thinner and nonporous.

【0008】[0008]

【発明が解決しようとする課題】上記した第1の方法に
よれば、素材の表面に生成する化合物層が厚くなり易
く、かつ、化合物層が空孔をもちポーラス状となり易
い。
According to the above-mentioned first method, the compound layer formed on the surface of the material tends to be thick, and the compound layer tends to have pores and become porous.

【0009】上記した第2の方法及び第3の方法によれ
ば、素材の表面に生成する化合物層の厚みを抑え得るも
のの、前述同様に、化合物層が空孔をもちポーラス状と
なり易い。
According to the second and third methods described above, although the thickness of the compound layer formed on the surface of the material can be suppressed, the compound layer tends to have pores and become porous as described above.

【0010】そのため、高品質が要請される部材に窒化
処理を適用するには限界があった。殊に、歯車に適用し
た場合には、厚い化合物層の影響で、満足できる面圧強
度が得られにくい。
[0010] Therefore, there is a limit in applying a nitriding treatment to a member requiring high quality. Particularly when applied to gears, it is difficult to obtain satisfactory surface pressure strength due to the influence of the thick compound layer.

【0011】また特開平7−286256号公報に係る
技術では、窒化温度を経時的に上昇させているものの、
窒化雰囲気のアンモニア添加量は、窒化処理の開始から
終了にかけて同一であり、化合物の厚みの抑制、非ポー
ラス化には必ずしも十分ではない。
In the technique according to Japanese Patent Application Laid-Open No. 7-286256, although the nitriding temperature is increased with time,
The amount of ammonia added in the nitriding atmosphere is the same from the start to the end of the nitriding treatment, and is not always sufficient for suppressing the thickness of the compound and making the compound nonporous.

【0012】本発明は上記した実情に鑑みなされたもの
であり、化合物層の厚みの過剰化の抑制、ポーラス化の
抑制に有利なガス軟窒化処理方法を提供することを課題
とする。
SUMMARY OF THE INVENTION The present invention has been made in view of the above circumstances, and has as its object to provide a gas nitrocarburizing method which is advantageous for suppressing the compound layer from becoming excessively thick and suppressing the formation of a porous layer.

【0013】[0013]

【課題を解決するための手段】請求項1に係るガス軟窒
化処理方法は、アンモニアガスを含む圧力200Tor
r(≒26664Pa≒26kPa)以下の窒化雰囲気
中で素材を、450〜560℃の窒化温度に加熱して窒
化を行う第1段階目の窒化処理工程と、圧力200To
rr以下で窒化処理工程よりもアンモニアガス濃度が少
ないまたはアンモニアガスを含まない雰囲気中で、素材
を570℃〜650℃の温度に保持する拡散処理工程と
を実施し、その後、さらに、アンモニアガスを含む圧力
200Torr以下の窒化雰囲気中で素材を、450〜
560℃の窒化温度に加熱して窒化を行う第2段目の窒
化処理工程を実施し、拡散処理工程における温度よりも
第1段目の窒化処理工程の温度及び第2段目の窒化処理
工程の温度は低いことを特徴とする。
According to a first aspect of the present invention, there is provided a gas nitrocarburizing method, wherein a pressure including ammonia gas is 200 Torr.
r ({26664Pa} 26 kPa) or less in a nitriding atmosphere, the material is heated to a nitriding temperature of 450 to 560 ° C. to perform a first nitriding process, and a pressure of 200 To.
a diffusion treatment step of holding the material at a temperature of 570 ° C. to 650 ° C. in an atmosphere having a lower ammonia gas concentration than the rr or less than the ammonia gas concentration or containing no ammonia gas, and then further removing the ammonia gas. the material in the following nitriding atmosphere pressure 200Torr including, 450
A second-stage nitridation process of performing nitriding by heating to a nitriding temperature of 560 ° C. is performed, and the temperature of the first-stage nitridation process and the second-stage nitridation process are higher than the temperature of the diffusion process. Is characterized by a low temperature.

【0014】請求項2に係るガス軟窒化処理方法は、ア
ンモニアガスを含む減圧状態の窒化雰囲気中で素材を、
450〜560℃の窒化温度に加熱して窒化を行う第1
段階目の窒化処理工程と、第1段階目の窒化処理工程よ
りもアンモニアガス濃度が少ない減圧状態の窒化雰囲気
中で素材を570℃〜650℃に加熱することにより、
第1段階目の窒化処理工程で素材に拡散浸透した窒素を
更に拡散浸透させる拡散処理工程と、アンモニアガスを
含む減圧状態の窒化雰囲気中で前記素材を、450〜5
60℃の窒化温度に加熱して窒化を行う第2段階目の窒
化処理工程とを実施し、拡散処理工程におけるアンモニ
アガス濃度は、第1段階目の窒化処理工程におけるアン
モニアガス濃度に対して、0〜0.5倍であり、拡散処
理工程における温度よりも第1段目の窒化処理工程の温
度及び第2段目の窒化処理工程の温度は低いことを特徴
とする。
According to a second aspect of the present invention, there is provided a gas nitrocarburizing method, comprising:
The first method of performing nitriding by heating to a nitriding temperature of 450 to 560 ° C.
By heating the material to 570 ° C. to 650 ° C. in a nitriding atmosphere in a reduced pressure state in which the ammonia gas concentration is lower than that in the first nitriding treatment step and the first nitriding treatment step,
A diffusion treatment step of further diffusing and penetrating the nitrogen diffused and infiltrated into the material in the first nitridation treatment step ;
A second nitridation step of performing nitridation by heating to a nitriding temperature of 60 ° C., wherein the ammonia gas concentration in the diffusion treatment step is higher than the ammonia gas concentration in the first nitridation step. 0 to 0.5 times, and the temperature of the first-stage nitriding process and the temperature of the second-stage nitriding process are lower than the temperature of the diffusion process.

【0015】[0015]

【発明の実施の形態】請求項1に係る方法によれば、窒
化処理工程では、アンモニアガスを含む圧力200To
rr以下の減圧状態の窒化雰囲気中で窒化を行うため、
素材の表面に生成する化合物層の厚肉化、ポーラス化
は、抑制される。よって化合物層の薄肉化、緻密化が図
られる。さらに、窒化温度は570℃未満であり、低温
つまり非高温であるため、素材の表面に生成する化合物
層の厚みの増大が一層抑制される。
According to a first aspect of the present invention, in the nitriding step, the pressure including ammonia gas is 200 To.
Since nitriding is performed in a nitriding atmosphere under a reduced pressure of rr or less,
Thickening and porous formation of the compound layer formed on the surface of the material are suppressed. Therefore, the thickness and the density of the compound layer can be reduced. Furthermore, since the nitriding temperature is lower than 570 ° C. and the temperature is low, that is, non-high, the increase in the thickness of the compound layer formed on the surface of the material is further suppressed.

【0016】さらに請求項1に係る方法によれば、拡散
処理工程では、窒化処理工程よりもアンモニアガス濃度
が少ないまたはアンモニアガスを含まない雰囲気中で、
素材を570℃〜650℃の加熱温度、つまり高温領域
に保持するため、素材の内部への窒素の拡散浸透は促進
され、窒化硬化層が深くなる。すなわち、軟窒化深さが
深くなる。
Further, according to the method of the present invention, in the diffusion treatment step, the concentration of the ammonia gas is lower than that in the nitridation treatment step or in an atmosphere containing no ammonia gas.
Since the material is maintained at a heating temperature of 570 ° C. to 650 ° C., that is, in a high temperature region, diffusion and penetration of nitrogen into the material is promoted, and the nitrided hardened layer is deepened. That is, the depth of soft nitriding is increased.

【0017】そのため請求項1に係る方法によれば、薄
く且つポーラス化が少ないか無い化合物層と、深い窒化
硬化層とが得られる。
Therefore, according to the method of the first aspect, a compound layer which is thin and has little or no porosification and a deep nitride hardened layer can be obtained.

【0018】請求項1に係る方法によれば、化合物層の
厚肉化の抑制、ポーラス化の抑制などを考慮すると、窒
化雰囲気としては、圧力150Torr(≒19998
Pa≒20kPa)以下の窒化雰囲気が好ましい。より
好ましくは、圧力100Torr(≒13332Pa≒
13kPa)以下の窒化雰囲気を採用できる。
According to the method of the first aspect, in consideration of suppression of thickening of the compound layer, suppression of formation of a porous layer, etc., the nitriding atmosphere has a pressure of 150 Torr (# 199998).
(Pa が 20 kPa) or less is preferable. More preferably, the pressure is 100 Torr ({13332 Pa}).
A nitriding atmosphere of 13 kPa) or less can be employed.

【0019】また請求項1に係る窒化温度としては、化
合物層の厚みの抑制などを考慮して、非高温領域、57
0℃未満として設定されているが、450〜560℃
する。殊に500〜540℃が好ましい。
In addition, the nitriding temperature according to the first aspect may be set to a non-high temperature range, 57% in consideration of suppression of the thickness of the compound layer.
Is set as lower than 0 ℃, but the four hundred and fifty to five hundred and sixty ° C.
I do. Particularly, 500 to 540 ° C is preferable.

【0020】請求項1に係る拡散処理工程における温度
が570℃未満であれば、素材の内部へ窒素が拡散浸透
する時間が長くなる。650℃を越えれば、素材の芯部
における強度低下、硬度低下が誘発され易く、素材の強
度を確保する意味では好ましくない。従って570〜6
50℃が適当である。
If the temperature in the diffusion step according to the first aspect is lower than 570 ° C., the time required for nitrogen to diffuse and penetrate into the material becomes longer. If the temperature exceeds 650 ° C., a decrease in strength and a decrease in hardness at the core of the material are likely to be induced, which is not preferable from the viewpoint of securing the strength of the material. Therefore 570-6
50 ° C. is suitable.

【0021】請求項1に係る方法によれば、拡散処理工
程は、窒化処理工程よりもアンモニアガス濃度が少な
い、あるいは、アンモニアガスを含まない雰囲気中で行
う。そのため、拡散処理工程において、窒化処理工程で
素材に拡散浸透した窒素の一層の拡散浸透を図りつつ、
化合物層の厚みの増大化は抑制される。よって、薄く緻
密な化合物層を得つつ、深い窒化硬化層を得るのに有利
である。
According to the method of the first aspect, the diffusion treatment step is performed in an atmosphere having a lower ammonia gas concentration than the nitridation treatment step or in an atmosphere containing no ammonia gas. Therefore, in the diffusion process, while further diffusing and infiltrating the nitrogen that has diffused into the material in the nitriding process,
An increase in the thickness of the compound layer is suppressed. Therefore, it is advantageous to obtain a deep nitride hardened layer while obtaining a thin and dense compound layer.

【0022】さて、請求項1に係る拡散処理工程では、
素材の材質などによっては、処理時間が長すぎると、窒
素の過剰の拡散浸透に伴ない、窒化深さは深くなるもの
の、素材表面における脱窒が生じるおそれがある。この
場合、素材表面における硬度低下が誘発されやすい。
By the way, in the diffusion processing step according to claim 1,
Depending on the material of the material, if the treatment time is too long, the nitrogen may be deepened due to excessive diffusion and infiltration of nitrogen, but denitrification may occur on the surface of the material. In this case, a decrease in hardness on the surface of the material is likely to be induced.

【0023】この点請求項に係る方法によれば、上記
した拡散処理工程を実施した後、さらに、アンモニアガ
スを含む圧力200Torr以下の窒化雰囲気中で素材
を、570℃未満の窒化温度(450〜560℃)に加
熱して窒化を行う第2段目の窒化処理工程を実施する。
そのため、素材の表面が再び窒化される。故に、拡散処
理工程で発生し易い窒素の過剰の拡散浸透に伴う素材表
面における硬度低下は、抑制または回避される。
According to the method according to claim 1 In this respect, the
After performing the diffusion process step, the material is further heated in a nitriding atmosphere containing ammonia gas at a pressure of 200 Torr or less to a nitriding temperature of less than 570 ° C. (450 to 560 ° C.) to perform a second stage of nitriding. A nitriding process is performed.
Therefore, the surface of the material is nitrided again. The late, reduction in hardness in the material surface due to excessive diffusion penetration prone nitrogen generated in diffusion process is suppressed or avoided.

【0024】請求項に係る方法によれば、化合物層の
厚肉化の抑制、ポーラス化の抑制等を考慮すると、窒化
雰囲気としては、圧力150Torr以下の窒化雰囲気
が好ましく、より好ましくは、圧力100Torr以下
の窒化雰囲気を採用できる。
According to the method of the first aspect , in consideration of suppression of thickening of the compound layer and suppression of porous formation, the nitriding atmosphere is preferably a nitriding atmosphere having a pressure of 150 Torr or less, more preferably a pressure of 150 Torr or less. A nitriding atmosphere of 100 Torr or less can be adopted.

【0025】請求項に係る方法によれば、雰囲気に占
めるアンモニアガスの濃度は、体積比で、第1段階目の
窒化処理工程では30〜50%、拡散処理工程では0〜
10%、第2段階目の窒化処理では10〜30%にでき
る。
According to the method according to claim 1, the concentration of ammonia gas occupying the atmosphere, by volume, 30-50% in the first stage nitriding process, a diffusion process 0
10% and 10 to 30% in the second stage nitriding treatment.

【0026】請求項に係る第2段階目の窒化処理工程
における窒化温度としては、化合物層の厚みの抑制など
を考慮すれば、450〜560℃とする。殊に500〜
540℃が好ましい。
The nitriding temperature in the second stage of the nitriding treatment according to claim 1 is set to 450 to 560 ° C. in consideration of the suppression of the thickness of the compound layer . Especially 500-
540 ° C. is preferred.

【0027】請求項に係る方法によれば、減圧状態の
窒化雰囲気で窒化を行うため、化合物層の厚みの増大は
抑制され、ポーラス化も抑制される。さらに請求項
係る方法によれば、拡散処理工程におけるアンモニアガ
ス濃度は、第1段階目の窒化処理工程におけるアンモニ
アガス濃度に対して、0〜0.5倍であるため、拡散処
理工程に係る雰囲気はアンモニアガス濃度がかなり低
い。故に、化合物層を薄くしつつ、素材の内部への窒素
の拡散浸透性が確保され、窒化硬化層を深くするのに有
利である。
According to the second aspect of the present invention, since the nitriding is performed in a nitriding atmosphere under a reduced pressure, an increase in the thickness of the compound layer is suppressed, and the formation of a porous layer is also suppressed. Further, according to the method according to claim 2 , the ammonia gas concentration in the diffusion treatment step is 0 to 0.5 times the ammonia gas concentration in the first nitridation treatment step. Such an atmosphere has a considerably low ammonia gas concentration. Therefore, while the compound layer is made thinner, the diffusion permeability of nitrogen into the material is secured, which is advantageous for making the nitrided hardened layer deeper.

【0028】なお拡散処理工程におけるアンモニアガス
濃度は、後述する実施例2に示すように、0にできる。
Ammonia gas concentration in [0028] a contact diffusion process, as shown in Example 2 below, can be zero.

【0029】換言すれば、体積比で、拡散処理工程にお
けるアンモニアガス濃度をK1とし、第1段階目の窒化
処理工程におけるアンモニアガス濃度をK2とすれば、
(K1/K2)=0〜0.5、つまり0.5以下にでき
る。なお、(K1/K2)としては、必要に応じて、
0.4以下、0.35以下、0.3以下、0.25以
下、0.2以下、0.1以下を採用できる。この場合、
雰囲気の圧力は10〜200Torrにできる。
[0029] In other words, the body volume ratio, the ammonia gas concentration in the diffusion treatment step and K1, if the ammonia gas concentration in the first stage nitriding process and K2,
(K1 / K2) = 0 to 0.5, that is, 0.5 or less. In addition, as (K1 / K2), if necessary,
0.4 or less, 0.35 or less, 0.3 or less, 0.25 or less, 0.2 or less, 0.1 or less can be adopted. in this case,
The pressure of the atmosphere can be 10 to 200 Torr.

【0030】なお、拡散処理工程の温度は、一般的には
温度が高いほど、拡散処理工程に要する時間は短縮でき
る。
[0030] The temperature of the diffusion process is generally the higher the temperature, the time required for the diffusion process can be shortened.

【0031】本発明方法において、素材の材質、加熱温
度などによっても相違するものの、第1段階目の窒化処
理工程は例えば3〜4時間、拡散処理工程は例えば0.
5〜3時間、第2段階目の窒化処理工程は例えば0.5
〜1.5時間実施できる。
In the method of the present invention, the first nitridation step is, for example, 3 to 4 hours, and the diffusion step is, for example, 0.1 hour, although it differs depending on the material of the raw material, the heating temperature and the like.
5 to 3 hours, the second nitriding step is, for example, 0.5
1.51.5 hours.

【0032】[0032]

【実施例】以下、図面を参照して実施例を比較例ととも
に説明する。
DESCRIPTION OF THE PREFERRED EMBODIMENTS Embodiments will now be described with reference to the drawings, together with comparative examples.

【0033】本実施例に係る試験片は次のように作成し
た。すなわち、下記の組成をもつ鋼種を2トン真空溶解
し、その凝固体を熱間圧延により直径70mmの棒鋼と
し、880℃で1.5hr焼ならしを実施し、転動用の
試験片を作成した。鋼種の組成は、重量比で、Cが0.
21%、Siが0.25%、Mnが0.46%、Sが
0.020%、Cr1.48%、Vが0.22%、不可
避の不純物、残部がFeであった。
The test piece according to the present example was prepared as follows. That is, a steel type having the following composition was melted in a vacuum of 2 tons, and the solidified body was formed into a steel bar having a diameter of 70 mm by hot rolling, and normalizing was performed at 880 ° C. for 1.5 hours to prepare a test piece for rolling. . The composition of the steel type is such that C is 0.1% by weight.
21%, Si was 0.25%, Mn was 0.46%, S was 0.020%, Cr was 1.48%, V was 0.22%, inevitable impurities, and the balance was Fe.

【0034】図1は、主要な実施例に係る加熱形態を示
す。図1から理解できるように、第1窒化処理工程
(A)、拡散処理工程(B)、第2窒化処理工程(C)
を順に実施した。拡散処理工程(B)では、第1窒化処
理工程(A)及び第2窒化処理工程(C)よりもアンモ
ニアガス濃度を大幅に低減させることを特徴とする第1
窒化処理工程においては、アンモニアガスを含む圧力1
50Torr以下の窒化雰囲気中で、570℃未満の温
度、つまり500〜540℃の窒化温度に、素材として
の鉄系の試験片を加熱保持し、窒化を行った。すなわ
ち、試験片に対して第1段目の窒化処理工程を実施し
た。
FIG. 1 shows a heating mode according to the main embodiment. As can be understood from FIG. 1, a first nitriding step (A), a diffusion step (B), and a second nitriding step (C).
Was performed in order. In the diffusion treatment step (B), the first nitridation treatment step (A) and the second nitridation treatment step (C) have a significantly lower ammonia gas concentration than the first nitridation treatment step (C).
In the nitriding step, the pressure 1 containing ammonia gas is used.
In a nitriding atmosphere of 50 Torr or less, an iron-based test piece as a material was heated and held at a temperature of less than 570 ° C., that is, a nitriding temperature of 500 to 540 ° C., and nitriding was performed. That is, the first-stage nitriding treatment step was performed on the test piece.

【0035】次に、拡散処理工程においては、圧力15
0Torr以下で第1段目の窒化処理工程よりもアンモ
ニアガス濃度が少ない雰囲気中、または、アンモニアガ
スを含まない雰囲気中で、試験片を570℃〜650℃
の温度に加熱保持した。
Next, in the diffusion step, the pressure 15
The test piece was heated at 570 ° C. to 650 ° C. in an atmosphere having an ammonia gas concentration lower than that of the first nitriding treatment at 0 Torr or less or in an atmosphere containing no ammonia gas.
And kept at a temperature of.

【0036】次に第2窒化処理工程においては、アンモ
ニアガスを含む圧力150Torr以下の窒化雰囲気中
で、570℃未満の窒化温度に試験片を加熱保持して窒
化を行った。すなわち、試験片に対して第2段目の窒化
処理工程を実施した。
Next, in the second nitriding step, the test specimen was heated and held at a nitriding temperature of less than 570 ° C. in a nitriding atmosphere containing an ammonia gas at a pressure of 150 Torr or less to perform nitriding. That is, the second stage nitriding process was performed on the test piece.

【0037】その後、試験片を130℃の油に投入して
油冷した。
Thereafter, the test piece was poured into oil at 130 ° C. and oil-cooled .

【0038】具体的な試験条件は、表1に示す。なお表
1において、炉内圧力としては、()無しの数字はTo
rr単位で示し、( )内の数字は、1Torr=13
3.322Paで換算したkPa単位の数字を示す。
Table 1 shows specific test conditions. In Table 1, as for the furnace pressure, the number without parenthesis is To.
rr unit, and the number in parentheses is 1 Torr = 13
Shows the number in kPa converted at 3.322 Pa.

【0039】[0039]

【表1】 [Table 1]

【0040】表1から理解できるように、各実施例によ
れば、第1窒化処理工程、拡散処理工程、第2窒化処理
工程ともに炉内圧力は基本的には80Torrとした。
ただし、実施例5では炉内圧力は、第1窒化処理工程、
拡散処理工程、第2窒化処理工程ともに130Torr
とした。
As can be understood from Table 1, according to each embodiment, the pressure in the furnace was basically 80 Torr in each of the first nitriding treatment step, the diffusion treatment step, and the second nitriding treatment step.
However, in Example 5, the pressure in the furnace was changed to the first nitriding step,
130 Torr for both the diffusion process and the second nitriding process
And

【0041】表1から理解できるように、実施例によれ
ば、第1窒化処理工程、第2窒化処理工程においては、
炉内圧力が80Torrであり、窒化雰囲気の各ガスの
割合は、体積比でつまり流量比で、NH3:N2:CO2
=50:40:10としたが、拡散処理工程の雰囲気の
アンモニアガス濃度を、表1に示すように、第1窒化処
理工程のアンモニアガス濃度よりも大幅に減少させた。
[0041] As can be seen from Table 1, according to the actual施例, first nitriding treatment step, in the second nitriding process,
The furnace pressure was 80 Torr, and the ratio of each gas in the nitriding atmosphere was NH 3 : N 2 : CO 2 in volume ratio, that is, in flow ratio.
= 50: 40: 10, but the ammonia gas concentration in the atmosphere in the diffusion treatment step was significantly reduced as shown in Table 1 than the ammonia gas concentration in the first nitridation treatment step.

【0042】すなわち、拡散処理工程の雰囲気における
各ガスの割合は、実施例1では、体積比で、NH3
2:CO2=7:80:13とし、実施例2では、NH
3:N2:CO2=0:100:0とし、実施例3では、
NH3:N2:CO2=4:96:0とし、実施例4及び
実施例5では、NH3:N2:CO2=10:90:0と
し、比較例A〜比較例Cでは、実施例1と同様に、NH
3:N2:CO2=7:80:13とした。
That is, in Example 1, the ratio of each gas in the atmosphere of the diffusion treatment step was NH 3 :
N 2 : CO 2 = 7: 80: 13, and in Example 2, NH 2 was used.
3 : N 2 : CO 2 = 0: 100: 0, and in Example 3,
NH 3: N 2: CO 2 = 4: 96: 0 and then, in Examples 4 and 5, NH 3: N 2: CO 2 = 10: 90: 0 and then, in the comparative example A~ Comparative Example C , As in Example 1, NH
3: N 2: CO 2 = 7: 80: was 13.

【0043】換言すれば、体積比で、拡散処理工程にお
けるアンモニアガス濃度をK1とし、第1段階目の窒化
処理工程におけるアンモニアガス濃度をK2とすれば、
(K1/K2)は、実施例1によれば、(7/50)倍
=0.14倍であった。実施例2によれば、(0/5
0)=0倍であった。実施例3によれば、4/50倍=
0.08倍であった。実施例4及び実施例5によれば、
(10/50)倍=0.2倍であった。比較例A〜比較
例Cによれば、(7/50)倍=0.14倍であった。
In other words, if the ammonia gas concentration in the diffusion process is K1 and the ammonia gas concentration in the first nitriding process is K2 in volume ratio,
(K1 / K2) is (7/50) times according to the first embodiment.
= 0.14 times. According to the second embodiment, (0/5
0) = 0 times. According to Example 3, 4/50 times =
It was 0.08 times. According to Example 4 and Example 5,
(10/50) times = 0.2 times. Comparative Example A to Comparative
According to Example C , (7/50) times = 0.14 times.

【0044】即ち実施例1〜比較例Cによれば、(K1
/K2)は、0倍〜0.14倍〜0.2倍であった。
That is, according to Examples 1 to C , (K1
/ K2) was from 0 to 0.14 to 0.2 times.

【0045】また表1から理解できるように、比較例A
では、第1窒化処理工程及び拡散処理工程を実施したも
のの、第2窒化処理工程を実施しなかった。なお、比較
例Aにおける加熱形態を図2に示す。
As can be seen from Table 1, Comparative Example A
In this example, the first nitriding step and the diffusion step were performed, but the second nitriding step was not performed. Note that the comparison
The heating mode in Example A is shown in FIG.

【0046】また表1に示すように比較例Bでは、第1
窒化処理工程及び第2窒化処理工程における温度は57
0℃と一定とした。また比較例Cでは、第1窒化処理工
程、拡散処理工程、第2窒化処理工程における温度は5
30℃と一定とした。比較例Cにおける加熱形態を図3
に示す。
As shown in Table 1, in Comparative Example B , the first
The temperature in the nitriding process and the second nitriding process is 57
It was kept constant at 0 ° C. In Comparative Example C , the temperature in the first nitriding step, the diffusion step, and the second nitriding step was 5
The temperature was kept constant at 30 ° C. FIG. 3 shows a heating mode in Comparative Example C.
Shown in

【0047】各実施例に係る試験片について、化合物層
の厚み、軟窒化深さ、表面硬さ、化合物層のポーラスの
程度を測定した。軟窒化深さは、化合物層を含む表面か
ら、マイクロビッカース硬度計でHv400以上の硬度
をもつ深さとした。表面硬さは、化合物層を含む表面か
ら0.05mmの深さの硬さとした。
With respect to the test pieces according to each of the examples, the thickness of the compound layer, the depth of soft nitriding, the surface hardness, and the degree of porosity of the compound layer were measured. The nitrocarburizing depth was defined as a depth having a hardness of Hv400 or more measured by a micro Vickers hardness meter from the surface including the compound layer. The surface hardness was a hardness of 0.05 mm from the surface including the compound layer.

【0048】これらの結果を表2に示す。さらに、3点
式のボールを試験片の表面に摺動させる森式転動寿命試
験を行ない、寿命(L10:累積破損確率)を測定し、表
2に示した。森式転動寿命試験では接触面圧は3920
MPa、回転数は1000rpm、潤滑剤としてタービ
ン油を用いた。
Table 2 shows the results. Further, a wood-type rolling life test in which a three-point ball was slid on the surface of the test piece was performed, and the life (L 10 : cumulative failure probability) was measured. The contact pressure was 3920 in the forest type rolling life test.
MPa, rotation speed was 1000 rpm, and turbine oil was used as a lubricant.

【0049】比較例に係る試験片についても同様に測定
し、表2に示した。
The test pieces according to the comparative examples were measured in the same manner, and the results are shown in Table 2.

【0050】[0050]

【表2】 [Table 2]

【0051】表2から理解できるように、比較例1、比
較例2では、化合物層が厚く、軟窒化深さも十分ではな
く、表面硬さも低くく、化合物層にポーラス部も発生し
ていた。また転動寿命も良好とはいえなかった。
As can be seen from Table 2, in Comparative Examples 1 and 2, the compound layer was thick, the nitrocarburizing depth was not sufficient, the surface hardness was low, and the compound layer had a porous portion. The rolling life was not good.

【0052】比較例1では、拡散処理工程においてアン
モニアガス濃度を減少させていないためと推察される。
比較例2では、拡散処理工程においてアンモニアガス濃
度を減少させていないため、さらに、炉内圧力が700
Torrと高いため、と推察される。
In Comparative Example 1, it is assumed that the ammonia gas concentration was not reduced in the diffusion process.
In Comparative Example 2, since the ammonia gas concentration was not reduced in the diffusion treatment step,
It is presumed that it is as high as Torr.

【0053】これに対して、実施例1〜実施例5によれ
ば、表2から理解できるように、化合物層の薄肉化、軟
窒化深さの確保、表面硬さの確保に有利であり、非ポー
ラス化が図られ、ポーラス部も無かった、さらに転動寿
命も良好であった。
On the other hand, according to Examples 1 to 5, as can be understood from Table 2, it is advantageous for reducing the thickness of the compound layer, securing the nitrocarburizing depth, and securing the surface hardness. It was made non-porous, there was no porous portion, and the rolling life was good .

【0054】(適用例) 本発明方法は、機械構造部品一般、たとえば、合金鋼や
炭素鋼などの鋼系材料で形成した歯車の歯部の窒化に適
用できる。これの例示を図4に示す。従来では、歯部の
曲げ強度を増加すべく、窒化層を深くするため、窒化時
間が長時間要していた。そのため、化合物層の厚肉化、
ポーラス化が誘発され、面圧強度が十分ではなかった。
しかし、図4に示す歯車10の歯部12に本発明方法を
施せば、化合物層の薄肉化、軟窒化深さの確保、表面硬
さの確保、ポーラス化の抑制に有利であり、したがっ
て、歯部12の曲げ強度の確保、面圧強度の確保が両立
できる。さらに歯車に限らず、熱間鍛造品や冷間鍛造な
どの鍛造品、切削加工品など広く適用できる。
[0054] (Suitable examples) The present invention method, machine structural parts generally, for example, can be applied to nitride the teeth of the gear formed by a steel material such as alloy steel or carbon steel. An example of this is shown in FIG. Conventionally, a long nitriding time has been required to deepen the nitrided layer in order to increase the bending strength of the teeth. Therefore, the thickness of the compound layer is increased,
Porosity was induced and the surface pressure strength was not sufficient.
However, if the method of the present invention is applied to the tooth portion 12 of the gear 10 shown in FIG. 4, it is advantageous for reducing the thickness of the compound layer, securing the depth of nitrocarburizing, securing the surface hardness, and suppressing the formation of porous material. Ensuring the bending strength of the tooth portion 12 and ensuring the surface pressure strength can both be achieved. Further, the present invention can be widely applied to not only gears but also forged products such as hot forged products and cold forged products, and cut products.

【0055】本発明方法では、窒化条件、雰囲気、測定
結果を示す表1、表2における数値を上限または下限と
して、請求項の記載を規定できることは勿論である。
In the method of the present invention, it is needless to say that the description in the claims can be defined by setting the numerical values in Tables 1 and 2 showing the nitriding conditions, atmosphere and measurement results as the upper and lower limits.

【0056】そのほか、本発明方法は上記した実施例、
適用例にのみ限定されるものではなく、要旨を逸脱しな
い範囲内で適宜変更して実施し得るものである。
In addition, the method of the present invention comprises
The present invention is not limited only to the application examples, and can be appropriately changed and implemented without departing from the gist.

【0057】[0057]

【発明の効果】請求項1に係る方法によれば、窒化処理
工程では、アンモニアガスを含む減圧状態の窒化雰囲気
中で素材を450〜560℃の窒化温度に加熱しつまり
比較的低温で窒化を行ない、一方、拡散処理工程では、
窒化処理工程よりもアンモニアガス濃度が少ないまたは
アンモニアガスを含まない雰囲気中で、570℃〜65
0℃の加熱温度つまり高温で保持する。そのため素材の
内部に拡散浸透した窒素が一層深く拡散浸透することを
促進できる。従って、素材の表面に生成する化合物層の
厚みの増大を抑制しつつ、窒化深さを増大できる。
According to the first aspect of the present invention, in the nitriding step, the material is heated to a nitriding temperature of 450 to 560 ° C. in a nitriding atmosphere under a reduced pressure containing ammonia gas, that is, the nitriding is performed at a relatively low temperature. On the other hand, in the diffusion process,
570 ° C. to 65 ° C. in an atmosphere containing less ammonia gas or containing no ammonia gas than the nitriding treatment step.
It is kept at a heating temperature of 0 ° C., that is, at a high temperature. Therefore, it is possible to promote the nitrogen that has diffused and penetrated into the material to diffuse and penetrate deeper. Therefore, the nitriding depth can be increased while suppressing an increase in the thickness of the compound layer generated on the surface of the material.

【0058】請求項に係る方法によれば、さらに、ア
ンモニアガスを含む減圧状態の窒化雰囲気中で素材を
50〜560℃の窒化温度に加熱し、第2段目の窒化処
理工程を実施する。そのため、素材の表面に窒素が拡散
浸透する。故に、拡散処理工程での加熱に起因して素材
の表面における脱窒に起因する硬度低下、強度低下が生
じるような場合であっても、その硬度低下、強度低下を
抑制できる。従って処理後の素材における表面硬さを確
保するのに有利である。
[0058] According to the method according to claim 1, further material in a nitriding atmosphere depressurized state containing ammonia gas 4
A second nitriding step is performed by heating to a nitriding temperature of 50 to 560 ° C. Therefore, nitrogen diffuses and permeates the surface of the material. Therefore, even in a case where a decrease in hardness and a decrease in strength due to denitrification on the surface of the material due to the heating in the diffusion treatment step, the decrease in hardness and the decrease in strength can be suppressed. Therefore, it is advantageous for ensuring the surface hardness of the material after the treatment.

【0059】請求項に係る方法によれば、第1段階目
の窒化処理工程におけるアンモニアガス濃度に対して、
拡散処理工程におけるアンモニアガス濃度は、0〜0.
5倍と大幅に低減している。そのため、請求項1に係る
方法と同様に、素材の表面に生成する化合物層の厚みの
増大を抑制しつつ、窒化深さの増大に有利である。
According to the method of the second aspect , the ammonia gas concentration in the first nitriding step is
The concentration of ammonia gas in the diffusion process is 0 to 0.
It is greatly reduced to five times. Therefore, similarly to the method according to the first aspect, it is advantageous in increasing the nitriding depth while suppressing an increase in the thickness of the compound layer formed on the surface of the material.

【0060】上記した効果を奏する各請求項に係る方法
によれば、歯車に適用した場合には、歯部における面圧
強度と曲げ強度の両立に有利である。
According to the method according to each claim having the above-described effects, when applied to a gear, it is advantageous for achieving both the surface pressure strength and the bending strength at the tooth portion.

【図面の簡単な説明】[Brief description of the drawings]

【図1】実施例に係る加熱形態を示すグラフである。FIG. 1 is a graph showing a heating mode according to an example.

【図2】第2段階目の窒化処理工程を実施しない実施例
に係る加熱形態を示すグラフである。
FIG. 2 is a graph showing a heating mode according to an example in which a second-stage nitriding process is not performed.

【図3】第1段階目の窒化処理工程、拡散処理工程、第
2段階目の窒化処理工程を実質的に等温で実施する実施
例に係る加熱形態を示すグラフである。
FIG. 3 is a graph showing a heating mode according to an example in which a first-stage nitriding process, a diffusion process, and a second-stage nitriding process are performed at substantially the same temperature.

【図4】歯車の要部の構成図である。FIG. 4 is a configuration diagram of a main part of a gear.

【符号の説明】[Explanation of symbols]

図中、12は歯部を示す。 In the figure, reference numeral 12 denotes a tooth portion.

Claims (2)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】アンモニアガスを含む圧力200Torr
以下の窒化雰囲気中で素材を、450〜560℃の窒化
温度に加熱して窒化を行う第1段階目の窒化処理工程
と、 圧力200Torr以下で窒化処理工程よりもアンモニ
アガス濃度が少ないまたはアンモニアガスを含まない雰
囲気中で、前記素材を570℃〜650℃の温度に保持
する拡散処理工程とを実施し、その後、さらに、 アンモニアガスを含む圧力200Torr以下の窒化雰
囲気中で前記素材を、450〜560℃の窒化温度に加
熱して窒化を行う第2段目の窒化処理工程を実施し、 前記拡散処理工程における温度よりも第1段目の窒化処
理工程の温度及び第2段目の窒化処理工程の温度は低い
ことを特徴とするガス軟窒化処理方法。
1. A pressure containing ammonia gas of 200 Torr.
In the following nitriding atmosphere, the material is nitrided at 450-560 ° C
A first stage nitridation step of nitriding by heating to a temperature of 570 ° C. to 650 ° C. in an atmosphere having a lower ammonia gas concentration or containing no ammonia gas at a pressure of 200 Torr or less than the nitridation step; A nitriding temperature of 450 to 560 ° C. in a nitriding atmosphere containing ammonia gas at a pressure of 200 Torr or less. Performing a second nitriding step, wherein the temperature of the first nitriding step and the temperature of the second nitriding step are lower than the temperature of the diffusion step. .
【請求項2】アンモニアガスを含む減圧状態の窒化雰囲
気中で素材を、450〜560℃の窒化温度に加熱して
窒化を行う第1段階目の窒化処理工程と、 前記第1段階目の窒化処理工程よりもアンモニアガス濃
度が少ない減圧状態の窒化雰囲気中で前記素材を570
℃〜650℃に加熱することにより、前記第1段階目の
窒化処理工程で前記素材に拡散浸透した窒素を更に拡散
浸透させる拡散処理工程と、 アンモニアガスを含む減圧状態の窒化雰囲気中で前記素
材を、450〜560℃の窒化温度に加熱して窒化を行
う第2段階目の窒化処理工程とを実施し、 前記拡散処理工程におけるアンモニアガス濃度は、前記
第1段階目の窒化処理工程におけるアンモニアガス濃度
に対して、0〜0.5倍であり、前記拡散処理工程にお
ける温度よりも第1段目の窒化処理工程の温度及び第2
段目の窒化処理工程の温度は低いことを特徴とするガス
軟窒化処理方法。
2. A first-stage nitridation process in which a material is heated to a nitriding temperature of 450 to 560 ° C. in a nitriding atmosphere under reduced pressure containing ammonia gas to perform nitriding; The above-mentioned material is 570 in a nitriding atmosphere under a reduced pressure in which the ammonia gas concentration is lower than that of the processing step.
A diffusion treatment step of further diffusing and penetrating the nitrogen that has diffused and penetrated into the material in the first nitridation treatment step by heating to about 650 ° C. to 650 ° C .; A nitriding temperature of 450 to 560 ° C. to perform nitriding, and a nitriding process in a second stage is performed. The gas concentration is 0 to 0.5 times the gas concentration, and the temperature of the first nitriding step and the second
A gas nitrocarburizing method, wherein the temperature of the second nitriding step is low.
JP26026997A 1997-09-25 1997-09-25 Gas nitrocarburizing method Expired - Fee Related JP3303741B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP26026997A JP3303741B2 (en) 1997-09-25 1997-09-25 Gas nitrocarburizing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP26026997A JP3303741B2 (en) 1997-09-25 1997-09-25 Gas nitrocarburizing method

Publications (2)

Publication Number Publication Date
JPH11100655A JPH11100655A (en) 1999-04-13
JP3303741B2 true JP3303741B2 (en) 2002-07-22

Family

ID=17345719

Family Applications (1)

Application Number Title Priority Date Filing Date
JP26026997A Expired - Fee Related JP3303741B2 (en) 1997-09-25 1997-09-25 Gas nitrocarburizing method

Country Status (1)

Country Link
JP (1) JP3303741B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102719829A (en) * 2012-02-02 2012-10-10 山东常林机械集团股份有限公司 Surface hardening malcomising process for ductile cast iron hydraulic part
EP2703517A2 (en) 2012-08-31 2014-03-05 Akebono Brake Industry Co., Ltd. Vehicular disc brake rotor and manufacturing method of vehicular disc brake rotor
EP2703516A2 (en) 2012-08-31 2014-03-05 Akebono Brake Industry Co., Ltd. Manufacturing method of cast-iron friction member
US9212416B2 (en) 2009-08-07 2015-12-15 Swagelok Company Low temperature carburization under soft vacuum
US10246766B2 (en) 2012-01-20 2019-04-02 Swagelok Company Concurrent flow of activating gas in low temperature carburization

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4998654B2 (en) * 2001-01-31 2012-08-15 日立オートモティブシステムズ株式会社 Method of gas soft nitriding treatment of steel members
JP4615208B2 (en) * 2002-11-20 2011-01-19 中央発條株式会社 Manufacturing method of valve spring
KR20050118175A (en) * 2003-03-10 2005-12-15 가부시끼가이샤 리켄 Nitrided valve lifter and producing method thereof
JP2006233261A (en) * 2005-02-24 2006-09-07 Nippon Techno:Kk Gas nitriding method
JP4771718B2 (en) * 2005-03-10 2011-09-14 エア・ウォーターNv株式会社 Metal nitriding method
KR100988702B1 (en) * 2006-12-14 2010-10-18 유겐가이샤 유키코슈하 A quenched nitride and the method of manufacture thereof
JP4562094B2 (en) * 2006-12-21 2010-10-13 株式会社和泉利器製作所 pot
JP2011235318A (en) 2010-05-11 2011-11-24 Daido Steel Co Ltd Method for surface treatment of die-casting die
WO2015136917A1 (en) * 2014-03-13 2015-09-17 新日鐵住金株式会社 Nitriding method, and nitrided component manufacturing method
DE102015213068A1 (en) * 2015-07-13 2017-01-19 Robert Bosch Gmbh Process for nitriding a component
US20230193414A1 (en) * 2020-05-15 2023-06-22 Jfe Steel Corporation Steel and steel component
CN116197739B (en) * 2023-05-05 2023-07-14 松诺盟科技有限公司 Surface treatment process of hydrogen pressure sensor core elastomer, elastomer and application

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9212416B2 (en) 2009-08-07 2015-12-15 Swagelok Company Low temperature carburization under soft vacuum
US10156006B2 (en) 2009-08-07 2018-12-18 Swagelok Company Low temperature carburization under soft vacuum
US10934611B2 (en) 2009-08-07 2021-03-02 Swagelok Company Low temperature carburization under soft vacuum
US10246766B2 (en) 2012-01-20 2019-04-02 Swagelok Company Concurrent flow of activating gas in low temperature carburization
US11035032B2 (en) 2012-01-20 2021-06-15 Swagelok Company Concurrent flow of activating gas in low temperature carburization
CN102719829A (en) * 2012-02-02 2012-10-10 山东常林机械集团股份有限公司 Surface hardening malcomising process for ductile cast iron hydraulic part
CN102719829B (en) * 2012-02-02 2013-09-25 山东常林机械集团股份有限公司 Surface hardening malcomising process for ductile cast iron hydraulic part
EP2703517A2 (en) 2012-08-31 2014-03-05 Akebono Brake Industry Co., Ltd. Vehicular disc brake rotor and manufacturing method of vehicular disc brake rotor
EP2703516A2 (en) 2012-08-31 2014-03-05 Akebono Brake Industry Co., Ltd. Manufacturing method of cast-iron friction member
US9422994B2 (en) 2012-08-31 2016-08-23 Akebono Brake Industry Co., Ltd. Manufacturing method of cast-iron friction member
US9541144B2 (en) 2012-08-31 2017-01-10 Akebono Brake Industry Co., Ltd. Vehicular disc brake rotor and manufacturing method of vehicular disc brake rotor

Also Published As

Publication number Publication date
JPH11100655A (en) 1999-04-13

Similar Documents

Publication Publication Date Title
JP3303741B2 (en) Gas nitrocarburizing method
RU2271263C2 (en) Metal powder articles with compacted surface manufacturing method
WO2019093480A1 (en) Iron-based sintered alloy material and production method therefor
JP6521078B2 (en) Nitrided steel part and method for manufacturing the same
JP3400934B2 (en) Nitriding steel and nitriding method
WO2002034957A1 (en) Sintered sprocket
JP4301507B2 (en) Sintered sprocket for silent chain and manufacturing method thereof
JP3996482B2 (en) Vacuum carburizing method
JPH04141573A (en) Production of nitrided steel
JP3018804B2 (en) Surface treatment method for titanium alloy members
JPH0925543A (en) Nitriding steel sheet excellent in formability and its press formed body
JP7306581B2 (en) steel parts
JPH10259421A (en) Method for heat-treating machine parts
JPH10183299A (en) Steel sheet for nitriding, excellent in deep drawability, and press formed body with superior forming precision and excellent wear resistance
JP3153108B2 (en) Steel sheet for nitriding excellent in deep drawability and its pressed product
JPH10245668A (en) Method for nitriding ferrous material and ferrous material product obtained thereby
JPH0925513A (en) Production of nitriding steel sheet excellent in formability
JP3237826B2 (en) Manufacturing method of steel parts with excellent surface fatigue strength
JP4184147B2 (en) NITRIDED TOOL, DIE AND ITS MANUFACTURING METHOD
JP2002035917A (en) Mold for die-casting or injection molding and manufacturing method of the same
JPH11343565A (en) Titanium base alloy material having hardened layer on surface and its production
JPH08165556A (en) Production of pitting resisting soft-nitrided gear
JP2970441B2 (en) Nitrided iron-based parts excellent in rolling contact fatigue resistance and method of manufacturing the same
JP2001271909A (en) Shaft of assembled camshaft and manufacturing method for assembled camshaft
JPH04301064A (en) Steel member excellent in fatigue strength and its production

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees