JPH11100655A - Gas soft-nitriding treatment - Google Patents

Gas soft-nitriding treatment

Info

Publication number
JPH11100655A
JPH11100655A JP26026997A JP26026997A JPH11100655A JP H11100655 A JPH11100655 A JP H11100655A JP 26026997 A JP26026997 A JP 26026997A JP 26026997 A JP26026997 A JP 26026997A JP H11100655 A JPH11100655 A JP H11100655A
Authority
JP
Japan
Prior art keywords
nitriding
ammonia gas
temperature
atmosphere
less
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP26026997A
Other languages
Japanese (ja)
Other versions
JP3303741B2 (en
Inventor
Yoshimi Aoyama
善美 青山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP26026997A priority Critical patent/JP3303741B2/en
Publication of JPH11100655A publication Critical patent/JPH11100655A/en
Application granted granted Critical
Publication of JP3303741B2 publication Critical patent/JP3303741B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To provide a gas soft-nitriding treatment process advantageous to the inhibition of excessive increase in the thickness of a compound layer formed on the surface of a material and also to the inhibition of the formation of pores. SOLUTION: The gas soft-nitriding process includes the following stages: a nitriding treatment stage where a material is heated up to a nitriding temp. of <570 deg.C in a nitriding atmosphere of <=200 Torr pressure containing ammonia gas to undergo nitriding; and a diffusion treatment stage where the material is held at 570-650 deg.C in a nitriding atmosphere having ammonia gas concentration lower than that in the above nitriding treatment stage or free from ammonia gas at <=200 Torr pressure. Further, the material can be subjected to a second- stage nitriding treatment stage where the material is heated up to a nitriding temp. of <570 deg.C in a nitriding atmosphere of <=200 Torr pressure containing ammonia gas to undergo nitriding.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明はガス軟窒化処理方法
に関する。
The present invention relates to a gas nitrocarburizing method.

【0002】[0002]

【従来の技術】表面硬化法として、高周波焼入、浸炭焼
入、ガス軟窒化などが知られている。なかでも、アンモ
ニアガスが分解した窒素を素材の内部に拡散浸透させる
ガス軟窒化は、適度な硬度をもつ硬化層を形成でき、し
かも、非変態処理であるため、部材の形状の高精度化を
期待できる利点がある。
2. Description of the Related Art Induction hardening, carburizing, gas nitrocarburizing and the like are known as surface hardening methods. Above all, gas nitrocarburizing, in which ammonia gas decomposed and diffuses nitrogen into the material, can form a hardened layer with appropriate hardness and is a non-transformation treatment, so that the shape of the member can be made more precise. There are promising benefits.

【0003】このようなガス軟窒化方法において、次の
第1の方法〜第3の方法が従来より知られている。第1
の方法は、アンモニアガスと窒素ガスと二酸化炭素ガス
とを含む窒化雰囲気中で素材を550〜590℃の窒化
温度に加熱して窒化を行う方法である。第2の方法は、
アンモニアガスを含む窒化雰囲気中で素材を、500〜
530℃の窒化温度に4〜6時間加熱して第1段階目の
窒化を行ない、その後、570〜590℃の温度の窒化
温度に昇温して2〜3時間加熱保持して第2段階目の窒
化を行なう2段窒化方法である。
In such a gas nitrocarburizing method, the following first to third methods are conventionally known. First
Is a method in which a material is heated to a nitriding temperature of 550 to 590 ° C. in a nitriding atmosphere containing an ammonia gas, a nitrogen gas, and a carbon dioxide gas to perform nitriding. The second method is
In a nitriding atmosphere containing ammonia gas,
The first stage of nitriding is performed by heating to a nitriding temperature of 530 ° C. for 4 to 6 hours, and then the temperature is raised to a nitriding temperature of 570 to 590 ° C. and maintained for 2 to 3 hours, followed by a second stage. Is a two-stage nitriding method for performing nitriding.

【0004】第3の方法は、アンモニアガスを含む窒化
雰囲気中で素材を、500〜530℃の温度の窒化温度
に20〜50時間加熱保持する低温窒化方法である。更
に、特開平7−286256号公報には、窒化処理の開
始から終了にかけて窒化温度を連続的に上昇させる窒化
鋼部材の製造方法が開示されている。さらに、本出願人
は、洗浄処理した鉄鋼部品を真空または窒素雰囲気中で
昇温した後、NH3、2、CO2を含む窒化雰囲気中で鉄
鋼部品を500〜600Torrの減圧下で窒化する方
法を提案している(特開平4−364号公報)。この公
報に係る方法によれば、減圧状態の窒化雰囲気が採用さ
れているため、鉄鋼部品の表面に生成する化合物層にお
ける薄肉化、非ポーラス化に有利である。
[0004] A third method is a low-temperature nitriding method in which a material is heated and held at a nitriding temperature of 500 to 530 ° C for 20 to 50 hours in a nitriding atmosphere containing ammonia gas. Furthermore, Japanese Patent Application Laid-Open No. 7-286256 discloses a method for manufacturing a nitrided steel member in which the nitriding temperature is continuously increased from the start to the end of the nitriding treatment. Further, the present applicant raises the temperature of the cleaned steel part in a vacuum or nitrogen atmosphere, and then nitrides the steel part in a nitriding atmosphere containing NH 3, N 2 and CO 2 under a reduced pressure of 500 to 600 Torr. A method has been proposed (JP-A-4-364). According to the method disclosed in this publication, a nitriding atmosphere in a reduced pressure state is employed, which is advantageous for making the compound layer formed on the surface of the steel component thinner and less porous.

【0005】[0005]

【発明が解決しようとする課題】上記した第1の方法に
よれば、素材の表面に生成する化合物層が厚くなり易
く、かつ、化合物層が空孔をもちポーラス状となり易
い。上記した第2の方法及び第3の方法によれば、素材
の表面に生成する化合物層の厚みを抑え得るものの、前
述同様に、化合物層が空孔をもちポーラス状となり易
い。
According to the above-mentioned first method, the compound layer formed on the surface of the material tends to be thick, and the compound layer tends to have pores and become porous. According to the second and third methods described above, although the thickness of the compound layer formed on the surface of the material can be reduced, the compound layer tends to have pores and become porous as described above.

【0006】そのため、高品質が要請される部材に窒化
処理を適用するには限界があった。殊に、歯車に適用し
た場合には、厚い化合物層の影響で、満足できる面圧強
度が得られにくい。また特開平7−286256号公報
に係る技術では、窒化温度を経時的に上昇させているも
のの、窒化雰囲気のアンモニア添加量は、窒化処理の開
始から終了にかけて同一であり、化合物の厚みの抑制、
非ポーラス化には必ずしも十分ではない。
For this reason, there is a limit in applying a nitriding treatment to members requiring high quality. Particularly when applied to gears, it is difficult to obtain satisfactory surface pressure strength due to the influence of the thick compound layer. Further, in the technique according to JP-A-7-286256, although the nitriding temperature is increased with time, the amount of added ammonia in the nitriding atmosphere is the same from the start to the end of the nitriding treatment, thereby suppressing the thickness of the compound.
It is not always enough to make it non-porous.

【0007】本発明は上記した実情に鑑みなされたもの
であり、化合物層の厚みの過剰化の抑制、ポーラス化の
抑制に有利なガス軟窒化処理方法を提供することを課題
とする。
SUMMARY OF THE INVENTION The present invention has been made in view of the above circumstances, and has as its object to provide a gas nitrocarburizing method which is advantageous for suppressing the thickness of the compound layer from becoming excessive and suppressing the formation of a porous layer.

【0008】[0008]

【課題を解決するための手段】請求項1に係るガス軟窒
化処理方法は、アンモニアガスを含む圧力200Tor
r(≒26664Pa≒26kPa)以下の窒化雰囲気
中で素材を、570℃未満の窒化温度に加熱して窒化を
行う窒化処理工程と、圧力200Torr以下で窒化処
理工程よりもアンモニアガス濃度が少ないまたはアンモ
ニアガスを含まない窒化雰囲気中で、素材を570℃〜
650℃の温度に保持する拡散処理工程とを含むことを
特徴とする。
According to a first aspect of the present invention, there is provided a gas nitrocarburizing method, wherein a pressure including ammonia gas is 200 Torr.
r (≒ 26664 Pa ≒ 26 kPa) or less in a nitriding atmosphere to heat the material to a nitriding temperature of less than 570 ° C. to perform a nitriding treatment, and at a pressure of 200 Torr or less, the ammonia gas concentration is lower than that of the nitriding treatment process or ammonia. 570 ° C ~
And a diffusion treatment step of maintaining the temperature at 650 ° C.

【0009】請求項2に係るガス軟窒化処理方法は、請
求項1に係るガス軟窒化処理方法を実施した後、さら
に、アンモニアガスを含む圧力200Torr以下の窒
化雰囲気中で素材を、570℃未満の窒化温度に加熱し
て窒化を行う第2段目の窒化処理工程を実施することを
特徴とする。請求項3に係るガス軟窒化処理方法は、ア
ンモニアガスを含む減圧状態の窒化雰囲気中で素材を、
570℃未満の窒化温度に加熱して窒化を行う第1段階
目の窒化処理工程と、第1段階目の窒化処理工程よりも
アンモニアガス濃度が少ないまたはアンモニアガスを含
まない減圧状態の窒化雰囲気中で素材を加熱することに
より、第1段階目の窒化処理工程で素材に拡散浸透した
窒素を更に拡散浸透させる拡散処理工程と、アンモニア
ガスを含む減圧状態の窒化雰囲気中で素材を、570℃
未満の窒化温度に加熱して窒化を行う第2段階目の窒化
処理工程とを実施し、拡散処理工程におけるアンモニア
ガス濃度は、第1段階目の窒化処理工程におけるアンモ
ニアガス濃度に対して、0〜0.5倍であることを特徴
とする。
In the gas nitrocarburizing method according to the second aspect, after the gas nitronitriding method according to the first aspect is performed, the material is further heated to a temperature of less than 570 ° C. in a nitriding atmosphere containing ammonia gas at a pressure of 200 Torr or less. A second stage nitriding treatment step of heating to a nitriding temperature to perform nitriding. In the gas nitrocarburizing method according to claim 3, the raw material is nitrided in a reduced-pressure nitriding atmosphere containing ammonia gas.
A first-stage nitriding process in which nitriding is performed by heating to a nitriding temperature of less than 570 ° C., and a nitriding atmosphere having a reduced ammonia gas concentration or containing no ammonia gas compared to the first-stage nitriding process. The material is heated at 570 ° C. in a nitriding atmosphere in a reduced pressure state containing ammonia gas, and a diffusion treatment step of further diffusing and penetrating the nitrogen diffused into the material in the first nitriding treatment step.
And performing a second nitriding treatment step in which nitriding is performed by heating to a nitriding temperature of less than 3. The ammonia gas concentration in the diffusion treatment step is 0% lower than the ammonia gas concentration in the first nitriding treatment step. 0.50.5 times.

【0010】[0010]

【発明の実施の形態】請求項1に係る方法によれば、窒
化処理工程では、アンモニアガスを含む圧力200To
rr以下の減圧状態の窒化雰囲気中で窒化を行うため、
素材の表面に生成する化合物層の厚肉化、ポーラス化
は、抑制される。よって化合物層の薄肉化、緻密化が図
られる。さらに、窒化温度は570℃未満であり、低温
つまり非高温であるため、素材の表面に生成する化合物
層の厚みの増大が一層抑制される。
According to a first aspect of the present invention, in the nitriding step, the pressure including ammonia gas is 200 To.
Since nitriding is performed in a nitriding atmosphere under a reduced pressure of rr or less,
Thickening and porous formation of the compound layer formed on the surface of the material are suppressed. Therefore, the thickness and the density of the compound layer can be reduced. Furthermore, since the nitriding temperature is lower than 570 ° C. and the temperature is low, that is, non-high, the increase in the thickness of the compound layer formed on the surface of the material is further suppressed.

【0011】さらに請求項1に係る方法によれば、拡散
処理工程では、窒化処理工程よりもアンモニアガス濃度
が少ないまたはアンモニアガスを含まない雰囲気中で、
素材を570℃〜650℃の加熱温度、つまり高温領域
に保持するため、素材の内部への窒素の拡散浸透は促進
され、窒化硬化層が深くなる。すなわち、軟窒化深さが
深くなる。
Further, according to the method of the present invention, in the diffusion treatment step, the ammonia gas concentration is lower than that in the nitriding treatment step or in an atmosphere containing no ammonia gas.
Since the material is maintained at a heating temperature of 570 ° C. to 650 ° C., that is, in a high temperature region, diffusion and penetration of nitrogen into the material is promoted, and the nitrided hardened layer is deepened. That is, the depth of soft nitriding is increased.

【0012】そのため請求項1に係る方法によれば、薄
く且つポーラス化が少ないか無い化合物層と、深い窒化
硬化層とが得られる。請求項1に係る方法によれば、化
合物層の厚肉化の抑制、ポーラス化の抑制などを考慮す
ると、窒化雰囲気としては、圧力150Torr(≒1
9998Pa≒20kPa)以下の窒化雰囲気が好まし
い。より好ましくは、圧力100Torr(≒1333
2Pa≒13kPa)以下の窒化雰囲気を採用できる。
Therefore, according to the method of the first aspect, a compound layer which is thin and has little or no porosity and a deep nitride hardened layer can be obtained. According to the method of the first aspect, in consideration of suppressing the thickness of the compound layer and suppressing the formation of the porous layer, the nitriding atmosphere is set at a pressure of 150 Torr (≒ 1).
A nitriding atmosphere of 9998 Pa 20 kPa) or less is preferable. More preferably, the pressure is 100 Torr (≒ 1333).
A nitriding atmosphere of 2 Pa ≒ 13 kPa) or less can be adopted.

【0013】また請求項1に係る窒化温度としては、化
合物層の厚みの抑制などを考慮して、非高温領域、57
0℃未満として設定されているが、450〜560℃、
殊に500〜540℃が好ましい。請求項1に係る拡散
処理工程における温度が570℃未満であれば、素材の
内部へ窒素が拡散浸透する時間が長くなる。650℃を
越えれば、素材の芯部における強度低下、硬度低下が誘
発され易く、素材の強度を確保する意味では好ましくな
い。従って570〜650℃が適当である。
The nitriding temperature according to the first aspect of the present invention may be set to a non-high temperature range, 57
It is set as less than 0 ° C, but 450-560 ° C,
Particularly, 500 to 540 ° C is preferable. If the temperature in the diffusion treatment step according to claim 1 is lower than 570 ° C., the time for nitrogen to diffuse and penetrate into the material becomes longer. If the temperature exceeds 650 ° C., a decrease in strength and a decrease in hardness at the core of the material are likely to be induced, which is not preferable from the viewpoint of securing the strength of the material. Therefore, 570-650 ° C is appropriate.

【0014】請求項1に係る方法によれば、拡散処理工
程は、窒化処理工程よりもアンモニアガス濃度が少な
い、あるいは、アンモニアガスを含まない雰囲気中で行
う。そのため、拡散処理工程において、窒化処理工程で
素材に拡散浸透した窒素の一層の拡散浸透を図りつつ、
化合物層の厚みの増大化は抑制される。よって、薄く緻
密な化合物層を得つつ、深い窒化硬化層を得るのに有利
である。
According to the method of the first aspect, the diffusion treatment step is performed in an atmosphere having a lower ammonia gas concentration than the nitridation treatment step or in an atmosphere containing no ammonia gas. Therefore, in the diffusion process, while further diffusing and infiltrating the nitrogen that has diffused into the material in the nitriding process,
An increase in the thickness of the compound layer is suppressed. Therefore, it is advantageous to obtain a deep nitride hardened layer while obtaining a thin and dense compound layer.

【0015】さて、請求項1に係る拡散処理工程では、
素材の材質などによっては、処理時間が長すぎると、窒
素の過剰の拡散浸透に伴ない、窒化深さは深くなるもの
の、素材表面における脱窒が生じるおそれがある。この
場合、素材表面における硬度低下が誘発されやすい。こ
の点請求項2に係る方法によれば、請求項1に係る拡散
処理工程を実施した後、さらに、アンモニアガスを含む
圧力200Torr以下の窒化雰囲気中で素材を、57
0℃未満の窒化温度に加熱して窒化を行う第2段目の窒
化処理工程を実施する。そのため、素材の表面が再び窒
化される。故に、請求項1に係る拡散処理工程で発生し
易い窒素の過剰の拡散浸透に伴う素材表面における硬度
低下は、抑制または回避される。
In the diffusion processing step according to the first aspect,
Depending on the material of the material, if the treatment time is too long, the nitrogen may be deepened due to excessive diffusion and infiltration of nitrogen, but denitrification may occur on the surface of the material. In this case, a decrease in hardness on the surface of the material is likely to be induced. According to the method of the second aspect, after performing the diffusion treatment step of the first aspect, the material is further reduced in a nitriding atmosphere containing ammonia gas at a pressure of 200 Torr or less.
A second-stage nitriding treatment step of performing nitriding by heating to a nitriding temperature of less than 0 ° C. is performed. Therefore, the surface of the material is nitrided again. Therefore, a decrease in hardness on the material surface due to excessive diffusion and infiltration of nitrogen, which is likely to occur in the diffusion treatment step according to claim 1, is suppressed or avoided.

【0016】請求項2に係る方法によれば、化合物層の
厚肉化の抑制、ポーラス化の抑制等を考慮すると、窒化
雰囲気としては、圧力150Torr以下の窒化雰囲気
が好ましく、より好ましくは、圧力100Torr以下
の窒化雰囲気を採用できる。請求項2に係る方法によれ
ば、雰囲気に占めるアンモニアガスの濃度は、体積比
で、第1段階目の窒化処理工程では30〜50%、拡散
処理工程では0〜10%、第2段階目の窒化処理では1
0〜30%にできる。
According to the method of the second aspect, in consideration of suppression of thickening of the compound layer and suppression of porous formation, the nitriding atmosphere is preferably a nitriding atmosphere having a pressure of 150 Torr or less, more preferably a pressure of 150 Torr or less. A nitriding atmosphere of 100 Torr or less can be adopted. According to the method of claim 2, the concentration of the ammonia gas in the atmosphere is 30 to 50% by volume in the first stage nitridation process, 0 to 10% in the diffusion process stage, and Is 1 in nitriding
0% to 30%.

【0017】請求項2に係る第2段階目の窒化処理工程
における窒化温度としては、化合物層の厚みの抑制など
を考慮すれば、450〜560℃、殊に500〜540
℃が好ましい。請求項3に係る方法によれば、減圧状態
の窒化雰囲気で窒化を行うため、化合物層の厚みの増大
は抑制され、ポーラス化も抑制される。さらに請求項3
に係る方法によれば、拡散処理工程におけるアンモニア
ガス濃度は、第1段階目の窒化処理工程におけるアンモ
ニアガス濃度に対して、0〜0.5倍であるため、拡散
処理工程に係る雰囲気はアンモニアガス濃度がかなり低
い。故に、化合物層を薄くしつつ、素材の内部への窒素
の拡散浸透性が確保され、窒化硬化層を深くするのに有
利である。
The nitriding temperature in the second nitriding step according to the second aspect is 450 to 560 ° C., particularly 500 to 540 in consideration of suppression of the thickness of the compound layer.
C is preferred. According to the method of the third aspect, since the nitriding is performed in a nitriding atmosphere under a reduced pressure, an increase in the thickness of the compound layer is suppressed, and the formation of a porous layer is also suppressed. Claim 3
According to the method according to the above, the ammonia gas concentration in the diffusion treatment step is 0 to 0.5 times the ammonia gas concentration in the first nitridation treatment step. The gas concentration is quite low. Therefore, while the compound layer is made thinner, the diffusion permeability of nitrogen into the material is secured, which is advantageous for making the nitrided hardened layer deeper.

【0018】なお請求項3に係る拡散処理工程における
アンモニアガス濃度は、後述する実施例2に示すよう
に、0にできる。換言すれば、請求項3に係る方法で
は、体積比で、拡散処理工程におけるアンモニアガス濃
度をK1とし、第1段階目の窒化処理工程におけるアン
モニアガス濃度をK2とすれば、(K1/K2)=0〜
0.5、つまり0.5以下にできる。なお、(K1/K
2)としては、必要に応じて、0.4以下、0.35以
下、0.3以下、0.25以下、0.2以下、0.1以
下を採用できる。この場合、雰囲気の圧力は10〜20
0Torrにできる。
The ammonia gas concentration in the diffusion treatment step according to claim 3 can be set to 0 as shown in a second embodiment described later. In other words, in the method according to claim 3, if the ammonia gas concentration in the diffusion treatment step is K1 and the ammonia gas concentration in the first nitridation treatment step is K2, (K1 / K2) = 0
0.5, that is, 0.5 or less. Note that (K1 / K
As 2), 0.4 or less, 0.35 or less, 0.3 or less, 0.25 or less, 0.2 or less, 0.1 or less can be adopted as necessary. In this case, the pressure of the atmosphere is 10-20.
0 Torr.

【0019】なお、請求項3に係る方法によれば、拡散
処理工程の温度は、第1回目の窒化処理工程の窒化温度
と等しくてもよいし、あるいは、第1回目の窒化処理工
程の窒化温度よりも高くてもよく、たとえば、450〜
560℃や500〜540℃のように570℃未満でも
よいし、あるいは、570〜650℃でもよい。一般的
には温度が高いほど、拡散処理工程に要する時間は短縮
できる。
According to the third aspect of the present invention, the temperature of the diffusion process may be equal to the temperature of the first nitriding process, or the temperature of the first nitriding process may be equal to the temperature of the first nitriding process. The temperature may be higher than, for example, 450-
The temperature may be lower than 570 ° C, such as 560 ° C or 500 to 540 ° C, or may be 570 to 650 ° C. Generally, the higher the temperature, the shorter the time required for the diffusion process.

【0020】本発明方法において、素材の材質、加熱温
度などによっても相違するものの、第1段階目の窒化処
理工程は例えば3〜4時間、拡散処理工程は例えば0.
5〜3時間、第2段階目の窒化処理工程は例えば0.5
〜1.5時間実施できる。
In the method of the present invention, the first nitridation step is, for example, 3 to 4 hours, and the diffusion step is, for example, 0.1 hour, although it differs depending on the material of the raw material, the heating temperature and the like.
5 to 3 hours, the second nitriding step is, for example, 0.5
1.51.5 hours.

【0021】[0021]

【実施例】以下、図面を参照して実施例を比較例ととも
に説明する。本実施例に係る試験片は次のように作成し
た。すなわち、下記の組成をもつ鋼種を2トン真空溶解
し、その凝固体を熱間圧延により直径70mmの棒鋼と
し、880℃で1.5hr焼ならしを実施し、転動用の
試験片を作成した。鋼種の組成は、重量比で、Cが0.
21%、Siが0.25%、Mnが0.46%、Sが
0.020%、Cr1.48%、Vが0.22%、不可
避の不純物、残部がFeであった。
DESCRIPTION OF THE PREFERRED EMBODIMENTS Embodiments will now be described with reference to the drawings, together with comparative examples. The test piece according to this example was prepared as follows. That is, a steel type having the following composition was melted in a vacuum of 2 tons, and the solidified body was formed into a steel bar having a diameter of 70 mm by hot rolling, and normalizing was performed at 880 ° C. for 1.5 hours to prepare a test piece for rolling. . The composition of the steel type is such that C is 0.1% by weight.
21%, Si was 0.25%, Mn was 0.46%, S was 0.020%, Cr was 1.48%, V was 0.22%, inevitable impurities, and the balance was Fe.

【0022】図1は、主要な実施例に係る加熱形態を示
す。図1から理解できるように、第1窒化処理工程
(A)、拡散処理工程(B)、第2窒化処理工程(C)
を順に実施した。拡散処理工程(B)では、第1窒化処
理工程(A)及び第2窒化処理工程(C)よりもアンモ
ニアガス濃度を大幅に低減させることを特徴とする 第1窒化処理工程においては、アンモニアガスを含む圧
力150Torr以下の窒化雰囲気中で、570℃未満
の温度、つまり500〜540℃の窒化温度に、素材と
しての鉄系の試験片を加熱保持し、窒化を行った。すな
わち、試験片に対して第1段目の窒化処理工程を実施し
た。
FIG. 1 shows a heating mode according to the main embodiment. As can be understood from FIG. 1, a first nitriding step (A), a diffusion step (B), and a second nitriding step (C).
Was performed in order. In the diffusion treatment step (B), the ammonia gas concentration is significantly reduced as compared with the first nitridation treatment step (A) and the second nitridation treatment step (C). In a nitriding atmosphere containing a pressure of 150 Torr or less, the iron-based test piece as a raw material was heated and held at a temperature of less than 570 ° C., that is, at a nitriding temperature of 500 to 540 ° C. to perform nitriding. That is, the first-stage nitriding treatment step was performed on the test piece.

【0023】次に、拡散処理工程においては、圧力15
0Torr以下で第1段目の窒化処理工程よりもアンモ
ニアガス濃度が少ない雰囲気中、または、アンモニアガ
スを含まない雰囲気中で、試験片を570℃〜650℃
の温度に加熱保持した。次に第2窒化処理工程において
は、アンモニアガスを含む圧力150Torr以下の窒
化雰囲気中で、570℃未満の窒化温度に試験片を加熱
保持して窒化を行った。すなわち、試験片に対して第2
段目の窒化処理工程を実施した。
Next, in the diffusion process, the pressure 15
The test piece was heated at 570 ° C. to 650 ° C. in an atmosphere having an ammonia gas concentration lower than that of the first nitriding treatment at 0 Torr or less or in an atmosphere containing no ammonia gas.
And kept at a temperature of. Next, in the second nitriding treatment step, the test specimen was heated and held at a nitriding temperature of less than 570 ° C. in a nitriding atmosphere containing ammonia gas at a pressure of 150 Torr or less to perform nitriding. That is, the second
The nitriding step of the stage was performed.

【0024】その後、試験片を130℃の油に投入して
油冷した。実施例1〜実施例8に係る具体的な試験条件
は、表1に示す。なお表1において、炉内圧力として
は、( )無しの数字はTorr単位で示し、( )内の数
字は、1Torr=133.322Paで換算したkP
a単位の数字を示す。
Thereafter, the test piece was put in oil at 130 ° C. and cooled with oil. Table 1 shows specific test conditions according to Examples 1 to 8. In Table 1, as the furnace pressure, the numbers without parentheses are shown in Torr units, and the numbers in parentheses are kP converted at 1 Torr = 133.322 Pa.
Indicates a number in a unit.

【0025】[0025]

【表1】 表1から理解できるように、各実施例によれば、第1窒
化処理工程、拡散処理工程、第2窒化処理工程ともに炉
内圧力は基本的には80Torrとした。ただし、実施
例5では炉内圧力は、第1窒化処理工程、拡散処理工
程、第2窒化処理工程ともに130Torrとした。
[Table 1] As can be understood from Table 1, according to each example, the furnace pressure was basically 80 Torr in each of the first nitriding step, the diffusion step, and the second nitriding step. However, in Example 5, the furnace pressure was set to 130 Torr in each of the first nitriding process, the diffusion process, and the second nitriding process.

【0026】表1から理解できるように、実施例1〜実
施例8(ただし実施例6を除く)は請求項2、請求項1
に対応するものであり、これらの実施例によれば、第1
窒化処理工程、第2窒化処理工程においては、炉内圧力
が80Torrであり、窒化雰囲気の各ガスの割合は、
体積比でつまり流量比で、NH3:N2:CO2=50:
40:10としたが、拡散処理工程の雰囲気のアンモニ
アガス濃度を、表1に示すように、第1窒化処理工程の
アンモニアガス濃度よりも大幅に減少させた。
As can be understood from Table 1, Examples 1 to 8 (except for Example 6) are Claims 2 and 1.
According to these embodiments, the first
In the nitriding step and the second nitriding step, the pressure in the furnace was 80 Torr, and the ratio of each gas in the nitriding atmosphere was:
By volume ratio, that is, by flow ratio, NH 3 : N 2 : CO 2 = 50:
Although it was set to 40:10, the ammonia gas concentration in the atmosphere in the diffusion treatment step was significantly reduced as shown in Table 1 than the ammonia gas concentration in the first nitridation treatment step.

【0027】すなわち、拡散処理工程の雰囲気における
各ガスの割合は、実施例1では、体積比で、NH3
2:CO2=7:80:13とし、実施例2では、NH
3:N2:CO2=0:100:0とし、実施例3では、
NH3:N2:CO2=4:96:0とし、実施例4及び
実施例5では、NH3:N2:CO2=10:90:0と
し、実施例6〜実施例8では、実施例1と同様に、NH
3:N2:CO2=7:80:13とした。
That is, in Example 1, the proportion of each gas in the atmosphere of the diffusion treatment step is NH 3 :
N 2 : CO 2 = 7: 80: 13, and in Example 2, NH 2 was used.
3 : N 2 : CO 2 = 0: 100: 0, and in Example 3,
NH 3 : N 2 : CO 2 = 4: 96: 0, in Examples 4 and 5, NH 3 : N 2 : CO 2 = 10: 90: 0, and in Examples 6 to 8, As in Example 1, NH
3: N 2: CO 2 = 7: 80: was 13.

【0028】換言すれば、体積比で、拡散処理工程にお
けるアンモニアガス濃度をK1とし、第1段階目の窒化
処理工程におけるアンモニアガス濃度をK2とすれば、
(K1/K2)は、実施例1によれば、(7/50)倍
=0.14倍であった。実施例2によれば、(0/5
0)=0倍であった。実施例3によれば、4/50倍=
0.08倍であった。実施例4及び実施例5によれば、
(10/50)倍=0.2倍であった。実施例6〜実施
例8によれば、(7/50)倍=0.14倍であった。
In other words, if the ammonia gas concentration in the diffusion process is K1 and the ammonia gas concentration in the first nitridation process is K2 in volume ratio,
(K1 / K2) is (7/50) times according to the first embodiment.
= 0.14 times. According to the second embodiment, (0/5
0) = 0 times. According to Example 3, 4/50 times =
It was 0.08 times. According to Example 4 and Example 5,
(10/50) times = 0.2 times. According to Examples 6 to 8, (7/50) times = 0.14 times.

【0029】即ち実施例1〜実施例8によれば、(K1
/K2)は、0倍〜0.14倍〜0.2倍であった。ま
た表1から理解できるように、実施例6(請求項1に対
応する)では、第1窒化処理工程及び拡散処理工程を実
施したものの、第2窒化処理工程を実施しなかった。な
お、実施例6における加熱形態を図2に示す。
That is, according to Examples 1 to 8, (K1
/ K2) was from 0 to 0.14 to 0.2 times. Further, as can be understood from Table 1, in Example 6 (corresponding to claim 1), the first nitriding step and the diffusion step were performed, but the second nitriding step was not performed. FIG. 2 shows a heating mode in the sixth embodiment.

【0030】また表1に示すように実施例7(請求項3
に対応)では、第1窒化処理工程及び第2窒化処理工程
における温度は570℃と一定とした。また実施例8
(請求項3に対応)では、第1窒化処理工程、拡散処理
工程、第2窒化処理工程における温度は530℃と一定
とした。実施例8における加熱形態を図3に示す。各実
施例に係る試験片について、化合物層の厚み、軟窒化深
さ、表面硬さ、化合物層のポーラスの程度を測定した。
軟窒化深さは、化合物層を含む表面から、マイクロビッ
カース硬度計でHv400以上の硬度をもつ深さとし
た。表面硬さは、化合物層を含む表面から0.05mm
の深さの硬さとした。
As shown in Table 1, Example 7 (Claim 3)
), The temperature in the first nitriding treatment step and the second nitriding treatment step was kept constant at 570 ° C. Example 8
In (corresponding to claim 3), the temperatures in the first nitriding treatment step, the diffusion treatment step, and the second nitriding treatment step were kept constant at 530 ° C. FIG. 3 shows a heating mode in the eighth embodiment. For the test pieces according to each example, the thickness of the compound layer, the depth of soft nitriding, the surface hardness, and the degree of porosity of the compound layer were measured.
The nitrocarburizing depth was defined as a depth having a hardness of Hv400 or more measured by a micro Vickers hardness meter from the surface including the compound layer. Surface hardness is 0.05 mm from the surface including the compound layer
And the hardness of the depth.

【0031】これらの結果を表2に示す。さらに、3点
式のボールを試験片の表面に摺動させる森式転動寿命試
験を行ない、寿命(L10:累積破損確率)を測定し、表
2に示した。森式転動寿命試験では接触面圧は3920
MPa、回転数は1000rpm、潤滑剤としてタービ
ン油を用いた。比較例に係る試験片についても同様に測
定し、表2に示した。
The results are shown in Table 2. Further, a wood-type rolling life test in which a three-point ball was slid on the surface of the test piece was performed, and the life (L 10 : cumulative failure probability) was measured. The contact pressure was 3920 in the forest type rolling life test.
MPa, rotation speed was 1000 rpm, and turbine oil was used as a lubricant. The test piece according to the comparative example was measured in the same manner, and is shown in Table 2.

【0032】[0032]

【表2】 表2から理解できるように、比較例1、比較例2では、
化合物層が厚く、軟窒化深さも十分ではなく、表面硬さ
も低くく、化合物層にポーラス部も発生していた。また
転動寿命も良好とはいえなかった。
[Table 2] As can be understood from Table 2, in Comparative Examples 1 and 2,
The compound layer was thick, the nitrocarburizing depth was not sufficient, the surface hardness was low, and the compound layer had a porous portion. The rolling life was not good.

【0033】比較例1では、拡散処理工程においてアン
モニアガス濃度を減少させていないためと推察される。
比較例2では、拡散処理工程においてアンモニアガス濃
度を減少させていないため、さらに、炉内圧力が700
Torrと高いため、と推察される。これに対して、実
施例1〜実施例8によれば、表2から理解できるよう
に、化合物層の薄肉化、軟窒化深さの確保、表面硬さの
確保に有利であり、非ポーラス化が図られ、ポーラス部
も無かった、さらに転動寿命も良好であった。
It is presumed that in Comparative Example 1, the ammonia gas concentration was not reduced in the diffusion process.
In Comparative Example 2, since the ammonia gas concentration was not reduced in the diffusion treatment step,
It is presumed that it is as high as Torr. On the other hand, according to Examples 1 to 8, as can be understood from Table 2, it is advantageous for reducing the thickness of the compound layer, securing the depth of nitrocarburizing, securing the surface hardness, and making the layer nonporous. No porous portion was found, and the rolling life was good.

【0034】第1窒化処理工程及び拡散処理工程を実施
したものの、第2窒化処理工程を実施しなかった実施例
6においては、表面硬さがHv678とやや低下したも
のの、拡散処理工程においてアンモニアガス濃度を低減
させており、化合物層が薄く、非ポーラス化が図られ、
転動寿命も良好であった。第1窒化処理工程及び拡散処
理工程を等温的に実施するものの拡散処理工程において
アンモニアガス濃度を低減させた実施例7、実施例8に
おいても、転動寿命が良好であった。
In Example 6 in which the first nitriding step and the diffusion step were performed, but the second nitriding step was not performed, the surface hardness was slightly reduced to Hv678, but ammonia gas was used in the diffusion step. The concentration is reduced, the compound layer is thin and non-porous,
The rolling life was also good. Although the first nitriding process and the diffusion process were performed isothermally, the rolling life was good in Examples 7 and 8 in which the ammonia gas concentration was reduced in the diffusion process.

【0035】(適用例)本発明方法は、機械構造部品一
般、たとえば、合金鋼や炭素鋼などの鋼系材料で形成し
た歯車の歯部の窒化に適用できる。これの例示を図4に
示す。従来では、歯部の曲げ強度を増加すべく、窒化層
を深くするため、窒化時間が長時間要していた。そのた
め、化合物層の厚肉化、ポーラス化が誘発され、面圧強
度が十分ではなかった。しかし、図4に示す歯車10の
歯部12に本発明方法を施せば、化合物層の薄肉化、軟
窒化深さの確保、表面硬さの確保、ポーラス化の抑制に
有利であり、したがって、歯部12の曲げ強度の確保、
面圧強度の確保が両立できる。さらに歯車に限らず、熱
間鍛造品や冷間鍛造などの鍛造品、切削加工品など広く
適用できる。
(Application Example) The method of the present invention is applicable to general machine structural parts, for example, nitriding of gear teeth formed of a steel-based material such as alloy steel or carbon steel. An example of this is shown in FIG. Conventionally, a long nitriding time has been required to deepen the nitrided layer in order to increase the bending strength of the teeth. Therefore, the compound layer is caused to be thick and porous, and the surface pressure strength is not sufficient. However, if the method of the present invention is applied to the tooth portion 12 of the gear 10 shown in FIG. 4, it is advantageous for reducing the thickness of the compound layer, securing the depth of nitrocarburizing, securing the surface hardness, and suppressing the formation of porous material. Securing the bending strength of the teeth 12,
It is possible to secure both surface pressure strength. Further, the present invention can be widely applied to not only gears but also forged products such as hot forged products and cold forged products, and cut products.

【0036】本発明方法では、窒化条件、雰囲気、測定
結果を示す表1、表2における数値を上限または下限と
して、請求項の記載を規定できることは勿論である。そ
のほか、本発明方法は上記した実施例、適用例にのみ限
定されるものではなく、要旨を逸脱しない範囲内で適宜
変更して実施し得るものである。
In the method of the present invention, it is needless to say that the description in the claims can be defined by setting the numerical values in Tables 1 and 2 showing the nitriding conditions, atmosphere and measurement results as the upper and lower limits. In addition, the method of the present invention is not limited only to the above-described embodiments and application examples, and can be implemented with appropriate modifications without departing from the gist.

【0037】[0037]

【発明の効果】請求項1に係る方法によれば、窒化処理
工程では、アンモニアガスを含む減圧状態の窒化雰囲気
中で素材を570℃未満の窒化温度に加熱しつまり比較
的低温で窒化を行ない、一方、拡散処理工程では、窒化
処理工程よりもアンモニアガス濃度が少ないまたはアン
モニアガスを含まない雰囲気中で、570℃〜650℃
の加熱温度つまり高温で保持する。そのため素材の内部
に拡散浸透した窒素が一層深く拡散浸透することを促進
できる。従って、素材の表面に生成する化合物層の厚み
の増大を抑制しつつ、窒化深さを増大できる。
According to the first aspect of the present invention, in the nitriding step, the material is heated to a nitriding temperature of less than 570 ° C. in a nitriding atmosphere in a reduced pressure state containing ammonia gas, that is, the nitriding is performed at a relatively low temperature. On the other hand, in the diffusion treatment step, the concentration of ammonia gas is lower than that of the nitridation treatment step or in an atmosphere containing no ammonia gas.
Is maintained at the heating temperature, that is, high temperature. Therefore, it is possible to promote the nitrogen that has diffused and penetrated into the material to diffuse and penetrate deeper. Therefore, the nitriding depth can be increased while suppressing an increase in the thickness of the compound layer generated on the surface of the material.

【0038】請求項2に係る方法によれば、さらに、ア
ンモニアガスを含む減圧状態の窒化雰囲気中で素材を5
70℃未満の窒化温度に加熱し、第2段目の窒化処理工
程を実施する。そのため、素材の表面に窒素が拡散浸透
する。故に、拡散処理工程での加熱に起因して素材の表
面における脱窒に起因する硬度低下、強度低下が生じる
ような場合であっても、その硬度低下、強度低下を抑制
できる。従って処理後の素材における表面硬さを確保す
るのに有利である。
According to the method of claim 2, the material is further reduced in a nitriding atmosphere under reduced pressure containing ammonia gas.
A second nitriding step is performed by heating to a nitriding temperature of less than 70 ° C. Therefore, nitrogen diffuses and permeates the surface of the material. Therefore, even in a case where a decrease in hardness and a decrease in strength due to denitrification on the surface of the material due to the heating in the diffusion treatment step, the decrease in hardness and the decrease in strength can be suppressed. Therefore, it is advantageous for ensuring the surface hardness of the material after the treatment.

【0039】請求項3に係る方法によれば、第1段階目
の窒化処理工程におけるアンモニアガス濃度に対して、
拡散処理工程におけるアンモニアガス濃度は、0〜0.
5倍と大幅に低減している。そのため、請求項1に係る
方法と同様に、素材の表面に生成する化合物層の厚みの
増大を抑制しつつ、窒化深さの増大に有利である。上記
した効果を奏する各請求項に係る方法によれば、歯車に
適用した場合には、歯部における面圧強度と曲げ強度の
両立に有利である。
According to the method of the third aspect, the ammonia gas concentration in the first nitriding step is
The concentration of ammonia gas in the diffusion process is 0 to 0.
It is greatly reduced to five times. Therefore, similarly to the method according to the first aspect, it is advantageous in increasing the nitriding depth while suppressing an increase in the thickness of the compound layer formed on the surface of the material. According to the method according to each claim having the above-described effects, when applied to a gear, it is advantageous for achieving both the surface pressure strength and the bending strength at the tooth portion.

【図面の簡単な説明】[Brief description of the drawings]

【図1】実施例に係る加熱形態を示すグラフである。FIG. 1 is a graph showing a heating mode according to an example.

【図2】第2段階目の窒化処理工程を実施しない実施例
に係る加熱形態を示すグラフである。
FIG. 2 is a graph showing a heating mode according to an example in which a second-stage nitriding process is not performed.

【図3】第1段階目の窒化処理工程、拡散処理工程、第
2段階目の窒化処理工程を実質的に等温で実施する実施
例に係る加熱形態を示すグラフである。
FIG. 3 is a graph showing a heating mode according to an example in which a first-stage nitriding process, a diffusion process, and a second-stage nitriding process are performed at substantially the same temperature.

【図4】歯車の要部の構成図である。FIG. 4 is a configuration diagram of a main part of a gear.

【符号の説明】[Explanation of symbols]

図中、12は歯部を示す。 In the figure, reference numeral 12 denotes a tooth portion.

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】アンモニアガスを含む圧力200Torr
以下の窒化雰囲気中で素材を、570℃未満の窒化温度
に加熱して窒化を行う窒化処理工程と、 圧力200Torr以下で窒化処理工程よりもアンモニ
アガス濃度が少ないまたはアンモニアガスを含まない雰
囲気中で、前記素材を570℃〜650℃の温度に保持
する拡散処理工程とを含むことを特徴とするガス軟窒化
処理方法。
1. A pressure containing ammonia gas of 200 Torr.
A nitriding process in which the material is nitrided by heating the material to a nitriding temperature of less than 570 ° C. in the following nitriding atmosphere; and in an atmosphere having a lower ammonia gas concentration or containing no ammonia gas than the nitriding process at a pressure of 200 Torr or less. And a diffusion treatment step of maintaining the material at a temperature of 570 ° C. to 650 ° C.
【請求項2】請求項1に係るガス軟窒化処理方法を実施
した後、さらに、 アンモニアガスを含む圧力200Torr以下の窒化雰
囲気中で前記素材を、570℃未満の窒化温度に加熱し
て窒化を行う第2段目の窒化処理工程を実施することを
特徴とするガス軟窒化処理方法。
2. After the gas nitrocarburizing method according to claim 1, the material is further heated to a nitriding temperature of less than 570 ° C. in a nitriding atmosphere containing ammonia gas at a pressure of 200 Torr or less. A gas nitrocarburizing method comprising performing a second nitriding step.
【請求項3】アンモニアガスを含む減圧状態の窒化雰囲
気中で素材を、570℃未満の窒化温度に加熱して窒化
を行う第1段階目の窒化処理工程と、 前記第1段階目の窒化処理工程よりもアンモニアガス濃
度が少ない減圧状態の窒化雰囲気中で前記素材を加熱す
ることにより、前記第1段階目の窒化処理工程で前記素
材に拡散浸透した窒素を更に拡散浸透させる拡散処理工
程と、 アンモニアガスを含む減圧状態の窒化雰囲気中で前記素
材を、570℃未満の窒化温度に加熱して窒化を行う第
2段階目の窒化処理工程とを実施し、 前記拡散処理工程におけるアンモニアガス濃度は、前記
第1段階目の窒化処理工程におけるアンモニアガス濃度
に対して、0〜0.5倍であることを特徴とするガス軟
窒化処理方法。
3. A first-stage nitriding process in which a material is heated to a nitriding temperature of less than 570 ° C. in a nitriding atmosphere in a reduced-pressure state containing ammonia gas to perform nitriding; A diffusion treatment step of further diffusing and penetrating the nitrogen that has diffused and penetrated into the material in the first nitridation step by heating the material in a nitriding atmosphere in a reduced pressure state having a smaller ammonia gas concentration than the step; A second step of nitriding by heating the material to a nitriding temperature of less than 570 ° C. in a nitriding atmosphere in a reduced pressure state containing ammonia gas to perform nitriding; Wherein the gas nitrocarburizing method is 0 to 0.5 times the ammonia gas concentration in the first nitriding step.
JP26026997A 1997-09-25 1997-09-25 Gas nitrocarburizing method Expired - Fee Related JP3303741B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP26026997A JP3303741B2 (en) 1997-09-25 1997-09-25 Gas nitrocarburizing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP26026997A JP3303741B2 (en) 1997-09-25 1997-09-25 Gas nitrocarburizing method

Publications (2)

Publication Number Publication Date
JPH11100655A true JPH11100655A (en) 1999-04-13
JP3303741B2 JP3303741B2 (en) 2002-07-22

Family

ID=17345719

Family Applications (1)

Application Number Title Priority Date Filing Date
JP26026997A Expired - Fee Related JP3303741B2 (en) 1997-09-25 1997-09-25 Gas nitrocarburizing method

Country Status (1)

Country Link
JP (1) JP3303741B2 (en)

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002302756A (en) * 2001-01-31 2002-10-18 Tokico Ltd Surface treated steel member and gas soft nitriding method
JP2004183099A (en) * 2002-11-20 2004-07-02 Chuo Spring Co Ltd Production method of valve spring
WO2004081252A1 (en) * 2003-03-10 2004-09-23 Kabushiki Kaisha Riken Nitrided valve lifter and method for manufacture thereof
JP2006233261A (en) * 2005-02-24 2006-09-07 Nippon Techno:Kk Gas nitriding method
JP2006249486A (en) * 2005-03-10 2006-09-21 Air Water Inc Metal nitriding method
JP2008154649A (en) * 2006-12-21 2008-07-10 Izumi Riki Seisakusho:Kk Pan
KR100988702B1 (en) * 2006-12-14 2010-10-18 유겐가이샤 유키코슈하 A quenched nitride and the method of manufacture thereof
WO2011142479A1 (en) 2010-05-11 2011-11-17 Sintokogio, Ltd. A method for surface treatment of a die-casting die
WO2017009044A1 (en) * 2015-07-13 2017-01-19 Robert Bosch Gmbh Method for nitriding a component
JPWO2015136917A1 (en) * 2014-03-13 2017-04-06 新日鐵住金株式会社 Nitriding method and method for manufacturing nitrided parts
WO2021230383A1 (en) * 2020-05-15 2021-11-18 Jfeスチール株式会社 Steel and steel component
CN116197739A (en) * 2023-05-05 2023-06-02 松诺盟科技有限公司 Surface treatment process of hydrogen pressure sensor core elastomer, elastomer and application

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AU2010279452B2 (en) 2009-08-07 2015-04-30 Swagelok Company Low temperature carburization under soft vacuum
EP2804965B1 (en) 2012-01-20 2020-09-16 Swagelok Company Concurrent flow of activating gas in low temperature carburization
CN102719829B (en) * 2012-02-02 2013-09-25 山东常林机械集团股份有限公司 Surface hardening malcomising process for ductile cast iron hydraulic part
EP2703517B1 (en) 2012-08-31 2018-10-24 Akebono Brake Industry Co., Ltd. Vehicular disc brake rotor and manufacturing method of vehicular disc brake rotor
JP5897432B2 (en) 2012-08-31 2016-03-30 曙ブレーキ工業株式会社 Method for producing cast iron friction member

Cited By (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002302756A (en) * 2001-01-31 2002-10-18 Tokico Ltd Surface treated steel member and gas soft nitriding method
JP2004183099A (en) * 2002-11-20 2004-07-02 Chuo Spring Co Ltd Production method of valve spring
JP4615208B2 (en) * 2002-11-20 2011-01-19 中央発條株式会社 Manufacturing method of valve spring
WO2004081252A1 (en) * 2003-03-10 2004-09-23 Kabushiki Kaisha Riken Nitrided valve lifter and method for manufacture thereof
JP2006233261A (en) * 2005-02-24 2006-09-07 Nippon Techno:Kk Gas nitriding method
JP2006249486A (en) * 2005-03-10 2006-09-21 Air Water Inc Metal nitriding method
KR100988702B1 (en) * 2006-12-14 2010-10-18 유겐가이샤 유키코슈하 A quenched nitride and the method of manufacture thereof
JP2008154649A (en) * 2006-12-21 2008-07-10 Izumi Riki Seisakusho:Kk Pan
JP4562094B2 (en) * 2006-12-21 2010-10-13 株式会社和泉利器製作所 pot
JP2011235318A (en) * 2010-05-11 2011-11-24 Daido Steel Co Ltd Method for surface treatment of die-casting die
WO2011142479A1 (en) 2010-05-11 2011-11-17 Sintokogio, Ltd. A method for surface treatment of a die-casting die
DE112011101613T5 (en) 2010-05-11 2013-03-21 Sintokogio, Ltd. Process for the surface treatment of a casting mold
JPWO2015136917A1 (en) * 2014-03-13 2017-04-06 新日鐵住金株式会社 Nitriding method and method for manufacturing nitrided parts
EP3118346A4 (en) * 2014-03-13 2017-11-22 Nippon Steel & Sumitomo Metal Corporation Nitriding method, and nitrided component manufacturing method
WO2017009044A1 (en) * 2015-07-13 2017-01-19 Robert Bosch Gmbh Method for nitriding a component
CN107849678A (en) * 2015-07-13 2018-03-27 罗伯特·博世有限公司 Method for carrying out nitriding to component
WO2021230383A1 (en) * 2020-05-15 2021-11-18 Jfeスチール株式会社 Steel and steel component
WO2021230384A1 (en) * 2020-05-15 2021-11-18 Jfeスチール株式会社 Steel component
JPWO2021230384A1 (en) * 2020-05-15 2021-11-18
JPWO2021230383A1 (en) * 2020-05-15 2021-11-18
CN115605629A (en) * 2020-05-15 2023-01-13 杰富意钢铁株式会社(Jp) Steel and steel component
CN115605628A (en) * 2020-05-15 2023-01-13 杰富意钢铁株式会社(Jp) Steel component
CN116197739A (en) * 2023-05-05 2023-06-02 松诺盟科技有限公司 Surface treatment process of hydrogen pressure sensor core elastomer, elastomer and application

Also Published As

Publication number Publication date
JP3303741B2 (en) 2002-07-22

Similar Documents

Publication Publication Date Title
JP3303741B2 (en) Gas nitrocarburizing method
US20230211413A1 (en) Iron-based sintered alloy material and production method therefor
JP6521078B2 (en) Nitrided steel part and method for manufacturing the same
JP4301507B2 (en) Sintered sprocket for silent chain and manufacturing method thereof
JPH04141573A (en) Production of nitrided steel
JP3996482B2 (en) Vacuum carburizing method
JP3018804B2 (en) Surface treatment method for titanium alloy members
JP2000204464A (en) Surface treated gear, its production and producing device therefor
JP7263796B2 (en) RING GEAR FOR AUTOMOBILE TRANSMISSION AND MANUFACTURING METHOD THEREOF
JP7306581B2 (en) steel parts
JPH10259421A (en) Method for heat-treating machine parts
KR20000027040A (en) Method for heat treatment of surface of steel to reduce heating transformation
JP3986996B2 (en) Method for nitriding metal ring
JP7262376B2 (en) steel material
JPH10245668A (en) Method for nitriding ferrous material and ferrous material product obtained thereby
JP3237826B2 (en) Manufacturing method of steel parts with excellent surface fatigue strength
JP4184147B2 (en) NITRIDED TOOL, DIE AND ITS MANUFACTURING METHOD
JP2907011B2 (en) Method for producing nitrided steel member with less heat treatment distortion
JP3025493B1 (en) Gas nitriding method for maraging steel
JPH11343565A (en) Titanium base alloy material having hardened layer on surface and its production
JP2006206938A (en) Method for manufacturing machine parts
JPS6130660A (en) Method for subjecting high-alloy steel member to gas soft-nitriding
JP2005036278A (en) Method of producing metallic belt for automobile, and metallic belt for automobile obtained thereby
JPH01201458A (en) Method for carburizing high-chromium steel parts
JPS6233755A (en) Method for carburizing and nitriding steel member containing chromium

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees