JP2004183099A - Production method of valve spring - Google Patents
Production method of valve spring Download PDFInfo
- Publication number
- JP2004183099A JP2004183099A JP2003390245A JP2003390245A JP2004183099A JP 2004183099 A JP2004183099 A JP 2004183099A JP 2003390245 A JP2003390245 A JP 2003390245A JP 2003390245 A JP2003390245 A JP 2003390245A JP 2004183099 A JP2004183099 A JP 2004183099A
- Authority
- JP
- Japan
- Prior art keywords
- nitriding
- concentration
- nitrogen
- layer
- nitriding treatment
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Images
Landscapes
- Springs (AREA)
- Solid-Phase Diffusion Into Metallic Material Surfaces (AREA)
Abstract
Description
本発明は、自動車の内燃機関用の弁ばね及びその製造方法、特に表面窒化処理に関する。 The present invention relates to a valve spring for an internal combustion engine of an automobile and a method of manufacturing the same, and particularly to a surface nitriding treatment.
弁ばねにおいて疲労強度を上げるには、表面硬さを上げることが有効である。従来より、疲労強度の向上を目的とした表面処理として、窒化が行われている。窒化処理は長い時間を要するので、低コスト化を図る上では窒化時間の短縮が大きな課題である。窒化時間を短縮する方法としては、窒化処理時の処理ガス(多くの場合、アンモニアガスが使用される)の濃度を上げ、窒素ポテンシャルを高める方法と、処理温度を上げる方法とがある。 In order to increase the fatigue strength of the valve spring, it is effective to increase the surface hardness. Conventionally, nitriding has been performed as a surface treatment for the purpose of improving fatigue strength. Since the nitriding treatment requires a long time, shortening the nitriding time is a major issue in reducing the cost. As a method of shortening the nitriding time, there are a method of increasing the concentration of the processing gas (in many cases, an ammonia gas is used) during the nitriding treatment to increase the nitrogen potential, and a method of increasing the processing temperature.
窒素ポテンシャルを上げると、表面に窒化鉄(Fe2N、Fe3N等。以下、Fe2-3Nと表す。)の化合物層が生成する。Fe2-3Nは非常に硬いため、弁ばねのように繰り返し負荷を受ける部材に使用した場合には早期に亀裂が入り、弁ばね全体の破断に至る。特許文献1には、ばね鋼ではないが、ダイス鋼の窒化処理において生成される表面白層について記載されている。
When the nitrogen potential is increased, a compound layer of iron nitride (Fe 2 N, Fe 3 N, etc .; hereinafter, referred to as Fe 2-3 N) is formed on the surface. Since Fe 2-3 N is very hard, when it is used for a member that is subjected to repeated loads, such as a valve spring, cracks occur early and the entire valve spring breaks.
一方、窒化処理は、弁ばね全体に対する熱処理(焼入れ・焼戻し)を施した後に行わなければならないが、窒化処理温度を上げると、焼戻しにより調整した素材の硬さが下がり、内部強度が低下するという問題がある。特許文献2には、510〜620℃の高温窒化処理が記載されている。そこで、現在、弁ばねの窒化処理は400〜500℃の低温で行われている。 On the other hand, nitriding must be performed after heat treatment (quenching / tempering) for the entire valve spring, but when the nitriding temperature is increased, the hardness of the material adjusted by tempering decreases and the internal strength decreases. There's a problem. Patent Literature 2 describes a high-temperature nitriding treatment at 510 to 620 ° C. Therefore, nitriding of a valve spring is currently performed at a low temperature of 400 to 500 ° C.
本発明は弁ばねの製造工程における特に窒化処理に関する課題を解決するために成されたものであり、その目的とするところは、第1に表面にFe2-3N層を形成することなく、しかもできる限り短時間で深い窒化処理を行うことのできる方法を提供することである。 The present invention has been made in order to solve a problem related to a nitriding treatment in a manufacturing process of a valve spring, and an object of the present invention is to firstly form an Fe 2-3 N layer on a surface without forming an Fe 2-3 N layer. Moreover, it is an object of the present invention to provide a method capable of performing a deep nitriding treatment in as short a time as possible.
本発明の第2の目的は、弁ばねの素材鋼の化学成分に応じた最適な窒化処理条件(温度及び時間)を簡単に計算する方法を提供することである。この方法を用いることにより、素材の内部硬さを下げることなく、表面強化の効果を最大限に生かした窒化処理を行うことができ、高寿命の弁ばねを製造することができる。なお、計算に際しては、表面硬さをHv700以上、内部硬さをHv550以上、窒化深さを30μmとすることを目標とした。 A second object of the present invention is to provide a method for easily calculating the optimum nitriding conditions (temperature and time) according to the chemical composition of the steel material of the valve spring. By using this method, it is possible to perform a nitriding treatment while maximizing the effect of surface strengthening without lowering the internal hardness of the material, and to manufacture a valve spring with a long life. In the calculation, the target was to set the surface hardness to Hv700 or more, the internal hardness to Hv550 or more, and the nitriding depth to 30 μm.
上記課題を解決するために成された第1の発明である弁ばねの製造方法は、第1の濃度範囲の窒化ガス雰囲気で窒化処理を施し、その後、それよりも低濃度である第2の濃度範囲の窒化ガス雰囲気で窒化処理を施すことを特徴とする。 A method of manufacturing a valve spring according to a first aspect of the present invention, which has been made to solve the above-described problem, includes performing a nitriding treatment in a nitriding gas atmosphere having a first concentration range, and then performing a second treatment with a lower concentration than the second concentration. The nitriding treatment is performed in a nitriding gas atmosphere in a concentration range.
上記窒化ガスとしては、アンモニアガスを使用することができる。その場合、第1の濃度範囲としては50〜100%、第2の濃度範囲としては0〜50%とすることが望ましい。 Ammonia gas can be used as the nitriding gas. In this case, it is desirable that the first concentration range is 50 to 100% and the second concentration range is 0 to 50%.
このような濃度範囲の変化は、処理時間をできるだけ短くする必要がある場合には1回だけ行い、窒化処理深さを大きくしたい場合は2回以上繰り返すことができる。 Such a change in the concentration range can be performed only once when the processing time needs to be shortened as much as possible, and can be repeated two or more times when it is desired to increase the nitriding depth.
次に、第2の発明である弁ばねの製造方法は、重量比にしてC:0.50〜1.00%、Si:1.20〜2.50%、Mn:1.0%以下を含有する鋼を素材とするコイルばねを焼入れ焼もどし後、次式(1)〜(3)の全てを満足する温度T(絶対温度K)及び時間t(s)で窒化処理を施すことを特徴とする。
(1) (-1.60Si+2.14)>=0の場合、T>{700-(1205Si-867)}/(-1.60Si+2.14)
(-1.60Si+2.14)<0 の場合、T<{700-(1205Si-867)}/(-1.60Si+2.14)
(2) T<{550-(236Si+735)}/(-0.23Si-0.42)
(3) t>{0.015/exp((40.4C-2.8Mn-21.5)-(254C-96.4)*1000/R/T)}2
ただし、Rは気体定数(8.31J/mol・K)である。
Next, a method for manufacturing a valve spring according to a second invention is to provide a coil spring made of steel containing C: 0.50 to 1.00%, Si: 1.20 to 2.50%, and Mn: 1.0% or less by weight. After quenching and tempering, nitriding is performed at a temperature T (absolute temperature K) and time t (s) that satisfy all of the following expressions (1) to (3).
(1) When (-1.60Si + 2.14)> = 0, T> {700- (1205Si-867)} / (-1.60Si + 2.14)
If (-1.60Si + 2.14) <0, T <{700- (1205Si-867)} / (-1.60Si + 2.14)
(2) T <{550- (236Si + 735)} / (-0.23Si-0.42)
(3) t> {0.015 / exp ((40.4C-2.8Mn-21.5)-(254C-96.4) * 1000 / R / T)} 2
Here, R is a gas constant (8.31 J / mol · K).
なお、これらに0.5%以下のNi、0.40〜1.50%のCrが添加された鋼の場合は、次式を使用する。
(1) (-1.60Si+0.20Cr+2.14)>=0の場合、T>{700-(1205Si+2.2Cr-867)}/(-1.60Si+0.20Cr+2.14)
(-1.60Si+0.20Cr+2.14)<0 の場合、T<{700-(1205Si+2.2Cr-867)}/(-1.60Si+0.20Cr+2.14)
(2) T<{550-(236Si+735)}/(-0.23Si-0.42)
(3) t>{0.015/exp((40.4C-2.8Mn-7.9Ni-21.5)-(254C-40.7Ni-96.4)*1000/R/T)}2
In the case of steel to which 0.5% or less of Ni and 0.40 to 1.50% of Cr are added, the following formula is used.
(1) When (-1.60Si + 0.20Cr + 2.14)> = 0, T> {700- (1205Si + 2.2Cr-867)} / (-1.60Si + 0.20Cr + 2.14)
When (-1.60Si + 0.20Cr + 2.14) <0, T <{700- (1205Si + 2.2Cr-867)} / (-1.60Si + 0.20Cr + 2.14)
(2) T <{550- (236Si + 735)} / (-0.23Si-0.42)
(3) t> {0.015 / exp ((40.4C-2.8Mn-7.9Ni-21.5)-(254C-40.7Ni-96.4) * 1000 / R / T)} 2
更に、0.5%以下のMo、0.60%以下のVが添加された鋼の場合は、次式を使用する。
(1) (-1.60Si+0.20Cr+2.14)>=0の場合、T>{700-(1205Si+2.2Cr-867)}/(-1.60Si+0.20Cr+2.14)
(-1.60Si+0.20Cr+2.14)<0 の場合、T<{700-(1205Si+2.2Cr-867)}/(-1.60Si+0.20Cr+2.14)
(2) (-0.23Si+1.85Mo-0.42)>=0の場合、T>{550-(236Si-1054Mo+735)}/(-0.23Si+1.85Mo-0.42)
(-0.23Si+1.85Mo-0.42)<0 の場合、T<{550-(236Si-1054Mo+735)}/(-0.23Si+1.85Mo-0.42)
(3) t>{0.015/exp((40.4C-2.8Mn-15.5V+17.2Mo-7.9Ni-21.5)-(254C-105V+127Mo-40.7Ni-96.4)*1000/R/T)}2
Further, in the case of steel to which 0.5% or less of Mo and 0.60% or less of V are added, the following equation is used.
(1) When (-1.60Si + 0.20Cr + 2.14)> = 0, T> {700- (1205Si + 2.2Cr-867)} / (-1.60Si + 0.20Cr + 2.14)
When (-1.60Si + 0.20Cr + 2.14) <0, T <{700- (1205Si + 2.2Cr-867)} / (-1.60Si + 0.20Cr + 2.14)
(2) When (-0.23Si + 1.85Mo-0.42)> = 0, T> {550- (236Si-1054Mo + 735)} / (-0.23Si + 1.85Mo-0.42)
When (-0.23Si + 1.85Mo-0.42) <0, T <{550- (236Si-1054Mo + 735)} / (-0.23Si + 1.85Mo-0.42)
(3) t> {0.015 / exp ((40.4C-2.8Mn-15.5V + 17.2Mo-7.9Ni-21.5)-(254C-105V + 127Mo-40.7Ni-96.4) * 1000 / R / T)} 2
まず第1の発明について説明する。前述の通り、窒化ガスの濃度が高い(窒素ポテンシャルが高い)場合には、弁ばね表面の窒素濃度が高まり、Fe2-3N層が形成される。そこで、一旦このように表面にFe2-3N層を形成した後、雰囲気の窒素ガスを低濃度にする。すると、表面においては新規なFe2-3N層の形成は抑制されると共に、既存のFe2-3N層が溶解して窒素Nが内部の方に拡散し、フェライト中に固溶して本来の窒化による強化作用を行う。こうして、濃度を2段階に(高濃度から低濃度に)変化させることにより、より短時間でより深くまで窒化処理を行うことができるようになる。 First, the first invention will be described. As described above, when the concentration of the nitriding gas is high (the nitrogen potential is high), the nitrogen concentration on the valve spring surface increases, and an Fe 2-3 N layer is formed. Therefore, once the Fe 2-3 N layer is formed on the surface as described above, the nitrogen gas in the atmosphere is reduced in concentration. Then, the formation of a new Fe 2-3 N layer on the surface is suppressed, and the existing Fe 2-3 N layer dissolves and nitrogen N diffuses inward, forming a solid solution in ferrite. It performs the strengthening action by the original nitriding. Thus, by changing the concentration in two steps (from high concentration to low concentration), the nitriding treatment can be performed in a shorter time and deeper.
この現象をシミュレーションにより解析した。なお、窒化のシミュレーションの例としては、野村が窒化物の析出を考慮した計算を行っている(非特許文献1)が、上記のような窒素雰囲気の変化を考慮したシミュレーションは未だ行われていない。 This phenomenon was analyzed by simulation. In addition, as an example of the simulation of nitriding, Nomura performs a calculation in consideration of the precipitation of nitride (Non-Patent Document 1), but the simulation in consideration of the change in the nitrogen atmosphere as described above has not been performed yet. .
次に、第2の発明に関しては、コガンが純鉄の場合について窒化相ごとに異なる拡散係数を与えて計算をしている(非特許文献2)。しかし、材料成分の影響を考慮に入れた場合の硬さ分布についてシミュレーションを行った例は見当たらない。 Next, with regard to the second invention, calculation is performed by giving a different diffusion coefficient for each nitride phase when Kogan is pure iron (Non-Patent Document 2). However, there is no example in which a simulation is performed on the hardness distribution when the influence of the material components is taken into consideration.
そこで、拡散層における窒素濃度分布と硬さ分布の類似性を利用して、硬さ分布を(1)表面硬さ、(2)内部硬さ、(3)窒化深さの3つのパラメータで表現し、実測値からの重回帰分析により材料成分の各パラメータに対する効果を求め、硬さ分布の予測式を作った。 Therefore, using the similarity between the nitrogen concentration distribution and the hardness distribution in the diffusion layer, the hardness distribution is expressed by three parameters: (1) surface hardness, (2) internal hardness, and (3) nitriding depth. Then, the effect of each material component on each parameter was determined by multiple regression analysis from the measured values, and a prediction formula for hardness distribution was created.
以下に、これらのシミュレーションの方法及び結果をまとめて説明する。 Hereinafter, the methods and results of these simulations will be described together.
1.窒化モデル
1.1 窒化
ガス窒化の反応式は(1)式のように表される。
1.1 Nitriding The reaction equation for gas nitriding is expressed as equation (1).
1.2 拡散方程式
拡散による濃度変化は(2)式の拡散方程式で表現できる。
ここで、Cは窒素濃度、Dは窒素の拡散係数である。
1.2 Diffusion equation The concentration change due to diffusion can be expressed by the diffusion equation of equation (2).
Here, C is the nitrogen concentration, and D is the diffusion coefficient of nitrogen.
1.3 相境界の移動
鋼は、それに含まれる窒素濃度により、α相(窒素を固溶)、γ'相(Fe4N)、ε相(Fe2-3N)の3つの窒化相が存在する。窒素ガスのポテンシャルが低い場合にはα相だけを考えればよいが、窒素ポテンシャルが高くなってくると、2つ以上の相異なる相が発生し、境界面が発生する。(図1)
1.3 Shift of phase boundary In steel, there are three nitride phases, α phase (solid solution of nitrogen), γ 'phase (Fe 4 N), and ε phase (Fe 2-3 N), depending on the nitrogen concentration contained in the steel. . When the potential of the nitrogen gas is low, only the α phase needs to be considered. However, when the nitrogen potential increases, two or more different phases are generated, and a boundary surface is generated. (Fig. 1)
相境界での窒素原子のやりとりに応じて相境界が移動し、移動速度は(3)式のように表現できる。
(3)式のξは相境界の位置を示し、添字の1,2は相境界を挟む2つの領域を示す。x>ξの領域を1、x<ξの領域を2として区別した。
The phase boundary moves according to the exchange of nitrogen atoms at the phase boundary, and the moving speed can be expressed as in equation (3).
In Equation (3), ξ indicates the position of the phase boundary, and
1.4 純鉄中の窒素の拡散係数
一般的に拡散係数はD = D0・exp(-Q/RT)・f(C)の形の式で表現される。ここで、振動数項D0及び活性化エネルギーQは材質によって決まる係数であり、f(C)は濃度依存性がある場合の係数である。これらの値は、純鉄の場合について図2のような実験値が示されている。今回の計算では、図2の純鉄での窒素の拡散係数を用いて計算を行った。
1.4 Diffusion Coefficient of Nitrogen in Pure Iron Generally, the diffusion coefficient is expressed by an equation of the form D = D 0 · exp (-Q / RT) · f (C). Here, the frequency term D 0 and the activation energy Q are coefficients determined by the material, and f (C) is a coefficient when there is concentration dependency. These values are experimental values as shown in FIG. 2 for pure iron. In this calculation, the calculation was performed using the diffusion coefficient of nitrogen in pure iron in FIG.
1.5 各窒化相の固溶限(固溶窒素濃度)
計算における各窒化相の窒素の固溶限界値(上限値Max、下限値Min)は、純鉄の場合の値を用いた(図3)。
1.5 Solid solubility limit of each nitrided phase (Solute nitrogen concentration)
In the calculation, the solid solution limit value of nitrogen (upper limit value Max, lower limit value Min) of each nitride phase was the value in the case of pure iron (FIG. 3).
1.6 表面窒素濃度
窒化開始の時点では既に、雰囲気ガスと平衡な窒素濃度を持つ薄い窒化層が鋼表面に存在すると仮定した。
1.6 Surface nitrogen concentration At the start of nitriding, it was assumed that a thin nitrided layer having a nitrogen concentration equilibrium with the atmospheric gas already existed on the steel surface.
2.計算結果及び考察
2.1 濃度2段窒化(540℃×2時間)
NH3+H2混合ガスのガス組成を、図4のパターン1(a)、パターン2(b)で変化させた。その場合の化合物層深さ及び拡散層深さの計算結果を図5に示す。
2. Calculation results and discussion
2.1 Two-step nitridation (540 ° C x 2 hours)
The gas composition of the NH 3 + H 2 mixed gas was changed in pattern 1 (a) and pattern 2 (b) of FIG. FIG. 5 shows the calculation results of the compound layer depth and the diffusion layer depth in that case.
パターン1とパターン2で拡散層深さに差の出ない理由は、ガス雰囲気によらず、表面に化合物層がある限りは化合物層から拡散層へと窒素が供給され続けるためと考えられる。つまり、拡散層の成長は温度と時間だけで決まり、雰囲気ガスには影響を受けないと考えられる。
It is considered that the reason why there is no difference in the diffusion layer depth between the
一方、化合物層の成長についてはパターンにより違いが見られ、パターン2の方がパターン1よりも約2倍の化合物層深さが得られた。パターン1と2の化合物層深さの比はガス組成NH3 100%の時間比とほぼ同じであることから、化合物層はNH3 100%の時の時間に比例して成長しているのではないかと推測される。
On the other hand, there was a difference in the growth of the compound layer depending on the pattern. The pattern 2 had a compound layer depth about twice that of the
3.実験による検証
3.1 窒素濃度分布と硬さ分布の関係
拡散層に限定すれば、窒化による鋼の硬化は、鋼の格子に窒素原子が侵入して格子を歪ませることにより生じている。つまり窒素濃度が高い程、硬いという関係にある。窒素濃度と硬さの関係を図6に示す。窒素濃度の測定にはEPMAを用い、硬さ測定にはマイクロビッカース硬さ試験機を用いた。図6から判断すると、窒素濃度と拡散層の硬さには線形の相関があると思われる。
3. Experimental verification
3.1 Relationship between Nitrogen Concentration Distribution and Hardness Distribution As far as the diffusion layer is concerned, the hardening of steel by nitriding is caused by nitrogen atoms penetrating the steel lattice and distorting the lattice. That is, the higher the nitrogen concentration, the harder the relationship. FIG. 6 shows the relationship between the nitrogen concentration and the hardness. EPMA was used for measuring the nitrogen concentration, and a micro-Vickers hardness tester was used for measuring the hardness. Judging from FIG. 6, it seems that there is a linear correlation between the nitrogen concentration and the hardness of the diffusion layer.
窒素濃度分布と硬さ分布に線形の相関があるとすれば、硬さ分布は濃度分布と同じく誤差関数で近似できるはずである。そこで硬さ分布を(4)式で近似する。
窒素濃度分布と硬さの相関は拡散層のみを考慮したものである。ここで、aは表面硬さ、bは内部硬さにそれぞれ対応し、[a-b]は表面硬さと内部硬さとの差を表す。
Assuming that there is a linear correlation between the nitrogen concentration distribution and the hardness distribution, the hardness distribution should be able to be approximated by an error function like the concentration distribution. Therefore, the hardness distribution is approximated by equation (4).
The correlation between the nitrogen concentration distribution and the hardness considers only the diffusion layer. Here, a corresponds to the surface hardness, b corresponds to the internal hardness, and [ab] represents the difference between the surface hardness and the internal hardness.
ここでの窒化深さの定義は、化合物層深さと拡散層深さを加えた深さである。硬さなどの基準を決めてグラフから窒化深さを読む方法では誤差が入りやすいので、誤差の影響を取り除くという観点から硬さ分布全体から深さを求めることにした。 The definition of the nitriding depth here is a depth obtained by adding the depth of the compound layer and the depth of the diffusion layer. In the method of reading the nitriding depth from the graph by determining the criterion such as hardness and the like, an error is likely to be included. Therefore, from the viewpoint of removing the influence of the error, the depth is determined from the entire hardness distribution.
3.2 計算の検証(濃度2段窒化)
シミュレーションで用いた窒化条件と同じ温度、同じ濃度パターンで、SAE9254相当にバナジウムを添加した鋼材を用いて窒化を行い、化合物層の厚さと拡散層の厚さを測定した。
3.2 Verification of calculation (concentration two-step nitriding)
At the same temperature and the same concentration pattern as the nitriding conditions used in the simulation, nitriding was performed using a steel material added with vanadium equivalent to SAE9254, and the thickness of the compound layer and the thickness of the diffusion layer were measured.
まず、試料断面の硬さ分布をマイクロビッカース硬さ計にて荷重100gで測定し、測定した硬さ分布を(5)式で近似した時の2√(Dt)を窒化深さと定義した(図7)。次に、化合物層深さは図8の表面組織写真より測定した。そして、窒化深さから化合物層深さを差し引いて拡散層深さの実測値とした(図9) First, the hardness distribution of the sample cross section was measured with a micro Vickers hardness tester at a load of 100 g, and 2√ (Dt) when the measured hardness distribution was approximated by equation (5) was defined as the nitriding depth (Fig. 7). Next, the depth of the compound layer was measured from the surface texture photograph of FIG. Then, the depth of the compound layer was subtracted from the nitriding depth to obtain an actual measured value of the diffusion layer depth (FIG. 9).
実測値でもシミュレーションと同じように、拡散層深さにはあまり差がみられず、化合物層で約2倍程度の差が発生した。 Similar to the simulation, the measured values did not show much difference in the diffusion layer depth, and the difference was about twice as large in the compound layer.
シミュレーションの結果と実験結果とでは、化合物深さ・拡散層深さいずれにしても5倍程度の差があるが、これは計算の際に純鉄での窒素の拡散係数を用いて計算したためであり、実際には添加元素の影響を見積もる必要があると思われる。 There is a difference of about 5 times between the simulation result and the experimental result in both the compound depth and the diffusion layer depth. This is because the calculation was made using the diffusion coefficient of nitrogen in pure iron. In fact, it seems necessary to estimate the effect of the added element.
4.濃度2段窒化のまとめ
・シミュレーションと実験を比較した結果、拡散層の成長、化合物層の成長ともに、似た傾向が見られ、シミュレーションの有効性が確認できた。
・濃度2段窒化により、拡散層を成長させつつ、化合物層の成長を抑えることが可能である。
・化合物層がある限りは、雰囲気のガス組成によらず、拡散層は成長する。
・化合物層は時間に比例して成長し、拡散層は時間の1/2乗に比例して成長する。
4. Summary of concentration two-step nitridation-As a result of comparison between the simulation and the experiment, similar tendency was observed in both the growth of the diffusion layer and the growth of the compound layer, and the effectiveness of the simulation was confirmed.
-By the two-step concentration nitriding, it is possible to suppress the growth of the compound layer while growing the diffusion layer.
-As long as there is a compound layer, the diffusion layer grows regardless of the gas composition of the atmosphere.
The compound layer grows in proportion to time, and the diffusion layer grows in proportion to 1/2 power of time.
5.ばね材料成分の効果(重回帰分析)
ばねの窒化においては400℃〜500℃で窒化されることが多いので、各種ばね材において窒化温度400℃〜500℃、ガス組成アンモニア100%で窒化を行い、硬さ分布を特徴付けるパラメータa、b、2√(Dt)を、非線形最小二乗法による近似から求め、材料成分の影響を重回帰分析により計算した。
5. Effect of spring material components (multiple regression analysis)
In the nitriding of springs, nitriding is often performed at 400 ° C to 500 ° C. Therefore, various spring materials are nitrided at a nitriding temperature of 400 ° C to 500 ° C and a gas composition of 100% ammonia, and parameters a and b characterizing the hardness distribution , 2√ (Dt) was obtained from the approximation by the nonlinear least squares method, and the influence of the material components was calculated by multiple regression analysis.
窒化に用いた材料は10鋼種である。材料の成分範囲を図10に示す。 The materials used for nitriding are 10 steel grades. FIG. 10 shows the component ranges of the materials.
5.1 表面硬さ
表面硬さについて、材料成分の2次以上の項を無視して、材料成分の1次式で近似すると(5)式のように表現できる。
ki a:各材料成分の表面硬さに対する効果
Ci:各材料成分の濃度[重量%]
5.1 Surface Hardness The surface hardness can be expressed as Equation (5) by ignoring the second and higher order terms of the material component and approximating it by a linear expression of the material component.
k i a : Effect of each material component on surface hardness
C i : Concentration of each material component [% by weight]
有意性の低い成分を無視して重回帰分析を行った結果を図11に示す。
Cr、Moには表面硬さを上げる傾向がある。
The result of performing multiple regression analysis ignoring components with low significance is shown in FIG.
Cr and Mo tend to increase the surface hardness.
5.2 内部硬さ
内部硬さについても同様に重回帰分析を行った結果を図12に示す。
Si、Moには、内部硬さの軟化を防ぐ傾向がある。
ki b:各材料成分の内部硬さに対する効果
5.2 Internal Hardness FIG. 12 shows the result of a similar multiple regression analysis for the internal hardness.
Si and Mo tend to prevent internal hardness from softening.
k i b : Effect on internal hardness of each material component
5.3 窒化深さ(拡散係数)
拡散係数は
の形で表される。拡散係数Dの対数が材料成分の1次式で近似
できるとした場合、拡散係数Dは材料成分の指数関数となるので、
図13に示すように、Vは窒化深さを増加させる傾向がある。
5.3 Nitriding depth (diffusion coefficient)
The diffusion coefficient is
In the form of Assuming that the logarithm of the diffusion coefficient D can be approximated by a linear expression of the material component, the diffusion coefficient D is an exponential function of the material component.
As shown in FIG. 13, V tends to increase the nitriding depth.
以上の重回帰分析の結果をまとめると、弁ばねの窒化深さが30μm以上、表面硬さがHv700以上、内部硬さがHv550以上という条件を満たすためには、含有成分と窒化温度T(絶対温度K)及び時間t(秒)の関係は、次の3つの不等式を全て満たさなければならないことになる。
(-1.5985Si+0.202Cr+0.5238Mo+2.1414)T+
(1204.9Si+2.2Cr-867.4)>700 (9)
(-0.2275Si+1.8458Mo-0.4153)T+
(236.4Si-1053.6Mo+734.7)>550 (10)
2√(t)exp((40.4C-2.8Mn-15.5V+17.2Mo-7.9Ni-21.5)-
(253.5C-105.3V+127Mo-40.7Ni-96.4)*1000/R/T)>0.03 (11)
これらの式を変形することにより、第2発明が導かれたものである。
To summarize the results of the multiple regression analysis described above, in order to satisfy the conditions that the nitriding depth of the valve spring is 30 μm or more, the surface hardness is Hv700 or more, and the internal hardness is Hv550 or more, the contained components and the nitriding temperature T (absolute The relationship between the temperature K) and the time t (second) must satisfy all the following three inequalities.
(-1.5985Si + 0.202Cr + 0.5238Mo + 2.1414) T +
(1204.9Si + 2.2Cr-867.4)> 700 (9)
(-0.2275Si + 1.8458Mo-0.4153) T +
(236.4Si-1053.6Mo + 734.7)> 550 (10)
2√ (t) exp ((40.4C-2.8Mn-15.5V + 17.2Mo-7.9Ni-21.5)-
(253.5C-105.3V + 127Mo-40.7Ni-96.4) * 1000 / R / T)> 0.03 (11)
By modifying these equations, the second invention is derived.
各パラメータ(表面硬さ、内部硬さ、窒化深さ)の実測値と予測式による計算値との比較を図14に示す。実測値と予測値は非常に良く一致している。 FIG. 14 shows a comparison between the actually measured values of the parameters (surface hardness, internal hardness, nitriding depth) and the values calculated by the prediction formula. The measured and predicted values agree very well.
6.まとめ
・表面の化合物層以外の硬さ分布は誤差関数で近似可能である。
・重回帰分析により硬さ分布の予測式を作った。
Cr、Moは表面硬さを上げる傾向がある。
Si、Moは内部硬さの軟化を防ぐ傾向がある。
6. Conclusion The hardness distribution other than the compound layer on the surface can be approximated by an error function.
・ Prediction formula of hardness distribution was made by multiple regression analysis.
Cr and Mo tend to increase the surface hardness.
Si and Mo tend to prevent softening of the internal hardness.
Claims (7)
(1) (-1.60Si+2.14)>=0の場合、T>{700-(1205Si-867)}/(-1.60Si+2.14)
(-1.60Si+2.14)<0 の場合、T<{700-(1205Si-867)}/(-1.60Si+2.14)
(2) T<{550-(236Si+735)}/(-0.23Si-0.42)
(3) t>{0.015/exp((40.4C-2.8Mn-21.5)-(254C-96.4)*1000/R/T)}2
R:気体定数(8.31J/mol・K) After quenching and tempering a coil spring made of steel containing C: 0.50 to 1.00%, Si: 1.20 to 2.50%, Mn: 1.0% or less in weight ratio, all of the following formulas (1) to (3) A nitriding treatment at a temperature T (absolute temperature K) and time t (s) that satisfies the following.
(1) When (-1.60Si + 2.14)> = 0, T> {700- (1205Si-867)} / (-1.60Si + 2.14)
If (-1.60Si + 2.14) <0, T <{700- (1205Si-867)} / (-1.60Si + 2.14)
(2) T <{550- (236Si + 735)} / (-0.23Si-0.42)
(3) t> {0.015 / exp ((40.4C-2.8Mn-21.5)-(254C-96.4) * 1000 / R / T)} 2
R: gas constant (8.31 J / molK)
(1) (-1.60Si+0.20Cr+2.14)>=0の場合、T>{700-(1205Si+2.2Cr-867)}/(-1.60Si+0.20Cr+2.14)
(-1.60Si+0.20Cr+2.14)<0 の場合、T<{700-(1205Si+2.2Cr-867)}/(-1.60Si+0.20Cr+2.14)
(2) T<{550-(236Si+735)}/(-0.23Si-0.42)
(3) t>{0.015/exp((40.4C-2.8Mn-7.9Ni-21.5)-(254C-40.7Ni-96.4)*1000/R/T)}2 Hardening and tempering a coil spring made of steel containing C: 0.50 to 1.00%, Si: 1.20 to 2.50%, Mn: 1.0% or less, Ni: 0.5% or less, Cr: 0.40 to 1.50% by weight Thereafter, a nitriding treatment is performed at a temperature T (absolute temperature K) and a time t (s) satisfying all of the following expressions (1) to (3).
(1) When (-1.60Si + 0.20Cr + 2.14)> = 0, T> {700- (1205Si + 2.2Cr-867)} / (-1.60Si + 0.20Cr + 2.14)
When (-1.60Si + 0.20Cr + 2.14) <0, T <{700- (1205Si + 2.2Cr-867)} / (-1.60Si + 0.20Cr + 2.14)
(2) T <{550- (236Si + 735)} / (-0.23Si-0.42)
(3) t> {0.015 / exp ((40.4C-2.8Mn-7.9Ni-21.5)-(254C-40.7Ni-96.4) * 1000 / R / T)} 2
(1) (-1.60Si+0.20Cr+2.14)>=0の場合、T>{700-(1205Si+2.2Cr-867)}/(-1.60Si+0.20Cr+2.14)
(-1.60Si+0.20Cr+2.14)<0 の場合、T<{700-(1205Si+2.2Cr-867)}/(-1.60Si+0.20Cr+2.14)
(2) (-0.23Si+1.85Mo-0.42)>=0の場合、T>{550-(236Si-1054Mo+735)}/(-0.23Si+1.85Mo-0.42)
(-0.23Si+1.85Mo-0.42)<0 の場合、T<{550-(236Si-1054Mo+735)}/(-0.23Si+1.85Mo-0.42)
(3) t>{0.015/exp((40.4C-2.8Mn-15.5V+17.2Mo-7.9Ni-21.5)-(254C-105V+127Mo-40.7Ni-96.4)*1000/R/T)}2 C: 0.50 to 1.00% by weight, Si: 1.20 to 2.50%, Mn: 1.0% or less, Ni: 0.5% or less, Cr: 0.40 to 1.50%, Mo: 0.5% or less, V: 0.60% or less After quenching and tempering a coil spring made of steel to be processed, a nitriding treatment is performed at a temperature T (absolute temperature K) and a time t (s) that satisfy all of the following equations (1) to (3). Manufacturing method of a valve spring.
(1) When (-1.60Si + 0.20Cr + 2.14)> = 0, T> {700- (1205Si + 2.2Cr-867)} / (-1.60Si + 0.20Cr + 2.14)
When (-1.60Si + 0.20Cr + 2.14) <0, T <{700- (1205Si + 2.2Cr-867)} / (-1.60Si + 0.20Cr + 2.14)
(2) When (-0.23Si + 1.85Mo-0.42)> = 0, T> {550- (236Si-1054Mo + 735)} / (-0.23Si + 1.85Mo-0.42)
When (-0.23Si + 1.85Mo-0.42) <0, T <{550- (236Si-1054Mo + 735)} / (-0.23Si + 1.85Mo-0.42)
(3) t> {0.015 / exp ((40.4C-2.8Mn-15.5V + 17.2Mo-7.9Ni-21.5)-(254C-105V + 127Mo-40.7Ni-96.4) * 1000 / R / T)} 2
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2003390245A JP4615208B2 (en) | 2002-11-20 | 2003-11-20 | Manufacturing method of valve spring |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2002336111 | 2002-11-20 | ||
JP2003390245A JP4615208B2 (en) | 2002-11-20 | 2003-11-20 | Manufacturing method of valve spring |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2004183099A true JP2004183099A (en) | 2004-07-02 |
JP4615208B2 JP4615208B2 (en) | 2011-01-19 |
Family
ID=32774627
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2003390245A Expired - Fee Related JP4615208B2 (en) | 2002-11-20 | 2003-11-20 | Manufacturing method of valve spring |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP4615208B2 (en) |
Cited By (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2007238969A (en) * | 2006-03-06 | 2007-09-20 | Toyota Motor Corp | Nitriding method |
JP2007262505A (en) * | 2006-03-29 | 2007-10-11 | Aisin Seiki Co Ltd | Heat treatment method of steel member |
JP2011235318A (en) * | 2010-05-11 | 2011-11-24 | Daido Steel Co Ltd | Method for surface treatment of die-casting die |
JP2012246558A (en) * | 2011-05-30 | 2012-12-13 | Daido Steel Co Ltd | Nitriding treatment apparatus and cross sectional hardness distribution prediction system |
JP2014505790A (en) * | 2010-12-20 | 2014-03-06 | ローベルト ボツシユ ゲゼルシヤフト ミツト ベシユレンクテル ハフツング | Heat treatment process for manufacturing drive belt metal ring components |
WO2015046593A1 (en) * | 2013-09-30 | 2015-04-02 | Dowaサーモテック株式会社 | Method for nitriding steel member |
JP6003887B2 (en) * | 2011-05-17 | 2016-10-05 | 日立金属株式会社 | Magnetic property calculation method, magnetic property calculation device, and computer program |
JPWO2015136917A1 (en) * | 2014-03-13 | 2017-04-06 | 新日鐵住金株式会社 | Nitriding method and method for manufacturing nitrided parts |
CN109338281A (en) * | 2018-12-28 | 2019-02-15 | 无锡能以信科技有限公司 | A kind of 440C stainless steel glow discharge nitriding technique |
JP2019039049A (en) * | 2017-08-28 | 2019-03-14 | エア・ウォーターNv株式会社 | Spring excellent in fatigue resistance, and production method thereof |
Citations (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS531142A (en) * | 1976-06-24 | 1978-01-07 | Koyo Seiko Co | Method of controlling undecomposed ammonia gas concentration of nitriding atmosphere in twoostepped nitriding |
JPS63176430A (en) * | 1987-01-14 | 1988-07-20 | Honda Motor Co Ltd | Manufacture of coil spring |
JPH06228734A (en) * | 1993-02-02 | 1994-08-16 | Nisshin Steel Co Ltd | Production of steel for clutch diaphragm spring |
JPH07179985A (en) * | 1993-12-24 | 1995-07-18 | Kobe Steel Ltd | High strength suspension spring excellent in corrosion resistance and its production |
JPH07214216A (en) * | 1994-01-25 | 1995-08-15 | Tougou Seisakusho:Kk | Manufacture of high-strength spring |
JPH08104973A (en) * | 1994-10-03 | 1996-04-23 | Nippon Light Metal Co Ltd | Method for nitriding steel die without white layer |
JPH1172159A (en) * | 1997-06-30 | 1999-03-16 | Aisin Aw Co Ltd | Gear on which soft nitriding treatment is applied and manufacture thereof |
JPH11100655A (en) * | 1997-09-25 | 1999-04-13 | Toyota Motor Corp | Gas soft-nitriding treatment |
JPH11124653A (en) * | 1997-10-21 | 1999-05-11 | Mitsubishi Seiko Muroran Tokushuko Kk | Nitriding steel and nitrding treatment therefor |
JP2003193197A (en) * | 2001-12-25 | 2003-07-09 | Togo Seisakusho Corp | High strength coil spring and production method therefor |
-
2003
- 2003-11-20 JP JP2003390245A patent/JP4615208B2/en not_active Expired - Fee Related
Patent Citations (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS531142A (en) * | 1976-06-24 | 1978-01-07 | Koyo Seiko Co | Method of controlling undecomposed ammonia gas concentration of nitriding atmosphere in twoostepped nitriding |
JPS63176430A (en) * | 1987-01-14 | 1988-07-20 | Honda Motor Co Ltd | Manufacture of coil spring |
JPH06228734A (en) * | 1993-02-02 | 1994-08-16 | Nisshin Steel Co Ltd | Production of steel for clutch diaphragm spring |
JPH07179985A (en) * | 1993-12-24 | 1995-07-18 | Kobe Steel Ltd | High strength suspension spring excellent in corrosion resistance and its production |
JPH07214216A (en) * | 1994-01-25 | 1995-08-15 | Tougou Seisakusho:Kk | Manufacture of high-strength spring |
JPH08104973A (en) * | 1994-10-03 | 1996-04-23 | Nippon Light Metal Co Ltd | Method for nitriding steel die without white layer |
JPH1172159A (en) * | 1997-06-30 | 1999-03-16 | Aisin Aw Co Ltd | Gear on which soft nitriding treatment is applied and manufacture thereof |
JPH11100655A (en) * | 1997-09-25 | 1999-04-13 | Toyota Motor Corp | Gas soft-nitriding treatment |
JPH11124653A (en) * | 1997-10-21 | 1999-05-11 | Mitsubishi Seiko Muroran Tokushuko Kk | Nitriding steel and nitrding treatment therefor |
JP2003193197A (en) * | 2001-12-25 | 2003-07-09 | Togo Seisakusho Corp | High strength coil spring and production method therefor |
Cited By (15)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2007238969A (en) * | 2006-03-06 | 2007-09-20 | Toyota Motor Corp | Nitriding method |
JP2007262505A (en) * | 2006-03-29 | 2007-10-11 | Aisin Seiki Co Ltd | Heat treatment method of steel member |
JP2011235318A (en) * | 2010-05-11 | 2011-11-24 | Daido Steel Co Ltd | Method for surface treatment of die-casting die |
JP2014505790A (en) * | 2010-12-20 | 2014-03-06 | ローベルト ボツシユ ゲゼルシヤフト ミツト ベシユレンクテル ハフツング | Heat treatment process for manufacturing drive belt metal ring components |
JP6003887B2 (en) * | 2011-05-17 | 2016-10-05 | 日立金属株式会社 | Magnetic property calculation method, magnetic property calculation device, and computer program |
US9547051B2 (en) | 2011-05-17 | 2017-01-17 | Hitachi Metals, Ltd. | Calculating method of magnetic force characteristic, and magnetic force characteristic computing device |
JP2012246558A (en) * | 2011-05-30 | 2012-12-13 | Daido Steel Co Ltd | Nitriding treatment apparatus and cross sectional hardness distribution prediction system |
CN105593394A (en) * | 2013-09-30 | 2016-05-18 | 同和热处理技术株式会社 | Method for nitriding steel member |
WO2015046593A1 (en) * | 2013-09-30 | 2015-04-02 | Dowaサーモテック株式会社 | Method for nitriding steel member |
JPWO2015046593A1 (en) * | 2013-09-30 | 2017-03-09 | Dowaサーモテック株式会社 | Method of nitriding steel member |
US10385439B2 (en) | 2013-09-30 | 2019-08-20 | Dowa Thermotech Co., Ltd. | Nitriding process method of steel member |
JPWO2015136917A1 (en) * | 2014-03-13 | 2017-04-06 | 新日鐵住金株式会社 | Nitriding method and method for manufacturing nitrided parts |
EP3118346A4 (en) * | 2014-03-13 | 2017-11-22 | Nippon Steel & Sumitomo Metal Corporation | Nitriding method, and nitrided component manufacturing method |
JP2019039049A (en) * | 2017-08-28 | 2019-03-14 | エア・ウォーターNv株式会社 | Spring excellent in fatigue resistance, and production method thereof |
CN109338281A (en) * | 2018-12-28 | 2019-02-15 | 无锡能以信科技有限公司 | A kind of 440C stainless steel glow discharge nitriding technique |
Also Published As
Publication number | Publication date |
---|---|
JP4615208B2 (en) | 2011-01-19 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Egawa et al. | Effect of additive alloying element on plasma nitriding and carburizing behavior for austenitic stainless steels | |
US20150159259A1 (en) | Low Alloy Steel Carburization and Surface Microalloying Process | |
JP2004183099A (en) | Production method of valve spring | |
JP6755106B2 (en) | Nitriding steel member and manufacturing method of nitrided steel member | |
EP3118346A1 (en) | Nitriding method, and nitrided component manufacturing method | |
KR20120023074A (en) | Steel for nitriding and nitrided steel components | |
JP2012036495A (en) | Method for manufacturing nitrided machine part | |
JP6521078B2 (en) | Nitrided steel part and method for manufacturing the same | |
Syla et al. | The law of growth of nitrided layer in 31CrMoV9 steel | |
WO2019131602A1 (en) | Nitrided steel member, and method and apparatus for producing nitrided steel member | |
Kim et al. | Thermodynamic and kinetic analysis of formation of compound layer during gas nitriding of AISI1018 carbon steel | |
JP5999751B2 (en) | Manufacturing method of ferrous materials | |
Yang et al. | Modeling the nitriding process of steels | |
JP2013044037A (en) | Iron-based material and manufacturing method therefor | |
JP2549039B2 (en) | Carbonitriding heat treatment method for high strength gears with small strain | |
CN106065458B (en) | Tool and its manufacturing method | |
JP4806722B2 (en) | Metal salt bath nitriding method and metal produced by the method | |
WO2020090999A1 (en) | Nitrided steel member, and method and apparatus for producing nitrided steel member | |
KR100862217B1 (en) | Method for manufacturing high corrosion-resistant and high wear- resistant steel materials by 2 step gas nitriding or gas nitrocarburizing | |
JPS5938325A (en) | Production of cast iron parts having excellent pitting resistance | |
KR20130045704A (en) | Isothermal heat treatment of ferritic stainless steels after high temperature gas nitriding | |
JP5840376B2 (en) | Iron-based material and manufacturing method thereof | |
Kaiser et al. | Investigation of the tempering process of martensitic AISI 4140 steel at high heating rates | |
Benarioua | Effect of Temperature and Time of Carburizing Treatment on the Structure and the Hardness of Steel 20MC4 | |
Ratajski et al. | Development of nitrided layer during nitriding of steel |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20061027 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20070307 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20090825 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20091026 |
|
RD02 | Notification of acceptance of power of attorney |
Free format text: JAPANESE INTERMEDIATE CODE: A7422 Effective date: 20091026 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20100202 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20100323 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20100921 |
|
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20101020 |
|
R150 | Certificate of patent or registration of utility model |
Free format text: JAPANESE INTERMEDIATE CODE: R150 Ref document number: 4615208 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20131029 Year of fee payment: 3 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
LAPS | Cancellation because of no payment of annual fees |