JP2012246558A - Nitriding treatment apparatus and cross sectional hardness distribution prediction system - Google Patents
Nitriding treatment apparatus and cross sectional hardness distribution prediction system Download PDFInfo
- Publication number
- JP2012246558A JP2012246558A JP2011121129A JP2011121129A JP2012246558A JP 2012246558 A JP2012246558 A JP 2012246558A JP 2011121129 A JP2011121129 A JP 2011121129A JP 2011121129 A JP2011121129 A JP 2011121129A JP 2012246558 A JP2012246558 A JP 2012246558A
- Authority
- JP
- Japan
- Prior art keywords
- nitrogen
- distribution
- nitriding
- cross
- amount
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Landscapes
- Solid-Phase Diffusion Into Metallic Material Surfaces (AREA)
Abstract
Description
本発明は、高合金工具鋼からなる被処理材を窒化処理した後の断面硬さ分布の予測システム及びこれを組み込んだ窒化処理装置に関する。 The present invention relates to a system for predicting the distribution of cross-sectional hardness after nitriding a workpiece made of high alloy tool steel, and a nitriding apparatus incorporating the system.
金型や機械部品などの工具鋼からなる機械部材の耐久性の向上を目的として、窒化処理が広く行われている。窒化処理は、被処理材の表面から窒素をその内部へと拡散させて固溶強化により、併せて、微細窒化物の析出により、処理表面近傍を改質硬化させる表面硬化処理方法である。めっきなどの硬化被膜を処理表面に付与する表面硬化処理方法と比べて不連続断面を生じないから耐摩耗性だけでなく、耐衝撃性にも優れる。また、一般的に、鋼の平衡状態図上のA1点以下の比較的低い温度で処理を行うことができるから、大きな歪みを被処理材に与えることを防止できて、機械加工後の部品であっても処理を適用できる。 Nitriding is widely performed for the purpose of improving the durability of machine members made of tool steel such as molds and machine parts. Nitriding is a surface hardening treatment method in which nitrogen is diffused from the surface of a material to be treated into the inside thereof to strengthen the solution, and at the same time, the vicinity of the treatment surface is modified and hardened by precipitation of fine nitrides. Compared to a surface hardening treatment method in which a hardened film such as plating is applied to the treated surface, a discontinuous cross section is not generated, so that not only wear resistance but also impact resistance is excellent. In general, since the treatment can be performed at a relatively low temperature of A1 or less on the equilibrium diagram of steel, it is possible to prevent a large strain from being applied to the material to be processed. Even if there is, processing can be applied.
この窒化処理の代表的な施工方法として、塩浴窒化法、ガス窒化法、プラズマ窒化法などがある。塩浴窒化法は、高温の塩浴中に被処理材を浸漬させて活性窒素を内部へと拡散させる方法である。また、ガス窒化法はアンモニアガスを分解させて生じた窒素を被処理材の表面から拡散させる方法であり、プラズマ窒化法は、プラズマ雰囲気で活性化させたガスイオンを被処理材の表面に導いて窒素を拡散させる方法である。いずれの窒化方法であっても、温度、窒化処理環境(塩浴濃度や雰囲気濃度)などの窒化処理条件によって処理表面近傍の断面硬さ分布が異なるのである。つまり、機械的特性が変化するが、かかる窒化処理条件と機械的特性の関係はこれまで実験的且つ経験的に得られてきた。すなわち、サンプル試験片により窒化処理を行って断面硬さ分布などを実測することを繰り返して得られるデータから所望とする機械的特性を得られる窒化処理条件を決定してきた。 Typical nitriding methods include salt bath nitriding, gas nitriding, plasma nitriding, and the like. The salt bath nitriding method is a method in which a material to be treated is immersed in a high temperature salt bath to diffuse active nitrogen into the inside. The gas nitriding method is a method of diffusing nitrogen generated by decomposing ammonia gas from the surface of the material to be treated. The plasma nitriding method introduces gas ions activated in the plasma atmosphere to the surface of the material to be treated. This is a method of diffusing nitrogen. In any nitriding method, the cross-sectional hardness distribution in the vicinity of the processing surface varies depending on nitriding conditions such as temperature and nitriding environment (salt bath concentration and atmosphere concentration). That is, although the mechanical characteristics change, the relationship between the nitriding conditions and the mechanical characteristics has been experimentally and empirically obtained so far. That is, nitriding conditions for obtaining desired mechanical characteristics have been determined from data obtained by repeatedly performing nitriding with a sample test piece and actually measuring the cross-sectional hardness distribution and the like.
一方、例えば、特許文献1では、窒化処理を与えた合金工具鋼からなる金型の寿命予測をX線回折法により行うことを開示している。このような非破壊により窒化処理された被処理材の機械的特性を計測できる技術によれば、計測された数値を窒化処理条件にフィードバックさせることで、所望とする機械的特性に合わせた窒化処理条件を決定するシステムを与え得るであろう。 On the other hand, for example, Patent Document 1 discloses that the life prediction of a mold made of alloy tool steel subjected to nitriding is performed by an X-ray diffraction method. According to the technology that can measure the mechanical properties of the material to be treated that has been nitrided by such non-destructive method, the measured value is fed back to the nitriding treatment conditions, so that the nitriding treatment that matches the desired mechanical properties is performed. A system for determining conditions could be given.
更に、所望とする機械的特性を得られる窒化処理条件をシミュレーション計算によって決定することも考慮される。例えば、非特許文献1では、プラズマ窒化処理を行ったときの鋼の内部に拡散する窒素の濃度分布の計算方法について述べている。窒素の濃度分布は被処理材の機械的特性と直接的な関係を有している。詳細には、処理装置内におけるアンモニア分圧と鋼の表面から内部への単位時間当たりの窒素侵入量との間の関係式を実測値から求めた上で、侵入した窒素が合金元素と合金窒化物を形成しながら拡散して形成される濃度分布をフィックの第2法則に従って計算している。ここでは合金窒化物の析出は合金元素毎に実測して求められた反応速度定数によって計算される。 Furthermore, it is also considered to determine the nitriding conditions that can obtain the desired mechanical characteristics by simulation calculation. For example, Non-Patent Document 1 describes a method for calculating the concentration distribution of nitrogen diffused into the steel when plasma nitriding is performed. The nitrogen concentration distribution has a direct relationship with the mechanical properties of the material to be treated. Specifically, after determining the relational expression between the ammonia partial pressure in the processing unit and the nitrogen intrusion amount per unit time from the surface of the steel to the inside from the measured value, the intruded nitrogen is changed into the alloy element and the alloy nitriding. The concentration distribution formed by diffusion while forming an object is calculated according to Fick's second law. Here, precipitation of alloy nitride is calculated by a reaction rate constant obtained by actual measurement for each alloy element.
上記したように窒化処理条件と得られる機械的特性の関係については、特に、高合金工具鋼のように窒化物形成元素を比較的多く含む被処理材の場合において、微細窒化物の析出による機械的特性への影響が大きくなる。すなわち、使用される被処理材の合金組成毎にサンプル試験片による試験を繰り返し行う必要があって非効率的であった。そこで、所望とする機械的特性から窒化処理条件を決定できる、及び、窒化処理条件から機械的特性を予測できるシステムが求められた。 As described above, regarding the relationship between the nitriding conditions and the obtained mechanical characteristics, in particular, in the case of a material to be processed containing a relatively large amount of nitride-forming elements such as high alloy tool steel, a machine by precipitation of fine nitrides. The effect on the physical characteristics is increased. That is, it is inefficient because it is necessary to repeatedly perform the test using the sample test piece for each alloy composition of the material to be processed. Therefore, a system that can determine nitriding conditions from desired mechanical characteristics and that can predict mechanical characteristics from nitriding conditions has been demanded.
本発明は以上のような状況に鑑みてなされたものであって、その目的とするところは、高合金工具鋼からなる被処理材を窒化処理した後の断面硬さ分布の予測システム及びこれを組み込んだ窒化処理装置を提供することにある。 The present invention has been made in view of the situation as described above, and an object of the present invention is to provide a system for predicting the cross-sectional hardness distribution after nitriding a workpiece made of high alloy tool steel, and An object is to provide an integrated nitriding apparatus.
本発明による断面硬さ分布予測システムは、高合金工具鋼からなる被処理材を窒化処理雰囲気内で窒化処理して得られる断面硬さ分布の予測システムであって、前記被処理材の合金組成の外部入力を受けて、少なくともSi,Cr,Mo,V,Wの窒化物生成元素について、標準被処理材の基準合金組成との質量%差であるΔ[Si],Δ[Cr],Δ[Mo],Δ[V],Δ[W]を求め、前記標準被処理材を所定の窒化処理条件で窒化処理した後の断面の窒素分布である標準断面窒素分布を補正断面窒素分布に補正し窒化物量分布を計算する補正計算部と、前記補正断面窒素分布についての前記窒化物量分布から前記断面硬さ分布を求める硬さ変換部と、を含み、前記所定の窒化処理条件で前記被処理材を窒化処理したときの断面硬さ分布を予測することを特徴とする。 A cross-sectional hardness distribution prediction system according to the present invention is a cross-sectional hardness distribution prediction system obtained by nitriding a material to be processed made of high alloy tool steel in a nitriding atmosphere, and the alloy composition of the material to be processed In response to the external input, Δ [Si], Δ [Cr], Δ, which are mass% differences from the reference alloy composition of the standard workpiece for at least the nitride-forming elements of Si, Cr, Mo, V, W [Mo], Δ [V], Δ [W] are obtained, and the standard cross-sectional nitrogen distribution, which is the nitrogen distribution of the cross-section after nitriding the standard workpiece under the predetermined nitriding conditions, is corrected to the corrected cross-sectional nitrogen distribution. A correction calculation unit for calculating the nitride amount distribution, and a hardness conversion unit for obtaining the cross-sectional hardness distribution from the nitride amount distribution for the corrected cross-sectional nitrogen distribution, and the processing target under the predetermined nitriding conditions Cross-sectional hardness distribution when nitriding the material It is characterized by prediction.
かかる発明によれば、所定の窒化処理条件で窒化処理した被処理材について、その合金組成に基づいた補正断面窒素分布における窒化物量分布を求めることができて断面硬さ分布を得られる。つまり、同じ窒化処理条件であっても異なる断面硬さ分布を与える合金組成の異なる高合金工具鋼毎にその断面硬さ分布を予測できて、窒化処理の工程をより効率的に行うことができる。一方で、窒化処理条件から断面硬さ分布を得られるから、所望とする断面硬さ分布を得るために必要とされる窒化処理条件の例を求め得るのである。 According to this invention, the nitride amount distribution in the corrected cross-section nitrogen distribution based on the alloy composition can be obtained for the material to be treated that has been nitrided under the predetermined nitriding conditions, and the cross-sectional hardness distribution can be obtained. In other words, the cross-sectional hardness distribution can be predicted for each high alloy tool steel having a different alloy composition that gives different cross-sectional hardness distribution even under the same nitriding conditions, and the nitriding process can be performed more efficiently. . On the other hand, since the cross-sectional hardness distribution can be obtained from the nitriding treatment conditions, an example of the nitriding treatment conditions required to obtain a desired cross-sectional hardness distribution can be obtained.
上記した発明において、前記標準断面窒素分布はフィックの第2法則の解析解であることを特徴としても良い。かかる発明によれば、被処理材の合金組成に基づいた補正断面窒素分布についての窒化物量分布をより容易に求め得るのである。 In the above-described invention, the standard cross-sectional nitrogen distribution may be an analytical solution of Fick's second law. According to this invention, the nitride amount distribution for the corrected cross-sectional nitrogen distribution based on the alloy composition of the material to be processed can be obtained more easily.
上記した発明において、前記補正計算部は、前記被処理材の被処理表面において、前記窒化処理雰囲気から前記被処理材へと侵入する窒素量を計算する侵入窒素量計算部と、前記被処理表面から深さ方向に向けて順次、拡散してくる第1の拡散窒素量から窒化物を形成する前記窒化物生成元素のそれぞれについての窒化物形成窒素量を減じて拡散していく第2の拡散窒素量を計算する逐次計算部と、を含み、前記窒化物形成窒素量は、ρMeNを窒化物の密度、VMeNを窒化物の体積、tを時間、Kを反応速度定数、及び、CMeをα鉄中の固溶窒素量,CNをα鉄中の窒化物を形成していない合金元素量とすると、
上記した発明において、前記侵入窒素量計算部は、前記窒化処理雰囲気から前記被処理材へと侵入する窒素量を時間変化しないとした上で、これを前記標準断面窒素分布の表層近傍の窒素濃度から算出することを特徴としてもよい。かかる発明によれば、被処理材の合金組成に基づいた補正断面窒素分布についての窒化物量分布を計算でより容易に求め得るのである。 In the above-described invention, the intrusion nitrogen amount calculation unit assumes that the amount of nitrogen entering the material to be processed from the nitriding atmosphere does not change over time, and this is the nitrogen concentration in the vicinity of the surface layer of the standard cross-sectional nitrogen distribution It is good also as a characteristic to calculate from. According to this invention, the nitride amount distribution for the corrected cross-sectional nitrogen distribution based on the alloy composition of the material to be processed can be obtained more easily by calculation.
上記したうちの1つの予測システムを組み込んでおり、前記硬さ変換部で求められた断面硬さ分布を表示する表示部を有することを特徴としてもよい。かかる発明によれば、合金組成の異なる被処理材毎に窒化処理後の断面硬さ分布を予測して窒化処理装置に表示させ得るので、窒化処理の工程をより効率的に行うことができる。 One of the prediction systems described above is incorporated, and a display unit that displays the cross-sectional hardness distribution obtained by the hardness conversion unit may be provided. According to this invention, the cross-sectional hardness distribution after nitriding can be predicted and displayed on the nitriding apparatus for each workpiece having a different alloy composition, so that the nitriding process can be performed more efficiently.
本発明者は、処理対象である高合金工具鋼からなる被処理材を窒化処理した後の断面硬さ分布を予測する予測システムを考慮した。すなわち、図1に示すように、予測システムでは、被処理材を所定の窒化処理条件で窒化処理した後の断面の窒素分布である断面窒素分布について、既知の成分組成を有する標準被処理材を同様の窒化処理条件で窒化処理した後の断面の窒素分布である標準断面窒素分布を(補正)断面窒素分布に補正し被処理材の窒化物量分布を計算し(補正計算ステップS1)、この窒化物量分布を断面硬さ分布に変換する(硬さ変換ステップS2)のである。ここで「断面硬さ分布」とは、被処理材の平面形状表面から深さ方向(被処理材の中心方向)且つ垂直方向へ、順次硬さを測定した際の硬さの分布である。 This inventor considered the prediction system which estimates the cross-sectional hardness distribution after nitriding the to-be-processed material which consists of high alloy tool steel which is a process target. That is, as shown in FIG. 1, in the prediction system, a standard processing material having a known component composition is used for the cross-sectional nitrogen distribution, which is a nitrogen distribution of a cross-section after the processing material is nitrided under predetermined nitriding conditions. The standard cross-sectional nitrogen distribution, which is the nitrogen distribution in the cross section after nitriding under the same nitriding conditions, is corrected (corrected) to the cross-sectional nitrogen distribution to calculate the nitride amount distribution of the material to be processed (correction calculating step S1). The physical quantity distribution is converted into a cross-sectional hardness distribution (hardness conversion step S2). Here, the “cross-sectional hardness distribution” is a distribution of hardness when the hardness is measured sequentially from the planar shape surface of the material to be processed in the depth direction (center direction of the material to be processed) and in the vertical direction.
詳細には、補正計算ステップS1では、図2(a)に示すように、標準被処理材及び被処理材における窒化物生成元素の含有量差から標準断面窒素分布1を断面窒素分布2に補正する。ここで、図2(b)に示すように、標準被処理材及び被処理材には、窒化処理雰囲気から同一の窒化処理時間では同一量の窒素が侵入し窒化物を生成しつつその内部へと侵入するが、窒化物析出量は成分組成における窒化物生成元素の量の増加に従って増加する。この窒化物析出量と窒化物生成元素量の関係から標準断面窒素分布1を断面窒素分布2に補正でき、少なくとも被処理材の窒化物量分布4が計算できる。なお、窒化物量分布3は標準被処理材の窒化物量の分布である。また、一般的に、工具鋼であれば、窒化物生成元素はSi,Cr,Mo,V,Wなどの元素である。 Specifically, in the correction calculation step S1, as shown in FIG. 2 (a), the standard cross-section nitrogen distribution 1 is corrected to the cross-section nitrogen distribution 2 from the difference in the content of nitride-forming elements in the standard process material and the process material. To do. Here, as shown in FIG. 2 (b), the same amount of nitrogen penetrates the standard material to be treated and the material to be treated from the nitriding atmosphere in the same nitriding time and generates nitrides while entering the inside. However, the amount of nitride precipitation increases as the amount of nitride-forming elements in the component composition increases. The standard cross-sectional nitrogen distribution 1 can be corrected to the cross-sectional nitrogen distribution 2 from the relationship between the nitride precipitation amount and the nitride-forming element amount, and at least the nitride amount distribution 4 of the material to be processed can be calculated. The nitride amount distribution 3 is a distribution of the nitride amount of the standard workpiece. In general, in the case of tool steel, nitride-forming elements are elements such as Si, Cr, Mo, V, and W.
ところで、図2では標準被処理材よりも被処理材において窒化物生成元素の含有量が多いときについて図示したが、標準被処理材が窒化物生成元素を含まないときは、窒化処理雰囲気から窒素が窒化物を生成せずにその内部へと侵入し、例えば、フィックの第2法則の如きに従って固溶する。すなわち、標準断面窒素分布1はフィックの第2法則に従う。標準被処理材及び被処理材には、窒化処理雰囲気から同一の窒化処理時間では同一量の窒素が侵入し、フィックの第2法則に従う標準断面窒素分布1を容易に被処理材の断面窒素分布2に補正できて、少なくとも窒化物量分布4を計算でき得るのである。 Incidentally, FIG. 2 illustrates the case where the content of the nitride generating element in the material to be processed is higher than that of the standard material to be processed. However, when the standard material to be processed does not include the nitride generating element, nitrogen is removed from the nitriding atmosphere. Intrudes into the interior without forming nitrides and dissolves, for example, according to Fick's second law. That is, the standard cross-sectional nitrogen distribution 1 follows Fick's second law. The same amount of nitrogen enters the standard material and the material to be treated from the nitriding atmosphere in the same nitriding time, and the standard cross-sectional nitrogen distribution 1 according to Fick's second law can be easily obtained. Therefore, at least the nitride amount distribution 4 can be calculated.
硬さ変換ステップS2では、窒化物量及び硬さの実測値を収集して回帰計算を行うなどして得られる所定の経験式を用いて、補正計算ステップS1で得られた窒化物量分布4から硬さ分布を得る。ここで回帰計算によって各窒化物毎に硬さへの寄与率に関する重み付けを行った経験式を得るとともに、窒化物量分布4を各窒化物毎の窒化物量分布としてかかる経験式を用いて硬さ分布を得ることがより好ましい。 In the hardness conversion step S2, the hardness is calculated from the nitride amount distribution 4 obtained in the correction calculation step S1, using a predetermined empirical formula obtained by collecting actual measurements of nitride amount and hardness and performing regression calculation. Get the height distribution. Here, an empirical formula is obtained by weighting the contribution ratio to the hardness for each nitride by regression calculation, and the hardness distribution is obtained by using the empirical formula as the nitride amount distribution 4 for each nitride. Is more preferable.
次に、上記した本発明による予測システムの1つの実施例について、図3乃至図6を用いてその詳細を説明する。 Next, one example of the prediction system according to the present invention will be described in detail with reference to FIGS.
<システム構成>
図3に示すように、予測システム10は、演算処理を行うためのCPU11及びこれに付随するROM12、RAM13、適宜、データ入力を行うための入力部14、記憶部15などを含む。記憶部15には、各種計算データなどが蓄積される記憶領域20を含むとともに、プログラムとしての補正計算部18、硬さ変換部19などが記憶されている。更に、補正計算部18には、これを構成するプログラムとしての侵入窒素量計算部18a及び逐次計算部18bが含まれる。なお、各構成部品については、一般的なコンピュータシステムと同様である。更に、CPU11にはインターフェース部21を介して被制御機器22が接続されており、予測システム10によって得られたデータを用いて制御が行われる。例えば、被制御機器22は、窒化炉である。
<System configuration>
As shown in FIG. 3, the prediction system 10 includes a CPU 11 for performing arithmetic processing, a ROM 12 and a RAM 13 associated therewith, an input unit 14 for appropriately inputting data, a storage unit 15, and the like. The storage unit 15 includes a storage area 20 in which various calculation data and the like are stored, and stores a correction calculation unit 18 and a hardness conversion unit 19 as programs. Further, the correction calculation unit 18 includes an intrusion nitrogen amount calculation unit 18a and a sequential calculation unit 18b as programs constituting the correction calculation unit 18. Each component is the same as a general computer system. Furthermore, a controlled device 22 is connected to the CPU 11 via the interface unit 21, and control is performed using data obtained by the prediction system 10. For example, the controlled device 22 is a nitriding furnace.
<システム処理>
次に、上記した予測システム10におけるシステム処理について説明する。ここでは上記したように標準被処理材が窒化物生成元素を含まない合金組成(基準合金組成)を有する鋼であるときの実施例について述べる。
<System processing>
Next, system processing in the prediction system 10 described above will be described. Here, an example in which the standard material to be treated is steel having an alloy composition (reference alloy composition) that does not contain a nitride-forming element as described above will be described.
補正計算ステップS1では、補正計算部18のプログラムに従って、図4に示すような処理を順次行う。 In the correction calculation step S1, processing as shown in FIG. 4 is sequentially performed according to the program of the correction calculation unit 18.
まず、標準被処理材と被処理材との窒化物生成元素量差を求める(S11)。つまり、予測システム10の入力部14(図3参照)を介して被処理材の合金組成の外部入力を得て、標準被処理材との合金組成(基準合金組成)との質量%差、少なくともSi,Cr,Mo,V,Wの窒化物生成元素の質量%差であるΔ[Si],Δ[Cr],Δ[Mo],Δ[V],Δ[W]を求める。ここでは標準被処理材にこれら窒化物生成元素が含まれないから、外部入力された被処理材の合金組成の窒化物生成元素の質量%がそのままΔ[Si],Δ[Cr],Δ[Mo],Δ[V],Δ[W]の値となる。これらの値は記憶部15の記憶領域20に記憶させる。 First, the nitride generation element amount difference between the standard processing material and the processing material is obtained (S11). That is, an external input of the alloy composition of the material to be processed is obtained via the input unit 14 (see FIG. 3) of the prediction system 10, and the mass% difference from the alloy composition (reference alloy composition) with the standard material to be processed is at least Δ [Si], Δ [Cr], Δ [Mo], Δ [V], Δ [W], which are mass% differences in nitride-forming elements of Si, Cr, Mo, V, and W, are obtained. Here, since these nitride generating elements are not included in the standard processed material, the mass% of the nitride generating elements of the alloy composition of the externally input processed material is directly expressed as Δ [Si], Δ [Cr], Δ [ The values are Mo], Δ [V], Δ [W]. These values are stored in the storage area 20 of the storage unit 15.
次に、フィックの第2法則に従う標準被処理材の標準断面窒素分布を被処理材の断面窒素分布に補正する(S12)。 Next, the standard cross-sectional nitrogen distribution of the standard material to be processed according to Fick's second law is corrected to the cross-sectional nitrogen distribution of the material to be processed (S12).
この補正計算に先立ち、被処理材を所定の窒化処理条件W1で窒化処理したときに窒化処理雰囲気から被処理材の処理表面からその内部へと侵入する侵入窒素量Fを求める(S121)。なお、窒化処理条件W1は、窒化処理方法、窒化処理雰囲気、温度、圧力、処理時間などである。 Prior to this correction calculation, when the material to be treated is nitrided under a predetermined nitriding condition W1, an intrusion nitrogen amount F that enters from the treatment surface of the material to be treated to the inside from the nitriding atmosphere is obtained (S121). The nitriding treatment condition W1 includes a nitriding treatment method, a nitriding treatment atmosphere, temperature, pressure, treatment time, and the like.
侵入窒素量Fは、例えば、窒化処理条件W1で窒化処理した標準被処理材の実測値若しくは標準断面窒素分布などの実測値から求められ、これらが記憶領域20にあらかじめ記憶させてあるときはこれを用い得る。すなわち、本発明の目的において、時間当たりの鋼への侵入窒素量は窒化処理条件を変化させない限り時間変化せず、また鋼の合金組成に対しても変化しないものとできるからである。なお、標準被処理材の表面に無視できない厚さのFe窒化物層を有する場合にあっては、侵入窒素量FはFe窒化物層を通過して内部に向けて侵入する窒素量とする。 The intrusion nitrogen amount F is obtained from, for example, an actual measurement value of a standard material to be nitrided under the nitriding condition W1 or an actual measurement value such as a standard cross-sectional nitrogen distribution, and this is stored in the storage area 20 in advance. Can be used. That is, for the purpose of the present invention, the amount of nitrogen entering the steel per hour does not change with time unless the nitriding conditions are changed, and also does not change with respect to the alloy composition of the steel. In the case where the surface of the standard material to be processed has a Fe nitride layer with a thickness that cannot be ignored, the intrusion nitrogen amount F is the amount of nitrogen that penetrates the Fe nitride layer and enters the inside.
ところで、侵入窒素量Fは、上記したような標準被処理材における実測値を用いずとも計算でも求められる。すなわち、いくつかの窒化処理条件に対する侵入窒素量Fの実測値の結果を回帰計算するなどして得られる経験式から計算により求め得るのである。 By the way, the intrusion nitrogen amount F can be obtained by calculation without using the actual measurement value in the standard material to be processed as described above. That is, it can be obtained by calculation from an empirical formula obtained by, for example, performing regression calculation on the result of the actual measurement value of the intrusion nitrogen amount F for several nitriding conditions.
例えば、このような経験式の一例として、式1はラジカル窒化処理において、温度を500℃、圧力を130Pa、放電電圧を420Vとして、アンモニアと水素ガスのガス組成比を1:4〜4:1で変化させて得たアンモニア分圧PNH3と時間当たりの侵入窒素量dC/dtの関係式である。 For example, as an example of such an empirical formula, Formula 1 is a radical nitridation process in which the temperature is 500 ° C., the pressure is 130 Pa, the discharge voltage is 420 V, and the gas composition ratio of ammonia and hydrogen gas is 1: 4 to 4: 1. 4 is a relational expression between the ammonia partial pressure P NH3 obtained by changing the amount of nitrogen and the amount of intrusion nitrogen per hour dC / dt.
更に、上記した経験式の他の例として、式2はラジカル窒化処理において、温度を500℃、圧力を130Pa、アンモニアと水素ガスのガス組成比を1:4(アンモニア分圧PNH3=26Pa)として、放電電圧を420V〜520Vで変化させて得た放電電圧Vと時間当たりの侵入窒素量dC/dtの関係式である。 Furthermore, as another example of the above-described empirical formula, Formula 2 is a radical nitriding process in which the temperature is 500 ° C., the pressure is 130 Pa, and the gas composition ratio of ammonia and hydrogen gas is 1: 4 (ammonia partial pressure P NH3 = 26 Pa). Is a relational expression between the discharge voltage V obtained by changing the discharge voltage from 420 V to 520 V and the intrusion nitrogen amount dC / dt per time.
更に、上記した経験式の他の例として、式3はラジカル窒化処理において、圧力を130Pa、放電電圧を420V、アンモニアと水素ガスのガス組成比を2:3(アンモニア分圧PNH3=52Pa)として、温度を450℃〜550℃で変化させて得た温度Tと時間当たりの侵入窒素量dC/dtの関係式である。 Furthermore, as another example of the above empirical formula, Formula 3 is a radical nitridation treatment in which the pressure is 130 Pa, the discharge voltage is 420 V, and the gas composition ratio of ammonia and hydrogen gas is 2: 3 (ammonia partial pressure P NH3 = 52 Pa). Is a relational expression of the temperature T obtained by changing the temperature from 450 ° C. to 550 ° C. and the amount of intrusion nitrogen per hour dC / dt.
所定の時間内に窒化処理雰囲気から被処理材の表面へと侵入窒素量Fの窒素が侵入するが、これを境界条件として、被処理材の内部へと拡散する窒素について窒化物を形成しながら拡散する様子をモデル化した逐次計算を逐次計算部18bのプログラムに従って行って、断面窒素分布2を求める(S122〜S124)。 Nitrogen with an intrusion amount of nitrogen F enters the surface of the material to be treated from the nitriding atmosphere within a predetermined time, and this is used as a boundary condition while forming a nitride for nitrogen diffusing into the material to be treated. Sequential calculation modeling the state of diffusion is performed according to the program of the sequential calculation unit 18b to obtain the cross-sectional nitrogen distribution 2 (S122 to S124).
図5に示すように、時刻t=t1における窒素の拡散について考える。ここで縦軸のCは窒素量である。 Consider the diffusion of nitrogen at time t = t 1 as shown in FIG. Here, C on the vertical axis is the amount of nitrogen.
図5(a)に示すように、処理表面X=0から侵入窒素量Fが与えられたとして、深さ方向位置の微小区間では、合金窒化物を析出させた残りの窒素の一部が固溶し一部が更に深部に拡散しようとする。詳細には、深さ方向位置X=x−ΔxとX=xの微小区間Un−1では合金窒化物を析出させた残りの窒素41があって、微小区間Un−1から深さ方向位置X=xとX=x+Δxの微小区間Unへ向けてフィックの第2法則に従って、矢印J1に示すように、窒素41の一部である拡散窒素41aが拡散していく(S122)。すなわち、窒素41bだけが微小区間Un−1に固溶する。 As shown in FIG. 5 (a), assuming that the intrusion nitrogen amount F is given from the treated surface X = 0, a part of the remaining nitrogen on which the alloy nitride is precipitated is solidified in a minute section in the depth direction position. A part of the molten metal tends to diffuse further deeper. In detail, in the minute section U n−1 of the depth direction position X = x−Δx and X = x, there is the remaining nitrogen 41 on which alloy nitride is precipitated, and the depth direction from the minute section U n−1. according to a second law of Fick towards small sections U n position X = x and X = x + Δx, as shown by the arrow J 1, the diffusion of nitrogen 41a is a portion of the nitrogen 41 diffuses (S122). That is, only the nitrogen 41b is dissolved in the minute section Un -1 .
図5(b)を併せて参照すると、微小区間Unでは、拡散窒素41aの一部が窒化物生成元素のそれぞれと反応して複数種類の合金窒化物32(M1,M2,M3…)を析出させる(S123)。残りの窒素42の一部である拡散窒素42aは、フィックの第2法則に従って、矢印J2に示すように、深さ方向位置X=x+ΔxとX=x+2Δxの微小区間Un+1に向けて更に拡散していく(S124)。すなわち、窒素42bだけが微小区間Unに固溶する。 Figure 5 Referring also to (b), the small section U n, a plurality of types of alloy nitride 32 portion of the diffusion nitrogen 41a reacts with each of the nitride forming elements a (M1, M2, M3 ...) Precipitate (S123). Diffusing nitrogen 42a is a portion of the remaining nitrogen 42, in accordance with the second law of Fick, as indicated by the arrow J 2, further toward the small sections U n + 1 of the depth direction position X = x + [Delta] x and X = x + 2Δx diffusion (S124). That is, only nitrogen 42b is dissolved in small sections U n.
上記した侵入窒素量Fが処理表面X=0から与えられたとする境界条件のもとで、図5のモデルに従った逐次計算(S122〜S124)を処理表面X=0から所定の深さ位置に到達するまで行って、時刻t=t1の断面窒素分布2(図6参照)を得られる。なお、微小区間Unに固溶できる窒素量よりも窒素42bの量が大きいときは、かかる固溶限まで窒素42bを固溶させ、その残りは拡散窒素42aに加えて逐次計算を行うことが好ましい。 Under the boundary condition that the intrusion nitrogen amount F is given from the processing surface X = 0, the sequential calculation (S122 to S124) according to the model of FIG. 5 is performed from the processing surface X = 0 to a predetermined depth position. Is performed until a cross-sectional nitrogen distribution 2 (see FIG. 6) at time t = t 1 is obtained. Incidentally, when the amount of nitrogen 42b than the amount of nitrogen that can be dissolved in small sections U n is large, the nitrogen 42b is dissolved to such solubility limit, the remainder is possible to perform sequential calculation in addition to the diffusion of nitrogen 42a preferable.
ところで、逐次計算(S122〜S124)において、合金窒化物32は、上記したように微小区間Unへ拡散してくる矢印J1に示す窒素が窒化物生成元素のそれぞれと反応して生成するが、この各窒化物量は、窒化物生成元素の反応速度定数を用いた次のような式4で求めることができる。
式4において、反応速度定数Kは、既知の値を用いても良いが、実験的に求めた以下の反応速度定数Kを用いてもよい。
1Cr: KCr=1.23×107exp(−18006/T) 〔1/mass%・sec〕 (式5)
3Cr: KCr=4.85×1010exp(−23172/T) 〔1/mass%・sec〕 (式6)
6Cr: KCr=1.95×1011exp(−23537/T) 〔1/mass%・sec〕 (式7)
Mo: KMo=3.19×104exp(−13213/T) 〔1/mass%・sec〕 (式8)
V : KV =1.85×105 exp(−14144/T) 〔1/mass%・sec〕 (式9)
W : KW =4.01×107 exp(−13477/T) 〔1/mass%・sec〕 (式10)
ここで、Crについては、合金組成による依存が大きいため、適宜、合金組成に依存させた反応速度定数Kを用いることが好ましい。例えば、Cr含有量が1質量%程度のときに式5を、3質量%程度のときに式6を、6質量%程度のときに式7を用いる。また、一般的に、窒化処理は723K以下の温度で処理されることが多く、かかる温度ではSiの反応速度定数Kが非常に小さく、本発明の目的において、Siの窒化物の析出については無視することとしてよい。これら式5乃至10(必要に応じて、Siの反応速度定数K)は、予測システム10の記憶部15の記憶領域20に記憶させておき、適宜、呼び出して用いられる。
In Equation 4, a known value may be used as the reaction rate constant K, but the following reaction rate constant K obtained experimentally may be used.
1Cr: K Cr = 1.23 × 10 7 exp (−18006 / T) [1 / mass% · sec] (Formula 5)
3Cr: K Cr = 4.85 × 10 10 exp (−23172 / T) [1 / mass% · sec] (Formula 6)
6Cr: K Cr = 1.95 × 10 11 exp (−23537 / T) [1 / mass% · sec] (Formula 7)
Mo: K Mo = 3.19 × 10 4 exp (-13213 / T) [1 / mass% · sec] (Equation 8)
V: K V = 1.85 × 10 5 exp (-14144 / T) [1 / mass% · sec] (Equation 9)
W: K W = 4.01 × 10 7 exp (−13477 / T) [1 / mass% · sec] (Formula 10)
Here, since Cr largely depends on the alloy composition, it is preferable to appropriately use a reaction rate constant K depending on the alloy composition. For example, Formula 5 is used when the Cr content is about 1% by mass, Formula 6 is used when it is about 3% by mass, and Formula 7 is used when it is about 6% by mass. In general, the nitriding treatment is often performed at a temperature of 723 K or less, and at such a temperature, the Si reaction rate constant K is very small. For the purpose of the present invention, the precipitation of Si nitride is ignored. It is good to do. These equations 5 to 10 (if necessary, Si reaction rate constant K) are stored in the storage area 20 of the storage unit 15 of the prediction system 10 and are appropriately called and used.
図5のモデルに従った逐次計算(S122〜S124)に式4を用いることで、図6に示すような各窒化物生成元素毎の窒化物M1,M2,M3・・・の窒化物量分布4を含む断面窒素分布2を得ることができる(S13)。 By using Expression 4 for the sequential calculation (S122 to S124) according to the model of FIG. 5, the nitride amount distribution 4 of the nitrides M1, M2, M3... For each nitride generating element as shown in FIG. Can be obtained (S13).
続く、硬さ変換ステップS2では、記憶部15の硬さ変換部19のプログラムに従って、補正計算ステップS1で得られた窒化物量分布4を所定の硬さ変換式によって硬さ分布へと変換する。 In the subsequent hardness conversion step S2, the nitride amount distribution 4 obtained in the correction calculation step S1 is converted into a hardness distribution by a predetermined hardness conversion formula according to the program of the hardness conversion unit 19 of the storage unit 15.
例えば、硬さ変換式は、いくつかの硬さ実測値に基づいた回帰計算から得られる以下の如き経験式であって、記憶部15の記憶領域20にあらかじめ記憶されている。なお、硬さに対する窒化物毎の寄与に対して重み付けをしている。すなわち、各窒化物生成元素の質量%である[Si(x)],[Cr(x)],[Mo(x)],[V(x)],[W(x)]には各係数が与えられている。
[N(x)]=[Si(x)]+3.8[Cr(x)]+2.5[Mo(x)]+10.7[V(x)]+[W(x)] (式11)
[Si(x)],[Cr(x)],[Mo(x)],[V(x)],[W(x)]は、記憶領域20に記憶されたΔ[Si],Δ[Cr],Δ[Mo],Δ[V],Δ[W]の値から得られる。
For example, the hardness conversion formula is the following empirical formula obtained from regression calculation based on some measured hardness values, and is stored in advance in the storage area 20 of the storage unit 15. Note that weighting is given to the contribution of each nitride to the hardness. That is, [Si (x)], [Cr (x)], [Mo (x)], [V (x)], and [W (x)], which are mass% of each nitride-forming element, have respective coefficients. Is given.
[N (x)] = [Si (x)] + 3.8 [Cr (x)] + 2.5 [Mo (x)] + 10.7 [V (x)] + [W (x)] (Formula 11)
[Si (x)], [Cr (x)], [Mo (x)], [V (x)], [W (x)] are Δ [Si], Δ [ It is obtained from the values of Cr], Δ [Mo], Δ [V], Δ [W].
以上により、予測システム10において、被処理材の合金組成に基づいた断面窒素分布2についての窒化物量分布4を求めることができて断面硬さ分布を得られる。つまり、同じ窒化処理条件であっても異なる断面硬さ分布を与える合金組成の異なる高合金工具鋼毎にその断面硬さ分布を予測できて、窒化処理の工程をより効率的に行うことができる。一方で、窒化処理条件から断面硬さ分布を得られるから、所望とする断面硬さ分布を得るために必要とされる窒化処理条件の例を求め得るのである。 As described above, in the prediction system 10, the nitride amount distribution 4 for the cross-sectional nitrogen distribution 2 based on the alloy composition of the material to be processed can be obtained, and the cross-sectional hardness distribution can be obtained. In other words, the cross-sectional hardness distribution can be predicted for each high alloy tool steel having a different alloy composition that gives different cross-sectional hardness distribution even under the same nitriding conditions, and the nitriding process can be performed more efficiently. . On the other hand, since the cross-sectional hardness distribution can be obtained from the nitriding treatment conditions, an example of the nitriding treatment conditions required to obtain a desired cross-sectional hardness distribution can be obtained.
次に、上記した予測システム10により得られる断面硬さ分布と実測値とを比較した実証試験について説明する。 Next, a verification test comparing the cross-sectional hardness distribution obtained by the prediction system 10 and the actual measurement value will be described.
<実証試験1>
図7には、以下の条件で窒化処理した試料の断面硬さ分布の実測値と、上記した予測システム10により予測した断面硬さ分布とを示した。
窒化方法: ラジカル窒化
温度: 500℃
圧力: 130Pa
アンモニア量: 2(l/min)
水素量: 0.5(l/min)
放電電圧: 420V
組成: 0.38C-1Si-5.3Cr-1.2Mo-0.85V-bal.Fe
(その他、意図しない不純物元素を含む)
心部硬さ: 450Hv
<Verification test 1>
FIG. 7 shows the measured value of the cross-sectional hardness distribution of the sample nitrided under the following conditions and the cross-sectional hardness distribution predicted by the prediction system 10 described above.
Nitriding method: Radical nitriding Temperature: 500 ℃
Pressure: 130Pa
Ammonia amount: 2 (l / min)
Hydrogen amount: 0.5 (l / min)
Discharge voltage: 420V
Composition: 0.38C-1Si-5.3Cr-1.2Mo-0.85V-bal.Fe
(Including other unintended impurity elements)
Heart hardness: 450Hv
同様に、図8には、以下の条件で窒化処理した試料の断面硬さ分布と、上記した予測システム10により予測した断面硬さ分布とを示した。
窒化方法: 塩浴軟窒化処理
温度: 550℃
OCN濃度: 31wt%
組成: 0.38C-1Si-5.3Cr-1.2Mo-0.85V-bal.Fe
(その他、意図しない不純物元素を含む)
心部硬さ: 500Hv
なお、窒化処理を10時間及び20時間行ったときの2種類を示した。
Similarly, FIG. 8 shows the cross-sectional hardness distribution of a sample nitrided under the following conditions and the cross-sectional hardness distribution predicted by the prediction system 10 described above.
Nitriding method: Salt bath soft nitriding Temperature: 550 ℃
OCN concentration: 31wt%
Composition: 0.38C-1Si-5.3Cr-1.2Mo-0.85V-bal.Fe
(Including other unintended impurity elements)
Heart hardness: 500Hv
Two types were shown when nitriding was performed for 10 hours and 20 hours.
ここで、ラジカル窒化では窒化処理表面にほとんど化合物層を生じないが、塩浴軟窒化処理では化合物層を生じていた。しかしながら、図7及び8に示すように、予測システム10による予測はいずれも実測値を良好に反映していることが判る。 Here, radical nitridation hardly produces a compound layer on the surface of nitriding treatment, but salt bath soft nitriding treatment produces a compound layer. However, as shown in FIGS. 7 and 8, it can be seen that the prediction by the prediction system 10 reflects the actual measurement values well.
<実証試験2>
次に、図9に示すような合金工具鋼としての代表的な合金組成を有する長さ50mmの角棒に以下の条件で窒化処理したときの予測システム10による硬さの予測値と実測値とを計測した。
<Verification test 2>
Next, a predicted value and an actual measurement value of hardness by the prediction system 10 when a 50 mm long square bar having a typical alloy composition as an alloy tool steel as shown in FIG. 9 is nitrided under the following conditions: Was measured.
詳細には、真空高周波溶解炉で得られた図9に示す合金組成を有する30kgの鋼塊を一辺42mmの正方形の断面形状の角棒に鍛造し、700℃で3時間焼鈍した。これを一辺10.5mmの正方形の断面形状を有する長さ50mmの角棒に切断、粗加工した。角棒を1030℃で0.5時間保持した後に油浴に焼入れ、更に、600℃で1時間保持して空冷で焼戻した。さらに同じ焼戻しを行った。この角棒から一辺10mmの正方形の断面形状を有する長さ50mmの角棒を切り出して試料とし、ラジカル窒化処理した。 Specifically, a 30 kg steel ingot having an alloy composition shown in FIG. 9 obtained in a vacuum high-frequency melting furnace was forged into a square bar having a square cross-sectional shape with a side of 42 mm and annealed at 700 ° C. for 3 hours. This was cut into a square bar with a length of 50 mm having a square cross-sectional shape with a side of 10.5 mm and roughly processed. The square bar was kept at 1030 ° C. for 0.5 hour and then quenched in an oil bath, and further kept at 600 ° C. for 1 hour and tempered by air cooling. Furthermore, the same tempering was performed. From this square bar, a 50 mm long square bar having a square cross-sectional shape of 10 mm on a side was cut out as a sample and subjected to radical nitriding treatment.
ここで窒化処理は、バイアス電圧及びガス組成比率を変化させて行った。炉内温度は500℃、炉内圧力は130Paとし、バイアス電圧は420〜520Vの各電圧、NH3ガスとH2ガスの流量比は1:4〜4:1の各混合比率とし、0.5〜20時間保持した後に炉冷した。 Here, the nitriding treatment was performed by changing the bias voltage and the gas composition ratio. The furnace temperature is 500 ° C., the furnace pressure is 130 Pa, the bias voltage is 420 to 520 V, the flow ratio of NH 3 gas to H 2 gas is 1: 4 to 4: 1, and the mixing ratio is 0. After holding for 5 to 20 hours, the furnace was cooled.
窒化処理後の試験片は中央横断面を切り出して研磨し、この一辺10mmの正方形の研磨面について、EPMA(Electron Probe Micro Analyser)分析により窒素濃度を測定し、更に、ビッカース硬度計により窒化処理表面から0.02mmの位置の硬さを測定した。 The test specimen after nitriding was cut out and polished at the central cross section, and the nitrogen concentration of this 10 mm square polished surface was measured by EPMA (Electron Probe Micro Analyzer) analysis. Furthermore, the nitriding surface was measured with a Vickers hardness tester. The hardness at a position of 0.02 mm was measured.
図10には表面窒素濃度に対する硬さの実測値を、図11には上記した式11により表面窒素濃度に重み付けした析出物形成窒素濃度と硬さの実測値を示した。これから判るように、図10に比較して、図11においてプロット点にばらつきが少なく、表面窒素濃度よりも重み付けをされた析出物形成窒素濃度の方がより実測された硬さを反映している。 FIG. 10 shows measured values of hardness with respect to the surface nitrogen concentration, and FIG. 11 shows measured values of precipitate-forming nitrogen concentration and hardness weighted to the surface nitrogen concentration by the above equation 11. As can be seen from FIG. 10, the plotted points in FIG. 11 have less variation than in FIG. 10, and the precipitate-forming nitrogen concentration weighted more than the surface nitrogen concentration reflects the actually measured hardness. .
なお、かかる実証試験において、時間当たりの鋼への侵入窒素量は窒化処理条件を変化させない限り時間変化せず、鋼の合金組成に対してもほとんど変化していないことが確認できた。 In this demonstration test, it was confirmed that the amount of nitrogen entering the steel per hour did not change with time unless the nitriding conditions were changed, and hardly changed with respect to the alloy composition of the steel.
<予測システムの応用>
上記した予測システム10によれば、窒化処理条件と合金組成から断面硬さ分布を予測できるのである。すなわち、図1に示したように、被制御機器22に予測システム10を組み合わせ、図示しない表示部を被制御機器22に与えることで、断面硬さ分布を表示させ得る。被制御機器22のオペレータは、窒化処理に先だって、断面硬さ分布を知り得るのである。また、予測システム10では、窒化処理条件から断面硬さ分布を得られるから、所望とする断面硬さ分布と同じ断面硬さ分布を得られるよう窒化処理条件を適宜変更して予測を繰り返す計算を行うようにして、所望とする断面硬さ分布を与え得る窒化処理条件を決定できる。以上のように、かかる予測システム10を組み合わせた被制御機器22によれば、窒化処理をより効率的に行うことができるようになる。
<Application of prediction system>
According to the prediction system 10 described above, the cross-sectional hardness distribution can be predicted from the nitriding conditions and the alloy composition. That is, as shown in FIG. 1, the cross-sectional hardness distribution can be displayed by combining the prediction system 10 with the controlled device 22 and providing the controlled device 22 with a display unit (not shown). The operator of the controlled device 22 can know the cross-sectional hardness distribution prior to the nitriding process. In addition, since the prediction system 10 can obtain the cross-sectional hardness distribution from the nitriding treatment conditions, the prediction system 10 performs calculation by repeatedly changing the nitriding treatment conditions as appropriate so as to obtain the same cross-sectional hardness distribution as the desired cross-sectional hardness distribution. In this way, the nitriding conditions that can give the desired cross-sectional hardness distribution can be determined. As described above, according to the controlled device 22 combined with the prediction system 10, nitriding can be performed more efficiently.
1 標準断面窒素分布
2 断面窒素分布
4 窒化物量分布
10 予測システム
18 補正計算部
19 硬さ変換部
22 被制御機器
DESCRIPTION OF SYMBOLS 1 Standard cross-section nitrogen distribution 2 Cross-section nitrogen distribution 4 Nitride amount distribution 10 Prediction system 18 Correction calculation part 19 Hardness conversion part 22 Controlled equipment
Claims (5)
前記被処理材の合金組成の外部入力を受けて、少なくともSi,Cr,Mo,V,Wの窒化物生成元素について、標準被処理材の基準合金組成との質量%差であるΔ[Si],Δ[Cr],Δ[Mo],Δ[V],Δ[W]を求め、前記標準被処理材を所定の窒化処理条件で窒化処理した後の断面の窒素分布である標準断面窒素分布を補正断面窒素分布に補正し窒化物量分布を計算する補正計算部と、
前記補正断面窒素分布についての前記窒化物量分布から前記断面硬さ分布を求める硬さ変換部と、
を含み、前記所定の窒化処理条件で前記被処理材を窒化処理したときの断面硬さ分布を予測することを特徴とする予測システム。 A system for predicting the cross-sectional hardness distribution obtained by nitriding a workpiece made of high alloy tool steel in a nitriding atmosphere,
In response to an external input of the alloy composition of the material to be treated, Δ [Si] which is a mass% difference from the reference alloy composition of the standard material to be processed for at least the nitride-forming elements of Si, Cr, Mo, V, and W , Δ [Cr], Δ [Mo], Δ [V], Δ [W], and a standard cross-sectional nitrogen distribution that is a nitrogen distribution of a cross-section after nitriding the standard workpiece under predetermined nitriding conditions A correction calculation unit for calculating the nitride amount distribution by correcting the corrected cross-sectional nitrogen distribution,
A hardness converter for obtaining the cross-sectional hardness distribution from the nitride amount distribution for the corrected cross-sectional nitrogen distribution;
And predicting a cross-sectional hardness distribution when the material to be treated is nitrided under the predetermined nitriding conditions.
前記被処理表面から深さ方向に向けて順次、拡散してくる第1の拡散窒素量から窒化物を形成する前記窒化物生成元素のそれぞれについての窒化物形成窒素量を減じて拡散していく第2の拡散窒素量を計算する逐次計算部と、を含み、
前記窒化物形成窒素量は、ρMeNを窒化物の密度、VMeNを窒化物の体積、tを時間、Kを反応速度定数、及び、CMeをα鉄中の固溶窒素量,CNをα鉄中の窒化物を形成していない合金元素量とすると、
Diffusion is performed by reducing the amount of nitride-forming nitrogen for each of the nitride-forming elements that form nitrides from the amount of first diffusion nitrogen that diffuses sequentially from the surface to be processed in the depth direction. A sequential calculation unit for calculating a second diffusion nitrogen amount,
The amount of nitride forming nitrogen is as follows: ρ MeN is the density of the nitride, V MeN is the volume of the nitride, t is the time, K is the reaction rate constant, and C Me is the amount of solid solution nitrogen in α iron, C N Is the amount of alloying elements that do not form nitrides in α-iron,
5. A nitriding apparatus incorporating a prediction system according to claim 1 and comprising a display unit for displaying a cross-sectional hardness distribution obtained by the hardness conversion unit.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2011121129A JP5796815B2 (en) | 2011-05-30 | 2011-05-30 | Nitriding apparatus and cross-sectional hardness distribution prediction system |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2011121129A JP5796815B2 (en) | 2011-05-30 | 2011-05-30 | Nitriding apparatus and cross-sectional hardness distribution prediction system |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2012246558A true JP2012246558A (en) | 2012-12-13 |
JP5796815B2 JP5796815B2 (en) | 2015-10-21 |
Family
ID=47467288
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2011121129A Active JP5796815B2 (en) | 2011-05-30 | 2011-05-30 | Nitriding apparatus and cross-sectional hardness distribution prediction system |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP5796815B2 (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2021095606A (en) * | 2019-12-17 | 2021-06-24 | 山陽特殊製鋼株式会社 | High-strength hot work tool steel having excellent softening resistance and nitriding properties |
Citations (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0368109B2 (en) * | 1984-08-30 | 1991-10-25 | Oyo Kagaku Kenkyusho | |
JPH06322439A (en) * | 1993-05-06 | 1994-11-22 | Kobe Steel Ltd | Method for softening and annealing high alloy tool steel |
JPH11199970A (en) * | 1998-01-16 | 1999-07-27 | Nippon Steel Corp | Steel excellent in ductility and excellent in surface hardness and inside hardness after soft-nitriding |
JP2000038624A (en) * | 1998-07-24 | 2000-02-08 | Riken Corp | Ferrous sintered body |
JP2003119548A (en) * | 2001-10-15 | 2003-04-23 | Nippon Steel Corp | Steel sheet for soft nitriding treatment superior in press formability, and manufacturing method therefor |
JP2004183099A (en) * | 2002-11-20 | 2004-07-02 | Chuo Spring Co Ltd | Production method of valve spring |
JP2005146354A (en) * | 2003-11-17 | 2005-06-09 | Nippon Steel Corp | Reinforcing parts for collision with high energy absorption when bend-deformed at high speed |
JP2007131933A (en) * | 2005-11-14 | 2007-05-31 | Dowa Holdings Co Ltd | Nitriding method and nitriding apparatus |
JP2008188795A (en) * | 2007-02-01 | 2008-08-21 | Denso Corp | Manufacturing method of mold for molding honeycomb member |
-
2011
- 2011-05-30 JP JP2011121129A patent/JP5796815B2/en active Active
Patent Citations (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0368109B2 (en) * | 1984-08-30 | 1991-10-25 | Oyo Kagaku Kenkyusho | |
JPH06322439A (en) * | 1993-05-06 | 1994-11-22 | Kobe Steel Ltd | Method for softening and annealing high alloy tool steel |
JPH11199970A (en) * | 1998-01-16 | 1999-07-27 | Nippon Steel Corp | Steel excellent in ductility and excellent in surface hardness and inside hardness after soft-nitriding |
JP2000038624A (en) * | 1998-07-24 | 2000-02-08 | Riken Corp | Ferrous sintered body |
JP2003119548A (en) * | 2001-10-15 | 2003-04-23 | Nippon Steel Corp | Steel sheet for soft nitriding treatment superior in press formability, and manufacturing method therefor |
JP2004183099A (en) * | 2002-11-20 | 2004-07-02 | Chuo Spring Co Ltd | Production method of valve spring |
JP2005146354A (en) * | 2003-11-17 | 2005-06-09 | Nippon Steel Corp | Reinforcing parts for collision with high energy absorption when bend-deformed at high speed |
JP2007131933A (en) * | 2005-11-14 | 2007-05-31 | Dowa Holdings Co Ltd | Nitriding method and nitriding apparatus |
JP2008188795A (en) * | 2007-02-01 | 2008-08-21 | Denso Corp | Manufacturing method of mold for molding honeycomb member |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2021095606A (en) * | 2019-12-17 | 2021-06-24 | 山陽特殊製鋼株式会社 | High-strength hot work tool steel having excellent softening resistance and nitriding properties |
Also Published As
Publication number | Publication date |
---|---|
JP5796815B2 (en) | 2015-10-21 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Zhang et al. | Effect of strain-induced martensite on hydrogen embrittlement of austenitic stainless steels investigated by combined tension and hydrogen release methods | |
Coury et al. | Multi-principal element alloys from the CrCoNi family: outlook and perspectives | |
Biehler et al. | Corrosion properties of polished and shot-peened austenitic stainless steel 304L and 316L with and without plasma nitriding | |
Llanos et al. | Hot deformation and static softening behavior of vanadium microalloyed high manganese austenitic steels | |
Koyama et al. | Hydrogen-induced delayed fracture of a Fe–22Mn–0.6 C steel pre-strained at different strain rates | |
Pillai et al. | Evolution of carbides and chromium depletion profiles during oxidation of Alloy 602 CA | |
He et al. | Fatigue crack growth behaviour in the LCF regime in a shot peened steam turbine blade material | |
Kim et al. | Transformation kinetics and density models of quenching and partitioning (Q&P) steels | |
Liu et al. | Effect of hydrogen on ductility of high strength 3Ni–Cr–Mo–V steels | |
Wei et al. | Cr-alloyed novel press-hardening steel with superior combination of strength and ductility | |
Kan et al. | Stress-induced hydrogen redistribution and corresponding fracture behavior of Q960E steel at different hydrogen content | |
JP6287390B2 (en) | Gas soft nitriding method of low alloy steel | |
JPWO2015136917A1 (en) | Nitriding method and method for manufacturing nitrided parts | |
Hassani-Gangaraj et al. | Microstructural evolution during nitriding, finite element simulation and experimental assessment | |
Schymura et al. | Crack propagation behavior of solution annealed austenitic high interstitial steels | |
Uranga et al. | Determination of recrystallization kinetics from plane strain compression tests | |
Taylor et al. | The post-deformation recrystallization behaviour of 304 stainless steel following high strain rate deformation | |
Hiremath et al. | Effect of post carburizing treatments on residual stress distribution in plain carbon and alloy steels–a numerical analysis | |
Li et al. | Stress relaxation in tensile deformation of 304 stainless steel | |
US20080149226A1 (en) | Method of optimizing an oxygen free heat treating process | |
Abstoss et al. | Microstructural changes during creep and aging of a heat resistant MARBN steel and their effect on the electrochemical behaviour | |
Macadre et al. | Control of hydrogen-induced failure in metastable austenite by grain size refinement | |
EP3524709A1 (en) | Nitrided component and method for producing same | |
Grajales et al. | Mesoscale plasticity anisotropy at the earliest stages of cavitation-erosion damage of a high nitrogen austenitic stainless steel | |
Liu et al. | Exploration on the fatigue behavior of low-temperature carburized 316L austenitic stainless steel at elevated temperature |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20140326 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20141030 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20141201 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20150127 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20150727 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 5796815 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20150809 |