JPH07214216A - Manufacture of high-strength spring - Google Patents

Manufacture of high-strength spring

Info

Publication number
JPH07214216A
JPH07214216A JP630294A JP630294A JPH07214216A JP H07214216 A JPH07214216 A JP H07214216A JP 630294 A JP630294 A JP 630294A JP 630294 A JP630294 A JP 630294A JP H07214216 A JPH07214216 A JP H07214216A
Authority
JP
Japan
Prior art keywords
shot peening
wire
coil spring
shot
electrolytic polishing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP630294A
Other languages
Japanese (ja)
Inventor
Yuji Ishikawa
裕二 石川
Yoshinobu Izawa
佳伸 伊沢
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
TOUGOU SEISAKUSHO KK
Togo Seisakusho Corp
Original Assignee
TOUGOU SEISAKUSHO KK
Togo Seisakusho Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by TOUGOU SEISAKUSHO KK, Togo Seisakusho Corp filed Critical TOUGOU SEISAKUSHO KK
Priority to JP630294A priority Critical patent/JPH07214216A/en
Publication of JPH07214216A publication Critical patent/JPH07214216A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To improve fatigue resistance and durability by successively applying coiling formation low temp. annealing, bearing surface grinding, gas nitriding, shot peening and low temp. annealing to a steel wire rod. CONSTITUTION:The steel wire rod is cold drawn and, after that, an oil tempered steel wire is formed by executing quenching and tempering treatment. A coiled spring is formed by cold coiling it after electrical polishing. After annealing the coiled spring at a lower temp., the bearing surfaces are ground. After that, gas nitriding is applied. Then, shot peening is executed. Next, low temp. annealing is executed. These stages are successively executed. The shot peening is constituted of 1st shot peening and 2nd shot peening in which shots having diameters smaller than them used in the 1st shot peening are used. In this way, compressive residual stress is imparted to a deeper part.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、自動車用エンジンに使
用される弁ばね、あるいはクラッチ用ばねなどの高強度
高耐疲労ばねの製造方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for manufacturing a high-strength, high-fatigue resistant spring such as a valve spring used in an automobile engine or a clutch spring.

【0002】[0002]

【従来の技術】高強度ばねを製造する方法としては、引
張り強度が高いオイルテンパー線を使用してコイリング
成形、熱処理、研削、ショットピーニングによる残留応
力付与処理をし、その後研磨処理して表面最大粗さを低
減させる各工程を実施する方法が知られている。また特
開平3−310439号公報には、鉄鋼線材をコイリン
グ成形、熱処理、窒化処理、ショットピーニングを順次
行うコイルばねの製造方法において、該ショットピーニ
ングを、第1ショットピーニング工程と、その後の低温
焼なまし工程、該第1ショットピーニング工程で使用し
たショットより小さい径のショットを使用して行う第2
ショットピーニング工程とからなるばねの製造方法が記
載されている。さらに特開平4−367346号公報に
は、ばね用鉄鋼線材を線引き後焼入れ焼戻しを行った鉄
鋼線を、電解研磨又は化学研磨によって表面粗さを、J
ISB−0601の十点平均粗さ(Rz)にて5μm以
下に仕上げ、さらにばねに成形する前または後にショッ
トピーニング処理を施す耐疲労性に優れたばねが記載さ
れている。
2. Description of the Related Art As a method for producing a high-strength spring, an oil tempered wire having high tensile strength is used for coiling, heat treatment, grinding, residual stress imparting treatment by shot peening, and then polishing treatment for maximum surface treatment. A method of performing each step of reducing roughness is known. Further, in JP-A-3-310439, in a method of manufacturing a coil spring in which a steel wire rod is sequentially subjected to coiling forming, heat treatment, nitriding treatment and shot peening, the shot peening is performed by a first shot peening step and a subsequent low temperature firing. Second step performed using a shot having a diameter smaller than the shot used in the annealing step and the first shot peening step
A method of manufacturing a spring is described which comprises a shot peening step. Further, in Japanese Patent Application Laid-Open No. 4-376346, a steel wire obtained by quenching and tempering after drawing a steel wire for spring is subjected to electrolytic polishing or chemical polishing to determine the surface roughness.
A spring having excellent fatigue resistance is described, which is finished to have a ten-point average roughness (Rz) of 5 μm or less according to ISB-0601 and is subjected to shot peening treatment before or after forming into a spring.

【0003】[0003]

【発明が解決しようとする課題】自動車用エンジンの高
出力化及び車体の軽量化のため、エンジン用部品である
コイルばねに、高強度性および高耐疲労性が要求されて
いる。このコイルばねには、ばね用鉄鋼線材を線引き後
焼入れ焼戻しを行ったオイルテンパー線が利用されてい
る。
In order to increase the output of automobile engines and reduce the weight of vehicle bodies, coil springs, which are engine parts, are required to have high strength and high fatigue resistance. For this coil spring, an oil tempered wire is used in which a steel wire rod for spring is drawn and then quenched and tempered.

【0004】従来のコイルばねの製造方法は、このオイ
ルテンパー線を使用してコイリング成形、熱処理、研
削、窒化、ショットピーニングを順次行っている。しか
しこのオイルテンパー線の製造段階にて発生する酸化皮
膜が窒化までばねの表面に残っているので、窒化の前に
その酸化皮膜を除去する必要が有る。しかし従来の方法
では酸化皮膜を十分に除去する事が出来ないのでガス窒
化が効果的に行えないという問題がある。
In the conventional coil spring manufacturing method, coiling molding, heat treatment, grinding, nitriding, and shot peening are sequentially performed using this oil tempered wire. However, since the oxide film generated in the manufacturing process of the oil tempered wire remains on the surface of the spring until nitriding, it is necessary to remove the oxide film before nitriding. However, the conventional method has a problem that the gas nitriding cannot be effectively performed because the oxide film cannot be sufficiently removed.

【0005】またオイルテンパー線には、その製造段階
にて発生する微小な疵や脱炭層を有している。それらの
問題を解決するために、電解研磨又は化学研磨によって
表面粗さをJISB−0601の十点平均粗さ(Rz)
にて5μm以下に仕上げ、さらにばねに成形する前また
は後にショットピーニング処理を施している。しかし従
来の方法では、ショットピーニングの前に窒化処理して
いないため表面の粗さが増してしまうという問題もあ
る。
Further, the oil tempered wire has minute flaws and decarburized layers generated at the manufacturing stage thereof. In order to solve these problems, the surface roughness is measured by electrolytic polishing or chemical polishing to obtain the ten-point average roughness (Rz) of JISB-0601.
To 5 μm or less, and shot peening is performed before or after forming into a spring. However, the conventional method has a problem that the surface roughness increases because the nitriding treatment is not performed before the shot peening.

【0006】[0006]

【課題を解決するための手段】本発明者らは、耐疲労性
を高める手段及び強度を高める方法を十分検討した結
果、オイルテンパー線に電解研磨を施した鉄鋼線材を用
いて、コイリング成形、低温焼鈍、座面研削、ガス窒
化、その後ショットピーニング、低温焼鈍を順次行う事
により高強度高耐疲労のばねが形成できることを見いだ
した。さらに上記鉄鋼線材を用いてコイリング成形後、
脱脂、ガス窒化、座面研削、ショットピーニング、低温
焼鈍を順次行う事によっても高強度高耐疲労のばねが形
成できることを見出した。そしてこのショットピーニン
グは、第1ショットピーニングと、その第1ショットピ
ーニングで使用したショットより小さい径のショットを
使用して行う第2ショットピーニングを組み合わせるこ
とがより効果的であることも見いだした。本発明はかか
る知見に基づいて完成されたものである。
Means for Solving the Problems As a result of thorough study of means for increasing fatigue resistance and method for increasing strength, the present inventors have conducted coiling forming using a steel wire rod that is electrolytically polished on an oil temper wire, It was found that a high strength and high fatigue resistance spring can be formed by sequentially performing low temperature annealing, bearing surface grinding, gas nitriding, then shot peening, and low temperature annealing. Furthermore, after coiling forming using the above steel wire,
It has been found that a spring having high strength and high fatigue resistance can be formed by sequentially performing degreasing, gas nitriding, bearing surface grinding, shot peening, and low temperature annealing. It has also been found that this shot peening is more effective by combining the first shot peening with the second shot peening performed by using a shot having a diameter smaller than the shot used in the first shot peening. The present invention has been completed based on such findings.

【0007】すなわち、本第一発明の高強度ばねの製造
方法は、線引き後焼入れ、焼戻しを行い、その後電解研
磨を施した鉄鋼線材にコイリング成形、低温焼鈍、座面
研削、ガス窒化その後、ショットピーニング、低温焼鈍
を順次おこなうことを特徴とする。また、本第二発明の
高強度ばねの製造方法は、線引き後焼入れ、焼戻しを行
い、その後電解研磨を施した鉄鋼線材にコイリング成
形、脱脂、ガス窒化、座面研削その後、ショットピーニ
ング、低温焼鈍を順次おこなうことを特徴とする。
That is, in the method for manufacturing a high-strength spring according to the first aspect of the present invention, a steel wire rod which has been subjected to quenching and tempering after drawing and then electrolytic polishing is subjected to coiling forming, low temperature annealing, bearing surface grinding, gas nitriding, and then shot. The feature is that peening and low temperature annealing are sequentially performed. Further, the manufacturing method of the high-strength spring of the second invention is, after wire drawing quenching, tempering, then coiling forming on steel wire rod subjected to electrolytic polishing, degreasing, gas nitriding, seat surface grinding, then shot peening, low temperature annealing. It is characterized by performing sequentially.

【0008】これら第一発明と第二発明とを合わせて本
発明として説明する。本発明の高強度コイルばねの製造
方法に使用される線材は、バナジウムやシリコンを含む
合金鋼が好ましく、この線材は窒化により表面部が窒化
されて表面部の硬度が高くなる鉄鋼線材である。この鉄
鋼線材は、冷間伸線により線引き後、硬度を高めるため
に焼入れ焼もどしを施し、電解研磨処理を施して電解研
磨オイルテンパー線とする。この電解研磨オイルテンパ
ー線は表面が研磨されているので微小な疵が殆どない。
次いでこの電解研磨オイルテンパー線は、ばね状に成形
するコイリングを施され、低温焼鈍処理によりばねに生
じている残留応力や残留歪みが除去され、その後座面研
削が施される。
The first and second inventions will be described together as the present invention. The wire rod used in the method for manufacturing the high-strength coil spring of the present invention is preferably an alloy steel containing vanadium or silicon, and this wire rod is a steel wire rod whose surface portion is nitrided by nitriding so that the hardness of the surface portion becomes high. This steel wire rod is drawn by cold drawing, then subjected to quenching and tempering for increasing hardness, and subjected to electrolytic polishing treatment to obtain an electrolytically polished oil tempered wire. Since the surface of this electrolytically-polished oil tempered wire is polished, there are almost no minute flaws.
Next, this electropolished oil tempered wire is subjected to coiling for forming into a spring shape, the residual stress and residual strain generated in the spring are removed by the low temperature annealing treatment, and then the bearing surface is ground.

【0009】これらの工程が終わった電解研磨オイルテ
ンパー線は窒化処理される。この窒化は、従来と同じも
ので例えばアンモニア雰囲気中に420から550℃で
2から6時間処理することにより所定の窒化層を形成で
きる。得られる窒化処理層は電解研磨を施していない従
来のオイルテンパー線よりも硬い表面が形成でき又、J
IS規格である従来材のSWOSC−V鋼材よりも硬い
表面が形成できる。
The electropolishing oil tempered wire that has undergone these steps is nitrided. This nitriding is the same as the conventional one, and a predetermined nitriding layer can be formed by, for example, treating in an ammonia atmosphere at 420 to 550 ° C. for 2 to 6 hours. The obtained nitriding layer can form a harder surface than the conventional oil-tempered wire which is not electrolytically polished.
A surface that is harder than conventional ISOS standard SWOSC-V steel can be formed.

【0010】また窒化により表面のみならず内部に圧縮
残留応力が形成され、耐疲労度が増す。本発明の電解研
磨オイルテンパー線は、電解研磨を施していない従来の
オイルテンパー線よりもより深くより強く圧縮残留応力
が形成される。又従来材のSWOSC−V鋼材よりも今
回使用した合金鋼のほうが、より深くより強く圧縮残留
応力が形成される。
Further, due to nitriding, a compressive residual stress is formed not only on the surface but also inside, and the fatigue resistance is increased. The electrolytically-polished oil-tempered wire of the present invention has a deeper and stronger compressive residual stress than the conventional oil-tempered wire which is not subjected to electrolytic polishing. Further, the alloy steel used this time has a deeper and stronger compressive residual stress formed than the conventional SWOSC-V steel.

【0011】ショットピーニング工程では、表面部が窒
化処理されて硬化したコイルばねの表面にショットを打
ちつけ、表面から内深部に圧縮残留応力を付与する。こ
の、ショットピーニング工程では、通常径が0.6〜
1.0mmのもので硬さがHvで600〜800の範囲
のものを使用する。内深部に圧縮残留応力を付与するに
は強いショットピーニングを行う必要がある。しかし強
いショットピーニングを行うと、表面近くの圧縮残留応
力の付与が不十分になる傾向にある。このため、ショッ
トピーニング工程を、第1ショットピーニング工程と第
2ショットピーニング工程からなる2段階で実施するの
が好ましい。第1ショットピーニング工程で使用するシ
ョットは、通常径が0.6〜1.0mmのもので硬さが
Hvで600〜800の範囲のものを使用して、内部の
深い位置まで圧縮残留応力を形成するようにするのが好
ましい。また第2ショットピーニング工程では、第1シ
ョットピーニング工程より弱く、使用するショットは通
常径が0.05〜0.2mm程度のもので硬さがHvで
700〜900の範囲のものを使用するのが良い。この
弱いショットで表面部の圧縮残留応力が効果的に形成さ
れる。
In the shot peening step, a shot is struck on the surface of the coil spring which is hardened by nitriding the surface to give a compressive residual stress from the surface to the inner deep part. In this shot peening process, the normal diameter is 0.6 to
A hardness of 1.0 mm and a hardness of Hv in the range of 600 to 800 are used. It is necessary to perform strong shot peening to give compressive residual stress to the inner deep part. However, strong shot peening tends to give insufficient compressive residual stress near the surface. Therefore, it is preferable that the shot peening step is performed in two stages including the first shot peening step and the second shot peening step. The shot used in the first shot peening step is usually one having a diameter of 0.6 to 1.0 mm and a hardness of Hv in the range of 600 to 800, and compressive residual stress is applied to deep inside positions. Preferably, it is formed. In the second shot peening step, the shot used is weaker than the first shot peening step, and the shot used has a diameter of about 0.05 to 0.2 mm and a hardness of Hv in the range of 700 to 900. Is good. This weak shot effectively forms the compressive residual stress on the surface portion.

【0012】その後、低温焼鈍を行い異常な応力を緩和
させ、圧縮残留応力を安定させて高耐疲労で高強度のば
ねを製造する。第二発明では、第一発明の低温焼鈍工程
に代えて脱脂工程を実施する。この場合にも、本発明の
電解研磨オイルテンパー線のほうが、従来の電解研磨を
施していないオイルテンパー線よりも、硬い表面が形成
できる。また、脱脂工程の後に窒化工程が実施され、そ
の後で座面研削が実施される。その他の工程は第一発明
の工程と同じである。
After that, low temperature annealing is performed to relax abnormal stress and stabilize the compressive residual stress to manufacture a spring having high fatigue resistance and high strength. In the second invention, a degreasing process is performed instead of the low temperature annealing process of the first invention. Also in this case, the electropolished oil-tempered wire of the present invention can form a harder surface than the oil-tempered wire which has not been subjected to conventional electropolishing. In addition, a nitriding step is performed after the degreasing step, and then seat surface grinding is performed. The other steps are the same as the steps of the first invention.

【0013】[0013]

【作用】本第一発明の高強度ばねの製造方法では、線引
き後焼入れ焼戻しを行い、その後電解研磨を施した鉄鋼
線材にコイリング成形、低温焼鈍、座面研削、ガス窒化
その後、ショットピーニング、低温焼鈍を順次おこなう
ことを特徴としている。又本第二発明の高強度ばねの製
造方法では、線引き後焼入れ、焼戻しを行い、その後電
解研磨を施した鉄鋼線材にコイリング成形、脱脂、ガス
窒化、座面研削その後、ショットピーニング、低温焼鈍
を順次おこなうことを特徴としている。
In the method for manufacturing a high-strength spring according to the first aspect of the present invention, the steel wire rod subjected to quenching and tempering after wire drawing and then electrolytic polishing is subjected to coiling forming, low temperature annealing, bearing surface grinding, gas nitriding, and then shot peening and low temperature. The feature is that annealing is performed sequentially. Further, in the method for manufacturing a high-strength spring according to the second aspect of the present invention, quenching after wire drawing, tempering, and coiling forming, degreasing, gas nitriding, bearing surface grinding, and then shot peening, low temperature annealing are performed on steel wire rods that have been electrolytically polished. It is characterized by performing sequentially.

【0014】いずれの方法でも、窒化の前工程で黒皮の
ような厚い酸化皮膜が残っていないので窒化が効果的に
鉄鋼線材に入る。そのため硬化層が深くなりその後のシ
ョットピーニングによる圧縮残留応力の付与が最表面部
分から比較的深い部分まで圧縮残留応力が形成され、か
つ表面に近い部分ほど大きい圧縮残留応力が付与され
る。このため、高強度でかつ高耐疲労のばねが製造でき
る。
In any of the methods, since a thick oxide film such as black skin does not remain in the pre-nitriding step, nitriding effectively enters the steel wire rod. Therefore, the hardened layer becomes deeper, and the subsequent application of compressive residual stress by shot peening forms a compressive residual stress from the outermost surface portion to a relatively deep portion, and a larger compressive residual stress is imparted to the portion closer to the surface. Therefore, a spring having high strength and high fatigue resistance can be manufactured.

【0015】[0015]

【実施例】以下本発明を、実施例で説明する。 (実施例1)本実施例で使用したばねの線材として、炭
素0.65重量%(以下、%は特に明記されていない限
り重量%を意味する。)、珪素1.36%、マンガン
0.67%、燐0.007%、硫黄0.01%、クロム
0.71%、バナジウム0.16%、残部鉄とからなる
合金鋼を冷間伸線し、その後焼き入れ、焼き戻し処理
し、引張り強度σв=2,130Mpaの合金鋼オイルテ
ンパー線としたものを使用した。
EXAMPLES The present invention will be described below with reference to examples. (Example 1) As the wire material of the spring used in this example, 0.65% by weight of carbon (hereinafter,% means% by weight unless otherwise specified), silicon 1.36%, manganese 0. An alloy steel composed of 67%, 0.007% phosphorus, 0.01% sulfur, 0.71% chromium, 0.16% vanadium, and the balance iron is cold-drawn, and then quenched and tempered, An alloy steel oil tempered wire having a tensile strength σ в = 2,130 MPa was used.

【0016】その後この合金鋼オイルテンパー線を電解
研磨し、黒皮状の厚い酸化皮膜及び表面傷の除去を行
い、電解研磨線とした。この電解研磨線を冷間でコイリ
ングし、線径3.2mm、コイル中心径21.2mm、
総巻数6.5巻、有効巻数4.5巻、自由長52mm、
ばね定数23.54N/mmのコイルばねに成形した。
After that, this alloy steel oil tempered wire was electrolytically polished to remove a thick black skin oxide film and surface scratches to obtain an electrolytically polished wire. The electrolytically polished wire was cold coiled to obtain a wire diameter of 3.2 mm, a coil center diameter of 21.2 mm,
Total number of turns 6.5, effective number of turns 4.5, free length 52mm,
A coil spring having a spring constant of 23.54 N / mm was formed.

【0017】その後、このコイルばねを450°C、1
5分間の低温焼鈍を行った後、座面を研削した。この座
面を研削したコイルばねに、アンモニアガス雰囲気下で
450℃、5時間のガス窒化処理を施した。これにより
コイル表面に窒化層を形成した。その後、ショットピー
ニング処理を実施した。ショットピーニングは、2段階
で行った。第1ショットピーニングは、直径0.8mm、
Hv700のカットワイヤを使用し、70m/s の条件で
30分間のショットピーニングを実施した。この後、第
2ショットピーニングを実施した。第2ショットピーニ
ングは、直径0.15mm、Hv800のスチールボー
ルを使用し、投射圧力を5kgf/cm2 の条件で30分間の
ショットピーニングを実施した。
Thereafter, this coil spring is heated at 450 ° C. for 1
After low temperature annealing for 5 minutes, the bearing surface was ground. The coil spring whose ground surface was ground was subjected to gas nitriding treatment at 450 ° C. for 5 hours in an ammonia gas atmosphere. This formed a nitride layer on the coil surface. Then, shot peening processing was implemented. Shot peening was performed in two stages. The first shot peening is 0.8mm in diameter,
Shot peening was carried out for 30 minutes under the condition of 70 m / s using a Hv700 cut wire. After that, second shot peening was performed. In the second shot peening, a steel ball having a diameter of 0.15 mm and Hv800 was used, and shot peening was carried out for 30 minutes under the condition of a projection pressure of 5 kgf / cm 2 .

【0018】次いで225℃5分間の低温焼なましを実
施して異常に大きな内部歪みを除去し、コイル表面に圧
縮残留応力を付与して本実施例のコイルばねを得た。本
実施例の方法で得られたコイルばねの特性を見るため、
星型疲労試験機でコイルばねの耐久限を調べた。試験で
は、平均応力σm=637MPa、試験回数N=5×1
7 回打ち切りとし、各応力振幅に対する折損回数を調
べ、8個中8個が折損しない最大応力振幅で耐久限を測
定した。本実施例の方法で製造されたコイルばねの耐久
限は±560MPa(平均応力σm=637MPa)で
あった。
Next, low temperature annealing was carried out at 225 ° C. for 5 minutes to remove an abnormally large internal strain, and compressive residual stress was applied to the coil surface to obtain a coil spring of this example. To see the characteristics of the coil spring obtained by the method of this embodiment,
The endurance limit of the coil spring was examined with a star fatigue tester. In the test, average stress σm = 637 MPa, number of tests N = 5 × 1
The test piece was censored 0 7 times, and the number of breakages for each stress amplitude was examined, and the endurance limit was measured at the maximum stress amplitude that 8 of 8 pieces did not break. The durability limit of the coil spring manufactured by the method of this example was ± 560 MPa (average stress σm = 637 MPa).

【0019】なお、比較のために、同じ合金鋼を使用
し、電解研磨を施さず電解研磨に代えて、窒化工程の前
に酸化皮膜除去処理ショットピーニング(φ0.2SB
Hv500×70m/s×15分)を施し、他は実施
例と全く同じ工程でコイルばねを製造した。この比較の
ための非電解研磨線を用いて得たコイルばねの耐久限は
±510MPa(平均応力σm=637MPa)であっ
た。
For comparison, the same alloy steel is used, and electrolytic polishing is not performed but electrolytic polishing is replaced with oxide film removal treatment shot peening (φ0.2SB) before the nitriding step.
Hv500 × 70 m / s × 15 minutes), and a coil spring was manufactured by the same process as in the other examples. The durability of the coil spring obtained by using the non-electrolytic polishing wire for this comparison was ± 510 MPa (average stress σm = 637 MPa).

【0020】このように、本実施例の電解研磨線を使用
したコイルばねは、非電解研磨線を使用したコイルばね
に比較し耐久限が+50MPa(平均応力σm=637
MPa)も大きかった。なお、本実施例の方法で得られ
たコイルばねが高い耐久限をもつ理由をさぐるため、電
解研磨線を使用する本実施例の方法と、非電解研磨線を
使用する比較例の方法における窒化処理した後の窒化層
の硬さ、および製造されたコイルばねの残留応力を測定
した。
As described above, the coil spring using the electrolytic polishing wire of this embodiment has a durability limit of +50 MPa (average stress σm = 637) as compared with the coil spring using the non-electrolytic polishing wire.
(MPa) was also large. In order to find out the reason why the coil spring obtained by the method of the present example has a high durability limit, the nitriding in the method of the present example using the electrolytic polishing wire and the method of the comparative example using the non-electrolytic polishing wire The hardness of the nitrided layer after the treatment and the residual stress of the manufactured coil spring were measured.

【0021】この窒化層の硬さは、窒化処理を施した後
でショットピーニング前のコイルばねを切断し、断面上
で表面から深部に向かってビッカース硬さを測定した。
測定結果を図1に示す。本実施例の電解研磨線を用いた
コイルばねのビッカース硬さ(Hv)と表面からの深さ
との関係を黒丸(図中●)と破線で示す。同じように比
較例の非電解研磨線を用いたコイルばねのビッカース硬
さ(Hv)と表面からの深さとの関係を白丸(図中○)
と実線で示した。
Regarding the hardness of this nitride layer, the Vickers hardness was measured from the surface to the deep portion on the cross section by cutting the coil spring after nitriding treatment and before shot peening.
The measurement results are shown in FIG. The relationship between the Vickers hardness (Hv) of the coil spring using the electrolytically-polished wire of this example and the depth from the surface is shown by a black circle (● in the figure) and a broken line. Similarly, the relationship between the Vickers hardness (Hv) of the coil spring using the non-electrolytic polishing wire of the comparative example and the depth from the surface is indicated by an open circle (○ in the figure).
Is indicated by a solid line.

【0022】図1より明らかなように、本実施例の電解
研磨線を用いたコイルばねの最表面の硬さが約Hv76
0と極めて高く、非電解研磨線を用いたコイルばねの最
表面の硬さ約Hv720よりHvで40も異なってい
た。なお、本実施例の電解研磨線を用いたコイルばねの
表面部の硬さは表面より0.1mmの深さまで、非電解
研磨線を用いたコイルばねの表面部の硬さより上回って
いる。0.1mmを越える深さの硬度については本実施
例の電解研磨線を用いたコイルばねも非電解研磨線を用
いたコイルばねも大きな差はなかった。
As is apparent from FIG. 1, the hardness of the outermost surface of the coil spring using the electrolytic polishing wire of this embodiment has a hardness of about Hv76.
The hardness was extremely high as 0, and the hardness of the outermost surface of the coil spring using the non-electrolytic polishing wire was about Hv 720, and was 40 different at Hv. The hardness of the surface portion of the coil spring using the electrolytic polishing wire of this example is 0.1 mm deeper than the surface, and is higher than the hardness of the surface portion of the coil spring using the non-electrolytic polishing wire. Regarding the hardness at a depth exceeding 0.1 mm, there was no great difference between the coil spring using the electrolytic polishing wire of the present example and the coil spring using the non-electrolytic polishing wire.

【0023】図1に示す窒化層の表層部の硬さは、電解
研磨の有無により生じたことは明らかで、電解研磨を施
すと窒化により表面部の硬さが一層向上する。実施例1
の電解研磨線を使用したコイルばねの圧縮残留応力の分
布を調べた結果を図2に示す。本実施例の電解研磨線を
用いたコイルばねの残留応力(MPa)と表面からの深
さとの関係を黒三角(図中▲)で示す。同じように比較
例の非電解研磨線を用いたコイルばねの残留応力(MP
a)と表面からの深さとの関係を白三角丸(図中△)で
示した。実施例の電解研磨線を用いたコイルばねの残留
応力が表面で約−930Mpa、比較例の非電解研磨線を
用いたコイルばねの残留応力が表面で約−850Mpaで
あり、約−80MPa程度の差が見られた。
It is clear that the hardness of the surface layer portion of the nitrided layer shown in FIG. 1 is caused by the presence or absence of electrolytic polishing. When electrolytic polishing is performed, the hardness of the surface portion is further improved by nitriding. Example 1
FIG. 2 shows the result of examining the distribution of the compressive residual stress of the coil spring using the electrolytic polishing wire of No. 1. The relationship between the residual stress (MPa) and the depth from the surface of the coil spring using the electrolytically-polished wire of this example is shown by a black triangle (▲ in the figure). Similarly, the residual stress of the coil spring using the non-electrolytic polishing wire of the comparative example (MP
The relationship between a) and the depth from the surface is indicated by a white triangle circle (Δ in the figure). The residual stress of the coil spring using the electrolytic polishing wire of the example is about -930 MPa on the surface, and the residual stress of the coil spring using the non-electrolytic polishing wire of the comparative example is about -850 MPa on the surface, which is about -80 MPa. There was a difference.

【0024】この硬さおよび残留応力の差が製造された
コイルばねの耐久限の差になっているのであろうと考え
られる。 (実施例2)本実施例は、実施例1で使用した合金鋼に
代えてJIS規格のSWOSC−V鋼材(炭素0.57
重量%、珪素1.42%、マンガン0.67%、燐0.
012%、硫黄0.005%、クロム0.72%、残部
鉄)を冷間伸線し、その後焼き入れ、焼き戻し処理し、
引張り強度σв=1,961Mpaの合金鋼オイルテンパ
ー線としたものを使用した。そして実施例1と全く同じ
工程を実施してコイルばねを製造した。
It is considered that this difference in hardness and residual stress may be the difference in durability of the manufactured coil spring. (Example 2) In this example, instead of the alloy steel used in Example 1, JIS standard SWOSC-V steel material (carbon 0.57) was used.
% By weight, 1.42% silicon, 0.67% manganese, 0.1% phosphorus.
012%, sulfur 0.005%, chromium 0.72%, balance iron) cold drawn, then quenched and tempered,
An alloy steel oil tempered wire having a tensile strength σв = 1,961 Mpa was used. Then, the same steps as in Example 1 were carried out to manufacture a coil spring.

【0025】この実施例2の製造方法で製造されたコイ
ルばねの耐久限は±530MPa(平均応力σm=63
7MPa)であった。なお、比較のために、本実施例で
使用したものと同じ合金鋼を使用し、電解研磨を施さず
電解研磨に代えて、窒化工程の前に酸化皮膜除去処理を
施し、他は本実施例と全く同じ工程でコイルばねを製造
した。
The durability of the coil spring manufactured by the manufacturing method of Example 2 is ± 530 MPa (average stress σm = 63).
7 MPa). For comparison, using the same alloy steel as that used in this example, instead of electrolytic polishing without electrolytic polishing, an oxide film removal treatment was performed before the nitriding step, and the other examples were used. A coil spring was manufactured by the same process as above.

【0026】この比較のための非電解研磨線を用いて得
たコイルばねの耐久限は±470MPa(平均応力σm
=637MPa)であった。このように、本実施例の電
解研磨線を使用したコイルばねは、非電解研磨線を使用
したコイルばねに比較し耐久限が+60MPa(平均応
力σm=637MPa)も大きかった。
The durability of the coil spring obtained by using the non-electrolytic polishing wire for comparison is ± 470 MPa (average stress σm
= 637 MPa). As described above, the coil spring using the electrolytic polishing wire of the present example had a large durability limit of +60 MPa (average stress σm = 637 MPa) as compared with the coil spring using the non-electrolytic polishing wire.

【0027】(実施例3)本実施例では、実施例1で使
用したのと同じ合金鋼を冷間伸線し、その後焼き入れ、
焼き戻し処理し、実施例1と同じ、引張り強度σв=
1,961Mpaの合金鋼オイルテンパー線としたものを
使用した。この合金鋼オイルテンパー線を実施例1と全
く同様に電解研磨し、黒皮状の厚い酸化皮膜及び表面傷
の除去を行い、電解研磨線とした。この後、実施例1と
全く同様にこの電解研磨線を冷間でコイリング成形し
た。
(Example 3) In this example, the same alloy steel as that used in Example 1 was cold-drawn and then quenched,
Tempered, same as in Example 1, tensile strength σв =
An alloy steel oil tempered wire of 1,961 Mpa was used. This alloy steel oil tempered wire was electrolytically polished in the same manner as in Example 1 to remove a thick black skin oxide film and surface scratches to obtain an electrolytically polished wire. After that, the electrolytic polishing wire was cold coiled in the same manner as in Example 1.

【0028】その後、実施例1の低温焼鈍、座面研削に
代えて、コイルばねを脱脂した。この脱脂工程は有機系
溶剤(例えば代替フロン、ケトン類、アルコール類な
ど)により行った。その後、実施例1と全く同様に窒化
を実施した。そして窒化処理されたコイルばねの座面研
削を実施した。その後実施例1と全く同様に2段階のシ
ョットピーニングおよび低温焼鈍を施し、コイルばねを
製造した。
After that, the coil spring was degreased in place of low temperature annealing and seat surface grinding in Example 1. This degreasing step was performed with an organic solvent (eg, CFC substitute, ketones, alcohols, etc.). Then, nitriding was performed in exactly the same manner as in Example 1. Then, the bearing surface of the nitriding coil spring was ground. Then, two steps of shot peening and low temperature annealing were performed in exactly the same manner as in Example 1 to manufacture a coil spring.

【0029】本実施例の方法で得られたコイルばねの特
性を見るため、実施例1と同じ方法でコイルばねの耐久
限を調べた。本実施例の製造方法で製造されたコイルば
ねの耐久限は±565MPa(平均応力σm=637M
Pa)であった。なお、比較のために、本実施例で使用
したのと同じ合金鋼を使用し、電解研磨を施さず電解研
磨に代えて、窒化工程の前に酸化皮膜除去処理(φ0.
2SBHv500×70m/s×15分)を施し、他は
実施例と全く同じ工程でコイルばねを製造した。
In order to examine the characteristics of the coil spring obtained by the method of this embodiment, the durability limit of the coil spring was examined by the same method as in the first embodiment. The durability of the coil spring manufactured by the manufacturing method of this embodiment is ± 565 MPa (average stress σm = 637 M).
It was Pa). For comparison, the same alloy steel used in this example was used, and electrolytic film removal was performed without electrolytic polishing, and instead of electrolytic polishing, oxide film removal treatment (φ0.
2SBHv500 × 70 m / s × 15 minutes), and a coil spring was manufactured by the same process as in the other examples.

【0030】この比較のための非電解研磨線を用いて得
たコイルばねの耐久限は±510MPa(平均応力σm
=637MPa)であった。このように、本実施例の電
解研磨線を使用したコイルばねは、非電解研磨線を使用
したコイルばねに比較し耐久限が+55MPa(平均応
力σm=637MPa)も大きかった。 (実施例4)本実施例は、実施例3で使用した合金鋼に
代えて実施例2で使用したのと同じ、JIS規格のSW
OSC−V鋼材(炭素0.57重量%、珪素1.42
%、マンガン0.67%、燐0.012%、硫黄0.0
05%、クロム0.72%、残部鉄)を冷間伸線し、そ
の後焼き入れ、焼き戻し処理し、引張り強度σв=1,
961Mpaの合金鋼オイルテンパー線としたものを使用
した。そして実施例3と全く同じ工程を実施してコイル
ばねを製造した。
The durability limit of the coil spring obtained by using the non-electrolytic polishing wire for this comparison is ± 510 MPa (average stress σm
= 637 MPa). As described above, the coil spring using the electrolytic polishing wire of the present example had a large durability limit of +55 MPa (average stress σm = 637 MPa) as compared with the coil spring using the non-electrolytic polishing wire. (Example 4) In this example, the same JIS standard SW as that used in Example 2 instead of the alloy steel used in Example 3 was used.
OSC-V steel (carbon 0.57% by weight, silicon 1.42)
%, Manganese 0.67%, phosphorus 0.012%, sulfur 0.0
(05%, chromium 0.72%, balance iron) is cold-drawn, then quenched and tempered to obtain tensile strength σв = 1,
A 961 MPa alloy steel oil tempered wire was used. Then, the same steps as in Example 3 were carried out to manufacture a coil spring.

【0031】この実施例4の製造方法で製造されたコイ
ルばねの耐久限は±525MPa(平均応力σm=63
7MPa)であった。なお、比較のために、本実施例で
使用したものと同じ鋼材を使用し、電解研磨を施さず電
解研磨に代えて、窒化工程の前に酸化皮膜除去処理を施
し、他は本実施例と全く同じ工程でコイルばねを製造し
た。
The durability of the coil spring manufactured by the manufacturing method of Example 4 is ± 525 MPa (average stress σm = 63).
7 MPa). For comparison, using the same steel material as that used in this example, instead of electrolytic polishing without electrolytic polishing, an oxide film removal treatment was performed before the nitriding step, and the other examples. A coil spring was manufactured in exactly the same process.

【0032】この比較のための非電解研磨線を用いて得
たコイルばねの耐久限は±465MPa(平均応力σm
=637MPa)であった。このように、本実施例の電
解研磨線を使用したコイルばねは、非電解研磨線を使用
したコイルばねに比較し耐久限が+60MPa(平均応
力σm=637MPa)大きかった。
The durability of the coil spring obtained by using the non-electrolytic polishing wire for comparison is ± 465 MPa (average stress σm
= 637 MPa). As described above, the coil spring using the electrolytic polishing wire of the present example had a larger durability limit of +60 MPa (average stress σm = 637 MPa) than the coil spring using the non-electrolytic polishing wire.

【0033】[0033]

【発明の効果】本発明の高強度ばねの製造方法では、従
来使われていたオイルテンパー線に電解研磨を施し窒化
の前までに黒皮の厚い酸化皮膜を除去するため、窒化が
より効果的により深く行われる。それで次の工程でのシ
ョトピーニングによる圧縮残留応力の付与が最表面部分
はより大きく、またより深い部分にまで付与される。こ
のため耐疲労性と耐久性とが向上する。
INDUSTRIAL APPLICABILITY In the method for manufacturing a high strength spring of the present invention, nitriding is more effective because the oil-tempered wire that has been conventionally used is electrolytically polished to remove the thick oxide film on the black skin before nitriding. Done deeper. Therefore, in the next step, the compressive residual stress due to shot peening is applied to the outermost surface portion to be larger and deeper. Therefore, fatigue resistance and durability are improved.

【0034】また本発明の高強度ばねの製造方法では、
従来使われていたオイルテンパー線に電解研磨を施し表
面の研磨による微小な疵の除去を行ない、且つ窒化前の
表面積活性化ショットを実施せず窒化による硬度を増し
た後ショットピーニングを行うため、最終製品の表面粗
さが低下し耐疲労性と強度とが更に向上する。
Further, in the method for manufacturing a high strength spring of the present invention,
In order to perform shot peening after increasing the hardness by nitriding without performing surface area activation shot before nitriding, by performing electrolytic polishing on the oil-tempered wire that has been conventionally used to remove minute flaws by polishing the surface, The surface roughness of the final product is reduced, and the fatigue resistance and strength are further improved.

【図面の簡単な説明】[Brief description of drawings]

【図1】実施例1の電解研磨線を使用したコイルばねと
従来の非電解研磨線を使用したコイルばねの窒化による
表面から内部への硬さの分布を示す線図。
FIG. 1 is a diagram showing a hardness distribution from the surface to the inside due to nitriding of a coil spring using an electrolytic polishing wire of Example 1 and a coil spring using a conventional non-electrolytic polishing wire.

【図2】実施例1の電解研磨線を使用したコイルばねと
従来の非電解研磨線を使用したコイルばねの表面から内
部への圧縮残留応力の分布を示す線図。
FIG. 2 is a diagram showing the distribution of the compressive residual stress from the surface to the inside of the coil spring using the electrolytic polishing wire of Example 1 and the coil spring using the conventional non-electrolytic polishing wire.

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 線引き後焼入れ、焼戻しを行い、その後
電解研磨を施した鉄鋼線材にコイリング成形、低温焼
鈍、座面研削、ガス窒化その後、ショットピーニング、
低温焼鈍を順次おこなうことを特徴とする高強度ばねの
製造方法。
1. A steel wire rod, which has been subjected to quenching and tempering after drawing and then electrolytic polishing, is subjected to coiling forming, low temperature annealing, bearing surface grinding, gas nitriding, and then shot peening,
A method for manufacturing a high-strength spring, which comprises sequentially performing low-temperature annealing.
【請求項2】 ショットピーニングは、第1ショットピ
ーニングと、該第1ショットピーニングで使用したショ
ットより小さい径のショットを使用して行う第2ショッ
トピーニングとからなる請求項1記載の高強度ばねの製
造方法。
2. The high strength spring according to claim 1, wherein the shot peening comprises a first shot peening and a second shot peening performed by using a shot having a diameter smaller than the shot used in the first shot peening. Production method.
【請求項3】 線引き後焼入れ、焼戻しを行い、その後
電解研磨を施した鉄鋼線材にコイリング成形、脱脂、ガ
ス窒化、座面研削その後、ショットピーニング、低温焼
鈍を順次おこなうことを特徴とする高強度ばねの製造方
法。
3. A high-strength material, which is obtained by sequentially performing quenching, degreasing, gas nitriding, bearing surface grinding, shot peening and low temperature annealing on an iron and steel wire rod that has been hardened after wire drawing, tempered, and then electrolytically polished. Spring manufacturing method.
【請求項4】 ショットピーニングは、第1ショットピ
ーニングと、該第1ショットピーニングで使用したショ
ットより小さい径のショットを使用して行う第2ショッ
トピーニングとからなる請求項3記載の高強度ばねの製
造方法。
4. The high strength spring according to claim 3, wherein the shot peening comprises a first shot peening and a second shot peening performed by using a shot having a diameter smaller than the shot used in the first shot peening. Production method.
JP630294A 1994-01-25 1994-01-25 Manufacture of high-strength spring Pending JPH07214216A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP630294A JPH07214216A (en) 1994-01-25 1994-01-25 Manufacture of high-strength spring

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP630294A JPH07214216A (en) 1994-01-25 1994-01-25 Manufacture of high-strength spring

Publications (1)

Publication Number Publication Date
JPH07214216A true JPH07214216A (en) 1995-08-15

Family

ID=11634588

Family Applications (1)

Application Number Title Priority Date Filing Date
JP630294A Pending JPH07214216A (en) 1994-01-25 1994-01-25 Manufacture of high-strength spring

Country Status (1)

Country Link
JP (1) JPH07214216A (en)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10118930A (en) * 1996-10-19 1998-05-12 Sintokogio Ltd Shot peening method of spring and spring product
KR19990043795A (en) * 1997-11-29 1999-06-15 정몽규 Coil spring manufacturing method
JP2003253422A (en) * 2002-03-04 2003-09-10 Sanyo Special Steel Co Ltd Method for prolonging service life of tool such as mandrel and forming die, and tool of prolonged service life such as mandrel and forming die
JP2004183099A (en) * 2002-11-20 2004-07-02 Chuo Spring Co Ltd Production method of valve spring
US6790294B1 (en) * 1999-02-19 2004-09-14 Suncall Corporation Spring with excellent fatigue endurance property and surface treatment method for producing the spring
KR100587736B1 (en) * 2004-10-13 2006-06-09 김근순 Method for manufacturing a grinded round bar having high strength
EP2103362A2 (en) * 2008-03-19 2009-09-23 Christian Bauer GmbH & Co. KG Method for surface treating a spring
JP2015086890A (en) * 2013-10-28 2015-05-07 中央発條株式会社 Spring and method for manufacturing spring
CN113073176A (en) * 2021-03-22 2021-07-06 重庆中海弹簧有限公司 Spring manufacturing process
DE102011004732B4 (en) 2010-10-19 2023-09-21 Kia Motors Corporation High-strength valve spring for a vehicle engine and method of manufacturing the same

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10118930A (en) * 1996-10-19 1998-05-12 Sintokogio Ltd Shot peening method of spring and spring product
KR19990043795A (en) * 1997-11-29 1999-06-15 정몽규 Coil spring manufacturing method
DE19983148B3 (en) * 1999-02-19 2012-03-15 Suncall Corporation Spring surface treatment processes
US6790294B1 (en) * 1999-02-19 2004-09-14 Suncall Corporation Spring with excellent fatigue endurance property and surface treatment method for producing the spring
JP2003253422A (en) * 2002-03-04 2003-09-10 Sanyo Special Steel Co Ltd Method for prolonging service life of tool such as mandrel and forming die, and tool of prolonged service life such as mandrel and forming die
JP2004183099A (en) * 2002-11-20 2004-07-02 Chuo Spring Co Ltd Production method of valve spring
JP4615208B2 (en) * 2002-11-20 2011-01-19 中央発條株式会社 Manufacturing method of valve spring
KR100587736B1 (en) * 2004-10-13 2006-06-09 김근순 Method for manufacturing a grinded round bar having high strength
EP2103362A2 (en) * 2008-03-19 2009-09-23 Christian Bauer GmbH & Co. KG Method for surface treating a spring
EP2103362A3 (en) * 2008-03-19 2011-05-11 Christian Bauer GmbH & Co. KG Method for surface treating a spring
DE102011004732B4 (en) 2010-10-19 2023-09-21 Kia Motors Corporation High-strength valve spring for a vehicle engine and method of manufacturing the same
JP2015086890A (en) * 2013-10-28 2015-05-07 中央発條株式会社 Spring and method for manufacturing spring
WO2015064202A1 (en) * 2013-10-28 2015-05-07 中央発條株式会社 Spring and process for producing spring
CN105593559A (en) * 2013-10-28 2016-05-18 中央发条株式会社 Spring and process for producing spring
CN113073176A (en) * 2021-03-22 2021-07-06 重庆中海弹簧有限公司 Spring manufacturing process

Similar Documents

Publication Publication Date Title
JP3173756B2 (en) Manufacturing method of coil spring
JP2994508B2 (en) Manufacturing method of coil spring
JPH07214216A (en) Manufacture of high-strength spring
EP0614994B1 (en) Spring steel wires and process for producing the same
JP2009052144A (en) High strength spring
JPH05148537A (en) Production of coil spring
JP2511663B2 (en) Coil spring manufacturing method
JP3780381B2 (en) High strength coil spring and manufacturing method thereof
JPH11140589A (en) High fatigue strength steel wire and spring, and their production
JP2810799B2 (en) Manufacturing method of coil spring
JPH05156351A (en) Manufacture of coil spring with oil tempered wire
JPH03162550A (en) High strength and high ductility oil tempered steel wire and its manufacture
JP2009270150A (en) Method for manufacturing coil spring
JP4116383B2 (en) Oil temper wire for valve spring or spring and manufacturing method thereof
JP4152364B2 (en) High strength coil spring and manufacturing method thereof
JP3494192B2 (en) Manufacturing method of high fatigue strength stainless steel spring
JP2004323912A (en) High strength coil spring, and method for manufacturing the same
JP2005120479A (en) High strength spring and production method therefor
JPS6376730A (en) Manufacture of valve spring
JPH06100942A (en) Production of piston pin
JP2002327237A (en) Gear with long dedendum life and contact fatigue life, and manufacturing method therefor
KR100323468B1 (en) Method for manufacturing engine valve spring having high fatigue resistance
JPH0672254B2 (en) Gear manufacturing method
JPH08281363A (en) Manufacture of stainless steel spring with high fatigue strength
JP2003170353A (en) Manufacturing method of valve spring and valve spring