JP2004323912A - High strength coil spring, and method for manufacturing the same - Google Patents

High strength coil spring, and method for manufacturing the same Download PDF

Info

Publication number
JP2004323912A
JP2004323912A JP2003120301A JP2003120301A JP2004323912A JP 2004323912 A JP2004323912 A JP 2004323912A JP 2003120301 A JP2003120301 A JP 2003120301A JP 2003120301 A JP2003120301 A JP 2003120301A JP 2004323912 A JP2004323912 A JP 2004323912A
Authority
JP
Japan
Prior art keywords
coil spring
strength
tempering
wire
less
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2003120301A
Other languages
Japanese (ja)
Inventor
Hidetoshi Yoshikawa
英利 吉川
Takayuki Sakakibara
隆之 榊原
Masami Wakita
将見 脇田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Chuo Hatsujo KK
Chuo Spring Co Ltd
Original Assignee
Chuo Hatsujo KK
Chuo Spring Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Chuo Hatsujo KK, Chuo Spring Co Ltd filed Critical Chuo Hatsujo KK
Priority to JP2003120301A priority Critical patent/JP2004323912A/en
Publication of JP2004323912A publication Critical patent/JP2004323912A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/25Process efficiency

Landscapes

  • Springs (AREA)
  • Heat Treatment Of Articles (AREA)
  • Heat Treatment Of Strip Materials And Filament Materials (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a coil spring (a high strength coil spring) of excellent set-in resistance and durability which is suitably applied to a valve spring for an automobile sustained under progressively high stress level in recent years. <P>SOLUTION: A wire of the tensile strength of ≤ 1,600 MPa is formed of steel as a material, the wire is cold-formed into a coil, and hardened/tempered so that residual austenite amount is ≤ 3%. Steel containing, by mass, 0.50-0.90% C and 0.80-2.10% Si is preferably used for the material. The heat treatment is preferably induction hardening and induction tempering. Quenching is preferable even after tempering. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】
本発明は、比較的線径の小さい(線径5mm以下程度)高強度コイルばねに関する。詳しくは、自動車エンジンに用いられる弁ばね等のように、高温環境下で繰り返し応力を受けながら使用されるという状況下において高い耐へたり性及び耐疲労性を有する高強度コイルばね、該ばねの製造方法、及びその材料として用いるばね用鋼に関する。
【0002】
【従来の技術】
自動車用エンジンの高出力化を達成し、かつ、車体の軽量化も達成するため、エンジンの弁ばね等に用いられているコイルばねには、耐へたり性及び耐疲労性を共に有することが強く要求されている。
【0003】
このような高耐へたり性及び耐疲労性を共に有するコイルばねを得るためには、ばね用鋼として適切な材質を選択するとともに、適切な工程を選択してそれを順次行うことが必要である。
【0004】
コイルばねを成形するには、高温で加熱してコイリングを行う熱間成形と、室温でコイリングを行う冷間成形とがある。熱間成形は加工が容易であるが、寸法及び形状の精度を上げることができない。冷間成形は、所期の形状及び寸法を得やすいが、加工が難しい。一般的に、加工性を考慮して、線径の小さいものは冷間で、線径の大きいものは熱間で成形される。
【0005】
また、弁ばね等の高強度コイルばねでは所要の硬さを持つ微細組織が必要とされ、熱処理(焼入れ・焼戻し)が必須となるが、コイル加工と熱処理の順序により、次の2つの方法がある。
(1)コイル成形後、熱処理を行う方法。コイル成形には上記の通り、熱間の場合と冷間の場合がある。
(2)熱処理後、コイル成形を行う方法。この場合、熱処理後であるから、コイル成形は冷間でのみ行われる。
【0006】
(1)の方法は正確なばね形状及び寸法を得るという点ではやや難があるが、熱処理によって強度の高いばねが得られるという利点がある。一方、(2)の方法では、精密な形状及び寸法のばねを成形することができるが、高強度のばねを得ることは難しい。
【0007】
【発明が解決しようとする課題】
上記の通り、高強度を主目的とする場合、コイル成形後に熱処理を行うという(1)の方法が望ましいが、ばねの場合、残留オーステナイトが大きな問題となる。すなわち、鋼の焼入れという熱処理は、鋼をオーステナイト域まで加熱して、それを急冷することにより硬いマルテンサイトに変態させることを意味するが、冷却速度が不十分な場合や鋼の成分によってはオーステナイトの一部がマルテンサイトに変態せずに、焼入れ後もそのまま残留する。これを残留オーステナイトと呼ぶが、ばねの場合、これは疲労強度の低下や使用時のへたり増加などの悪い影響を及ぼす。
【0008】
このように残留したオーステナイトは、加工によってもマルテンサイトに変態し、消失する。上記(2)の方法では熱処理後にコイル成形するため、そのコイル成形処理によって残留オーステナイトが消滅する。しかし、(1)の方法ではコイル成形後に熱処理を行うため、焼入れで生じた残留オーステナイトが、焼き戻しにより一部は分解されるものの、多くはそのまま製品であるばねの中に残留し、耐久性劣化およびへたりの大きな原因となる(非特許文献1、特許文献1)。
【0009】
【非特許文献1】
ばね論文集 第43号(1998)pp.1−12「オイルテンパー線の疲れ強さに及ぼす残留オーステナイトの影響」
【特許文献1】
特開平9−143621号公報
【0010】
軽量化のためにばねの設計応力(使用応力)が徐々に高まりつつある現在、このように耐へたり性・耐久性を低下させる要因はできる限り除いておくことが望ましい。
【0011】
本発明はこのような課題を解決するために成されたものであり、その目的とするところは、特に近年高応力化が進みつつある自動車の弁ばねに好適に用いることのできる、耐へたり性・耐久性に優れたコイルばね(高強度コイルばね)を提供することにある。
【0012】
【課題を解決するための手段】
上記課題を解決するために成された本発明に係る高強度コイルばねの製造方法は、鋼を素材として、伸線加工を施すことにより引張強度1600MPa以下の線材を作製し、該線材を冷間でコイル成形した後、残留オーステナイト量が3%以下となるように焼入れ・焼戻しを行うことを特徴とするものである。
【0013】
その素材としては、質量比にしてC:0.50〜0.90%及びSi:0.80〜2.10%を含有する鋼を用いることが望ましい。また、その焼入れ・焼戻しの際の加熱は、高周波加熱を使用することが望ましい。なお、(焼入れ後はもちろん)焼戻し後も急冷することが望ましい。
【0014】
上記熱処理後はショットピーニング、特に2段以上のショットピーニングを行うことが望ましい。
【0015】
また、2段以上のショットピーニングを行う場合、少なくとも1段のショットピーニングにおいてはハードタイプのショット粒を用いることが望ましい。
【0016】
上記方法により製造する高強度コイルばねは、その内部硬さをHV600〜650とすることが望ましい。
【0017】
そして、破壊靱性値を70〜130kgf/mm3/2とすることが望ましい。
【0018】
【発明の実施の形態】
本発明に係る高強度コイルばねの素材である鋼の炭素及びシリコン含有量の上限及び下限設定理由は、それぞれ次のとおりである。
【0019】
まず、炭素含有量は0.50〜0.90%と設定した。
炭素は鋼に強度を与えるために最も大きな影響を有する元素であり、弁ばねとして十分な耐へたり性及び耐久性を有する程度の強度を与えるためには、0.50%以上含有していなければならない。しかし、0.90%を超えて含有させると、冷間成形が困難となる。また、靭性の低下による耐久性の低下も問題となる。
【0020】
次にシリコン含有量は0.80〜2.10%と設定した。
シリコンも炭素同様、鋼に強度を与える元素であるが、ばねの場合には、耐へたり性付与の効果が重要である。シリコン含有量が0.80%未満では、ばねに十分な耐へたり性を付与することができない。しかし、シリコンは同時に、加熱時の表面脱炭を助長する元素でもある。表面に最大の応力が加わる状態で使用されるばねの場合には、熱処理時の表面脱炭の生成に最も注意を払う必要がある。シリコン含有量が2.10%を超えると、上記条件で熱処理(焼入れ加熱)を行う際に、表面脱炭が生成する可能性を排除しきれない。
【0021】
本発明に係る高強度コイルばねの製造方法では、このように炭素含有量及びシリコン含有量をそれぞれ適切な範囲に設定した鋼を素材として用い、まず引張強度1600MPa以下の線材を作製する。引張強度を1600MPa以下とするのは、後の冷間コイル成形を容易にするためである。この際、組織を緻密にするため、減面率50%以上で伸線加工を施すことが望ましい。
【0022】
この線材を冷間でコイル成形した後、焼入れ・焼戻しを行う。その際、残留オーステナイト量が3%以下となるように熱処理を行う。このようにするための熱処理条件(焼入れ温度・時間及び焼戻し温度・時間)は、予め実験を行うことにより、素材鋼の成分に応じて適宜定めるようにしておく。
【0023】
焼入れ及び/又は焼戻しは、次の理由により、高周波加熱により行うことが望ましい。高周波加熱は迅速な昇温が可能であるため、表面脱炭の生成を最小限に抑え、内部においては結晶粒が成長する暇を与えないという効果を発揮する。さらに、温度管理が比較的容易であり、精度よく加熱することができるという利点を有する。これらにより、上記成分範囲を満たす素材鋼の殆どに対して、熱処理後の残留オーステナイト量を3%以下とすることができる。
【0024】
このような効果や利点は、特に焼入れにおいて有用であるが、焼戻しにおいても、同効果(焼戻し硬さ)を得るために時間を短縮して温度をやや上げることにより、コイルばねにおいては耐へたり性を向上させ得るという有用な効果につながる。
【0025】
焼入れ及び焼戻し条件は、内部硬さがHV600〜650となることを目標として決定する。内部硬さがHV600未満では、弁ばねとして必要な耐疲労性が確保されない。一方、内部硬さがHV650を超えるような条件で熱処理を行うと、後述するように残留オーステナイトが増加し、耐へたり性が低下するようになる。また、靭性が低下し、僅かの疵によっても折損しやすくなるため、同様に耐疲労性が低下する。
【0026】
従って、その靭性確保という観点より、破壊靱性値を70〜130kgf/mm3/2とすることが望ましい。
【0027】
このようにして焼入れ・焼戻しを行った後ショットピーニングを行う。特に、それを2段以上行うことにより、ばね表面に大きな圧縮残留応力を付与することが可能となる。なお、ショットピーニングは冷間(室温)で行ってもよいし、温間(250〜340℃程度)で行ってもよい。
【0028】
このショットピーニングに使用するショット粒として、少なくとも1段において、ノーマル粒よりも硬いハードタイプ(硬さHv750以上)のショット粒を使用することが望ましい。これにより、より大きい圧縮残留応力を付与することができるとともに、熱処理による表面の荒れをより確実に修復することができるようになる。
【0029】
【発明の効果】
本発明に係る高強度コイルばねは、炭素含有量及びシリコン含有量をそれぞれ適正範囲に設定するとともに、伸線加工条件を規定し、かつ、残留オーステナイトが3%を超えないように熱処理をして得られるので、目的とする高い耐へたり性及び耐疲労性を双方共に有することができる。
【0030】
従って、このような高強度コイルばねを、特に高温領域で繰り返し応力を受けながら使用される自動車エンジンの弁ばね等に用いることは、きわめて有効である。
【実施例】
【0031】
以下、図面を用いて本発明の実施例について説明する。
まず、本発明に係る高強度コイルばねの素材として用いる鋼の最適成分含有量範囲を特定するために、炭素含有量及びシリコン含有量をそれぞれ変化させた鋼の耐へたり性について調べた。その結果を図1及び図2に示す。耐へたり性を評価する指標として、残留せん断歪を用いた。
【0032】
図1からわかるように、炭素含有量がC:0.50〜0.90%の範囲において、残留せん断歪が10×10−4以下となっており、十分な耐へたり性が確保されている。
【0033】
また、図2からわかるように、シリコン含有量がSi:0.80〜2.10%の範囲において、残留せん断歪が10×10−4以下となっており、これも同様に十分な耐へたり性が確保されている。
【0034】
次に、図3に示す化学組成を有する鋼を素材として用い、減面率50%以上、引張強度1600MPa以下という条件で伸線加工を施した。
【0035】
このような条件で伸線した線材を冷間でコイル成形した後、高周波加熱によって熱処理した。熱処理条件は、
焼入れ:900℃×10秒間
焼戻し:210〜420℃×10秒間
とした。
【0036】
図4(a)に熱処理前の素材(伸線後)の顕微鏡写真を、(b)に焼入れ・焼戻し後の顕微鏡写真をそれぞれ示す。
【0037】
次に、熱処理条件を変化させることにより内部硬さを種々に変化させ、各硬さ水準における耐へたり性及び残留オーステナイト量の関係を調べた。その結果を図5に示す。耐へたり性を評価する指標としては、上記同様残留せん断歪を用いた。
【0038】
図5から明らかなように、残留オーステナイトが増加すると残留せん断歪も増加する。従って、残留せん断歪を10×10−4以下とするためには、残留オーステナイト量を3%以下に抑えなければならない。
【0039】
図5と同様の条件を用いることにより種々の硬さのばねを作製し、それぞれの耐久性試験を行った結果を図6に示す。なお、試験応力は686±530MPaとした。図6からわかるように、内部硬さHV650以上では靭性低下により介在物を起点とする折損が生じている。
【0040】
次に、耐久性に及ぼすショットピーニングの影響について調べた。その結果を図7に示す。試験応力は同じく686±530MPaとした。図7において、●は0.7mm径のノーマルショット粒を用い、ショットピーニングを1回だけ行った場合の結果である。●以外は、第1段目が0.6mm径、第2段目が0.3mm径のハードショット粒を用いて2段のショットを施した場合の結果を示している。
図7からわかるように、10回以上の耐久回数を確保するためには、ショットピーニング2段以上行い、その際(特に最終段)にハード粒を用いることが望ましい。
【0041】
図8に、各硬さにおける破壊靭性値を示す。図8からわかるように、伸線を行うことにより焼入れ・焼戻し後の破壊靭性値が向上する。
【図面の簡単な説明】
【図1】ばね用鋼の炭素含有量と残留せん断歪の関係を示すグラフ。
【図2】ばね用鋼のシリコン含有量と残留せん断歪の関係を示すグラフ。
【図3】供試素材鋼の化学成分を示す表。
【図4】供試素材鋼の熱処理前(伸線後)の組織を示す顕微鏡写真(a)、及び焼入れ・焼戻し後の組織を示す顕微鏡写真(b)。
【図5】残留オーステナイト量と残留せん断歪の関係を示すグラフ。
【図6】内部硬さと繰り返し耐久回数の関係を示すグラフ。
【図7】ショットピーニング条件を変化させた場合の、内部硬さと耐久回数の関係を示すグラフ。
【図8】供試素材鋼の破壊靱性値を示すグラフ。
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a high-strength coil spring having a relatively small wire diameter (about 5 mm or less in wire diameter). Specifically, such as a valve spring used in an automobile engine, a high-strength coil spring having high sag resistance and fatigue resistance in a situation where it is used while repeatedly receiving stress under a high temperature environment, The present invention relates to a manufacturing method and spring steel used as the material.
[0002]
[Prior art]
Coil springs used in engine valve springs, etc., must have both sag resistance and fatigue resistance in order to achieve higher output of automobile engines and lighter vehicle bodies. Highly required.
[0003]
In order to obtain a coil spring having both high sag resistance and fatigue resistance, it is necessary to select an appropriate material as spring steel, select an appropriate process, and sequentially perform the steps. is there.
[0004]
To form a coil spring, there are hot forming in which coiling is performed by heating at a high temperature, and cold forming in which coiling is performed at room temperature. Hot forming is easy to process, but cannot improve the accuracy of dimensions and shapes. Cold forming is easy to obtain the desired shape and dimensions, but is difficult to process. In general, in consideration of workability, a material having a small wire diameter is formed cold, and a material having a large wire diameter is formed hot.
[0005]
In addition, a high-strength coil spring such as a valve spring requires a microstructure having a required hardness and heat treatment (quenching / tempering) is indispensable. Depending on the order of coil processing and heat treatment, the following two methods are used. is there.
(1) A method in which heat treatment is performed after coil formation. As described above, coil forming includes hot and cold.
(2) A method of performing coil forming after heat treatment. In this case, since the heat treatment has been performed, the coil forming is performed only in a cold state.
[0006]
The method (1) is somewhat difficult to obtain an accurate spring shape and dimensions, but has the advantage that a high strength spring can be obtained by heat treatment. On the other hand, in the method (2), a spring having a precise shape and dimensions can be formed, but it is difficult to obtain a high-strength spring.
[0007]
[Problems to be solved by the invention]
As described above, when the main purpose is high strength, the method (1) of performing heat treatment after coil forming is desirable, but in the case of a spring, retained austenite is a major problem. That is, the heat treatment of quenching steel means heating the steel to the austenite range and rapidly cooling it to transform it into hard martensite.However, when the cooling rate is insufficient or depending on the steel composition, the austenite Some of them do not transform into martensite and remain after quenching. This is called retained austenite. In the case of a spring, this has a bad effect such as a decrease in fatigue strength and an increase in set during use.
[0008]
The retained austenite is transformed into martensite by processing and disappears. In the method (2), since the coil is formed after the heat treatment, the retained austenite disappears by the coil forming process. However, in the method (1), the heat treatment is performed after the coil is formed. Therefore, although the retained austenite generated by the quenching is partially decomposed by the tempering, most of the retained austenite remains as it is in the product spring, resulting in durability. It is a major cause of deterioration and sag (Non-Patent Document 1, Patent Document 1).
[0009]
[Non-patent document 1]
Spring Transactions, No. 43 (1998) pp. 1-12 “Effect of retained austenite on fatigue strength of oil-tempered wire”
[Patent Document 1]
JP-A-9-143621
At present, the design stress (operating stress) of the spring is gradually increasing to reduce the weight, and it is desirable to eliminate as much as possible the factors that reduce the sag resistance and durability.
[0011]
The present invention has been made in order to solve such a problem, and an object of the present invention is to provide an anti-sagging which can be suitably used particularly for a valve spring of an automobile in which high stress has recently been progressing. An object of the present invention is to provide a coil spring (high-strength coil spring) having excellent properties and durability.
[0012]
[Means for Solving the Problems]
The method for manufacturing a high-strength coil spring according to the present invention, which has been made to solve the above-described problem, is to produce a wire having a tensile strength of 1600 MPa or less by drawing a wire using steel as a raw material. And then quenching and tempering so that the amount of retained austenite is 3% or less.
[0013]
As the material, it is desirable to use steel containing 0.50 to 0.90% of C and 0.80 to 2.10% of Si in mass ratio. Further, it is desirable to use high-frequency heating for heating during quenching and tempering. In addition, it is desirable to rapidly cool after tempering (of course, after quenching).
[0014]
After the heat treatment, it is desirable to perform shot peening, particularly, two or more shot peening.
[0015]
When performing shot peening in two or more stages, it is desirable to use hard type shot grains in at least one stage of shot peening.
[0016]
The internal hardness of the high-strength coil spring manufactured by the above method is desirably HV600 to 650.
[0017]
And it is desirable to set a fracture toughness value to 70 to 130 kgf / mm3 / 2 .
[0018]
BEST MODE FOR CARRYING OUT THE INVENTION
The reasons for setting the upper and lower limits of the carbon and silicon contents of steel, which is the material of the high-strength coil spring according to the present invention, are as follows.
[0019]
First, the carbon content was set to 0.50 to 0.90%.
Carbon is the element that has the greatest effect on the strength of steel, and must be contained at least 0.50% in order to provide sufficient strength to set and have sufficient sag resistance and durability as a valve spring. Must. However, when the content exceeds 0.90%, cold forming becomes difficult. In addition, a decrease in durability due to a decrease in toughness also poses a problem.
[0020]
Next, the silicon content was set to 0.80 to 2.10%.
Silicon, like carbon, is an element that gives strength to steel, but in the case of a spring, the effect of imparting sag resistance is important. If the silicon content is less than 0.80%, sufficient set resistance cannot be imparted to the spring. However, silicon is also an element that promotes surface decarburization during heating. In the case of springs that are used with maximum stress on the surface, the most attention must be paid to the generation of surface decarburization during heat treatment. If the silicon content exceeds 2.10%, the possibility of surface decarburization cannot be excluded when heat treatment (quenching and heating) is performed under the above conditions.
[0021]
In the method of manufacturing a high-strength coil spring according to the present invention, a steel rod having a tensile strength of 1600 MPa or less is first manufactured using steel having the carbon content and the silicon content set in appropriate ranges as described above. The reason for setting the tensile strength to 1600 MPa or less is to facilitate the subsequent cold coil forming. At this time, in order to make the structure dense, it is desirable to perform wire drawing at a surface reduction rate of 50% or more.
[0022]
After the wire is cold-formed into a coil, quenching and tempering are performed. At this time, heat treatment is performed so that the amount of retained austenite is 3% or less. The heat treatment conditions (quenching temperature / time and tempering temperature / time) for this purpose are appropriately determined according to the composition of the material steel by conducting experiments in advance.
[0023]
The quenching and / or tempering is desirably performed by high-frequency heating for the following reasons. Since the high-frequency heating can raise the temperature quickly, it has the effect of minimizing the generation of surface decarburization and not allowing the crystal grains to grow inside. Further, there is an advantage that temperature control is relatively easy and heating can be performed with high accuracy. As a result, the residual austenite content after heat treatment can be reduced to 3% or less for most of the material steels satisfying the above component ranges.
[0024]
These effects and advantages are particularly useful in quenching, but also in tempering, by shortening the time and slightly raising the temperature in order to obtain the same effect (tempering hardness), the set resistance in the coil spring is reduced. This leads to a useful effect that the property can be improved.
[0025]
The quenching and tempering conditions are determined so that the internal hardness is HV600 to 650. If the internal hardness is less than HV600, the fatigue resistance required for a valve spring cannot be secured. On the other hand, if the heat treatment is performed under the condition that the internal hardness exceeds HV650, the residual austenite increases and the sag resistance decreases as described later. In addition, the toughness is reduced and even a small number of flaws easily cause breakage, so that the fatigue resistance is similarly reduced.
[0026]
Therefore, from the viewpoint of securing the toughness, it is desirable to set the fracture toughness value to 70 to 130 kgf / mm 3/2 .
[0027]
After quenching and tempering in this way, shot peening is performed. In particular, by performing it in two or more steps, it becomes possible to apply a large compressive residual stress to the spring surface. Note that shot peening may be performed cold (room temperature) or warm (about 250 to 340 ° C.).
[0028]
As shot grains used for this shot peening, it is desirable to use hard type shot grains (hardness Hv750 or more) harder than normal grains in at least one stage. As a result, a larger compressive residual stress can be applied, and the surface roughness due to the heat treatment can be more reliably repaired.
[0029]
【The invention's effect】
The high-strength coil spring according to the present invention sets the carbon content and the silicon content in appropriate ranges, specifies the wire drawing conditions, and performs heat treatment so that the retained austenite does not exceed 3%. As a result, both the desired high sag resistance and fatigue resistance can be obtained.
[0030]
Therefore, it is extremely effective to use such a high-strength coil spring for a valve spring of an automobile engine used under repeated stress especially in a high temperature region.
【Example】
[0031]
Hereinafter, embodiments of the present invention will be described with reference to the drawings.
First, in order to specify the optimal component content range of steel used as a material of the high-strength coil spring according to the present invention, the sag resistance of steel having different carbon and silicon contents was examined. The results are shown in FIGS. Residual shear strain was used as an index for evaluating sag resistance.
[0032]
As can be seen from FIG. 1, when the carbon content is in the range of C: 0.50 to 0.90%, the residual shear strain is 10 × 10 −4 or less, and sufficient sag resistance is secured. I have.
[0033]
Further, as can be seen from FIG. 2, when the silicon content is in the range of 0.80 to 2.10% of Si, the residual shear strain is 10 × 10 −4 or less. Rust is ensured.
[0034]
Next, using a steel having the chemical composition shown in FIG. 3 as a raw material, wire drawing was performed under the conditions of a surface reduction rate of 50% or more and a tensile strength of 1600 MPa or less.
[0035]
The wire drawn under such conditions was cold-formed into a coil, and then heat-treated by high-frequency heating. The heat treatment conditions are
Quenching: 900 ° C. × 10 seconds Tempering: 210 to 420 ° C. × 10 seconds.
[0036]
FIG. 4A shows a micrograph of the material before heat treatment (after drawing), and FIG. 4B shows a micrograph after quenching and tempering.
[0037]
Next, the internal hardness was variously changed by changing the heat treatment conditions, and the relationship between sag resistance and the amount of retained austenite at each hardness level was examined. The result is shown in FIG. As an index for evaluating sag resistance, residual shear strain was used as described above.
[0038]
As is clear from FIG. 5, when the retained austenite increases, the residual shear strain also increases. Therefore, in order to reduce the residual shear strain to 10 × 10 −4 or less, the amount of retained austenite must be suppressed to 3% or less.
[0039]
Springs having various hardnesses were manufactured by using the same conditions as those in FIG. 5, and the results of the respective durability tests are shown in FIG. The test stress was 686 ± 530 MPa. As can be seen from FIG. 6, when the internal hardness is HV650 or more, breakage starts from inclusions due to a decrease in toughness.
[0040]
Next, the effect of shot peening on durability was examined. FIG. 7 shows the result. The test stress was also 686 ± 530 MPa. In FIG. 7, ● represents the result when shot peening was performed only once using normal shot grains having a diameter of 0.7 mm. Except for ●, the results in the case where two shots were performed using hard shot grains having a diameter of 0.6 mm in the first stage and a diameter of 0.3 mm in the second stage.
As can be seen from Figure 7, in order to ensure endurance over 107 times performs shot peening two or more stages, it is desirable to use a hard grains that time (in particular the last stage).
[0041]
FIG. 8 shows the fracture toughness value at each hardness. As can be seen from FIG. 8, the drawing toughness improves the fracture toughness after quenching and tempering.
[Brief description of the drawings]
FIG. 1 is a graph showing the relationship between the carbon content of spring steel and residual shear strain.
FIG. 2 is a graph showing the relationship between the silicon content of spring steel and residual shear strain.
FIG. 3 is a table showing chemical components of a test material steel.
FIG. 4 is a micrograph (a) showing a microstructure of a test material steel before heat treatment (after drawing) and a micrograph (b) showing a microstructure after quenching and tempering.
FIG. 5 is a graph showing a relationship between residual austenite amount and residual shear strain.
FIG. 6 is a graph showing the relationship between internal hardness and the number of times of repeated use.
FIG. 7 is a graph showing a relationship between internal hardness and endurance count when shot peening conditions are changed.
FIG. 8 is a graph showing a fracture toughness value of a test material steel.

Claims (11)

鋼を素材として、伸線加工を施すことにより引張強度1600MPa以下の線材を作製し、該線材を冷間でコイル成形した後、残留オーステナイト量が3%以下となるように焼入れ・焼戻しを行うことを特徴とする高強度コイルばねの製造方法。A wire having a tensile strength of 1600 MPa or less is produced from a steel material by wire drawing, and the wire is cold-formed into a coil, and then quenched and tempered so that the residual austenite amount is 3% or less. A method for manufacturing a high-strength coil spring, comprising: 質量比にしてC:0.50〜0.90%及びSi:0.80〜2.10%を含有する鋼を素材とすることを特徴とする請求項1に記載の高強度コイルばねの製造方法。2. A high-strength coil spring according to claim 1, wherein the steel is a steel containing a mass ratio of C: 0.50 to 0.90% and Si: 0.80 to 2.10%. Method. 上記焼入れ及び/又は焼戻しを高周波加熱を用いて行うことを特徴とする請求項1又は2に記載の高強度コイルばねの製造方法。The method for manufacturing a high-strength coil spring according to claim 1, wherein the quenching and / or tempering is performed using high-frequency heating. 上記焼入れ・焼戻し後、ショットピーニングを行うことを特徴とする請求項1〜3のいずれかに記載の高強度コイルばねの製造方法。The method for manufacturing a high-strength coil spring according to any one of claims 1 to 3, wherein shot peening is performed after the quenching / tempering. 上記ショットピーニングを2段以上行うことを特徴とする請求項1〜4のいずれかに記載の高強度コイルばねの製造方法。The method for manufacturing a high-strength coil spring according to any one of claims 1 to 4, wherein the shot peening is performed in two or more stages. 少なくとも1段のショットピーニングにおいてハードタイプのショット粒を用いることを特徴とする請求項5に記載の高強度コイルばねの製造方法。The method for manufacturing a high-strength coil spring according to claim 5, wherein hard type shot grains are used in at least one stage of shot peening. 質量比にしてC:0.50〜0.90%及びSi:0.80〜2.10%を含有する鋼を素材とし、減面率50%以上で伸線加工を施すことにより引張強度を1600MPa以下とした線材を作製し、該線材を冷間でコイル成形後、残留オーステナイトを3%以下となるように焼入れ・焼戻しを行うことを特徴とする高強度コイルばねの製造方法。By using a steel containing a mass ratio of C: 0.50 to 0.90% and Si: 0.80 to 2.10% as a material, the tensile strength is increased by performing wire drawing at a surface reduction rate of 50% or more. A method for producing a high-strength coil spring, comprising: preparing a wire having a pressure of 1600 MPa or less, forming a coil of the wire in a cold state, and then quenching and tempering the residual austenite to 3% or less. 質量比にしてC:0.50〜0.90%及びSi:0.80〜2.10%を含有する鋼を素材とし、減面率50%以上で伸線加工を施すことにより引張強度を1600MPa以下とした線材を冷間でコイル成形後、残留オーステナイトを3%以下となるように焼入れ・焼戻しを行ったことを特徴とする高強度コイルばね。By using a steel containing a mass ratio of C: 0.50 to 0.90% and Si: 0.80 to 2.10% as a material, the tensile strength is increased by performing wire drawing at a surface reduction rate of 50% or more. A high-strength coil spring characterized in that a wire rod of 1600 MPa or less is quenched and tempered so as to reduce residual austenite to 3% or less after cold coil forming. 内部硬さがHV600〜650であることを特徴とする請求項8に記載の高強度コイルばねThe high-strength coil spring according to claim 8, wherein the internal hardness is HV600 to 650. 破壊靱性値が70〜130kgf/mm3/2であることを特徴とする請求項8又は9に記載の高強度コイルばね。The high-strength coil spring according to claim 8 or 9, wherein the fracture toughness value is 70 to 130 kgf / mm3 / 2 . 質量比にしてC:0.50〜0.90%及びSi:0.8〜2.10%を含有する冷間成形高周波加熱調質高強度コイルばね用鋼。Cold-formed high-frequency heating and tempering high-strength coil spring steel containing C: 0.50 to 0.90% and Si: 0.8 to 2.10% by mass ratio.
JP2003120301A 2003-04-24 2003-04-24 High strength coil spring, and method for manufacturing the same Pending JP2004323912A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003120301A JP2004323912A (en) 2003-04-24 2003-04-24 High strength coil spring, and method for manufacturing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003120301A JP2004323912A (en) 2003-04-24 2003-04-24 High strength coil spring, and method for manufacturing the same

Publications (1)

Publication Number Publication Date
JP2004323912A true JP2004323912A (en) 2004-11-18

Family

ID=33499267

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003120301A Pending JP2004323912A (en) 2003-04-24 2003-04-24 High strength coil spring, and method for manufacturing the same

Country Status (1)

Country Link
JP (1) JP2004323912A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2065612A1 (en) 2007-11-28 2009-06-03 NHK Spring CO., LTD. Leaf spring material and manufacturing method thereof
EP2078880A2 (en) 2007-11-28 2009-07-15 NHK Spring Co., Ltd. Leaf spring material and manufacturing method thereof
WO2010146898A1 (en) * 2009-06-17 2010-12-23 日本発條株式会社 Vehicle suspension coil spring and method for manufacturing same
US8308150B2 (en) 2009-06-17 2012-11-13 Nhk Spring Co., Ltd. Coil spring for vehicle suspension and method for manufacturing the same
JP6251830B1 (en) * 2017-04-11 2017-12-20 日本発條株式会社 Compression coil spring
JP2018176268A (en) * 2017-10-02 2018-11-15 日本発條株式会社 Manufacturing method for compression coil spring

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2065612A1 (en) 2007-11-28 2009-06-03 NHK Spring CO., LTD. Leaf spring material and manufacturing method thereof
EP2078880A2 (en) 2007-11-28 2009-07-15 NHK Spring Co., Ltd. Leaf spring material and manufacturing method thereof
DE102008044191A1 (en) 2007-11-28 2010-06-02 HORIKIRI, INC., Yachiyo-shi Leaf spring material and manufacturing method thereof
WO2010146898A1 (en) * 2009-06-17 2010-12-23 日本発條株式会社 Vehicle suspension coil spring and method for manufacturing same
US8308150B2 (en) 2009-06-17 2012-11-13 Nhk Spring Co., Ltd. Coil spring for vehicle suspension and method for manufacturing the same
US8533954B2 (en) 2009-06-17 2013-09-17 Nhk Spring Co., Ltd. Method for manufacturing a coil spring for vehicle suspension
JP6251830B1 (en) * 2017-04-11 2017-12-20 日本発條株式会社 Compression coil spring
WO2018190331A1 (en) * 2017-04-11 2018-10-18 日本発條株式会社 Helical compression spring and method for producing same
JP2018178184A (en) * 2017-04-11 2018-11-15 日本発條株式会社 Compression coil spring
JP2018176268A (en) * 2017-10-02 2018-11-15 日本発條株式会社 Manufacturing method for compression coil spring
JP7062395B2 (en) 2017-10-02 2022-05-06 日本発條株式会社 Manufacturing method of compression coil spring

Similar Documents

Publication Publication Date Title
JP5624503B2 (en) Spring and manufacturing method thereof
US7763123B2 (en) Spring produced by a process comprising coiling a hard drawn steel wire excellent in fatigue strength and resistance to setting
KR101096888B1 (en) Steel wire for spring
JP5693126B2 (en) Coil spring and manufacturing method thereof
WO2004085685A1 (en) Process for producing high-strength spring
JP5288259B2 (en) Pre-quenching method and quenching method for martensitic tool steel
JP5207805B2 (en) Steel parts with excellent bending fatigue strength and manufacturing method thereof
JP5653022B2 (en) Spring steel and spring with excellent corrosion fatigue strength
WO2012133885A1 (en) Spring and method for producing same
JP2001220650A (en) Steel wire, spring and producing method therefor
JP6572216B2 (en) Stainless steel spring and method for producing stainless steel spring
WO2013022033A1 (en) Material for springs, manufacturing process therefor, and springs
JP5597115B2 (en) Hard drawn wire, spring, and method of manufacturing hard drawn wire
JP2004323912A (en) High strength coil spring, and method for manufacturing the same
JP2016191098A (en) Method for producing heat-treated steel wire excellent in workability
JP2021167444A (en) Compression coil spring
JP6453693B2 (en) Heat treated steel wire with excellent fatigue characteristics
JP5941439B2 (en) Coil spring and manufacturing method thereof
JP4252351B2 (en) Cold forming spring having high fatigue strength and high corrosion fatigue strength and steel for spring
JP5540433B2 (en) Spring excellent in sag resistance and durability and method for manufacturing the same
JP2008190042A (en) Cold-formed spring having high fatigue strength and high corrosion fatigue strength
JP2001247934A (en) Steel wire for spring, its producing method and spring
JP2006104551A (en) High strength machine part having excellent fatigue property and method for improving its fatigue property
JPS63176430A (en) Manufacture of coil spring
JP2001049337A (en) Production of high strength spring excellent in fatigue strength

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060228

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070903

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070918

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20071115

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20071225

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080222

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080402

A911 Transfer of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20080417

A912 Removal of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A912

Effective date: 20081003

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20090820

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100128