JP2001220650A - Steel wire, spring and producing method therefor - Google Patents

Steel wire, spring and producing method therefor

Info

Publication number
JP2001220650A
JP2001220650A JP2000057755A JP2000057755A JP2001220650A JP 2001220650 A JP2001220650 A JP 2001220650A JP 2000057755 A JP2000057755 A JP 2000057755A JP 2000057755 A JP2000057755 A JP 2000057755A JP 2001220650 A JP2001220650 A JP 2001220650A
Authority
JP
Japan
Prior art keywords
steel wire
spring
bainite
wire
steel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2000057755A
Other languages
Japanese (ja)
Inventor
Hiroshi Izumida
寛 泉田
Nozomi Kawabe
望 河部
Teruyuki Murai
照幸 村井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Electric Industries Ltd
Original Assignee
Sumitomo Electric Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Electric Industries Ltd filed Critical Sumitomo Electric Industries Ltd
Priority to JP2000057755A priority Critical patent/JP2001220650A/en
Publication of JP2001220650A publication Critical patent/JP2001220650A/en
Pending legal-status Critical Current

Links

Landscapes

  • Heat Treatment Of Articles (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide steel wire in which the low cost equal to that in pearlitic steel wire is realized in the production cost, and also, high heat resistance and high fatigue resistance equal to those of Si-Cr steel oil tempered steel wire, which is the conventional steel wire for a heat resistant spring, can be realized in heat resistance in a high temperature region and the fatigue resistance of a spring, to provide a spring and to provide a method for producing the same. SOLUTION: This steel wire contains, by mass, 0.60 to 0.95% C, 0.1 to 1.2% Si and 0.30 to 0.90% Mu and has a bainitic structure of 90% or more in volume %. Moreover, one or more kinds selected from the group consisting of 0.1 to 1.0% Mo, 0.1 to 1.0% Nb, 0.1 to 1.0% Ti and 0.1 to 1.0% W are preferably incorporated therein.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、鋼線、ばね及びそ
れらの製造方法に関するものである。特にベイナイト組
織を有し、耐熱へたり性と耐疲労性に優れるばね用とし
て最適な鋼線とばね及びそれらの製造方法に関するもの
である。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a steel wire, a spring and a method for manufacturing the same. In particular, the present invention relates to a steel wire and a spring which have a bainite structure and are excellent in heat resistance and fatigue resistance, and which are optimal for a spring, and a method for producing the same.

【0002】[0002]

【従来の技術】自動車エンジンの排気系に用いられるば
ね部品素材として、使用温度域〜250℃では、Si-Cr鋼を
主体とする高強度オイルテンパー線が用いられてきた。
オイルテンパー線は耐疲労性も高く、ばね用鋼線として
極めて優秀なものであるが、製造において線引き加工
後、油による焼入れと焼戻しの2つの熱処理を必要と
し、非常に工程が煩雑であり高価になり易い。また、材
料としては遅れ破壊が発生しやすいという問題があっ
た。そこで、低コスト材としてピアノ線と呼ばれる高炭
素鋼線が使用されている。これは、金属組織としてパー
ライト組織を有するが、耐疲労性、耐熱性の不足によ
り、その用途は限られたものとなっている。
2. Description of the Related Art A high-strength oil-tempered wire mainly composed of Si-Cr steel has been used as a material for a spring component used in an exhaust system of an automobile engine in a service temperature range of up to 250 ° C.
Oil-tempered wire has high fatigue resistance and is extremely excellent as a spring steel wire. However, it requires two heat treatments of quenching and tempering with oil after drawing in manufacturing, and the process is very complicated and expensive. Easy to be. Further, there is a problem that delayed fracture easily occurs as a material. Therefore, a high-carbon steel wire called a piano wire is used as a low-cost material. This has a pearlite structure as a metal structure, but its use is limited due to lack of fatigue resistance and heat resistance.

【0003】そこで、耐熱特性を向上させる方法として
W、Mo、V、Tiなど、炭化物生成元素の添加による析出強
化が行われる。しかしながら、これらの炭化物を有効に
析出させるためには、時効温度350-500℃での熱処理が
必要である。この熱処理を行うことによってパーライト
鋼線の強度、靭性の要因である伸線方向に繊維状に伸び
たセメンタイトが途切れ、場合によっては球状化が起こ
り、機械的特性の劣化が生じて、結果として析出強化に
よる効果が得られない。
Therefore, as a method of improving the heat resistance,
Precipitation strengthening is performed by adding a carbide-forming element such as W, Mo, V, and Ti. However, in order to effectively precipitate these carbides, heat treatment at an aging temperature of 350 to 500 ° C. is required. By performing this heat treatment, the cementite, which is fibrous in the drawing direction, which is a factor in the strength and toughness of the pearlite steel wire, is interrupted, and in some cases, spheroidization occurs, and mechanical properties deteriorate, resulting in precipitation The effect of reinforcement cannot be obtained.

【0004】この350-500℃という熱処理は、一般にば
ね加工を施した後、加工時に鋼線内に生じた加工ひずみ
を除去する目的で行われる低温焼なましにおいて用いら
れる温度条件でもある。即ち、従来のパーライト鋼で
は、この熱処理条件をばね特性が失われない条件下で設
定してやる必要があった。
[0004] The heat treatment at 350 to 500 ° C is also a temperature condition used in low-temperature annealing which is generally performed after spring processing to remove processing strain generated in a steel wire during processing. That is, in the case of the conventional pearlite steel, it was necessary to set the heat treatment conditions under conditions where the spring characteristics were not lost.

【0005】そこで、この加熱による強度、靭性の低下
を防ぐため、母相の金属組織をベイナイトとする方法が
考えられる。ベイナイトとは主に熱処理においてオース
テナイト化された線材を低温において恒温変態させて得
られる金属組織で、Cのみ拡散が起こる低温域において
の変態により、フェライト地にセメンタイトが微細析出
した構造となっている。それ故、先に述べた炭化物析出
強化と同様の強化効果がある。また、更に炭化物生成元
素を添加して、時効熱処理(低温焼なまし)を行って
も、時効熱処理の温度域が上述の恒温変態の温度域とほ
ぼ同様であるため、母相に微細析出しているセメンタイ
トの分断、球状化が起こりにくい。
[0005] In order to prevent the strength and toughness from being lowered by the heating, a method of using bainite as the metal structure of the matrix may be considered. Bainite is a metal structure obtained by isothermally transforming austenitized wire at low temperature mainly in heat treatment, and has a structure in which cementite is finely precipitated in ferrite ground by transformation in the low temperature region where only C diffuses. . Therefore, there is a strengthening effect similar to the above-described carbide precipitation strengthening. Further, even if aging heat treatment (low-temperature annealing) is performed by further adding a carbide-forming element, since the temperature range of the aging heat treatment is almost the same as the temperature range of the isothermal transformation described above, fine precipitation occurs in the parent phase. Breaking and spheroidization of cementite is difficult to occur.

【0006】このような母相の金属組織をベイナイトと
した鋼線またはその製造方法に関する先行技術として、
次のものが挙げられる。
[0006] As a prior art relating to a steel wire or a method for producing the same, which has a metal structure of bainite as the matrix,
These include:

【0007】特公昭60-18729号公報:延性、冷間鍛造性
にすぐれた高張力線材の製造方法 特開平7-258787号公報、特開平7-258797号公報:伸線加
工性と疲労特性及び捻回特性の優れた冷間線引き用硬鋼
線材の製造方法 特開平11-293400号公報:ベイナイトの優れた伸線加工
性を活かしつつ、耐断線性に優れた高強度網線
Japanese Patent Publication No. Sho 60-18729: Method for producing a high-tensile wire excellent in ductility and cold forgeability JP-A-7-258787, JP-A-7-258797: Drawing workability and fatigue properties and Method for producing hard drawn steel wire for cold drawing with excellent torsion characteristics Japanese Patent Application Laid-Open No. 11-293400: High-strength netting wire with excellent wire breakage resistance while taking advantage of the excellent drawability of bainite

【0008】これら各先行技術は、いずれもベイナイト
特有の延性および伸線加工性に優れる性質を利用したも
のである。また他にも、より高温域(A変態点付近)
でのセメンタイト球状化を目的とした工具用高炭素鋼線
材の製造方法(特開平4-246129号公報)があるが、これ
はベイナイト組織の炭化物の構造や配置を利用したもの
である。
[0008] Each of these prior arts utilizes the properties of bainite which are excellent in ductility and wire drawing workability. Also in other, higher temperature range (near the A 1 transformation point)
There is a method for producing a high-carbon steel wire for tools for the purpose of making cementite spheroidized by using the method described in Japanese Patent Application Laid-Open No. 4-246129, which utilizes the structure and arrangement of carbides having a bainite structure.

【0009】[0009]

【発明が解決しようとする課題】しかし、上記従来の技
術は、いずれも目的とする強度達成を図ったものであ
り、その用途、目的において、耐熱ばねに必要な高温域
(150℃以上250℃以下)での耐熱特性(高温耐へたり
性)や疲労強度の向上を積極的に図ったものはない。
However, all of the above-mentioned conventional techniques aim at achieving the intended strength, and in the use and purpose, the high temperature range (150 ° C. or more and 250 ° C. None of the following has been positively improved in heat resistance (high-temperature sag resistance) and fatigue strength.

【0010】従って、本発明の主目的は、製造コストで
はパーライト鋼線と同等の低コストを実現し、かつ高温
域における耐熱性およびばねの耐疲労性では、従来の耐
熱ばね用鋼線であるSi-Cr鋼オイルテンパー線と同等の
高耐熱性と高耐疲労性を実現できる鋼線とばねおよびそ
の製造方法を提供することにある。
Accordingly, the main object of the present invention is to realize a conventional heat-resistant spring steel wire which realizes a low cost equivalent to that of a pearlite steel wire in terms of manufacturing cost, and has high heat resistance and high spring fatigue resistance in a high temperature range. An object of the present invention is to provide a steel wire and a spring capable of realizing high heat resistance and high fatigue resistance equivalent to those of a Si-Cr steel oil-tempered wire, and a method for manufacturing the same.

【0011】[0011]

【課題を解決するための手段】本発明は、母相の金属組
織をベイナイトとすること、またはW、Mo、V、Ti添加に
よる微細炭化物の析出強化を行うことによって上記の目
的を達成する。
According to the present invention, the above object is attained by using bainite as the metal structure of the parent phase or by strengthening the precipitation of fine carbides by adding W, Mo, V and Ti.

【0012】本発明鋼線の特徴は、化学成分として質量
%でC:0.60〜0.95%、Si:0.1〜1.2%、Mn:0.30〜0.9
0%を含有し、母材組織を体積%で90%以上ベイナイト
組織としたことにある。本発明鋼線における残部の成分
は主にFeから構成され、不可避不純物を含有しても良い
ことは言うまでもない。
The characteristics of the steel wire of the present invention are as follows: C: 0.60 to 0.95%, Si: 0.1 to 1.2%, Mn: 0.30 to 0.9 by mass% as chemical components.
0%, and the base metal structure has a bainite structure of 90% or more by volume%. It goes without saying that the remaining component of the steel wire of the present invention is mainly composed of Fe and may contain unavoidable impurities.

【0013】さらに、上記化学成分に質量%でMo:0.1
〜1.0%、Nb:0.1〜1.0%、Ti:0.1〜1.0%およびW:0.
1〜1.0%よりなる群から選択される1種以上を含むこと
が好ましい。これは主に、添加成分の炭化物時効析出を
促進して、更なる耐熱特性の改善を狙ったものである。
この場合、一般的なばね加工後の低温焼なましによって
時効析出が起こるため、新たな熱処理工程の追加は必要
ではない。ばね加工後の低温焼なまし条件については後
に詳述する。
Furthermore, Mo: 0.1
~ 1.0%, Nb: 0.1 ~ 1.0%, Ti: 0.1 ~ 1.0% and W: 0.
It is preferable to include at least one selected from the group consisting of 1 to 1.0%. This is mainly intended to promote carbide aging precipitation of the additional component and to further improve the heat resistance.
In this case, aging precipitation occurs due to general low-temperature annealing after spring processing, and therefore, it is not necessary to add a new heat treatment step. The low-temperature annealing conditions after the spring processing will be described later in detail.

【0014】本発明鋼線の引張強さは1300N/mm2以上240
0N/mm2以下が好適である。ばね用鋼線としてばね加工
(コイリング)を施すには、引張り強さで1300N/mm2
上必要であり、靭性を考慮すると2400N/mm2以下である
ことが望ましいからである。特に、1700N/mm2以上2400N
/mm2以下が一層好ましい。
The tensile strength of the steel wire of the present invention is 1300 N / mm 2 or more and 240
0 N / mm 2 or less is preferable. This is because, in order to perform spring processing (coiling) as a spring steel wire, a tensile strength of 1300 N / mm 2 or more is required, and considering toughness, it is preferably 2400 N / mm 2 or less. In particular, 1700N / mm 2 or more 2400N
/ mm 2 or less is more preferable.

【0015】上記強度を持つ鋼線において、より効果的
に高い耐熱特性と高い疲労強度を得るためには、鋼線縦
断面の金属組織において、フェライト相の厚さが平均で
10〜200nmの範囲であることが好ましい。フェライト相
の厚さが10nm以上のとき、フェライト相中に含まれる転
位は熱処理(低温焼なまし)においても、界面に移動し
消滅することなく、安定して残存することが可能であ
る。但し、このフェライト相の厚さは、鋼線の引張り強
さとも関連性があり、この厚さが200nm以上となると
き、その引張り強さは低下してしまい、機械的特性も低
下する。そこで、かかるフェライト相の厚さを10〜200n
mと規定した。
In order to more effectively obtain high heat resistance and high fatigue strength in a steel wire having the above strength, the thickness of the ferrite phase in the metal structure in the vertical section of the steel wire must be an average.
Preferably, it is in the range of 10 to 200 nm. When the thickness of the ferrite phase is 10 nm or more, dislocations contained in the ferrite phase can stably remain without moving to the interface and disappearing even in the heat treatment (low-temperature annealing). However, the thickness of the ferrite phase is also related to the tensile strength of the steel wire. When the thickness is 200 nm or more, the tensile strength decreases, and the mechanical properties also decrease. Therefore, the thickness of such a ferrite phase is 10 to 200 n
m.

【0016】また、本発明の鋼線は、線表面から線中心
までの深さ方向のビッカース硬度分布が、平均値±50の
範囲内に収まり、かつ線表面の円周方向のビッカース硬
度分布が、平均値±50の範囲内に収まることが望まし
い。この硬度限定により、疲労特性を向上させることが
できる。
In the steel wire of the present invention, the Vickers hardness distribution in the depth direction from the wire surface to the center of the wire falls within a range of an average value ± 50, and the Vickers hardness distribution in the circumferential direction of the wire surface is small. It is desirable that the average value be within the range of ± 50. By this hardness limitation, fatigue characteristics can be improved.

【0017】本発明の鋼線は、その表面粗さを低減させ
ることで、より高い疲労強度の向上を得ることが可能で
ある。具体的には十点平均粗さRz(JIS B 0601-199
4)で、15μm以下としたとき、特に疲労強度の向上が見
込まれる。このときの表面粗さは、小さければ小さいほ
ど効果的である。
In the steel wire of the present invention, a higher improvement in fatigue strength can be obtained by reducing the surface roughness. Specifically, the ten-point average roughness Rz (JIS B 0601-199
In 4), when the thickness is 15 μm or less, particularly improvement in fatigue strength is expected. The smaller the surface roughness at this time, the more effective.

【0018】本発明の鋼線は、フェライト相中に残存す
る転位の量が、転位密度で5.0×10 cm-2以上存在する
ことが好ましい。このような鋼線をばねとした場合、ば
ねの疲労強度が高い値を示す。この転位密度は、理論的
には高い方が良いはずであるが、実際には5.0×10cm
-2以上となると、それ以上の特性の向上は得られなくな
る。このことは、微細析出物の総量が転位全てを固着す
るために不足してくることや、転位同士の固着も多すぎ
ると100%不動転位のみにはなり得ないことに起因して
いる。そこで5.0×10〜5.0×10cm-2を転位密度の範
囲とした。なお、フェライトとセメンタイトの界面に
は、多くの転位が存在することが考えられるが観察する
ことは極めて困難であるために、フェライト相中のみに
限定した。
[0018] The steel wire of the present invention remains in the ferrite phase.
The dislocation density is 5.0 × 10 5cm-2Exists
Is preferred. If such a steel wire is used as a spring,
The fatigue strength of the skin shows a high value. This dislocation density is theoretically
Should be higher, but actually 5.0 × 107cm
-2Above, no further improvement in characteristics can be obtained.
You. This means that the total amount of fine precipitates fixes all dislocations.
And the dislocations are too stuck together
Because it cannot be 100% immobile dislocations
I have. So 5.0 × 105~ 5.0 × 107cm-2The dislocation density range
It was enclosed. The interface between ferrite and cementite is
Observe that there may be many dislocations
Is extremely difficult, so only in the ferrite phase
Limited.

【0019】また、本発明の鋼線は、金属組織中のセメ
ンタイトが結晶粒径で3〜30nm程度に微結晶化されてい
ることが望ましい。このような組織を有する鋼線をばね
に用いた場合、ばねは非常に高い疲労強度を示す。
Further, in the steel wire of the present invention, it is desirable that cementite in the metal structure is microcrystallized to a crystal grain size of about 3 to 30 nm. When a steel wire having such a structure is used for a spring, the spring exhibits extremely high fatigue strength.

【0020】さらに、本発明の鋼線は、線表面における
引張残留応力が392MPa(40kgf/mm2)以下であり、線表面
円周方向の残留応力分布が平均値±98MPa(10kgf/mm2
の範囲内に収まることが好ましい。線表面の引張残留応
力が高く、又はばらつきが大きいときは、必ずしも優れ
た特性が得られるとは限らないからである。特に疲労強
度に関しては、引張残留応力が高い場合は著しい性能の
低下を招く。そこで、疲労強度に著しく支障を来さない
上限として、引張残留応力392MPa以下と定めた。下限に
ついては、負の方向、即ち圧縮残留応力が高いほど好ま
しいため、特に設けない。また、この引張残留応力は、
例え低い値であったとしても、線表面の円周方向にばら
つきがあった場合、疲労強度の低下を招く。そこで、疲
労強度の低下が起こらない範囲として残留応力分布が平
均値±98MPaと規定した。
Further, the steel wire of the present invention has a tensile residual stress on the wire surface of 392 MPa (40 kgf / mm 2 ) or less, and a residual stress distribution in the circumferential direction on the wire surface having an average value of ± 98 MPa (10 kgf / mm 2 ).
Is preferably within the range. This is because when the tensile residual stress on the wire surface is high or the dispersion is large, excellent characteristics are not always obtained. In particular, regarding the fatigue strength, when the tensile residual stress is high, the performance is significantly lowered. Therefore, as an upper limit that does not significantly affect the fatigue strength, the tensile residual stress is set to 392 MPa or less. The lower limit is not particularly provided because the negative direction, that is, the higher the compressive residual stress is, the more preferable. Also, this tensile residual stress is
Even if the value is low, if there is variation in the circumferential direction of the wire surface, the fatigue strength is reduced. Therefore, the residual stress distribution is defined as an average value ± 98 MPa as a range where the fatigue strength does not decrease.

【0021】そして、本発明のばねは、上述した本発明
鋼線の有する各特性を単独でまたは組み合わせて具える
ことを特徴とする。これらの特性を具えたばねは、耐熱
へたり性と耐疲労性に優れ、自動車エンジンの弁ばね
等、特に150℃以上250℃以下の高温環境下で使用される
ばねとして好適である。
The spring of the present invention is characterized by having the above-mentioned characteristics of the steel wire of the present invention alone or in combination. A spring having these characteristics is excellent in heat resistance and fatigue resistance, and is suitable as a spring used in a valve spring of an automobile engine, particularly in a high temperature environment of 150 ° C or more and 250 ° C or less.

【0022】一方、本発明鋼線の製造方法は、質量%で
C:0.60〜0.95%、Si:0.1〜1.2%、Mn:0.30〜0.90を
含有する鋼材をベイナイトが主体の組織に変態させる工
程と、減面率40〜99.9%の線引き加工を行って、引張強
さが1300N/mm2以上2400N/mm2以下の鋼線とする工程とを
含むことを特徴とする。
On the other hand, the method for producing the steel wire of the present invention
C: 0.60 ~ 0.95%, Si: 0.1 ~ 1.2%, Mn: 0.30 ~ 0.90 containing steel material transformation to bainite-based structure, wire drawing of 40 ~ 99.9% area reduction, tensile Forming a steel wire having a strength of 1300 N / mm 2 or more and 2400 N / mm 2 or less.

【0023】ベイナイトが主体の組織に変態させる工程
としては、加熱によりオーステナイト化してから恒温変
態させる熱処理を行う。オーステナイト化する加熱温度
は900〜1000℃程度である。また、恒温変態温度は270〜
550℃程度が好ましい。270℃未満ではマルテンサイトの
生成が増大し、550℃を超えるとパーライトの生成が増
大する。さらに好ましくは360〜450℃程度である。オー
ステナイト化する加熱温度から恒温変態温度への好まし
い冷却速度は2〜100℃/secである。恒温変態時間は、十
分に変態させることと生産性の観点から20秒以上10分以
下が好適である。
In the step of transforming bainite into a predominant structure, a heat treatment for austenitizing by heating and then isothermal transformation is performed. The heating temperature for austenitizing is about 900 to 1000 ° C. The constant temperature transformation temperature is 270 ~
About 550 ° C. is preferable. If the temperature is lower than 270 ° C., the formation of martensite increases, and if it exceeds 550 ° C., the generation of pearlite increases. More preferably, it is about 360 to 450 ° C. The preferred cooling rate from the austenitizing heating temperature to the isothermal transformation temperature is 2 to 100 ° C / sec. The isothermal transformation time is preferably from 20 seconds to 10 minutes from the viewpoint of sufficient transformation and productivity.

【0024】また、減面率を40〜99.99%としたのは、
鋼線の金属組織内に転位を導入し、引張強さを改善でき
るからである。もちろん、本発明方法においても、質量
%でMo:0.1〜1.0%、Nb:0.1〜1.0%、Ti:0.1〜1.0%
およびW:0.1〜1.0%よりなる群から選択される1種以
上を含むことが望ましい。
The reason why the area reduction rate is set to 40 to 99.99% is as follows.
This is because dislocations can be introduced into the metal structure of the steel wire to improve the tensile strength. Of course, also in the method of the present invention, Mo: 0.1 to 1.0%, Nb: 0.1 to 1.0%, Ti: 0.1 to 1.0% by mass%.
And W: desirably contains one or more selected from the group consisting of 0.1 to 1.0%.

【0025】さらに、この鋼線の製造方法において、ベ
イナイトが主体の組織に変態させる工程の前後における
少なくとも一方に、線表面から深さ50〜300μmの皮剥ぎ
工程を具えることが好ましい。この皮剥ぎ工程により、
圧延時やベイナイト化熱処理時に線表面に形成される脱
炭層を除去する。皮剥ぎ工程は、圧延後(ベイナイト化
熱処理前)もしくはベイナイト化熱処理後のいずれで行
っても有効である。両方で行えば、なお有効である。こ
の皮剥ぎ工程により、前述した鋼線の硬度分布を容易に
実現できる。なお、皮剥ぎ工程は、皮剥ぎダイスに鋼線
を通すことで行える。
Further, in this method for producing a steel wire, it is preferable that at least one of before and after the step of transforming the structure into a structure mainly composed of bainite is provided with a skinning step having a depth of 50 to 300 μm from the wire surface. By this peeling process,
The decarburized layer formed on the wire surface during rolling or bainite heat treatment is removed. The peeling step is effective whether performed after rolling (before the bainitic heat treatment) or after the bainitizing heat treatment. It is still effective if you do both. By this peeling step, the hardness distribution of the steel wire described above can be easily realized. The stripping step can be performed by passing a steel wire through a stripping die.

【0026】そして、本発明のばねの製造方法は、前述
の鋼線の製造方法に加えて、ばね形状に加工する工程
と、温度300℃超600℃以下で30秒以上5時間以下加熱す
る工程とを含むことを特徴とする。
The method of manufacturing a spring according to the present invention includes, in addition to the above-described method of manufacturing a steel wire, a step of processing into a spring shape and a step of heating at a temperature of more than 300 ° C. and 600 ° C. or less for 30 seconds or more and 5 hours or less. And characterized in that:

【0027】ここで、「ばね形状」はコイル状だけに限
らず、線ばねなど鋼線から加工できるあらゆる形状を含
む。
Here, the "spring shape" is not limited to a coil shape, but includes any shape that can be processed from a steel wire such as a wire spring.

【0028】また、ばね加工後の低温焼なまし工程の条
件として、温度300℃超600℃以下で30秒以上5時間以下
としたのは次の理由による。300℃超で効率的に金属組
織中の転位が移動し、フェライト相中に転位同士又は微
細な炭化析出物を中心として絡みあい、ばねの耐熱性が
向上するためである。この温度域はMo、Nb、TiおよびW
といった添加物による炭化物析出が期待される温度域で
もある。600℃以下としたのは、600℃を超えると、いか
なる転位もセメンタイト/フェライト界面に移動し、転
位の固着による特性向上効果が見込めないためである。
同様に熱処理時間についても、かかる温度域において30
秒以上保持した場合に、上述の転移の固着や微細炭化物
析出が期待できるからである。逆に、5時間以上熱処理
を行うと、それ以上の特性の向上が得られなくなるか、
若しくは転位が必要以上に動いて特性がやや低下する可
能性があるためである。
The reason why the low-temperature annealing step after the spring processing is performed at a temperature of more than 300 ° C. and 600 ° C. or less and 30 seconds or more and 5 hours or less is as follows. When the temperature exceeds 300 ° C., the dislocations in the metal structure move efficiently, and the dislocations are entangled with each other in the ferrite phase around fine carbonized precipitates, thereby improving the heat resistance of the spring. This temperature range is Mo, Nb, Ti and W
This is also a temperature range in which carbide precipitation due to such additives is expected. The reason why the temperature is set to 600 ° C. or less is that if the temperature exceeds 600 ° C., any dislocation moves to the cementite / ferrite interface, and the effect of improving the properties due to the dislocation fixation cannot be expected.
Similarly, the heat treatment time is 30
This is because, when held for more than one second, fixation of the above-mentioned transition and precipitation of fine carbides can be expected. On the other hand, if the heat treatment is performed for 5 hours or more, no further improvement in the characteristics can be obtained,
Alternatively, the dislocation may move more than necessary and the characteristics may be slightly deteriorated.

【0029】さらに、本発明のばねの製造方法におい
て、既存技術にあるばねの強化法のいずれも有効であ
る。例えば、ショットピーニング、窒化処理、電界研磨
が利用できる。ショットピーニング、2段ショットピー
ニングなどのショットピーニングについては、線表面圧
縮残留応力の付与、線表面の残留応力の円周方向分布ば
らつき低減、線表面粗さの平滑化など、いずれもばねの
特性向上に効果がある。窒化処理による表面硬度の増加
は,深さ方向の硬度分布を限定した本発明鋼線に反する
ようにも見える。しかし、均一な硬度分布を持つ鋼線を
基として、その線表面を強化することは極めて有効な強
化手段であり、特に疲労強度向上に有効である。そし
て、電界研磨は鋼線またはばねの表面粗さを低減するこ
とに有効である。
Further, in the spring manufacturing method of the present invention, any of the existing methods for reinforcing a spring is effective. For example, shot peening, nitriding, and electropolishing can be used. Regarding shot peening such as shot peening and two-step shot peening, the characteristics of springs are all improved, such as imparting compressive residual stress on the wire surface, reducing the variation in circumferential distribution of residual stress on the wire surface, and smoothing the surface roughness of the wire. Is effective. The increase in surface hardness due to nitriding seems to be contrary to the steel wire of the present invention, which has a limited hardness distribution in the depth direction. However, strengthening the wire surface based on a steel wire having a uniform hardness distribution is an extremely effective strengthening means, and is particularly effective for improving fatigue strength. The electric field polishing is effective in reducing the surface roughness of the steel wire or the spring.

【0030】以下に本発明における構成元素の選定理由
及び成分範囲を限定する理由を述べる。 (C:0.6〜0.95mass%)Cは鋼の機械的特性を決定する
重要な元素であり、母相ベイナイトにおいて、微細析出
するセメンタイト(Fe3C)を構成する元素である。母相
をベイナイトとし、ばねに必要な強度および耐熱効果を
発揮する含有量として0.6mass%以上必要である。但
し、過度のCの含有は、線引き加工によって、靭性の劣
化を招き易い。そこでC含有量の上限を0.95mass%とし
た。
Hereinafter, the reasons for selecting the constituent elements and the reasons for limiting the component ranges in the present invention will be described. (C: 0.6~0.95mass%) C is an important element that determines the mechanical properties of the steel, the matrix phase bainite, an element constituting the cementite (Fe 3 C) for fine precipitation. The parent phase is bainite, and a content of 0.6 mass% or more is required to exhibit strength and heat resistance required for the spring. However, an excessive C content tends to cause deterioration in toughness due to wire drawing. Therefore, the upper limit of the C content is set to 0.95 mass%.

【0031】(Si:0.1〜1.2mass%)Siは溶解精錬時の
脱酸剤として使用される。また、フェライト中に固溶
し、強化する効果も併せ持つ。従って、下限は脱酸効果
を持たせるために0.1mass%以上とした。但し、過度の
添加は靭性の欠如を招き、ばね加工時の折損の原因とな
り易いため、靭性欠如を防止するために上限を1.2mass
%以下とした。
(Si: 0.1 to 1.2 mass%) Si is used as a deoxidizing agent at the time of melting and refining. It also has the effect of forming a solid solution in ferrite and strengthening it. Therefore, the lower limit is set to 0.1 mass% or more to have a deoxidizing effect. However, excessive addition leads to lack of toughness, which is likely to cause breakage during spring processing, so the upper limit is 1.2 mass to prevent lack of toughness.
% Or less.

【0032】(Mn:0.3〜0.90mass%)MnもSi同様、溶
解精錬時の脱酸剤として使用される。但し、Mnは線材の
中心偏析を生じし易くする元素でもあり、熱処理時に中
心偏析箇所にマルテンサイトを生じ、著しく線引き加工
時の断線率を増加させる。そこで、脱酸作用を持つ下限
として0.30mass%以上、靭性劣化を招かない上限として
0.90mass%とした。
(Mn: 0.3 to 0.90 mass%) Mn is also used as a deoxidizing agent at the time of melting and refining, similarly to Si. However, Mn is also an element that tends to cause the center segregation of the wire, and generates martensite at the center segregation part during the heat treatment, which significantly increases the disconnection rate during the wire drawing. Therefore, the lower limit of the deoxidizing effect is 0.30 mass% or more, and the upper limit that does not cause toughness deterioration is
0.90 mass%.

【0033】(Mo、Nb、Ti、W:0.1〜1.0mass%)W、M
o、V、Tiは、鋼中に炭化物を生成し、析出強化を行う効
果がある。但し、いずれの場合も過度の添加は析出物の
増加や増大を招き、靭性を劣化させる。そこで、各元素
の含有量をMo:0.1〜1.0mass%、Nb:0.1〜1.0mass%、
Ti:0.1〜1.0mass%、W:0.1〜1.0mass%と設定した。
(Mo, Nb, Ti, W: 0.1 to 1.0 mass%) W, M
o, V, and Ti have an effect of generating carbides in steel and strengthening precipitation. However, in either case, excessive addition causes an increase or increase in precipitates, and deteriorates toughness. Therefore, the content of each element is Mo: 0.1 to 1.0 mass%, Nb: 0.1 to 1.0 mass%,
Ti: 0.1 to 1.0 mass%, W: 0.1 to 1.0 mass%.

【0034】[0034]

【発明の実施の形態】以下、本発明の実施の形態を説明
する。 (試験例1)表1に示す化学成分の鋼材を溶解鋳造し、
鍛造後熱間圧延で直径9.5mmの線材を作製した。その後9
50℃に加熱してオーステナイト化した後、400℃、3分
で恒温変態させた。さらに、減面率82.3%の線引き加工
を行い、線径4.0mmの試験片を作製した。そして、得ら
れた鋼線におけるベイナイトの比率、引張強さを測定し
た。ベイナイトの比率の測定方法は、線引き加工前後の
試料の横断面、縦断面をピクリン酸アルコールでエッチ
ングした後、光学顕微鏡で観察を行い、各断面上に占め
るベイナイトの面積率から、他相の大きさを推定し、体
積%として算出した。参考として、線引き加工前後でベ
イナイトの体積%の変化は無かった。
Embodiments of the present invention will be described below. (Test Example 1) Steel materials having the chemical components shown in Table 1 were melt-cast,
After forging, a wire rod having a diameter of 9.5 mm was produced by hot rolling. Then 9
After heating to 50 ° C. to austenite, it was subjected to constant temperature transformation at 400 ° C. for 3 minutes. Further, wire drawing was performed with a reduction in area of 82.3% to prepare a test piece having a wire diameter of 4.0 mm. Then, the ratio of bainite and the tensile strength in the obtained steel wire were measured. The bainite ratio is measured by etching the cross section and longitudinal section of the sample with picric acid alcohol before and after the drawing process, and then observing it with an optical microscope. Was estimated and calculated as volume%. For reference, there was no change in the volume% of bainite before and after the wire drawing.

【0035】併せて、化学成分やベイナイトの比率が異
なる比較例、、一般的な硬鋼線であるピアノ線(SW
P-Bパーライト鋼)とした比較例、ばね用Si-Cr鋼オイ
ルテンバー線(SWOSC-B)である比較例も作製し、同
様にベイナイトの比率、引張強さを測定した。表1に、
ベイナイトの体積比率および引張り強さも併せて示す。
In addition, a comparative example in which the chemical composition and the ratio of bainite are different, and a piano wire (SW
A comparative example using PB pearlite steel) and a comparative example using a Si-Cr steel oil-timber wire for spring (SWOSC-B) were also prepared, and the ratio of bainite and the tensile strength were measured in the same manner. In Table 1,
The bainite volume ratio and tensile strength are also shown.

【0036】[0036]

【表1】 [Table 1]

【0037】実施例〜は、いずれもベイナイトの比
率が90体積%以上であり、引張強さも1700N/mm2以上で
ある。また、いずれの比較例もコイリングしてばねとし
て評価を行うために、引張強さは1300N/mm2以上であ
る。
In Examples 1 to 3, the ratio of bainite is 90% by volume or more, and the tensile strength is 1700 N / mm 2 or more. In addition, the tensile strength is 1300 N / mm 2 or more in order to evaluate each of the comparative examples as a spring by coiling.

【0038】(試験例2)試験例1で作製したステンレ
ス鋼線の疲労強度と高温耐へたり性とを評価した。疲労
強度は線径3.5mm×長さ700mmの鋼線形状、高温耐へたり
性は線径1.0mmのコイルばね形状でそれぞれ評価した。
疲労強度測定用の試料はいずれも圧延後に線表面から深
さ150μmの皮剥ぎを行い、その後ベイナイト化熱処理と
伸線加工を施した。比較例は、皮剥ぎ加工後にオイル
テンパー処理を行った。高温耐へたり性評価用として加
工したばねの諸元は次の通りである。
Test Example 2 The stainless steel wire produced in Test Example 1 was evaluated for fatigue strength and sag resistance at high temperatures. Fatigue strength was evaluated in the form of a steel wire having a wire diameter of 3.5 mm x length of 700 mm, and high temperature sag resistance was evaluated in the form of a coil spring having a wire diameter of 1.0 mm.
All the samples for measuring the fatigue strength were stripped from the wire surface to a depth of 150 μm after rolling, and then subjected to bainite heat treatment and wire drawing. In the comparative example, an oil tempering treatment was performed after peeling. The specifications of the spring processed for evaluation of high-temperature set resistance are as follows.

【0039】線径:1.0mm コイル平均径:4.0mm 自由高さ:45.0mm 有効枚数:10.0 総巻き数:12.0 巻き方向:右 いずれの試料もばね加工後のひずみ取りを想定して低温
焼なましを行った。
Wire diameter: 1.0 mm Coil average diameter: 4.0 mm Free height: 45.0 mm Effective number of sheets: 10.0 Total number of windings: 12.0 Winding direction: right I've been doing good.

【0040】各試料の低温焼なまし条件は、いずれも一
般的な条件を用いた。比較例のばね用Si-Cr鋼オイル
テンパー線(SWOSC-B)を除いて400℃×30minとし、ば
ね用Si-Cr鋼オイルテンパー線(SWOSC-B)は425℃×30
分とした。この低温焼なまし後においても、ベイナイト
の体積%を求めたが、各試料とも変化は見られなかっ
た。
As the low-temperature annealing conditions of each sample, general conditions were used. The temperature was 400 ° C x 30 min except for the Si-Cr steel oil-tempered wire for spring (SWOSC-B) of the comparative example, and the 425 ° C x 30 min for the Si-Cr steel oil-tempered wire for spring (SWOSC-B).
Minutes. After this low-temperature annealing, the volume percentage of bainite was determined, but no change was observed in each sample.

【0041】疲労強度の測定は中村式回転曲げ試験機を
用いた。回転速度7000rpmとし、1×10回まで試験を
行い、未破壊であった振幅応力を最大疲労強度とした。
The fatigue strength was measured using a Nakamura-type rotary bending tester. The test was performed up to 1 × 10 7 times at a rotation speed of 7000 rpm, and the undestructed amplitude stress was defined as the maximum fatigue strength.

【0042】高温耐へたり性の試験方法は、図1に示す
ように、作製したばねに圧縮荷重を負荷し(負荷せん断
応力は700MPa)、試験温度200℃において2hrs保持し、
試験後のへたり量測定から残留せん断ひずみを算出し
た。表2に実施例および比較例の疲労強度と高温耐へた
り性評価試験後の残留せん断ひずみを示す。
As shown in FIG. 1, the test method for high-temperature set resistance is to apply a compressive load (load shear stress is 700 MPa) to the produced spring and hold it at a test temperature of 200 ° C. for 2 hours.
The residual shear strain was calculated from the set amount measurement after the test. Table 2 shows the fatigue strength and the residual shear strain after the high-temperature sag resistance evaluation test of the examples and comparative examples.

【0043】[0043]

【表2】 [Table 2]

【0044】実施例はいずれも一般的な硬鋼線であるピ
アノ線B種(比較例)よりも高い疲労強度、高温耐へ
たり性を有していた。特に、W、Mo、V、Tiなど、炭化物
生成元素の添加が行われた実施例〜は、ばね用Si-C
r鋼オイルテンパー線(比較例)と同等の高い疲労強
度、高温耐へたり性を達成していることが確認できた。
それに対して、ベイナイトの体積率が低い比較例やC
の含有量が少ない比較例は優れた疲労強度や高温耐へ
たり性を得ることはできなかった。
All of the examples had higher fatigue strength and high-temperature sag resistance than piano wire B (comparative example), which is a common hard steel wire. In particular, Examples-in which addition of carbide-forming elements such as W, Mo, V, and Ti were performed were used for spring Si-C
r It was confirmed that high fatigue strength and high-temperature sag resistance equivalent to steel oil-tempered wire (comparative example) were achieved.
On the other hand, the comparative example with low bainite volume fraction and C
In Comparative Examples having a low content of, it was not possible to obtain excellent fatigue strength and high-temperature set resistance.

【0045】(試験例3)次に、表1の実施例を用
い、圧延後の線材を皮剥ぎすることなく、ベイナイトが
主体の組織に変態させる工程を経て、直径9.5mmから3.5
mmまで伸線したものと、圧延後に線表面から20μm、50
μm、150μm、300μmの皮剥ぎをそれぞれ行ってから伸
線(減面率82%)を行ったものを用意した。そして、こ
れら試料のビッカース硬度平均値とそれに対する線表面
から線中心までの深さ方向の硬度分布(ビッカース硬
度)と線表面の円周方向の硬度分布(ビッカース硬度)
ならびに疲労強度を求めた。深さ方向の硬度は、鋼線の
横断面における中心から表面の間の10点の硬度を測定
し、これらの平均値を求めると共に、各測定値と平均値
との差を求めることで調べた。周方向の硬度は、鋼線表
面の周方向における8点の硬度を測定し、これらの平均
値を求めると共に、各測定値と平均値との差を求めるこ
とで調べた。疲労強度の測定条件は試験例2と同様であ
る。その結果を表3に示す。
(Test Example 3) Next, using the example of Table 1, a process of transforming bainite into a structure mainly composed of bainite without peeling the wire after rolling was carried out, and a diameter of 9.5 mm to 3.5 mm was obtained.
mm, and 20 μm, 50 mm from the wire surface after rolling.
After peeling the skin of μm, 150 μm, and 300 μm, wire drawing (area reduction rate 82%) was performed. Then, the average Vickers hardness of these samples, the hardness distribution in the depth direction from the line surface to the center of the line (Vickers hardness) and the hardness distribution in the circumferential direction of the line surface (Vickers hardness)
In addition, the fatigue strength was determined. The hardness in the depth direction was measured by measuring the hardness of 10 points between the center and the surface in the cross section of the steel wire, obtaining the average value, and calculating the difference between each measured value and the average value. . The hardness in the circumferential direction was determined by measuring the hardness at eight points in the circumferential direction on the surface of the steel wire, calculating the average value thereof, and calculating the difference between each measured value and the average value. The measurement conditions of the fatigue strength are the same as in Test Example 2. Table 3 shows the results.

【0046】[0046]

【表3】 [Table 3]

【0047】試験結果より、皮剥ぎを行わなかった実施
例-1では、線表面の脱炭の影響と思われる線表面か
ら線中心への深さ方向、及び線表面円周方向に硬度のば
らつきがあり、他の皮剥ぎを行っている鋼線より疲労強
度が低い。また、皮剥ぎを20μm行った実施例-2にお
いても、脱炭層を取り除くには十分ではなく、円周方向
に硬度のばらつきが確認された。疲労強度も50μm以上
皮剥ぎしたものと比べて低い値となった。これに対し
て、50μm以上皮剥ぎしたものについては、疲労強度が
高く、ほぼ同等の特性が得られた。
According to the test results, in Example-1 in which the skin was not stripped, the hardness variation in the depth direction from the wire surface to the wire center and in the circumferential direction of the wire surface, which are considered to be due to the decarburization of the wire surface. And lower fatigue strength than other stripped steel wires. Also, in Example-2 in which the skin was peeled off by 20 μm, it was not enough to remove the decarburized layer, and variation in hardness in the circumferential direction was confirmed. The fatigue strength was also lower than that of the skinned skin of 50 μm or more. On the other hand, those peeled by 50 μm or more had high fatigue strength and almost the same characteristics were obtained.

【0048】(試験例4)試験例1で作製した実施例
について、低温焼なまし処理の熱処理温度を300℃〜650
℃、熱処理時間を30秒〜6時間と変化させた試料につい
て、それぞれのフェライト相に存在する転位密度、セメ
ンタイト相の微結晶化の有無、線表面の引張残留応力値
と円周方向のばらつき、そしてそれぞれの疲労強度、高
温耐へたり性を調べた。鋼線の加工度や線径などの条件
は試験例1、2と同様とした。
(Test Example 4) The heat treatment temperature of the low-temperature annealing treatment was set to 300 ° C. to 650 for the example manufactured in Test Example 1.
C, the heat treatment time was changed from 30 seconds to 6 hours, the dislocation density existing in each ferrite phase, the presence or absence of microcrystallization of the cementite phase, the tensile residual stress value of the wire surface and the variation in the circumferential direction, Then, their fatigue strength and high-temperature set resistance were examined. Conditions such as the degree of work and the wire diameter of the steel wire were the same as in Test Examples 1 and 2.

【0049】転位密度については、電解研磨によって作
製した一定の厚み(コンタミ法によって測定)を持つ試
料断面のTEM(Transmission Electron Microscope)
像から、単位体積当りのフェライト中の転位の長さを測
定し、算出した。即ち、この測定方法では、セメンタイ
ト/フェライト界面に存在する転位までは正確に測定し
ていない。あくまでもフェライト相中に存在する転位密
度で規定している。
Regarding the dislocation density, a TEM (Transmission Electron Microscope) of a cross section of a sample having a constant thickness (measured by a contamination method) manufactured by electrolytic polishing.
From the image, the length of dislocations in the ferrite per unit volume was measured and calculated. That is, this measurement method does not accurately measure the dislocation existing at the cementite / ferrite interface. It is defined only by the dislocation density existing in the ferrite phase.

【0050】試料表面の残留応力はX線回折像より得ら
れる回折ピークのずれより算出した。より具体的には、
周方向の4点における残留応力を算出し、これらの平均
値を求めると共に、各算出値と平均値との差も求めた。
The residual stress on the sample surface was calculated from the shift of the diffraction peak obtained from the X-ray diffraction image. More specifically,
Residual stresses at four points in the circumferential direction were calculated, their average values were determined, and the difference between each calculated value and the average value was also determined.

【0051】セメンタイト相の微結晶化については、TE
M像よりセメンタイト相の平均粒径を求めることで確認
した。そして、その平均粒径が30nm以下の場合に微結晶
化が「有」と判断し、平均粒径が30nmを超える場合は
「有(粗大化)」と判断した。また、TEM像より、セメ
ンタイト相中に、結晶粒界が確認できない場合は、微結
晶化が「無」と判断した。
Regarding the microcrystallization of the cementite phase, TE
It was confirmed by obtaining the average particle size of the cementite phase from the M image. When the average particle size was 30 nm or less, microcrystallization was determined to be “present”, and when the average particle size exceeded 30 nm, “presence (coarsening)” was determined. When no crystal grain boundaries were found in the cementite phase from the TEM image, it was determined that microcrystallization was “absent”.

【0052】また、疲労強度、高温耐へたり性の試験条
件は試験例2と同様である。試験結果を表4に示す。
The test conditions for fatigue strength and sag resistance at high temperatures are the same as in Test Example 2. Table 4 shows the test results.

【0053】[0053]

【表4】 [Table 4]

【0054】試験結果より、低温焼なましを行っていな
いもの(実施例-6)、温度が低いもの(同-7)、
時間の短いもの(同-11、12)については、疲労強度
が低く、高温耐へたり性も、他の十分に加熱した試料と
比較して低いことが確認できた。また、実施例-7と
実施例-12を比較して判るように、セメンタイト相の
微結晶化も、これらの特性の向上には重要であることが
確認できた。但し、あまりにも高温もしくは長時間の熱
処理を行うと、セメンタイトの結晶粒径の粗大化が起こ
り、特性を低下させることが確認できた。さらに、線表
面の引張残留応力は、値が小さく、かつばらつきが小さ
いほど疲労強度や高温耐へたり性が向上することも確認
できた。
From the test results, those without low-temperature annealing (Example-6), those with low temperature (Example-7),
It was confirmed that the samples with shorter time (-11 and 12) had lower fatigue strength and lower resistance to high-temperature sag than those of other sufficiently heated samples. In addition, as can be seen by comparing Example-7 and Example-12, it was confirmed that microcrystallization of the cementite phase was also important for improving these properties. However, it was confirmed that when the heat treatment was performed at an excessively high temperature or for a long time, the crystal grain size of the cementite was coarsened and the properties were deteriorated. Furthermore, it was also confirmed that the smaller the value and the smaller the variation in the tensile residual stress on the wire surface, the more the fatigue strength and the high-temperature resistance were improved.

【0055】(試験例5)次に、試験例1で作製した実
施例について、フェライト相の厚さを変化させる目的
でオーステナイト化温度(950℃または1000℃)とベイ
ナイト化処理(オーステンパー)条件(温度で360〜450
℃、恒温変態時間は3分)を変化させた試料を作製し、
各試料の縦断面のTEM像よりフェライト相の厚さを測定
した。表5にオーステンパー熱処理条件、フェライト相
の厚さ、引張り強さ、疲労強度、そして残留せん断ひず
みを示す。加工度や線径などの条件は試験例1、2と同
様とした。
(Test Example 5) Next, for the example manufactured in Test Example 1, the austenitizing temperature (950 ° C. or 1000 ° C.) and the conditions of the bainitizing treatment (austempering) were used in order to change the thickness of the ferrite phase. (360-450 at temperature
℃, constant temperature transformation time is 3 minutes)
The thickness of the ferrite phase was measured from a TEM image of a longitudinal section of each sample. Table 5 shows the austempering heat treatment conditions, the thickness of the ferrite phase, the tensile strength, the fatigue strength, and the residual shear strain. Conditions such as the working ratio and the wire diameter were the same as those in Test Examples 1 and 2.

【0056】[0056]

【表5】 [Table 5]

【0057】試験結果より、熱処理条件を変えることで
フェライト相の厚さが変化しており、フェライト相の厚
さが厚いほど引張強さと疲労強度が低下し、高温耐へた
り性が向上(残留せん断ひずみの値が低下)することが
判った。但し、高温耐へたり性にはピークが存在し、フ
ェライト相の厚みが300nmを超えると低下することが確
認できた。この結果には、比較的高温でオーステンパー
を行うことで、パーライト体積%が増加し、ベイナイト
体積%が低下した影響もあるものと思われる。疲労強度
についてはフェライト相の厚みが200nmを超えると大き
く低下することが確認できる。
According to the test results, the thickness of the ferrite phase was changed by changing the heat treatment conditions. As the thickness of the ferrite phase became larger, the tensile strength and fatigue strength decreased, and the high-temperature sag resistance was improved (residual resistance). (The value of the shear strain decreases). However, it was confirmed that there was a peak in the sag resistance at a high temperature, and the peak was reduced when the thickness of the ferrite phase exceeded 300 nm. This result is considered to be due to the effect that the austempering performed at a relatively high temperature increased the pearlite volume% and decreased the bainite volume%. It can be confirmed that the fatigue strength is greatly reduced when the thickness of the ferrite phase exceeds 200 nm.

【0058】(試験例6)次に、試験例1で作製した実
施例について、加工度や線径などの条件は試験例1、
2と同様として、ショットピーニング、窒化、電解研磨
を行った。ショットピーニングの条件としては、使用シ
ョット:0.3mmS.B.、処理時間:30分、ショット後のひ
ずみ取り焼なまし:200℃×30分とした。窒化条件は、
処理温度420℃、処理時間2hrs.、方法はガス軟窒化法
を用いた。次に電解研磨法については、電解液の化学成
分:HPO、HSO、HOの混合液、電圧:15V、電
流密度:250A/dm2、研磨速度20μm/min.とした。そして
電解研磨量20μm(電解研磨)と5μm(電解研磨)
の2種類とした。本来、ばねの強化法として、上記の方
法は組合わせて行われることが多いが、本試験では、そ
れぞれの効果を見るために別々に行っている。試験結果
を表6に示す。
(Test Example 6) Next, with respect to the embodiment manufactured in Test Example 1, the conditions such as the degree of work and the wire diameter were the same as those in Test Example 1.
As in the case of No. 2, shot peening, nitriding, and electropolishing were performed. The conditions of shot peening were as follows: shot used: 0.3 mm S.B., processing time: 30 minutes, and strain relief annealing after shot: 200 ° C. × 30 minutes. The nitriding conditions are
Treatment temperature 420 ° C, treatment time 2hrs. The gas nitrocarburizing method was used. Next, regarding the electrolytic polishing method, the chemical components of the electrolytic solution: a mixed solution of H 3 PO 4 , H 2 SO 4 , and H 2 O, a voltage of 15 V, a current density of 250 A / dm 2 , and a polishing rate of 20 μm / min. did. And the amount of electrolytic polishing 20μm (electrolytic polishing) and 5μm (electrolytic polishing)
And two types. Originally, as a method of strengthening the spring, the above methods are often performed in combination, but in this test, they are performed separately in order to see their effects. Table 6 shows the test results.

【0059】[0059]

【表6】 [Table 6]

【0060】試験結果より、ショットピーニングを施し
た実施例-20において特に特性の向上が見られた。疲
労強度についてはショットピーニングによる引張残留応
力の低下と線表面粗さの改善という2つの効果が合わさ
ったものと思われる。また、ショットピーニングによる
引張強さの向上は残留せん断ひずみにもわずかに影響し
ているものと思われる。
From the test results, it was found that the characteristics were particularly improved in Example 20 in which shot peening was performed. With respect to fatigue strength, it is considered that the two effects of lowering the tensile residual stress by shot peening and improving the wire surface roughness were combined. In addition, it is considered that the improvement in tensile strength by shot peening slightly affects the residual shear strain.

【0061】また、窒化によっても疲労強度が向上して
いることが確認できた。これは窒化処理によって、引張
強さは低下するが、線表面の硬度が増加するため、疲労
強度の向上に貢献したものと思われる。但し、金属組織
が全く同じであるとき、引張強さの低下は僅かに高温耐
へたり性を劣化させているようである。このことからよ
り低温での窒化などで引張強さを低減させなければ、高
温耐へたり性の向上も図れるものと思われる。
It was also confirmed that the fatigue strength was improved by nitriding. This is thought to be due to the fact that although the tensile strength is decreased by the nitriding treatment, the hardness of the wire surface is increased, and thus the fatigue strength is improved. However, when the metallographic structures are exactly the same, the reduction in tensile strength appears to slightly degrade high temperature set resistance. From this, it is considered that if the tensile strength is not reduced by nitriding at a lower temperature, the high-temperature resistance can be improved.

【0062】次に、電解研磨の効果についてであるが、
研磨量が多かった実施例-22において特に大きな疲労
強度の向上が確認できた。ショットピーニングでの結果
も含めて、表面粗さをRz:15μm以下に持っていくこと
で飛躍的に疲労強度の向上が得られることが確認でき
た。これらの処理を組み合わせることで更なる特性の向
上が得られることは明らかである。
Next, regarding the effect of electrolytic polishing,
In Example-22 where the polishing amount was large, a particularly large improvement in fatigue strength was confirmed. Including shot peening results, it was confirmed that the fatigue strength was dramatically improved by reducing the surface roughness to Rz: 15 μm or less. It is clear that further improvement in characteristics can be obtained by combining these processes.

【0063】尚、本発明の鋼線、ばね及びその製造方法
は、上述の具体例にのみ限定されるものではなく、本発
明の要旨を逸脱しない範囲内において種々の変更を加え
得ることは勿論である。
It should be noted that the steel wire, the spring, and the method of manufacturing the same according to the present invention are not limited to the above-described specific examples, and various changes can be made without departing from the scope of the present invention. It is.

【0064】[0064]

【発明の効果】以上のように、本発明鋼線は高炭素鋼線
の母材組織を体積%で90%以上ベイナイト組織とするこ
とや、更にMo、Nb、Ti、Wといった炭化物生成元素の添
加による析出強化を行うことで、ばね用Si-Cr鋼オイル
テンバー線より安価で、かつ耐熱特性が同等の耐熱ばね
用鋼線を得ることができる。また、この鋼線をばねに利
用することで、疲労強度を改善することができる。従っ
て、家電、自動車部品に使用される圧縮・引張コイルば
ねやトーションバー等としての利用が期待される。
As described above, in the steel wire of the present invention, the base metal structure of the high carbon steel wire has a bainite structure of 90% or more by volume%, and furthermore, the carbide forming elements such as Mo, Nb, Ti, and W are formed. By performing precipitation strengthening by addition, a steel wire for a heat-resistant spring that is less expensive than a Si-Cr steel oil-timber wire for a spring and has the same heat resistance characteristics can be obtained. In addition, by using this steel wire for a spring, fatigue strength can be improved. Therefore, it is expected to be used as a compression / tensile coil spring or torsion bar used for home appliances and automobile parts.

【図面の簡単な説明】[Brief description of the drawings]

【図1】高温耐へたり性試験の試験方法を示す説明図で
ある。
FIG. 1 is an explanatory view showing a test method of a high temperature set resistance test.

フロントページの続き (51)Int.Cl.7 識別記号 FI テーマコート゛(参考) C22C 38/04 C22C 38/04 38/14 38/14 (72)発明者 村井 照幸 兵庫県伊丹市昆陽北一丁目1番1号 住友 電気工業株式会社伊丹製作所内 Fターム(参考) 4K042 AA01 AA02 AA03 BA04 CA08 CA09 CA12 DA02 DA03 DA04 DA06 DC05 Continued on the front page (51) Int.Cl. 7 Identification code FI Theme coat II (Reference) C22C 38/04 C22C 38/04 38/14 38/14 (72) Inventor Teruyuki Murai 1-1-1, Kunyokita, Itami-shi, Hyogo Prefecture No. 1 Sumitomo Electric Industries, Ltd. Itami Works F term (reference) 4K042 AA01 AA02 AA03 BA04 CA08 CA09 CA12 DA02 DA03 DA04 DA06 DC05

Claims (15)

【特許請求の範囲】[Claims] 【請求項1】 質量%でC:0.60〜0.95%、Si:0.1〜1.
2%、Mn:0.30〜0.90を含有し、体積%で90%以上のベ
イナイト組織を有することを特徴とする鋼線。
(1) C: 0.60 to 0.95% by mass, Si: 0.1 to 1.
A steel wire containing 2%, Mn: 0.30 to 0.90, and having a bainite structure of 90% or more by volume.
【請求項2】 さらに質量%でMo:0.1〜1.0%、Nb:0.
1〜1.0%、Ti:0.1〜1.0%およびW:0.1〜1.0%よりな
る群から選択された1種以上を含有することを特徴とす
る請求項1に記載の鋼線。
2. Mo: 0.1 to 1.0% by mass%, Nb: 0.
The steel wire according to claim 1, wherein the steel wire contains at least one selected from the group consisting of 1 to 1.0%, Ti: 0.1 to 1.0%, and W: 0.1 to 1.0%.
【請求項3】 引張強さが1300N/mm2以上2400N/mm2以下
であることを特徴とする請求項1または2に記載の鋼
線。
3. The steel wire according to claim 1, wherein the tensile strength is 1300 N / mm 2 or more and 2400 N / mm 2 or less.
【請求項4】 線表面から線中心までの深さ方向のビッ
カース硬度分布が、平均値±50の範囲内に収まり、かつ
線表面の円周方向のビッカース硬度分布が、平均値±50
の範囲内に収まることを特徴とする請求項1または2に
記載の鋼線。
4. The Vickers hardness distribution in the depth direction from the line surface to the center of the line falls within the range of an average value of ± 50, and the Vickers hardness distribution in the circumferential direction of the line surface has an average value of ± 50.
The steel wire according to claim 1, wherein the steel wire falls within the range.
【請求項5】 線表面粗さが十点平均粗さRzで15μm以
下であることを特徴とする請求項1または2に記載の鋼
線。
5. The steel wire according to claim 1, wherein the wire surface roughness has a ten-point average roughness Rz of 15 μm or less.
【請求項6】 フェライト相中に含まれる転位の密度が
5.0×10〜5.0×10 (cm-2)であることを特徴とする
請求項1または2に記載の鋼線。
6. The density of dislocations contained in a ferrite phase is
5.0 × 105~ 5.0 × 10 7(cm-2)
The steel wire according to claim 1.
【請求項7】 セメンタイト相の平均結晶粒径が3〜30
nmに微結晶化されていることを特徴とする請求項1また
は2に記載の鋼線。
7. The cementite phase has an average crystal grain size of 3 to 30.
The steel wire according to claim 1, wherein the steel wire is microcrystallized to nm.
【請求項8】 線表面における引張残留応力が392MPa以
下であり、線表面円周方向の残留応力分布が平均値±98
MPaの範囲内に収まることを特徴とする請求項1または
2に記載の鋼線。
8. The tensile residual stress on the wire surface is 392 MPa or less, and the residual stress distribution in the circumferential direction of the wire surface has an average value of ± 98.
The steel wire according to claim 1, wherein the steel wire falls within a range of MPa.
【請求項9】 鋼線の縦断面組織において、フェライト
相の厚さが平均で10nm〜200nmの範囲内であることを特
徴とする請求項1または2に記載の鋼線。
9. The steel wire according to claim 1, wherein the ferrite phase has an average thickness in a range of 10 nm to 200 nm in a longitudinal sectional structure of the steel wire.
【請求項10】 質量%でC:0.60〜0.95%、Si:0.1〜
1.2%、Mn:0.30〜0.90を含有する鋼材をベイナイトが
主体の組織に変態させる工程と、減面率40〜99.9%の線
引き加工を行って、引張強さが1300N/mm2以上2400N/mm2
以下の鋼線とする工程とを含むことを特徴とする鋼線の
製造方法。
10. Mass%: C: 0.60 to 0.95%, Si: 0.1 to
A process of transforming steel containing 1.2% and Mn: 0.30 to 0.90 into a structure mainly composed of bainite, and a wire drawing process with a surface reduction rate of 40 to 99.9% to have a tensile strength of 1300 N / mm 2 or more and 2400 N / mm Two
A method for producing a steel wire, comprising the following steps:
【請求項11】 さらに質量%でMo:0.1〜1.0%、Nb:
0.1〜1.0%、Ti:0.1〜1.0%およびW:0.1〜1.0%より
なる群から選択された1種以上を含有することを特徴と
する請求項10に記載の鋼線の製造方法。
11. Mo: 0.1 to 1.0% by mass%, Nb:
11. The method for producing a steel wire according to claim 10, comprising one or more selected from the group consisting of 0.1 to 1.0%, Ti: 0.1 to 1.0%, and W: 0.1 to 1.0%.
【請求項12】 ベイナイトが主体の組織に変態させる
工程の前後における少なくとも一方に、線表面から深さ
50〜300μmの皮剥ぎ工程を具えることを特徴とする請求
項10または11に記載の鋼線の製造方法。
12. At least one of before and after the step of transforming bainite into a structure mainly composed of bainite has a depth from a line surface.
The method for producing a steel wire according to claim 10 or 11, further comprising a peeling step of 50 to 300 µm.
【請求項13】 請求項1〜9のいずれかに記載の鋼線
により構成されたことを特徴とするばね。
13. A spring comprising the steel wire according to claim 1. Description:
【請求項14】 質量%でC:0.60〜0.95%、Si:0.1〜
1.2%、Mn:0.30〜0.90を含有する鋼材をベイナイトが
主体の組織に変態させる工程と、減面率40〜99.9%の線
引き加工を行って、引張強さが1300N/mm2以上2400N/mm2
以下の鋼線とする工程と、ばね形状に加工する工程と、
温度300℃超600℃以下で30秒以上5時間以下加熱する工
程とを含むことを特徴とするばねの製造方法。
14. A mass% of C: 0.60 to 0.95%, Si: 0.1 to
A process of transforming steel containing 1.2% and Mn: 0.30 to 0.90 into a structure mainly composed of bainite, and a wire drawing process with a surface reduction rate of 40 to 99.9% to have a tensile strength of 1300 N / mm 2 or more and 2400 N / mm Two
A step of forming the following steel wire, a step of processing into a spring shape,
Heating at a temperature higher than 300 ° C. and lower than or equal to 600 ° C. for 30 seconds or more and 5 hours or less.
【請求項15】 さらに、ショットピーニング、窒化処
理および電解研磨よりなる群から選択される少なくとも
一工程を組み合わせたことを特徴とする請求項14に記載
のばねの製造方法。
15. The spring manufacturing method according to claim 14, further comprising a combination of at least one step selected from the group consisting of shot peening, nitriding, and electropolishing.
JP2000057755A 1999-11-30 2000-03-02 Steel wire, spring and producing method therefor Pending JP2001220650A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000057755A JP2001220650A (en) 1999-11-30 2000-03-02 Steel wire, spring and producing method therefor

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP34000499 1999-11-30
JP11-340004 1999-11-30
JP2000057755A JP2001220650A (en) 1999-11-30 2000-03-02 Steel wire, spring and producing method therefor

Publications (1)

Publication Number Publication Date
JP2001220650A true JP2001220650A (en) 2001-08-14

Family

ID=26576584

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000057755A Pending JP2001220650A (en) 1999-11-30 2000-03-02 Steel wire, spring and producing method therefor

Country Status (1)

Country Link
JP (1) JP2001220650A (en)

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004027258A (en) * 2002-06-21 2004-01-29 Sanyo Special Steel Co Ltd Cutting-finished bar steel having excellent shear cuttability and method of producing the bar steel
JP2007224366A (en) * 2006-02-23 2007-09-06 Sumitomo Electric Ind Ltd High strength stainless steel spring and its manufacturing method
JPWO2006057430A1 (en) * 2004-11-24 2008-06-05 独立行政法人物質・材料研究機構 High-strength molded article manufacturing method, high-strength molded article and high-strength machined screw obtained thereby
JP2009013436A (en) * 2007-06-29 2009-01-22 Piolax Inc Spring workpiece and manufacturing method therefor
WO2012018144A1 (en) * 2010-08-04 2012-02-09 日本発條株式会社 Spring and manufacture method thereof
JP2012111992A (en) * 2010-11-22 2012-06-14 Nhk Spring Co Ltd Spring and manufacture method thereof
WO2012093506A1 (en) * 2011-01-06 2012-07-12 中央発條株式会社 Spring having excellent corrosion fatigue strength
US8789817B2 (en) 2009-09-29 2014-07-29 Chuo Hatsujo Kabushiki Kaisha Spring steel and spring having superior corrosion fatigue strength
WO2015053311A1 (en) * 2013-10-08 2015-04-16 新日鐵住金株式会社 Wire rod, hypereutectoid bainite steel wire, and method for manufacturing same
JP2015074802A (en) * 2013-10-08 2015-04-20 新日鐵住金株式会社 Method of producing wire rod for hypereutectoid bentonite steel wire excellent in wire drawing characteristic and delayed fracture resistance characteristic and method of producing steel wire using the wire rod
JP2016156071A (en) * 2015-02-25 2016-09-01 新日鐵住金株式会社 Pearlitic steel rail
CN105980589A (en) * 2014-03-06 2016-09-28 新日铁住金株式会社 High-carbon steel wire having superior wire drawing properties and method for producing same
WO2018051599A1 (en) * 2016-09-14 2018-03-22 株式会社東郷製作所 Spring and spring material
WO2018179597A1 (en) * 2017-03-28 2018-10-04 住友電工スチールワイヤー株式会社 Steel wire and spring
SE543919C2 (en) * 2019-05-17 2021-09-21 Husqvarna Ab Steel for a sawing device
CN113574368A (en) * 2019-03-25 2021-10-29 新东工业株式会社 Method for manufacturing reference sheet for measuring X-ray residual stress and reference sheet for measuring X-ray residual stress

Cited By (31)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004027258A (en) * 2002-06-21 2004-01-29 Sanyo Special Steel Co Ltd Cutting-finished bar steel having excellent shear cuttability and method of producing the bar steel
JP5146869B2 (en) * 2004-11-24 2013-02-20 独立行政法人物質・材料研究機構 Method for producing high-strength molded article, high-strength molded article and high-strength machine screw obtained thereby
JPWO2006057430A1 (en) * 2004-11-24 2008-06-05 独立行政法人物質・材料研究機構 High-strength molded article manufacturing method, high-strength molded article and high-strength machined screw obtained thereby
JP2007224366A (en) * 2006-02-23 2007-09-06 Sumitomo Electric Ind Ltd High strength stainless steel spring and its manufacturing method
WO2007105410A1 (en) * 2006-02-23 2007-09-20 Sumitomo Electric Industries, Ltd. High-strength stainless steel spring and process for manufacturing the same
US7717411B2 (en) 2006-02-23 2010-05-18 Sumitomo Electric Industries, Ltd. High-strength stainless steel spring and method of manufacturing the same
JP2009013436A (en) * 2007-06-29 2009-01-22 Piolax Inc Spring workpiece and manufacturing method therefor
US8936236B2 (en) 2009-09-29 2015-01-20 Chuo Hatsujo Kabushiki Kaisha Coil spring for automobile suspension and method of manufacturing the same
US8789817B2 (en) 2009-09-29 2014-07-29 Chuo Hatsujo Kabushiki Kaisha Spring steel and spring having superior corrosion fatigue strength
WO2012018144A1 (en) * 2010-08-04 2012-02-09 日本発條株式会社 Spring and manufacture method thereof
US11378147B2 (en) 2010-08-04 2022-07-05 Nhk Spring Co., Ltd. Spring and manufacture method thereof
JP2012111992A (en) * 2010-11-22 2012-06-14 Nhk Spring Co Ltd Spring and manufacture method thereof
JP2012144752A (en) * 2011-01-06 2012-08-02 Chuo Spring Co Ltd Spring having excellent corrosion fatigue strength
WO2012093506A1 (en) * 2011-01-06 2012-07-12 中央発條株式会社 Spring having excellent corrosion fatigue strength
US9068615B2 (en) 2011-01-06 2015-06-30 Chuo Hatsujo Kabushiki Kaisha Spring having excellent corrosion fatigue strength
JP2015074802A (en) * 2013-10-08 2015-04-20 新日鐵住金株式会社 Method of producing wire rod for hypereutectoid bentonite steel wire excellent in wire drawing characteristic and delayed fracture resistance characteristic and method of producing steel wire using the wire rod
KR101789949B1 (en) 2013-10-08 2017-10-25 신닛테츠스미킨 카부시키카이샤 Wire rod, hypereutectoid bainite steel wire, and method for manufacturing same
WO2015053311A1 (en) * 2013-10-08 2015-04-16 新日鐵住金株式会社 Wire rod, hypereutectoid bainite steel wire, and method for manufacturing same
CN105612269A (en) * 2013-10-08 2016-05-25 新日铁住金株式会社 Wire rod, hypereutectoid bainite steel wire, and method for manufacturing same
JP6079894B2 (en) * 2013-10-08 2017-02-15 新日鐵住金株式会社 Wire material, hypereutectoid bainite steel wire, and production method thereof
CN105980589B (en) * 2014-03-06 2018-01-16 新日铁住金株式会社 The carbon steel wire rod with high and its manufacture method of excellent in wire-drawing workability
EP3115478A4 (en) * 2014-03-06 2017-09-06 Nippon Steel & Sumitomo Metal Corporation High-carbon steel wire having superior wire drawing properties and method for producing same
CN105980589A (en) * 2014-03-06 2016-09-28 新日铁住金株式会社 High-carbon steel wire having superior wire drawing properties and method for producing same
JP2016156071A (en) * 2015-02-25 2016-09-01 新日鐵住金株式会社 Pearlitic steel rail
WO2018051599A1 (en) * 2016-09-14 2018-03-22 株式会社東郷製作所 Spring and spring material
JP2018044208A (en) * 2016-09-14 2018-03-22 株式会社東郷製作所 Spring and spring material
WO2018179597A1 (en) * 2017-03-28 2018-10-04 住友電工スチールワイヤー株式会社 Steel wire and spring
CN110573638A (en) * 2017-03-28 2019-12-13 住友电气工业株式会社 Wire and spring
CN113574368A (en) * 2019-03-25 2021-10-29 新东工业株式会社 Method for manufacturing reference sheet for measuring X-ray residual stress and reference sheet for measuring X-ray residual stress
US20230160843A1 (en) * 2019-03-25 2023-05-25 Sintokogio, Ltd. Method for manufacturing reference piece for x-ray measurement of residual stress and reference piece for x-ray measurement of residual stress
SE543919C2 (en) * 2019-05-17 2021-09-21 Husqvarna Ab Steel for a sawing device

Similar Documents

Publication Publication Date Title
JP5315790B2 (en) High strength PC steel wire with excellent delayed fracture resistance
JP5135557B2 (en) High-strength steel material and high-strength bolt excellent in delayed fracture resistance
MX2013001724A (en) Special steel steel-wire and special steel wire material.
JP2013082963A (en) Steel wire for bolt, bolt and manufacturing method therefor
JPWO2011004913A1 (en) Steel wire for high strength spring
JP3851095B2 (en) Heat-treated steel wire for high-strength springs
JP2001220650A (en) Steel wire, spring and producing method therefor
WO2014097872A1 (en) Steel wire rod for high-strength spring with excellent hydrogen embrittlement resistance and manufacturing process therefor and high-strength spring
JP2002146479A (en) Wire rod for wire drawing having excellent twisting characteristic and its production method
EP1347072A1 (en) Steel wire rod for hard drawn spring, drawn wire rod for hard drawn spring and hard drawn spring, and method for producing hard drawn spring
JP2002180198A (en) High strength steel wire for spring
JP6691452B2 (en) Steel wire for spring
JP4097151B2 (en) High strength spring steel wire and high strength spring with excellent workability
JP3246210B2 (en) High strength and high toughness hot-dip coated steel wire and method for producing the same
JP3536684B2 (en) Steel wire with excellent wire drawing workability
EP1433868A1 (en) High strength, high carbon steel wire
JPH06240408A (en) Steel wire for spring and its production
JP5941439B2 (en) Coil spring and manufacturing method thereof
JP5597115B2 (en) Hard drawn wire, spring, and method of manufacturing hard drawn wire
JP6453693B2 (en) Heat treated steel wire with excellent fatigue characteristics
JP4133515B2 (en) Spring steel wire with excellent sag and crack resistance
JP3840376B2 (en) Steel for hard-drawn wire and hard-drawn wire with excellent fatigue strength and ductility
JP3940264B2 (en) Steel wire for hard pulling spring, wire drawing material for hard pulling spring, hard pulling spring and manufacturing method of hard pulling spring
JP2015196840A (en) High strength steel material excellent in fatigue characteristics
JP3975110B2 (en) Steel wire, manufacturing method thereof and spring

Legal Events

Date Code Title Description
A625 Written request for application examination (by other person)

Free format text: JAPANESE INTERMEDIATE CODE: A625

Effective date: 20040720

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060518

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060615

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20061017